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In this paper, we consider the Einstein-Maxwell-dilaton holographic model for light quarks with nonzero
magnetic field and chemical potential. First, we study the phase diagrams in T-μ and T-B planes. We
observe inverse magnetic catalysis which is consistent with the lattice QCD results. We discuss the
influence of the magnetic field and chemical potential on the location of the critical end point (CEP). It is
found that the magnetic field increases the critical μCEP of the CEP in the T-μ plane and the chemical
potential increases the critical BCEP of the CEP in the T-B plane. Second, we discuss the equations of state
(EOS) with nonzero magnetic field and chemical potential. We observe that the EOS near the phase
transition temperature are nonmonotonic. Then we study the energy loss with a nonzero magnetic field and
chemical potential. It is found that the drag force of the heavy quark and jet quenching parameter q̂ show an
enhancement near the phase transition temperature. The peak values of drag force and q̂ are pushed toward
lower temperature with increasing B or μ. This phenomenon is consistent with the phase transition
temperature decrease with increasing B or μ in this holographic model. Moreover, we find that the heavy
quark may lose more energy when it is perpendicular to a magnetic field, which is consistent with the
results of the jet quenching parameter.

DOI: 10.1103/PhysRevD.110.066010

I. INTRODUCTION

The experimental investigation of the phase structure of
quantum chromodynamics (QCD) matter is one of the
important tasks of heavy ion collision experiments at the
Relativistic Heavy Ion Collider (RHIC) and LHC [1–5]. It
is generally believed that the strongly coupled plasma can
be generated from experiments since heavy ion collisions
create extreme conditions of high temperature and energy
density. It is well known that QCD matter is in the
confinement phase in the region of low temperature T
and small chemical potential μ while it is in the deconfine-
ment phase in the high temperature T and large chemical
potential μ region. Furthermore, the phase diagram for light
quarks [6] crosses over at μ < μc (critical chemical poten-
tial) and becomes first-order at μ > μc. It is interesting and
challenging to probe the phase diagram of QCD. The phase
diagram in the T-μ plane can provide rich information for
promoting the understanding of the properties of QCD
matter under extreme conditions [7,8].

The phase structure of QCD under an external magnetic
field has attracted much attention since a strong magnetic
field has been generated in the early stage of noncentral
heavy-ion collisions [9–11] and the early Universe [12].
Although the magnetic field rapidly decays, it is still
intense at the initial formation of the quark-gluon plasma
(QGP) [13,14]. As expected, the strong magnetic field has
affected the plasma evolution and the charge dynamics in
the strongly interacting matter. Studying QCD properties
in the magnetized system is still a major focus of current
research, especially the investigation of the phase struc-
ture [15–17]. Lattice QCD serves as a powerful tool to
explore the QCD phase structure under magnetic field.
Early lattice QCD results indicated the chiral condensate
and phase transition temperature increase with the mag-
netic field, namely, magnetic catalysis (MC) [18,19]. The
opposite behaviors were observed in further lattice QCD
studies with physical light quark masses, so-called inverse
magnetic catalysis (IMC) [20–22]. Using the improved
discretization schemes, IMC has been found in the lattice
QCD investigations [23–25]. Further intensive study of
(inverse) magnetic catalysis has drawn much attention to
unveil the microscopic mechanism of the magnetic field
effects [26–36]. It is found that (inverse) magnetic
catalysis is related to the quark mass [37,38]. Inverse
magnetic catalysis is valid for light quarks. The system
turns into MC from IMC with the increase of the quark
mass.
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It is expected that IMC is mainly caused by the strongly
coupled dynamics around phase transition. The perturba-
tive QCDmethod is not reliable since the coupling constant
is still large around the phase transition temperature.
Furthermore, lattice QCD does not work well at finite
chemical potential due to the sign problem. Studying the
QCD phase structure from AdS/CFT correspondence [39–
41] may provide some significant inspiration. The charac-
teristic features of QCD and phase structure at finite
temperature and chemical potential have been discussed
by using this powerful nonperturbative approach [42–53].
The confinement-deconfinement phase transition and QCD
thermodynamic properties under an external magnetic field
also have been widely investigated from holography, and
some interesting results have been obtained [54–67]. In this
work, we want to study the influence of the magnetic field
and chemical potential on the location of the critical end
point (CEP) simultaneously. To be specific, we want to
discuss the effects of the magnetic field on the critical μcep
in the T − μ plane and the chemical potential on the critical
BCEP in the T-B plane. It is worth mentioning that the
bottom-up holographic QCD models can describe QCD-
like physics successfully [68–75]. The (inverse) magnetic
catalysis can be observed from the holographic QCD
model. The dilaton field in the Einstein-Hilbert action is
dual to the running of the coupling constant and the
expression of the dilaton field is correctly solved by the
gravity equations. The dynamical breaking of conformal
symmetry is realized by the nontrivial profile of the dilaton
field in bottom-up holographic QCD models. In bottom-up
holographic QCD, one can fit the model parameters to
match the properties of real QCD such as the deconfine-
ment phase transition, equations of state, and Regge
trajectory of meson mass spectrum.
When an energetic parton a with large transverse

momentum passes through the QGP, it radiates gluons,
thereby losing energy since it interacts with the hot dense
matter. This process leads to transverse momentum broad-
ening described by the jet quenching parameter q̂ [76–82].
The jet quenching parameter plays a significant role in
medium-induced radiated energy loss of light partons and is
defined by the mean squared transverse momentum per unit

distance propagated, q̂ ¼ hκ2⊥i
L . The holographic jet quench-

ing parameter q̂ was first studied in leading order of the
large ’t Hooft coupling [83] and later was extended to the
subleading order in the large ’t Hooft coupling at a nonzero
temperature in [84]. The results are in good agreement with
the RHIC data [84,85] when ’t Hooft coupling λ ¼ 6π. The
effect of the magnetic field on the jet quenching parameter
from holography has been studied in [86–88]. The temper-
ature dependent jet quenching parameter in the pure gluon
system can be seen in [89,90]. The heavy quark energy loss
can be determined by drag force [91,92]. In the trailing
string model, drag force behaves as an observable quantity
that is sensitive to the in-medium energy loss. It is the

averaged momentum per unit time (dp=dt) and can be
holographically calculated by the energy flow (dE=dx)
from the falling string end point into the world sheet
horizon. The effect of magnetic field or chemical potential
on drag force in the EM(d) models can be seen in [93–97].
In this work, we study the holographic QCD model with

nonzero magnetic field and chemical potential in the
Einstein-Maxwell-dilaton (EMD) gravity background. We
study the phase diagram for light quarks in the T-μ and T-B
planes. Thenwe discuss the equations of state (EOS) near the
phase transition temperature. In this model, we find that the
magnetic field suppresses the free energy and this suppres-
sion is stronger when the connecting line of the QQ̄ pair is
parallel to the magnetic field compared with the
perpendicular case, which is consistent with the lattice
QCD results [98]. The fast moving probe energy loss in
the strongly coupled plasma has attracted much interest,
especially near the phase transition temperature. It may be
more comprehensive to consider the influence of both the
magnetic field and chemical potential on energy loss. Based
on this, we discuss the effects of magnetic field and chemical
potential on the drag force and jet quenching parameter near
the phase transition temperature simultaneously and want to
characterize the phase transition temperature by energy loss.
The organization of this work is as follows. In Sec. II, we

introduce the background geometry of the AdS/QCD
model with nonzero chemical potential and magnetic field.
In Sec. III, we investigate the thermodynamics in the
holographic model. In Sec. IV, we discuss the free energy
of the QQ̄ pair in the holographic model. In Sec. V, we
discuss the nonmonotonic jet quenching parameter and
drag force in the AdS/QCD model. The conclusion and
discussion are given in Sec. VI.

II. BACKGROUND GEOMETRY

In this section, we first review the main derivation of the
holographic AdS/QCD model with the nonzero chemical
potential and magnetic field presented in [71]. The action of
the Einstein-Maxwell-dilaton gravity background is

S ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

f1ðϕÞ
4

Fð1ÞMNFMN

−
f2ðϕÞ
4

Fð2ÞMNFMN −
1

2
∂Mϕ∂

Mϕ − VðϕÞ
�
; ð1Þ

where ϕ denotes the dilaton field. VðϕÞ represents the
potential of ϕ. Moreover, Fð1ÞMN and Fð2ÞMN denote the
field strength tensors of two U(1) gauge fields, respectively.
One can consider that the first gauge field is dual to a
(neutral) flavor current which is able to create a meson. The
second gauge field is dual to the electromagnetic current
which can generate a different neutral meson. In [71], the
authors work with Uð1Þ ×Uð1Þ and the meson is charge
neutral. Therefore, one cannot couple electromagnetism to
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a meson in a direct way. In fact, there is no direct coupling
between the twoUð1Þ. The baryon chemical potential serves
as the boundary value of time component of the first Abelian
gauge field Að1ÞM ¼ AtðzÞδtM. The second Abelian gauge
field can be treated as the dual of the electromagnetic current.
The gauge kinetic functions f1ðϕÞ and f2ðϕÞ represent the
coupling between U(1) gauge fields and the dilaton field.
The Ansatz of the metric [71] is

ds2 ¼ L2SðzÞ
z2

�
−gðzÞdt2þdx21þ eB

2z2ðdx22þdx23Þþ
dz2

gðzÞ
�
;

ð2Þ

where SðzÞ, gðzÞ and L denote scale factor, blackening
function, and anti–de Sitter (AdS) length scale, respectively.

In this model, the second gauge field is used to introduce a
backgroundmagnetic fieldB byFð2ÞMN ¼ Bdx2 ∧ dx3. The
rotation symmetry SOð3Þ is broken since the magnetic field
B is along the x1-direction. It is worth mentioning that the
background magnetic fieldB is 5-dimensional (mass dimen-
sion one) in this metric. The physical and 4-dimensional
magnetic field B (mass dimension 2) could be obtained by
rescalingB ∼ B

L [55,62]. For our purpose of investigating the
qualitative characteristics of a magnetic field intuitively, we
use the 5-dimensional magnetic field B in this work. In the
Appendix, we solve the Einstein-Maxwell equations to
justify the metric Ansatz for a small magnetic field, treating
the Ansatz as a small perturbation to the known holographic
solutions without a magnetic field.
The Einstein equations of motion can be obtained by

using the Ansatz of Eq. (2) [71]:

g00ðzÞ þ g0ðzÞ
�
2B2zþ 3S0ðzÞ

2SðzÞ −
3

z

�
−
z2f1ðzÞA0

tðzÞ2
L2SðzÞ ¼ 0; ð3Þ

B2ze−2B
2z2f2ðzÞ

L2SðzÞ þ 2B2g0ðzÞ þ gðzÞ
�
4B4zþ 3B2S0ðzÞ

SðzÞ −
4B2

z

�
¼ 0; ð4Þ

S00ðzÞ − 3S0ðzÞ2
2SðzÞ þ 2S0ðzÞ

z
þ SðzÞ

�
4B4z2

3
þ 4B2

3
þ 1

3
ϕ0ðzÞ2

�
¼ 0; ð5Þ

and

g00ðzÞ
3gðzÞ þ

S00ðzÞ
SðzÞ þ S0ðzÞ

�
7B2z
2SðzÞ þ

3g0ðzÞ
2gðzÞSðzÞ −

6

zSðzÞ
�
þ g0ðzÞ

�
5B2z
3gðzÞ −

3

zgðzÞ
�

þ 2B4z2 þ B2z2e−2B
2z2f2ðzÞ

6L2gðzÞSðzÞ − 6B2 þ 2L2SðzÞVðzÞ
3z2gðzÞ þ S0ðzÞ2

2SðzÞ2 þ
8

z2
¼ 0: ð6Þ

The equation of motion for the dilaton field is

ϕ00ðzÞ þϕ0ðzÞ
�
2B2zþ g0ðzÞ

gðzÞ þ
3S0ðzÞ
2SðzÞ −

3

z

�
þ z2A0

tðzÞ2
2L2gðzÞSðzÞ

∂f1ðϕÞ
∂ϕ

−
B2z2e−2B

2z2

2L2gðzÞSðzÞ
∂f2ðϕÞ
∂ϕ

−
L2SðzÞ
z2gðzÞ

∂VðϕÞ
∂ϕ

¼ 0: ð7Þ

The equation of motion for the first gauge field is given by

A00
t ðzÞ þ A0

tðzÞ
�
2B2zþ f01ðzÞ

f1ðzÞ
þ S0ðzÞ
2SðzÞ −

1

z

�
¼ 0: ð8Þ

One can use the following boundary conditions to solve equations of motion

gð0Þ ¼ 1; gðzhÞ ¼ 0;

Atð0Þ ¼ μ; AtðzhÞ ¼ 0;

Sð0Þ ¼ 1; ϕð0Þ ¼ 0; ð9Þ

where zh is the black hole horizon. The chemical potential μ can be obtained from the near boundary expansion of the zeroth
component of the first gauge field.
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The expression of the gauge field AtðzÞ is as follows:

AtðzÞ ¼ μ

2
641 −

R
z
0 dξ

ξe−B
2ξ2

f1ðξÞ
ffiffiffiffiffiffi
SðξÞ

p
R zh
0 dξ ξe−B

2ξ2

f1ðξÞ
ffiffiffiffiffiffi
SðξÞ

p

3
75 ¼ μ̃

Z
zh

z
dξ

ξe−B
2ξ2

f1ðξÞ
ffiffiffiffiffiffiffiffiffi
SðξÞp :

ð10Þ

The baryon density ρ can be obtained from the expansion
of the gauge field when it is close to the boundary in the
holographic dictionary, At ¼ μ − ρz2. The baryon density
in this model is

ρ ¼ μ

2
R zh
0 dξ ξe−B

2ξ2

e−cξ
2−B2ξ2

: ð11Þ

The forms of scale factor SðzÞ and the gauge coupling
function f1ðzÞ are

SðzÞ ¼ e2PðzÞ;

f1ðzÞ ¼
e−cz

2−B2z2ffiffiffiffiffiffiffiffiffi
SðzÞp : ð12Þ

Then the gauge coupling function f2ðzÞ is

f2ðzÞ ¼ −
L2e2B

2z2þ2PðzÞ

z

×

�
gðzÞ

�
4B2zþ 6P0ðzÞ − 4

z

�
þ 2g0ðzÞ

�
: ð13Þ

The blackening function gðzÞ is given as

gðzÞ ¼ 1þ
Z

z

0

dξξ3e−B
2ξ2−3PðξÞ

�
K1 þ

μ̃2

2cL2
ecξ

2

�
; ð14Þ

with

K1 ¼ −
½1þ μ̃2

2cL2

R zh
0 dξξ3e−B

2ξ2−3PðξÞþcξ2 �R zh
0 dξξ3e−B

2ξ2−3PðξÞ : ð15Þ

The dilaton field in terms of PðzÞ is

ϕðzÞ ¼
Z

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2

z
ð3zP00ðzÞ − 3zP0ðzÞ2 þ 6P0ðzÞ þ 2B4z3 þ 2B2zÞ

r
þ K2: ð16Þ

where K2 is used to ensure ϕ vanishes near the asymptotic boundary.
The potential of the dilaton field is given as

VðzÞ ¼ gðzÞ
L2

�
−
9B2z3S0ðzÞ
2SðzÞ2 þ 10B2z2

SðzÞ −
3z2S0ðzÞ2
SðzÞ3 þ 12zS0ðzÞ

SðzÞ2 þ z2ϕ0ðzÞ2
2SðzÞ −

12

SðzÞ
�

−
z4f1ðzÞA0

tðzÞ2
2L4SðzÞ2 þ g0ðzÞ

L2

�
−
B2z3

SðzÞ −
3z2S0ðzÞ
2SðzÞ2 þ 3z

SðzÞ
�
: ð17Þ

The Hawking temperature and entropy in this back-
ground are

T ¼ −
z3he

−3PðzhÞ−B2z2h

4π

�
K1 þ

μ̃2

2cL2
ecz

2
h

�
;

S ¼ eB
2z2hþ3PðzhÞ

4z3h
; ð18Þ

where Newton constant G5 is set to be one.
From the above equations, one can find that these

Einstein-Maxwell-dilaton gravity solutions are determined
by PðzÞ and the gauge kinetic function f1ðzÞ [Eq. (12)].
Different forms of PðzÞ and f1ðzÞ may lead to different
gravity solutions.

We choose the following simple form of PðzÞ [53]:

PðzÞ ¼ −a logðbz2 þ 1Þ: ð19Þ

In this work, we want to study the phase structure of
QCD matter for light quarks which is different from that in
[71]. One can set the parameter c of the gauge kinetic
function f1ðzÞ to be 0.227 when B ¼ 0 by matching with
the mass spectrum of the ρ meson with its excitations [52].
In order to fit the confinement-deconfinement phase
transition temperature at B ¼ 0 and μ ¼ 0, we fix a ¼
3.943 and b ¼ 0.0158. The phase structure for light quarks
with nonzero chemical potential with the form of Eq. (19)
has been studied in [53]. In this work, we extend the results
to nonzero chemical potential and magnetic field cases.
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We discuss the effects of chemical potential and magnetic
field on the location of the CEP simultaneously and study
the effects of the magnetic field on the critical μCEP in the
T-μ plane and the chemical potential on the critical BCEP in
the T-B plane.
Before studying the black hole thermodynamics and

equations of state in this magnetized background, we want
to check whether the metric solutions are self-consistent or
not in Figs. 1–6. If the metric solutions are self-consistent,
the blackening function and dilaton field should satisfy the
boundary condition of Eq. (9). The gauge kinetic functions
f1 and f2 do not break the null energy condition (NEC);
namely, they should be positive. The B, μ, and T depend-
ence of VðϕÞ should be slight. We will check these in the
following calculations. We take AdS length scale L ¼ 1 in
the calculations.
In Fig. 1, we discuss the effects of the magnetic field and

chemical potential on the blackening function gðzÞ. It is
obvious that gð0Þ ¼ 1 and gðzhÞ ¼ 0 with nonzero mag-
netic field and chemical potential which implies the black-
ening function satisfies the boundary condition. The
blackening function decreases as the chemical potential
and magnetic field increase.
In Fig. 2, we plot ϕðzÞ versus z and f1ðzÞ versus z to

study the effect of the magnetic field on the dilaton field
and the gauge kinetic function. From Fig. 2(a), we find
ϕð0Þ ¼ 0 which implies the dilaton field satisfies the
boundary condition. The dilaton field decreases as the
magnetic field increases. The gauge kinetic function f1ðzÞ
is related to the mass spectrum of the ρ meson. In [52], the
authors fitted the mass spectrum of the ρð1−Þ meson with

m2
n ¼ 4cn, where n is consecutive number and c is the

model parameter. It should be mentioned thatm2
n represents

the mass spectrum when the temperature, chemical poten-
tial, and magnetic field vanish. Namely, the model param-
eter c ¼ 0.227 is fitted well with the mass spectrum at zero
magnetic field. In Fig. 2(b), we just want to check whether
the gauge kinetic function f1 is always positive or not at
different B. The results show that f1ðzÞ has no negative
value and the null energy condition is not broken.
Meanwhile, we observe that f1ðzÞ decreases monotonically
as z increases.
In Fig. 3, we plot the gauge kinetic function f2ðzÞ versus

z with different magnetic fields. The gauge kinetic function
f2ðzÞ is calculated from equations of motion (EOMs).
From the results, the magnetic field increases f2ðzÞ slightly.
The gauge kinetic function f2ðzÞ decreases as the dilaton
field increases. Indeed, the values of f2ðzÞ are close to zero
near the horizon. From the results of the gauge kinetic
functions f1ðzÞ and f2ðzÞ, one can conclude that the values
of the gauge kinetic function are non-negative, which
means f1ðzÞ and f2ðzÞ do not break the NEC.
In Figs. 4–6, we study the effects of magnetic field,

chemical potential, and temperature on the dilaton poten-
tial. After expanding the dialton field ϕ and dilaton
potential VðϕÞ near the asymptotic boundary, one can
rewrite VðϕÞ in terms of ϕ, VðϕÞ ¼ −12þ m2

2
ϕ2 þ · · ·. m2

denotes the mass of ϕ and m2 ¼ −3 when B ¼ 0 which
satisfies the Breitenlohner-Freedman (BF) bound [99].
Thus, VðϕÞ < −12 when z ≠ 0 and VðϕÞ is bounded from
above by its UV boundary value. This phenomenon can be

FIG. 1. gðzÞ versus z. B and μ are in units GeV.

FIG. 2. ϕðzÞ versus z and gauge kinetic function f1ðzÞ versus z. B and μ are in units GeV.
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observed from the figures. Also, Vð0Þ ¼ −12 ¼ 2Λ and Λ
denotes the cosmological constant in AdS5.
We can find the dilaton potential is relevant with

magnetic field, chemical potential, and temperature due

to the metric and gauge field Ansätze. We need to discuss
the magnetic field, chemical potential, and temperature
dependence of VðϕÞ. If VðϕÞ is dependent on B, μ, and T,
then different values of B, μ, and T may lead to a different

FIG. 3. Gauge kinetic function f2ðzÞ versus z. B and μ are in units GeV.

FIG. 4. VðϕÞ as a function of ϕðzÞ with different values of magnetic field. B, μ, and T are in units GeV.

0.2,TT 0.180.1,

�

� �

�

V V

FIG. 5. VðϕÞ as a function of ϕðzÞ with different values of chemical potential. B, μ, and T are in units GeV.

FIG. 6. VðϕÞ as a function of ϕðzÞ with different values of temperatures. B, μ, and T are in units GeV.
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action and metric solution. In Figs. 4–6, one can observe
that the curves almost coincide together. Therefore, the B,
μ, and T dependence of VðϕÞ is negligible. The back
reaction of B on action and metric solution is negligible.

III. THERMODYNAMICS
IN THE HOLOGRAPHIC MODEL

In this section, we discuss the Hawking temperature and
black hole free energy behaviors with the nonzero chemical
potential and magnetic field in this holographic model.
Then we plot the phase diagram in the T-μ and T-B planes.
The equations of state (pressure, entropy density, baryon
density, specific heat, and sound speed) around phase
transition temperature are studied in this section.

A. Black hole thermodynamics

In Fig. 7, we plot temperature T as a function of horizon
zh with different values of chemical potential. From the
results of Fig. 7(a), we find the temperature decreases
monotonically as the horizon increases when μ ¼ 0. When
the chemical potential is greater than the critical point
(μc ¼ 0.064 GeV when B ¼ 0), the local minimum value
of temperature appears. In the μ ≥ μc case, there may exit
three black hole phases. Specifically, the large black hole
(①), unstable phase (②), and small black hole (③) may exist
simultaneously. The large/small black hole is thermody-
namically stable while the unstable phase is not. This
unstable feature leads to the negative values of specific heat
and square of sound speed. From Fig. 7(b), one can find the

chemical potential dependence of temperature when B ¼
0.05 is qualitatively the same as that when B ¼ 0. Indeed, a
phase transition may happen between the small black hole
and large black hole.
The small-large black hole phase transition is dual to the

confinement-deconfinement phase transition in [50].
However, the authors of [51] calculate the phase transition
temperatures from black hole phases and open string
configurations. They find the results have differences
between the two methods. In further study of [70], the
authors consider the small-large black hole phase transition
as the specious confinement-deconfinement phase transition.
Since the Polyakov loop expectation value is nonzero
(extremely small), the small black hole phase is not exactly
dual to confinement. The expectation value of the Polyakov
loop is zero in the confinement phase. However, the
Polyakov loop expectation value is nonzero (extremely
small) in the small black hole phase from the results of
[70]. The expectation value of the Polyakov loop only
behaves as linear confinement for larger distances when T
is small. Therefore, the small black hole phase is called the
specious confinement phase.
From [73], the black hole free energy at fixed chemical

potential, volume, and magnetic field is

F ¼
Z

∞

zh

s
dT
dzh

dzh: ð20Þ

In Fig. 8, we plot free energy F as a function of
temperature T with different values of chemical potential.

FIG. 7. Temperature T as a function of horizon zh with different values of chemical potential (a) for B ¼ 0 and (b) for B ¼ 0.05. B and
μ are in units GeV.

FIG. 8. Free energy F as a function of temperature T with different values of chemical potential (a) for B ¼ 0 and (b) for B ¼ 0.05. B
and μ are in units GeV.
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From the results of Fig. 8(a), one can observe that the black
hole free energy is a smooth function of temperature, which
indicates the phase transition is a crossover with μ ¼ 0.
When μ ≥ μc, the characteristic swallow-tailed shape
emerges, which implies that the first-order phase transition
happens. The small-large black hole phase transition
happens at the kink of the swallow-tailed structure.
From Fig. 8(b), the results of the B ¼ 0.05 case are the
same as those of the B ¼ 0 case. From Figs. 7 and 8, one
finds that the chemical potential promotes crossover to
first-order phase transition.
In Fig. 9, we study the effect of magnetic field on the

temperature and black hole free energy. We plot temper-
ature T versus horizon zh and free energy F versus T with
different values of magnetic field at finite chemical poten-
tial. Fig. 9(a) indicates that the magnetic field suppresses
the unstable phase (②) which vanishes when the magnetic
field is larger than a critical point Bc. The temperature
decreases monotonically with horizon when B ≥ Bc. From
Fig. 9(b), one finds that the characteristic swallow-tailed
shape fades away with increasing magnetic field. When it
reaches a critical point Bc, the free energy monotonously
decreases with temperature. This means the magnetic field
promotes the first-order phase transition to a crossover.
Moreover, the phase transition temperature moves toward

lower values with the increase of the magnetic field,
implying IMC.
In Fig. 10, we plot the phase diagram in T-μ and T-B

planes. Since the phase diagram for light quarks in the T − μ
plane is a smooth crossover at small chemical potential and
turns into first-order at the CEP, we choose the minimum of
the square of sound speed C2

s (dashed lines) to characterize
the drastic change of degrees of freedom between QGP
and the hadron phases in the crossover region. The first-order
phase transition (solid lines) can be fixed by the free energy
when the chemical potential is above a critical value μc.
Fig. 10(a) shows the phase transition in the T − μ plane for
B ¼ 0, 0.05, 0.1GeV. The phase diagram shows crossover at
μ < μc and becomes first-order at μ > μc. The locations
of the CEPs are ðμCEP; TCEPÞ ¼ ð0.064; 0.153Þ; ð0.083;
0.150Þ; ð0.123; 0.1426Þ respectively. When increasing the
magnetic field, the location of the CEP shifts toward the
lower right region of the plane. It means the CEP would shift
toward lower temperature and larger chemical potentialwhen
increasing B. The magnetic field increases critical μCEP in
T − μ plane. We also find that the phase transition temper-
ature when μ ¼ 0, B ¼ 0 is in the 150–160 MeV region
which is consistent with the lattice QCD prediction
[100,101]. Fig. 10(b) shows the phase transition in the
T-B plane for μ ¼ 0; 0.1; 0.15 GeV. One can find the

FIG. 9. Temperature T versus horizon zh and free energy F versus T with different values of magnetic field when μ ¼ 0.1. B and μ are
in units GeV.

FIG. 10. The phase diagram in the T-μ plane and T-B plane. The minima of sound speed squared C2
s are denoted by dashed lines. The

first-order phase transitions (solid lines) are determined by black hole free energy. The black, red, and blue lines in the T-μ plane denote
B ¼ 0, 0.05, 0.1 GeV, respectively. The locations of CEPs are ðμCEP; TCEPÞ ¼ ð0.064; 0.153Þ; ð0.083; 0.150Þ; ð0.123; 0.1426Þ,
respectively. The black, red, and blue lines in the T-B plane denote μ ¼ 0, 0.1, 0.15 GeV, respectively. The locations of CEP are
ðBCEP; TCEPÞ ¼ ð0.075; 0.147Þ; ð0.125; 0.137Þ when μ ¼ 0.1, 0.15 GeV, respectively. B and μ are in units GeV.
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obvious IMC.The locations of theCEPs are ðBCEP; TCEPÞ ¼
ð0.075; 0.147Þ; ð0.125; 0.137Þ when μ ¼ 0.1, 0.15 GeV,
respectively. In the T-B plane and for zero μ, the phase
transition is always a crossover. In theT-B planewith finiteμ,
the phase transition is of first-order at a small magnetic field
and the CEP appears with the increasing magnetic field. The
phase transition finally turns into a smooth crossover at a
largemagnetic field.When increasing the chemical potential,
the location of the CEP shifts to the lower right plane. It
means the CEP would shift toward lower temperature and
larger magnetic field when increasing μ. The chemical
potential increases the critical BCEP of the CEP in the T-B
plane. One also can summarize that the chemical potential
promotes the crossover to a first-order phase transition while
themagnetic field promotes the first-order phase transition to
the crossover. It is worth mentioning that the phase diagram
in the T-μ and T-B planes for heavy quarks has been studied
in [73].

B. Equations of state

In [67], the authors discuss the anisotropic pressures and
sound speed. In this subsection, we focus on the pressure
along the magnetic field and speeds of sound near the phase
transition temperature with a parallel magnetic field.
The pressure p along the x1 direction (parallel to the

magnetic field) is equal to −F. In Fig. 11, we plot the
pressure p=T4 versus temperature T near the phase tran-
sition temperature. From Fig. 11(a), one can observe that
the pressure is single-valued and always increases with the
temperature when 0 < μ < μc. It indicates that the phase

transition crosses over in this region. When μ ≥ μc, the
unstable phase (②) appears, which means the first-order
phase transition happens. The findings of Fig. 11(a) are
consistent with the results of the T − μ phase diagram in
Fig. 10(a). These results also suggest that the chemical
potential promotes the crossover into first-order phase
transition which is consistent with the results of Figs. 7
and 8. From the results of Fig. 11(b), the unstable phase
appears at finite chemical potential and gradually disap-
pears with increasing magnetic field which indicates the
magnetic field causes the unstable phase to vanish. This
finding is consistent with the results of Fig. 9. It also shows
that the phase transition finally turns into a smooth cross-
over from first-order at large magnetic field which agrees
with the results of the T − B phase diagram in Fig. 10(b).
In Fig. 12, we plot the baryon density ρ as a function of

temperature T near the phase transition temperature. It is
obvious that the baryon density is single-valued when
0 < μ < μc while is multivalued around phase transition
temperature when μ ≥ μc from Fig. 12(a). It indicates that
the phase transition is a crossover at μ < μc and becomes
first-order at μ > μc. The multivalued phenomenon be-
comes single-valued at large magnetic field in Fig. 12(b),
suggesting the phase transition finally turns into a smooth
crossover from the first-order.
In Fig. 13, we plot the entropy density s=T3 versus

temperature T. From Fig. 13(a), one can find that the
entropy is single-valued and always increases with the
temperature when 0 < μ < μc while is multivalued around
the phase transition temperature when μ ≥ μc. It indicates
that the phase transition is a crossover at μ < μc and

FIG. 11. The pressure p=T4 versus temperature T near the phase transition temperature. B and μ are in units GeV.

FIG. 12. The baryon density ρ as a function of temperature T near the phase transition temperature. B and μ are in units GeV.
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becomes first-order at μ > μc. Interestingly, the magnetic
field suppresses this multivalued phenomenon from
Fig. 13(b). The multivalued phenomenon turns into single-
valued at a large magnetic field. The phase transition finally
turns into a crossover from the first-order phase. Indeed, the
magnetic field and chemical potential enhance the values of
entropy.
The specific heat is defined by

CV ¼ T

�
∂s
∂T

�
: ð21Þ

In Fig. 14, we plot the specific heat CV=T3 versus
temperature T. From Fig. 14(a), one can find the specific
heat is always positive when 0 < μ < μc, which means the
black hole is thermodynamically stable. The unstable phase
and the negative values of specific heat appear when
μ ≥ μc, signaling the emergence of a first-order phase
transition. The results indicate the phase transition crosses

over at μ < μc and becomes first-order at μ > μc. From
Fig. 14(b), we find that the unstable phenomenon gradually
disappears with the increasing magnetic field and the
specific heat is always positive at a large magnetic field.
It indicates that the phase transition finally turns into a
crossover.
The square of sound speed along the x1 direction is

C2
s ¼

∂ lnT
∂ ln s

¼ s
CV

: ð22Þ

In Fig. 15, we plot the square of sound speed C2
s versus

temperature T. From Fig. 15(a), one observes that the
square of sound speed is always positive when 0 < μ < μc,
suggesting the black hole is thermodynamically stable. The
negative values appear when μ ≥ μc, indicating thermody-
namical instability. From Fig. 15(b), we find that the
unstable phenomenon fades away and the square of sound
speed is always positive at large B. The results of C2

s are

FIG. 13. The entropy density s=T3 versus temperature T. B and μ are in units GeV.

FIG. 14. The specific heat CV=T3 versus temperature T near the phase transition temperature. B and μ are in units GeV.

b

0.08

FIG. 15. The square of sound speed C2
s versus temperature T. The dotted black line denotes C2

s ¼ 1=3. B and μ are in units GeV.
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similar to the findings of CV=T3. Indeed, the chemical
potential and magnetic field enhance the sound speed
slightly at high temperatures.
We can find that the equations of state near the phase

transition temperature are nonmonotonic and nontrivial.
From the results of Figs. 11–15, one finds that the pressure,
baryon density, and entropy density are single-valued and
the specific heat and square of sound speed are always
positive when 0 < μ < μc. When μ ≥ μc, the pressure,
baryon density, and entropy density are multivalued and
the specific heat and square of sound speed have negative
values. It indicates that the phase transition is a crossover at
μ < μc and becomes first-order at μ > μc, which is con-
sistent with the results of the T − μ phase diagram in
Fig. 10(a). These results also suggest that the chemical
potential promotes the crossover into first-order phase
transition which is consistent with the results of Figs. 7
and 8.
At finite chemical potential, the multivalued phenome-

non of the pressure, baryon density, and entropy density
gradually disappears with increasing magnetic field and
finally turns into single-valued at a large magnetic field.
The negative value phenomenon of the specific heat and
square of sound speed fades away with increasing magnetic
field. The specific heat and square of sound speed are
always positive at a large magnetic field. It means the phase
transition finally turns into a smooth crossover from first-
order at a large magnetic field, which agrees with the results
of the T − B phase diagram in Fig. 10(b). These results also
indicate that the magnetic field promotes the first-order
phase transition into crossover, which is consistent with the
results of Fig. 9. The results of the equations of state can
characterize the phase transition. We expect that the

nontrivial behavior of the equations of state near the phase
transition temperature could provide some theoretical
reference for the study of QCD phase diagrams.

IV. FREE ENERGY OF A QQ̄ PAIR IN THE
HOLOGRAPHIC MODEL

In this section, we discuss the free energy of a quark-
antiquark (QQ̄) pair in this holographic QCD model and
compare it with the results of lattice QCD. The free energy
of a QQ̄ pair is related to the on-shell action of a
fundamental string from holography and can be deduced
from the Nambu-Goto action. We study the anisotropic free
energy since the rotation symmetry SOð3Þ is broken by the
magnetic field. We consider the QQ̄ pair is perpendicular
and parallel to the magnetic field. From holography, the
string world sheet action is calculated by the Nambu-Goto
action for test string. Thus, one should transfer the metric to
string frame from Einstein frame.
In the perpendicular case, the coordinates in Eq. (2) are

parameterized by

t ¼ τ; x3 ¼ σ; x1 ¼ x2 ¼ 0; z ¼ zðσÞ: ð23Þ

One can get the Lagrangian density from the Nambu-
Goto action:

L ¼ e2PsðzÞ

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eB

2z2gðzÞ þ ż2
q

; ð24Þ

where PsðzÞ ¼ PðzÞ þ
ffiffi
1
6

q
ϕðzÞ in the string frame.

One obtains the interdistance x⊥ of the QQ̄ pair
perpendicular to the magnetic field

x⊥ ¼ 2

Z
zc

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4e4PsðzcÞeB2z2cgðzcÞ

z4ce4PsðzÞeB4z4g2ðzÞ − z4e4PsðzcÞgðzÞgðzcÞeB2z2eB
2z2c

s
; ð25Þ

where zc is the tip of U-shaped string.
The free energy of the QQ̄ pair of the connected string in the perpendicular case is

FQQ̄ð⊥Þ ¼
ffiffiffi
λ

p

π

Z
zc

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4ce8PsðzÞeB2z2gðzÞ

z4z4ce4PsðzÞeB2z2gðzÞ − z8e4PsðzcÞeB2z2cgðzcÞ

s
: ð26Þ

where
ffiffiffi
λ

p ¼ L2=α0 represents the ’t Hooft coupling.
The free energy of QQ̄ pair of the disconnected solution in the perpendicular case is

Fdisconð⊥Þ ¼
ffiffiffi
λ

p

π

Z
zh

0

dz
e2PsðzÞ

z2
: ð27Þ
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In the parallel case, the interdistance xk of the pair is

xk ¼ 2

Z
zc

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4e4PsðzcÞgðzcÞ

z4ce4PsðzÞg2ðzÞ− z4e4PsðzcÞgðzÞgðzcÞ

s
: ð28Þ

The free energy of theQQ̄ pair of the connected string in
the parallel case is

FQQ̄ðkÞ ¼
ffiffiffi
λ

p

π

Z
zc

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4ce8PsðzÞgðzÞ

z4z4ce4PsðzÞgðzÞ − z8e4PsðzcÞgðzcÞ

s
:

ð29Þ

The free energy of the QQ̄ pair of the disconnected
solution in the parallel case is

FdisconðkÞ ¼
ffiffiffi
λ

p

π

Z
zh

0

dz
e2PsðzÞ

z2
: ð30Þ

In Fig. 16, we plot the free energy of the QQ̄ pair as a
function of interdistance x in a large black hole when T ¼
0.18 GeV and μ ¼ 0.1 GeV. We observe that the free
energy behaves as a Cornell-type potential. We can fit the
free energy as F ¼ − 0.2449

x þ 0.4703xþ 3.266 when
μ ¼ 0.1 GeV and B ¼ 0. Furthermore, the magnetic field
suppresses the free energy and this suppression is stronger
when theQQ̄ pair is parallel to the magnetic field compared
with the perpendicular case. This observation is consistent
with the lattice QCD results [98].
In Fig. 17, we plot interdistance x as a function of zc and

ΔF ¼ FQQ̄ − Fdiscon as a function of x in a large black hole
when T ¼ 0.18 GeV and μ ¼ 0.1 GeV. In Figs. 17(a)
and 17(c), one can find that there exists a xmax value above
which the connected string disappears. Namely, the con-
nected string configuration exists for small zc (solid lines)
while the disconnected string arises for large zc (dotted lines).
Moreover, one can find that themagnetic field decreases xmax

and promotes dissociation of the QQ̄ pair.
In Figs. 17(b) and 17(d), we show the difference in free

energy between the connected and disconnected string as
ΔF ¼ FQQ̄ − Fdiscon. The solid and dotted lines in panels
(b) and (d) denote the smaller and larger branches of
interdistance x, respectively. It is obvious that the free
energy of the smaller branch is always less than that of the
larger branch. Moreover, there exists a critical value xcrit.

FIG. 16. The free energy of the QQ̄ pair as a function of
interdistance x in a large black hole when T ¼ 0.18 GeV and
μ ¼ 0.1 GeV. The solid line (dashed line) represents the QQ̄ pair
parallel (perpendicular) to the magnetic field. The black line, red
line, and blue line represent B ¼ 0.1, 0.2, 0.3 GeV, respectively.
We set λ ¼ 1 in this figure.

FIG. 17. The interdistance x as a function of zc and ΔF ¼ FQQ̄ − Fdiscon as a function of x in a large black hole when T ¼ 0.18 GeV
and μ ¼ 0.1 GeV. The black line, red line and blue line represent B ¼ 0.1, 0.2, 0.3 GeV respectively. Panels (a) and (b) represent the qq̄
pair parallel to the magnetic field, while panels (c) and (d) represent the perpendicular case. We set λ ¼ 1 in this figure.
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ΔF is negative for x < xcrit, which implies the free energy
of the connected configuration is less than that of the
disconnected string. ΔF is positive for x > xcrit, which
indicates the disconnected string has a lower free energy.
ΔF ¼ 0 indicates a phase transition from a connected to a
disconnected string at xcrit. This means the QQ̄ pair
dissociates to a free quark and antiquark at large xcrit.
We also find that xcrit decreases with increasing magnetic
field. Thus, the magnetic field enhances the dissociation of
the QQ̄ pair.

V. ENERGY LOSS
IN THE HOLOGRAPHIC MODEL

In this section, we study the energy loss of fast moving
probes near the phase transition temperature in a baryon-
dense, magnetized, and strongly interacting medium. We
discuss the effects of magnetic field and chemical potential
on the drag force and q̂.

A. Nonmonotonic jet quenching parameter
in the holographic model

The jet quenching parameter plays a crucial role in
energy loss of partons and can be deduced through lightlike
adjoint Wilson loops. Since the magnetic field is along the
x1 direction and breaks the rotation symmetry, we study the
anisotropic jet quenching parameter with nonzero magnetic
field and chemical potential. One can summarize the main
deduced formulas of the jet quenching parameter from [83].
In this paper, we focus on the jet quenching parameter around
the phase transition temperature. We observe a nonmono-
tonic temperature dependence behavior of the jet quenching
parameter q̂ in this holographic AdS/QCD model.
First, we study the jet moving parallel to the magnetic

field q̂k. In this case, the results with momentum broad-
ening along the x2 or x3 direction are the same. Here we
consider the case that the jet is moving along the x1
direction with momentum broadening along the x2 direc-
tion, namely q̂ðk;⊥Þ.
We rewrite metric (2) in the string frame

ds2 ¼ gttdt2 þ gxx1dx
2
1 þ gxx2ðdx22 þ dx23Þ þ gzzdz2; ð31Þ

where gtt ¼−L2e2PsðzÞ
z2 gðzÞ, gxx1 ¼ L2e2PsðzÞ

z2 , gxx2 ¼ L2e2PsðzÞ
z2 eB

2z2 ,

and gzz ¼ L2e2PsðzÞ
z2

1
gðzÞ.

With the light cone coordinates

dt ¼ dxþ þ dx−ffiffiffi
2

p ; dx1 ¼
dxþ − dx−ffiffiffi

2
p : ð32Þ

the metric (31) becomes

ds2 ¼ 1

2
gttðdxþ þ dx−Þ2 þ 1

2
gxx1ðdxþ − dx−Þ2

þ gxx2ðdx22 þ dx23Þ þ gzzdz2: ð33Þ

Then we choose the static gauge coordinate

x− ¼ τ; x2 ¼ σ; xþ ¼ x3 ¼ const; z ¼ zðσÞ;
ð34Þ

and the metric (33) becomes

ds2 ¼ 1

2
ðgtt þ gxx1Þdτ2 þ ðgxx2 þ gzzż2Þdσ2; ð35Þ

where ż ¼ dz
dσ.

Finally, the jet quenching parameter q̂ðk;⊥Þ is

q̂ðk;⊥Þ ¼
ffiffiffi
λ

p

π

�Z
zh

0

dz
z2

e2PsðzÞeB2z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ−g2ðzÞ

p �−1
; ð36Þ

Then we discuss the jet quenching parameter when the
jet is moving perpendicular to the magnetic field q̂⊥. There
are two cases for q̂⊥ since the momentum broadening may
occur in different directions. First, we consider the jet is
moving along the x2 direction with momentum broadening
along the x1 direction, namely, q̂ð⊥;kÞ, which can be
expressed as

q̂ð⊥;kÞ ¼
ffiffiffi
λ

p

π

 Z
zh

0

dz
z2

e2PsðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞeB2z2 − g2ðzÞ

q
!−1

: ð37Þ

Then we consider the jet is moving along the x2 direction
with momentum broadening along the x3 direction, namely,
q̂ð⊥;⊥Þ, which is obtained as

q̂ð⊥;⊥Þ ¼
ffiffiffi
λ

p

π

 Z
zh

0

dz
z2

e2PsðzÞeB2z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞeB2z2 − g2ðzÞ

q
!−1

:

ð38Þ

In Fig. 18, we plot q̂ðk;⊥Þ=T3 versus temperature T. One
can find that the magnetic field and chemical potential
enhance the jet quenching parameter. With the critical
temperature for deconfinement phase transition Tc ¼
0.155 GeV with B ¼ 0, μ ¼ 0 in this model, q̂ðk;⊥Þ=T3

is temperature dependent and reaches a peak around
1.3Tc − 1.4Tc from the numerical results. Moreover, the
peak value of q̂ðk;⊥Þ=T3 is moving toward lower temperature
with increasing magnetic field or chemical potential. This
phenomenon is consistent with the deconfinement phase
transition temperature decrease with increasing B or μ.
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We plot q̂ð⊥;kÞ=T3 and q̂ð⊥;⊥Þ=T3 versus temperature T,
respectively, in Figs. 19 and 20. We observe that the
magnetic field and chemical potential enhance q̂ð⊥;kÞ=T3

and q̂ð⊥;⊥Þ=T3. In cases of the jet moving perpendicular to
the magnetic field, there is also a peak around 1.3Tc −
1.4Tc which implies q̂⊥=T3 has an enhancement around the
phase transition temperature. One can summarize that q̂=T3

is enhanced the near phase transition temperature which
agrees with the lattice QCD results [102]. Moreover, q̂⊥=T3

decreases monotonously with temperature at a large mag-
netic field.
In this section, we want to study the behaviors of q̂=T3

near the first-order phase transition temperature. From the
results of Figs. 7–9, one can find that the metric solutions
contain small black hole, large black hole, and unstable

black hole phases simultaneously when the chemical
potential is large or the magnetic field is small. In this
case, the first-order phase transition exists. We study the
behaviors of q̂=T3 in the three phases simultaneously. We
do not fix the temperature to be constant. Then one can find
that q̂=T3 is enhanced near the first-order phase transition.
In Fig. 9, the first-order phase transition disappears and
crossover appears at large B. Thus, in Figs. 19(b) and 20(b),
q̂⊥=T3 decreases monotonously with temperature and there
is no enhanced phenomenon at large B. Therefore, we can
use the jet quenching parameter to characterize phase
transition.
Moreover, the peak value is moving toward lower

temperature with increasing magnetic field or chemical
potential. This phenomenon is consistent with the

FIG. 18. q̂ðk;⊥Þ=T3 versus temperature T when λ ¼ 1. B and μ are in units GeV.

FIG. 19. q̂ð⊥;kÞ=T3 versus temperature T when λ ¼ 1. B and μ are in units GeV.

FIG. 20. q̂ð⊥;⊥Þ=T3 versus temperature T when λ ¼ 1. B and μ are in units GeV.
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deconfinement phase transition temperature decrease with
increasing B or μ. From the discussions above, one can find
that q̂=T3 is enhanced near the first-order phase transition.
From the results of the phase diagram in Fig. 10, one can
find that the deconfinement phase transition temperature
decreases with increasing B or μ. Thus, the peak value of
q̂=T3 is moving toward lower temperature with increasing
B or μ.
We plot q̂=T3 versus temperature T in Fig. 21. One can

find q̂ð⊥;⊥Þ > q̂ð⊥;kÞ > q̂ðk;⊥Þ, namely, q̂⊥ > q̂k. It indicates
that the jet may lose more energy when it is moving
perpendicular to the magnetic field. In order to compare
with the RHIC data, we calculate the numerical results of
the jet quenching parameter with λ ¼ 6π and T ¼ 0.3 GeV
in Table I. One finds that the jet quenching parameter q̂ is in
the 6–10 GeV2=fm region in this holographic model which
agrees with the extracted values from RHIC data [85].

B. Nonmonotonic drag force in the holographic model

From the description of the trailing string model [91,92],
the heavy probe passing through the strongly coupled
plasma in the spatial direction with a fixed velocity υ
can be treated as the end point of an open string moving on
the boundary. The rest of the string trails behind it and the
loss of averaged momentum per unit time (dp=dt) can be
holographically calculated by the energy flow (dE=dx)
from the string end point into world sheet horizon.
The anisotropic drag force in the EMD model has been

discussed in [94]. We summarize the main deduced for-
mulas of drag force. When the heavy quark moves parallel
to the magnetic field in the x1 direction, the drag force is

fk ¼ −
1

2πα0
gxx1ðzkcÞυ; ð39Þ

where zkc is the string world sheet horizon. zkc can be
obtained by the following equation

gttðzkcÞ ¼ −gxx1ðzkcÞυ2: ð40Þ

When the heavy quark moves perpendicularly to the
magnetic field in the x2 direction, the drag force is

f⊥ ¼ −
1

2πα0
gxx2ðz⊥c Þυ ð41Þ

and z⊥c is determined by

gttðz⊥c Þ ¼ −gxx2ðz⊥c Þυ2: ð42Þ

The drag force in N ¼ 4 Super-Yang Mills (SYM)
theory [91] is

fSYM ¼ −
πT2

ffiffiffi
λ

p

2

υffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p ; ð43Þ

where
ffiffiffi
λ

p ¼ L2

α0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2YMNc

p
.

In Fig. 22, we plot drag force normalized by its
conformal limit f=fSYM versus temperature T with differ-
ent chemical potentials. Fig. 22(a) is for moderate velocity
υ ¼ 0.6, and Fig. 22(b) is for ultrarelativistic velocity
υ ¼ 0.99. One can observe that drag force with small
velocity is not sensitive to the chemical potential of the
medium since the curves are indistinguishable in Fig. 22(a).
We only can conclude that a heavy quark may lose more
energy when the quark moves perpendicular to the mag-
netic field. From Fig. 22(b), we can observe that drag force
with a large velocity has a nonmonotonic dependence on
temperature and shows an enhancement near the first-order
phase transition. It is also found that the chemical potential
enhances the energy loss. Moreover, drag force with a large
velocity in the perpendicular case is larger than that in the
parallel case at the same chemical potential, which is
consistent with the results of Fig. 22(a). The peak value

FIG. 21. q̂=T3 versus temperature T when λ ¼ 1. B and μ are in units GeV.

TABLE I. The values of q̂ðGeV2=fmÞ with different magnetic
fields and chemical potentials when T ¼ 0.3 GeV and λ ¼ 6π.

q̂

ðμ; BÞ (0, 0) (0, 0.1) (0.1, 0.1) (0.1, 0.2) (0.2, 0.2)

q̂ðk;⊥Þ 6.71 6.82 6.86 7.13 7.31
q̂ð⊥;kÞ 6.71 8.00 8.05 9.36 9.55
q̂ð⊥;⊥Þ 6.71 8.04 8.09 9.55 9.75
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is around 1.3Tc and moves toward a lower temperature with
increasing chemical potential which is consistent with the
phase transition temperature decrease with increasing μ.
In Fig. 23, we plot drag force normalized by its

conformal limit f=fSYM versus temperature T with differ-
ent magnetic fields. From the results, we can find that drag
force with a small velocity is not sensitive to the magnetic
field in Fig. 23(a). We can observe that the heavy quark
loses more energy in the perpendicular case than in the
parallel case. From Fig. 23(b), it is obvious that drag force
with a large velocity has a nonmonotonic behavior as a
function of temperature and is enhanced near the phase
transition temperature. The peak value is moving toward
lower temperature with increasing magnetic field which
agrees with the phase transition temperature decrease with
increasing B. The magnetic field enhances heavy quark
energy loss. In the perpendicular case, the heavy quark may
lose more energy than that in the parallel case at the same
magnetic field, which is consistent with the results of
Fig. 23(a).
From the discussion of Figs. 22 and 23, we find that the

heavy quark energy loss is larger in the perpendicular case
than in the parallel case. Namely, f⊥ > fk, which is
consistent with the results of the jet quenching parameter
q̂⊥ > q̂k. Jets and heavy quarks have charge and will
experience Lorentz force when moving in the magnetized
background. The Lorentz force reaches a maximum value

when jets or heavy quarks move perpendicularly to the
magnetic field. Thus, jets and heavy quarks will lose more
energy when moving perpendicularly to B.

VI. CONCLUSION AND DISCUSSION

In this paper, we consider the holographic QCD model
with nonzero magnetic field and chemical potential. It is
found that the metric solutions are self-consistent. Then we
discuss the black hole thermodynamics and study the phase
diagrams in the T-μ and T-B planes. We find IMC which is
consistent with lattice QCD results. We also discuss the
influence of the magnetic field and chemical potential on
the location of the CEP. It is found that the magnetic field
increases the critical μCEP of the CEP in the T-μ plane and
the chemical potential increases the critical BCEP of the
CEP in the T-B plane. It is also found that the chemical
potential promotes the crossover phase transition into first-
order, while the magnetic field promotes the first-order
phase transition into crossover.
Further, we find the EOS near the phase transition

temperature are nonmonotonic and nontrivial. Then we
study the effect of the magnetic field on the free energy of
the QQ̄ pair with nonzero chemical potential. It is found
that the magnetic field suppresses free energy and has a
stronger influence when the QQ̄ pair is parallel to the

FIG. 22. Drag force normalized by its conformal limit f=fSYM versus temperature T with different chemical potentials. The solid
(dashed) line represents the heavy quark moving parallel (perpendicular) to the magnetic field. The black, red, and blue lines denote
μ ¼ 0, 0.1, 0.15 GeV, respectively. B and μ are in units GeV.

FIG. 23. Drag force normalized by its conformal limit f=fSYM versus temperature T with different magnetic fields. The solid (dashed)
line represents the heavy quark moving parallel (perpendicular) to the magnetic field. The black, red, and blue lines denote B ¼ 0.05,
0.1, 0.15 GeV, respectively. B and μ are in units GeV.
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magnetic field. This finding is consistent with the lattice
QCD results.
From the analyses of the jet quenching parameter, we

find that q̂=T3 is temperature dependent and has a peak
around 1.3Tc − 1.4Tc. Indeed, the peak value of q̂=T3

moves toward lower temperatures when increasing the
magnetic field or chemical potential. This phenomenon
is also consistent with the phase transition temperature
decrease with increasing B or μ. Moreover, the magnetic
field and chemical potential enhance the jet quenching
parameter. The chemical potential and magnetic field
enhance the energy loss of heavy quarks. Drag force with
a large velocity is sensitive to the chemical potential and
magnetic field and has an enhancement near the phase
transition temperature. The peak value moves toward lower
temperature with increasing magnetic field which agrees
the phase transition temperature decrease with increasing
B. We also find that the heavy quark energy loss is larger in
the perpendicular case than along the magnetic field
direction. Namely, f⊥ > fk, which is consistent with the
results of the jet quenching parameter q̂⊥ > q̂k.
We hope our results of the phase diagram and jet

quenching parameter in this holographic QCD model
can provide more insight into the investigation of phase
structure and jet energy loss in heavy ion collision experi-
ments. It is also significant to study the phase transition in
the rotating background. We leave this part for future study.
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APPENDIX

In the appendix, we solve the Einstein-Maxwell equa-
tions to justify the metric Ansätze for small magnetic
fields, treating the Ansätze as small perturbations to the
known holographic solutions without a magnetic field.
The metric (2) [71] is

ds2¼L2SðzÞ
z2

�
−gðzÞdt2þdx21þeB

2z2ðdx22þdx23Þþ
dz2

gðzÞ
�
:

ðA1Þ

The factor eB
2z2 is a natural choice in one of the metric

components. The reasons are as follows:
(1) We can find that the energy-momentum tensor is of

order B2 from the field strength tensor. Thus, one

needs to take the Ansätze of the metric with the B2

term in it.
(2) The rotation symmetry SOð3Þ is recovered when B

vanishes.
(3) The metric could reduce to AdS at the asymptotic

boundary even with finite B.
(4) It is necessary to mention that the z2 term is used to

make the exponent dimensionless.
(5) The effect of magnetic field on the string tension of

QQ̄ in this bottom-up holographic QCD model with
the factor eB

2z2 is more compatible with magnetized
lattice QCD results [71].

(6) We find that the magnetic field suppresses the free
energy and this suppression is stronger when the
connecting line of the QQ̄ pair is parallel to the
magnetic field when compared to the perpendicular
case, which is consistent with the lattice QCD results
in this work. One also can take the different form of
the factor; see Ref. [55].

Then we consider the perturbative expansion in the
presence of a small magnetic field

ds2 ≃
L2SðzÞ
z2

½gttdt2 þ dx21 þ ð1þ B2z2Þ
× ðdx22 þ dx23Þ þ gzzdz2�; ðA2Þ

where

gtt ¼ −ḡðzÞ þ B2httðzÞ;

gzz ¼
1

ḡðzÞ þ B2hzzðzÞ; ðA3Þ

where ḡðzÞ denotes the blackening function gðzÞ at B → 0.
httðzÞ and hzzðzÞ denote the perturbation functions of gtt
and gzz, respectively, which describe the correction to the
metric component.
The perturbativeEinstein equation for the gtt component is

Rð1Þ
tt ¼ −

1

2
ḡðzÞh00ttðzÞ −

3

2

ḡðzÞ
hðzÞ h

0
ttðzÞ; ðA4Þ

whereRð1Þ
tt is the first-order perturbation of the tt component

of the Riccci tensor of the spacetime.
The first-order perturbation of the zz component of the

Riccci tensor is

Rð1Þ
zz ¼ 1

2

h00zzðzÞ
ḡðzÞ −

3

z
h0zzðzÞ
hðzÞ ; ðA5Þ

where
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hðzÞ ¼ L2SðzÞ
z2

: ðA6Þ

For the electromagnetic field’s stress-energy tensor

TðEMÞ
tt ¼ f2ðϕÞ

2
B2gð0Þtt ;

TðEMÞ
zz ¼ f2ðϕÞ

2
B2gð0Þzz ; ðA7Þ

where gð0Þtt and gð0Þzz are the original tt and zz components,
respectively, of the spacetime metric in the absence of the
magnetic field.
The final perturbative equations are

−
1

2
ḡðzÞh00ttðzÞ −

3

2

ḡðzÞ
hðzÞ h

0
ttðzÞ ¼ B2f2ðzÞḡðzÞ;

1

2

h00zzðzÞ
ḡðzÞ −

3

z
h0zzðzÞ
hðzÞ ¼ B2f2ðzÞ

1

ḡðzÞ ; ðA8Þ

where

f2ðzÞ ¼ −
L2e2B

2z2þ2PðzÞ

z

×

�
ḡðzÞ

�
4B2zþ 6P0ðzÞ − 4

z

�
þ 2ḡ0ðzÞ

�
; ðA9Þ

where PðzÞ ¼ −a logðbz2 þ 1Þ.
To determine the integration constants, we specify the

boundary conditions as

httð0Þ ¼ 0; h0ttð0Þ ¼ 0;

hzzð0Þ ¼ 0; h0zzð0Þ ¼ 0: ðA10Þ

With these boundary conditions, the integration con-
stants are zero.
In order to discuss the influence of B, we take μ ¼ 0 and

zh ¼ 2 in the calculations. In Fig. 24, we plot the effect of
magnetic field on the perturbative expansion results
[Eq. (A3)] of gtt. One can find that the magnetic field
has little influence on gtt. Furthermore, we discuss the
difference between the perturbative results [Eq. (A3)] of gtt
and the origin results in the Ansätze [Eq. (2)] of gtt. We can
observe that the difference is small.

FIG. 24. The effect of magnetic field on gtt. The black, red, and
blue lines denote B ¼ 0.05, 0.1, 0.15 GeV, respectively.

0.8

tt tt

b

FIG. 25. The difference between the perturbative results [Eq. (A3)] of gtt and the origin results in the Ansätze [Eq. (2)] of gtt when
B ¼ 0.1 and 0.15. The solid line represents the perturbative results, while the dashed line represents the origin results.

FIG. 26. The effect of magnetic field on gzz. The black, red, and
blue lines denote B ¼ 0.05, 0.1, 0.15 GeV, respectively.
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In Fig. 26, we draw the effect of magnetic field on the
perturbative expansion results [Eq. (A3)] of gzz. It is found
that the magnetic field has little effect on gzz. Moreover, we
plot the difference between the perturbative results [Eq. (A3)]
of gzz and the origin results in the Ansätze [Eq. (2)] of gzz in
Fig. 27. We can find that the difference is small.
Through detailed derivation and numerical solution, we

verify that, under the small magnetic field approximation,

the perturbative terms httðzÞ and hzzðzÞ conform to our
Ansätze and satisfy the Einstein equations. In Figs. 24–27,
we justify the Ansätze for the metric for a small magnetic
field. It is found that the magnetic field has little effect on
the perturbative expansion results. Moreover, the difference
between the perturbative expansion results and the metric
(2) is small. Then one can treat the Ansätze as a small
perturbation to the known holographic solutions.
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