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Recent developments in anti–de Sitter holography point towards the association of an infinite class of
covariant objects, the simplest one being codimension-one extremal volumes, with quantum computational
complexity in the microscopic description. One of the defining features of these gravitational complexity
proposals is describing the persistent growth of black hole interior in classical gravity. It is tempting to
assume that the gravitational complexity proposals apply also to gravity outside their native anti–de Sitter
setting in which case they may reveal new truths about these cases with much less understood
microscopics. Recent first steps in this direction in de Sitter static patch demonstrated a very different
behavior from anti–de Sitter holography deemed hyperfast growth; diverging complexification rate after a
finite time. We show that this feature is not a necessity and among gravitational complexity proposals there
are ones, that predict linear or exponential late-time growth behaviors for complexity in de Sitter static
patches persisting classically forever.
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I. INTRODUCTION AND SUMMARY

Understanding de Sitter (dS) space holography at a level
comparable to AdS=CFT [1–3] is an important open
question in quantum gravity dating back to the early days
of AdS=CFT [4–6].
Key drivers of progress in anti–de Sitter (AdS) quantum

gravity have been ideas native to quantum information
theory and quantum computing, see e.g., [7–12] for reviews.
In recent years these tools have started being applied also to
positively curved universes, see e.g., [13–16]. The focal
object in the present article is holographic complexity, which
arose as a conjectured geometric counterpart of the hardness
of dual state or operator preparation using limited resources
on the boundary of AdS=CFT [9,12,17]. Considerations
based on quantum circuit models of the boundary
Hamiltonian time evolution led to two defining features of
such geometric quantities inAdSblack hole spacetimes: late-
time linear growth with time and switchback effect account-
ing for a delay in the late-time growth due to external
perturbations (shock waves). Between 2014 and 2016 three
such geometric quantities were identified and thoroughly

studied over the past decade; codimension-one boundary-
anchored maximal volume slices (CV) [18], gravitational
action in theWheeler-deWitt patch (CA) [19], and spacetime
volume of the Wheeler-de Witt patch (CV2.0) [20].
The approach to dS holography that is relevant for our

article is the stretched horizon one [14,15,21–26]. It can be
thought of to mimic AdS holography in the native to holo-
graphic complexity setting of eternal AdS Schwarzschild
black holes [27]. The exterior of the latter corresponds to
two dS static patches and the AdS asymptotic boundary
is mimicked by two stretched horizons, see Fig. 1. Since
holographic complexity proposals are geometric con-
structs, there are no fundamental obstacles to studying
them also in this setting. Indeed, over the course of the past
two years first CV in two spacetime dimensions [14,28,29]
and subsequently in [30] also CV, CA, and CV2.0 in quite
a generality were studied in dS stretched horizon holog-
raphy, see also [31–34] for related recent developments.
The common outcome of these studies is holographic
complexity diverging (its time derivative diverging in
two-dimensional dS) after a finite stretched horizon time.
This hyperfast growth [14] is in stark contrast with
predictions of holographic complexity proposals for AdS
black holes exhibiting a persistent linear growth at a
classical level consistent with a local quantum circuit
model and might signal a very nonlocal nature of stretched
horizon degrees of freedom.
In parallel to the first works studying holographic

complexity in dS, it was realized that the space of holo-
graphic complexity proposals contains infinitely many
members [35,36]. Such Complexity ¼ Anything proposals
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(CAny) are defined by obeying the late-time linear growth
and switchback effect for AdS black holes and can be
defined by codimension-one as well as codimension-zero
geometric objects. However, a priori it is not guaranteed
that their other behaviors, in particular in dS, will also
be shared with CV, CA, and CV2.0. This leads to our
motivating question:

Assuming stretched horizon holography and
holographic complexity proposals is the hyperfast
growth as universal for dS holographic complex-
ities as linear growth and switchback for AdS
ones?

Contrary to expectations stemming from the accelerated
expansion of dS universes, our work demonstrates that
hyperfast growth is not a necessity within CAny proposals,
but a feature appearing for some of them, with different
kinds of growth present for another subset. We demon-
strate this using a family of CAny proposals defined on
constant mean curvature (CMC) spatial slices with our
arguments covering also Schwarzschild dS black holes
(SdS). However, these proposals might not describe holo-
graphic complexity as it is defined in the AdS context;
instead, they are general observables of interest for static
patch holography in dS space. An interpretation of holo-
graphic complexity in dS space would require developing a
quantum circuit interpretation of its quantum mechanical
dual theory, which is still missing. The most promising case
is certainly a two-dimensional one, where on one hand our
findings apply and, on the other, an expanding patch of a dS

geometry can be embedded outside a horizon in an AdS
spacetime subject then to more standard holographic
interpretations [28,37–39]. Our perspective is, however,
to develop geometric intuitions about what is possible
for holographic complexity rather than to provide a micro-
scopic interpretation, which apart from one isolated case
[40] has not been settled in a precise manner.
Finally, our considerations of holographic complexity in

dS universes bear implications on a subclass of CAny
holographic complexity proposals in AdS utilizing CMC
spatial slices. To this end, we observe that complexity
interpretation in eternal AdS black hole spacetimes may
generically require an additional ingredient in these CAny
proposals that renders their time evolution symmetric.

II. SETUP

The asymptotically dS geometries of interest in dþ 1
spacetime dimensions are described by the metric,

ds2 ¼ −fðrÞdt2L=R þ dr2

fðrÞ þ r2dΩ2
d−1; ð1Þ

where

fðrÞ ¼ 1 − r2 −
2μ

rd−2
ð2Þ

and dΩ2
d−1 is the metric on a unit (d − 1)-dimensional

sphere. Meanwhile, the (dimensionless) parameter μ,

μ∈ ½0; μN �; μN ≡ 1

d

�
d − 2

d

�d−2
2

: ð3Þ

allows us to study spacetimes from the empty dS (μ ¼ 0) all
the way to the Nariai black hole space (μ ¼ μN), i.e., the
largest black hole that can fit in dS space. Note that in
this paper we set the curvature scale associated with a
cosmological constant (both positive and negative) to unity.
The coordinates (1) are Schwarzschild coordinates and
cover the region outside the horizon (the static patch for
dS), hence the presence of two-time variables, one for each
exterior.
In analogy with AdS holography [27] and following

[14,28–30], we will be interested in introducing stretched
horizons at r ¼ rst with constant tL and tR slices thereof
defining states in a putative microscopic description invol-
ving two Hilbert spaces, one for each stretched horizon.
We orient both time directions to increase towards future
infinity and consider left-right symmetric time evolution
in tL ¼ tR ≡ t

2
. The venerable CV proposal amounts to

finding stretched horizon anchored codimension-1 vol-
umes and studying them as a function of t. Since this and
any other holographic complexity proposal require con-
necting two boundaries through an inflating region com-
plementary to the static patch, in explicit calculations we

FIG. 1. Penrose diagram of dSdþ1 space, where the stretched
horizon is shown in green at rst and the extremal volumes of the
CV proposal in pink. The origin of the hyperfast growth is
approaching the infinity touching light cone in finite stretched
horizon time (i.e., at τ∞ and −τ∞). In orange, we display slices of
constant global time, which exhibit persistent growth as they
avoid future infinity. The key idea of our paper is to find
analogous slices, but belonging to CAny and understand their
properties.
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will be using ingoing Eddington-Finkelstein (EF) coor-
dinates given by

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2
d−1: ð4Þ

Because of the left-right symmetry, it will be enough to
consider only one patch of such coordinates.

III. KEY IDEA

Figure 1 depicts the outcome of CV calculating in
stretched horizon dS holography from [14,28–30].
Similar considerations apply to CA and CV2.0. What
one sees is that extremal volume slices cease to exist for
large or small enough t on the stretched horizon. This
occurs because as a result of extremization the outermost
CV carriers approach and touch future or past infinity. In
d ¼ 1 this implies a singular derivative of the complexity
with respect to t and in d ≥ 2 this implies on top of a
divergence of complexity itself, which is the precise
statement of the hyperfast growth.
In dS or SdS geometry, there are infinitely many other

spatial slices that do not exhibit hyperfast growth. For
example, constant global time slices of dS depicted with
orange in Fig. 1 exhibit persistent exponential growth at
late times. Of course, at this level, such slices are not
covariantly defined and it is not clear if their volumes arise
from a particular CAny proposal.
The key idea in the present paper is to find a family of

codimension one objects that avoid the future infinity (to
start with, and later also the past infinity) in a similar
manner as orange slices do in Fig. 1, which fall into the
class of CAny proposals.
As it turns out, we do not have to search far; CMC slices

that appeared earlier in the context of holographic complex-
ity in [36,41,42] will have precisely the desired property.
Such slices will bend towards the past or future light cone
as their curvature, respectively, increases or decreases.
Then, there should exist a class of holographic complexity
notions that without fine-tuning avoids the hyperfast
growth associated with touching Iþ or I−, or at best both,
rendering the observables finite during the time evolution.

IV. THE RELEVANT CLASS
OF COMPLEXITY PROPOSALS

CAny proposals [35,36] are defined in a two-step
procedure. First one defines a boundary (stretched horizon)
anchored geometric region using extremization and, sub-
sequently, one characterizes it in terms of, in general,
another geometric functional yielding a non-negative
number—a value of holographic complexity. Of course,
the challenge lies in carving out the space of such functionals,
which gives rise to the linear growth and the switchback
effect for AdS black holes. What is known so far are several
classes of objects specified by continuous parameters for
which these properties have been demonstrated.

In our work, we will be interested in (spatial) volumes of
stretched horizon-anchored CMC slices. Maximal volume
slices giving rise to CV fall into this class, but we will be
clearly interested in other members. Along the lines of
CAny, they can be obtained by extremizing,

CCMC ¼ 1

GN

�
αþ

Z
Σþ

ddσþ
ffiffiffi
h

p
þ α−

Z
Σ−

ddσ−
ffiffiffi
h

p

þ αB

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p �
; ð5Þ

where M is the codimension-zero bulk region that in the
end will play no role; Σ� are its, crucial for us, future and
past boundaries with general coordinates σ� and α�, αB are
positive constants.
The extremization of (5) confirms Σ� are CMC slices,

KjΣϵ
¼ −ϵ

αB
αϵ

; ϵ ¼ �; ð6Þ

where K is the trace of the extrinsic curvature with normal
vectors to both Σ� chosen to be future oriented.
Our CAny complexity carrier will be

Cϵ ≡ 1

GN

Z
Σϵ

ddσϵ
ffiffiffi
h

p
; ð7Þ

where we are free to pick either Σþ or Σ−. The results
of [36] guarantee that (7) is a valid CAny proposal.

V. LATE TIME GROWTH

The evaluation of the volume (7) of the CMC slice Σϵ can
be recast as [42],

Cϵ ¼ 2Ωd−1

GN

Z
rt

rst

r2ðd−1Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UðPϵ

v; rÞ
p ; ð8Þ

where Pϵ
v is the conserved momentum in an analog particle

motion problem,

UðPϵ
v; rÞ ¼ −fðrÞr2ðd−1Þ −

�
Pϵ
v − jKj ϵ

d
rd
�

2

ð9Þ

is the particle’s effective potential, whereas r ¼ rt is the
turning point. The latter is the location where UðPϵ

v; rtÞ ¼ 0
or in geometric terms it is the tip of CMC [r0ðvÞ ¼ 0 there].
We are interested in the time evolution of (7) measured with
respect to rst. Using the technology of [35,36] one finds at
late times

lim
t→∞

d
dt
Cϵ ¼ Ωd−1

GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrfÞr2ðd−1Þf

q
; ð10Þ

where we consider solutions characterized by
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lim
t→∞

dPϵ
v

dt
¼ 0 ð11Þ

and rf ≡ limt→∞rt is the final value of the turning point.
Notice that (10) does not depend on the particular value of
rst. Condition (11) can also be reformulated as finding the
maximum of the potential (9),

Ujrf ¼ 0; ∂rUjrf ¼ 0; ∂
2
rUjrf ≤ 0: ð12Þ

We may define a function,

Hðr; KÞ ¼ 4rfðrÞððd − 1Þf0ðrÞ þ K2rÞ þ 4ðd − 1Þ2fðrÞ2
þ r2f0ðrÞ2; ð13Þ

where the relations (12) imply that late time growth of (9)
with (5) is achieved when one can find the roots of

Hðrf; KÞ ¼ 0; ð14Þ

for some choice of K. We now specialize in asymptotically
dS backgrounds, employing the factor (2). We discuss
different cases under our proposal.

(i) Empty dS space, μ ¼ 0,

r2f ¼ K2 − 2dðd − 1Þ � jKj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − 4ðd − 1Þ

p
2ðK2 − d2Þ : ð15Þ

Then, in order to have at least one turning point at
late times, rf ∈R, in empty dS space with d ≥ 2

spatial dimensions, we find

jKj ≥ Kcrit;dS ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
: ð16Þ

The CMC slices obeying this bound are displayed in
Fig. 2. However, notice that the relation (16) is not
valid when d ¼ 1, since for d ¼ 1; jKj < 1 Eq. (15)
does not have a valid solution; instead one finds
K ≥ 1 for the CMC slices to evolve at arbitrarily
late times.

(ii) For the Nariai black hole spacetime, μ ¼ μN , one
finds that fðrfÞ ¼ f0ðrfÞ ¼ 0 at the location,

rf ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d

r
; ð17Þ

such that the turning point coincides with the
cosmological horizon. However, for rf to be
the final slice, it also needs to be a maximum of
the potential UðPϵ

v; rÞ in (9), which leads to

jKj ≥ Kcrit;N ≡ ffiffiffi
d

p
: ð18Þ

(iii) For generic μ, one cannot derive closed-form
solutions for rf in (13), except for the SdS3 space,
which is locally identical to dS3. We explicitly find
that (16) is always respected in such a case. For
higher dimensions and generic μ, the bounds on
jKj will lay between (16) and (18) [43]. Such black
holes are unstable and decay in empty dSdþ1

space [44]. The analysis for generic Reissner-
Nordström-de Sitter (RNdS) black holes is shown
in Appendix.

Note that the solutions for (15) in d ¼ 1 and d ¼ 2 as
well as for SdS3, lead to rf → ∞when jKj ¼ Kcrit. We find
exponential growth for (8) in these two very special cases.
For d ¼ 3 and higher we find finite rf for K ¼ Kcrit, which
translates to the linear growth.

VI. RESTORING TIME SYMMETRY

Although the rate of growth of the observables in (7)
evaluated on the CMC slices asymptotes to a constant value
at late times (10) whenK > Kcrit the CMC slices still hit I−

at minus the critical time, as illustrated in Fig. 2. This
produces hyperfast behavior in the past. The opposite case
occurs by symmetry for K < −Kcrit.
A natural way to restore time-reversal symmetry in the

observables is to modify the second step of the CAny

FIG. 2. CMC slices for K ≥ Kcrit;dS in empty dSdþ1 space
(above) and SdSdþ1 (below). All the slices remain bounded below
Iþ and the corresponding complexity observable (8) generically
displays a late-time linear growth (10), except for some fine-
tuned situations discussed in the main text. The solutions with
K < 0 can be obtained by a top-bottom reflection.
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prescription so that it selects the result with the minimal
value among the slices with a given value for jKj,

Csym ¼ min
ϵ¼þ;−

Cϵ: ð19Þ

The minimization is performed over the existing slices,
so technically it is only a minor modification. This
procedure does not alter the conclusion that the con-
structed covariant notions are complexity proposals, as
the linear growth and the switchback effect for AdS black
holes remain present. We show this explicitly in the
Appendix.1 As a result, this idea can be thought of as a
further enlargement of the space of CAny proposals and
might even be advantageous when considering more
complicated black holes in AdS.
In the dS case, our improved proposal (19) will receive a

contribution from a slice with K < 0 at early times, and
K > 0 at late times, as shown in Fig. 3. A potential subtlety
with this generalization is that the complexity growth rate
(10) might become discontinuous at the time when the
change of CMC slice occurs. However, this is in principle
allowed in the definition of holographic complexity pro-
posals [35,36]. Indeed, the CA proposal applied to a three-
dimensional AdS black hole generically exhibits the same
kind of behavior [45].

VII. DISCUSSION

Our paper demonstrates that the hyperfast growth of
holographic complexity in asymptotically dS spacetimes,
as found earlier in the CV, CA, and CV2.0 proposals, is not
a universal feature in the CAny landscape. Employing
volumes of codimension-one CMC slices, being members
of CAny family, we show that holographic complexity can

exhibit persistent linear or exponential growth in asymp-
totically dS universes. Physically, this exponential behavior
occurs when the final slice asymptotes the future/past
infinity of the inflating region. While a linear growth
can be also obtained upon cutting out the dS geometry
past some late time slice [30], we obtained it without
modifying dS geometry in any way.
From the perspective of dS holography, it is tempting to

speculate that the presence or the absence of hyperfast
growth is related to the choice of a penalty schedule in
the microscopic definition of complexity, i.e., different
designations which operations are hard and which are easy
to implement. It would be interesting to study it, as well
as the protocol in (19), in either a class SYK models
associated with JT gravity with positive cosmological
constant [46–49] or in quantum circuit toy models of de
Sitter space [50–53].
More along these lines, specializing in CV proposal in

two spacetime dimensions, where the complexity carriers
are geodesics, it is known that in dS past the critical time
on a stretched horizon, there are no spatial geodesics.
However, using a closed-form expression for a geodesic
distance one obtains an answer with both real and imagi-
nary parts [54,55]. While one may speculate about non-
orthodox interpretation in terms of complexity, e.g., with
real part accounting for unitary and imaginary part for
possible nonunitary gates, we find it important to stress that
our final result (19) does not require any departure from a
standard counting interpretation of unitary gates.
Furthermore, the space of CAny proposals is vast, and

arguably one of the main open problems for the field of
holographic complexity is to study it in a more systematic
manner. To this end, our results show the existence of a
so far unrecognized structure in the CAny landscape
stemming from the presence (so far demonstrated for
CV, CA, and CV2.0) or the absence of the hyperfast
growth demonstrated here for CMC complexity carriers.
One intriguing future research direction would be to find
more members of the hyperfast growth escaping CAny
proposals and, another, to seek other structures present. On
the former front, we want to emphasize that there is a
continuum of CAny proposals that do not exhibit hyperfast
growth, as encapsulated by (16).
We also want to highlight a potentially puzzling feature

for a class of CAny proposals we considered, which to the
best of our knowledge has not been previously seen in the
literature. As illustrated in Fig. 2, asymmetric time evolu-
tion may occur such that hyperfast growth is observed in
the past or future, while the linear or exponential growth
remains for the late or early time regime respectively. If we
want to assign a Nielsen unitary complexity [12,56]
interpretation to this setting, then the complexity of a
unitary is the same as its inverse. This implies time
asymmetric quantities in time-symmetric setups either do
not capture (this type of) complexity or the considered time
evolution is not unitary. The same occurs for CAny
proposals on CMC slices even for AdS planar black holes

FIG. 3. Our time symmetric complexity proposal (19) in empty
dSdþ1 allowing both early- and late-time linear growth. At nega-
tive times, the CMC with K < −Kcrit dominates, shown in blue;
while at positive times, the CMC with K > Kcrit dominates. The
exchange of dominance at t ¼ 0 between CMC slices is indicated
by the green dots on the stretched horizon.

1One of the authors has recently shown that this class of
proposals also satisfies the switchback effect in SdS space [43].
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with the location of the early/late turning point not being
time-reflection symmetric.
The time symmetry in the observables can be restored by

introducing a covariant protocol that alternates between
CMC slices of opposing sign, where the slice that mini-
mizes complexity is chosen. This consideration led us to a
new CAny proposal encapsulated by (19), which is time-
symmetric. Notice, however, that we could have chosen
instead a protocol maximizing complexity over CMC
slices, or even averaging, instead of doing the minimization
that we proposed. However, in such cases, the hyperfast
growth would not be avoided anymore.
Finally, let us reiterate that the defining features for

CAny proposals are the late-time linear growth and the
switchback effect for AdS black holes. If one were to
add to this list the hyperfast growth in dS, our paper
could be then viewed as ruling out a subclass of CAny
proposals.
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APPENDIX A: LATE TIME GROWTH
IN REISSNER-NORDSTRÖM-DE SITTER SPACE

We consider a generalization of the previous analysis
for electrically or magnetically charged black holes in

asymptotically dS space, known as the RNdS space.
The blackening factor in (dþ 1)-dimensions in (2) is
modified to

fðrÞ ¼ 1 − r2 −
2μ

rd−2
þ q2

r2ðd−2Þ
; ðA1Þ

where, q is a parameter related to the electric or magnetic
charge of the black hole, which we will consider q > 0
through the discussion. The three positive roots of (A1)
for d > 2 represent the inner and outer black hole
horizon, as well as the cosmological horizon; however,
the real solutions are only present when there are bounds
on the parameters μ and q. There exists a black hole
with maximal mass and charge parameters, μ ¼ μU and
q ¼ qU respectively, denoted as the ultracold (U) solution,
for which [57]

μU ¼ 2

d

�ðd − 2Þ2
dðd − 1Þ

�d−2
2

; qU ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�ðd − 2Þ2
dðd − 1Þ

�d−2
2

:

ðA2Þ

In these conditions, the outer, inner, and cosmological
horizons have the same radius, rU, for which

fðrUÞ ¼ f0ðrUÞ ¼ f00ðrUÞ ¼ 0; rU ¼ d − 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þp ;

ðA3Þ
which indicates that rf ¼ rU is a root for (13). Moreover,
there are no bounds for jKj resulting from the conditions
(12) in this limit.
We will evaluate Hðr; KÞ in (13) with the roots in (15)

and (17) while keeping the mass and charge of the black
hole arbitrary. Defining m≡ μ=μU and ρ≡ q=qU, one
might express,

HðrðdSÞf ; Kcrit;dSÞ ¼ 4ð4ðd − 2Þ3ðd−2Þd2−dðd − 1Þ4−2dðm2 þ ρ2Þ − 4ðd − 2Þ9ðd−2Þ2 d3−
3d
2 ðd − 1Þ5−3dmρ2

− 8ðd − 2Þ3ðd−2Þ2 d−d=2ðd − 1Þ3−dmþ ðd − 2Þ6ðd−2Þd4−2dðd − 1Þ6−4dρ4Þ; ðA4Þ

HðrðNÞf ; KÞ ¼ 4

ðd − 1Þ2d2 ð4d
4ðm − 1Þ2 þ d3ðK2ð−4mþ ρ2 þ 3Þ − 4ðm − 1Þð2mþ ρ2 − 3ÞÞ þ 16K2ðm − 1Þ

þ d2ð4K2ð5m − ρ2 − 4Þ þ ð2mþ ρ2 − 3Þ2Þ þ 4dK2ð−8mþ ρ2 þ 7ÞÞ: ðA5Þ

We deduce that (A4) is negative for all d ≥ 3 for the
allowed parameter space of m; q∈ ð0; 1Þ, while (A5) is

positive. Moreover, HðrðdSÞf ; KÞ becomes more negative as
we increase jKj > Kcrit;dS. Then, according to the inter-
mediate value theorem, there will exist at least a real root

rf ∈ ½rðdSÞf ; rU� for general RNdSdþ1 space.

APPENDIX B: SWITCHBACK EFFECT
IN ASYMPTOTICALLY ADS PLANAR

BLACK HOLES

In this Appendix we show that the CAny proposals
in (5) and (7) reproduce the switchback effect in AdS
planar black holes. The late-time linear growth property for
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the proposals under consideration has been studied
in [36,42].
The asymptotically AdSdþ1 planar black hole metric can

be expressed as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dx⃗2;

fðrÞ ¼ r2
�
1 −

rdh
rd

�
; ðB1Þ

where rh is the location of the black hole horizon, and x⃗ a
(d − 1)-dimensional vector.
We will consider a coordinate transformation from the

EF to Kruskal coordinates, which we define by

U ¼ e−
f0ðrhÞ

2
u; V ¼ −e

f0ðrhÞ
2

v: ðB2Þ

The geometry for shockwave perturbations sent along
U ¼ 0 as [35,36] can be then described as

ds2 ¼ −2AðU½V þ αiΘðUÞ�ÞdUdV

þ BðU½V þ αiΘðUÞ�Þdx⃗2; ðB3Þ

where

AðUVÞ≡ −
2

UV
fðrÞ

f0ðrhÞ2
; BðUVÞ≡ r2; ðB4Þ

αi ¼ 2e−
f0ðrhÞ

2
ðtðbÞ� �tiÞ: ðB5Þ

Here, ti, with i∈ 1;…n, are the shockwave insertion times
with respect to the asymptotic boundary, where we will
consider the total number of shockwaves n to be even;
the � sign indicates the direction that the shockwaves are

sent to and tðbÞ� is the scrambling time of the AdS black hole.
We are interested in an alternating order for the insertion
times, i.e.,

t2kþ1 > t2k; t2k < t2k−1; ðB6Þ

where k∈ 1;…; n=2. Moreover, we consider the shock-

wave regime where jtiþ1 − tij ≫ tðbÞ� . Under these condi-
tions, one may express the complexity in the alternating
shockwave as [35,36]

CϵðtL; tRÞ ¼ CϵðtR; V1Þ þ CϵðV1 þ α; U2Þ þ � � �
þ CϵðUn−1 − αn−1; VnÞ þ CϵðVn−1 þ αn−1; tLÞ;

ðB7Þ

where Cϵð·; ·Þ denotes the contributions from Σϵ with two
fixed endpoints and all endpoints are located either on the
left/right event horizon (rh) or asymptotic infinity. The
different cases are illustrated in Fig. 4.2

The different contributions in (B3) can be expressed with
EF coordinates (4) and considering symmetric time evo-
lution tL ¼ tR ¼ t=2 as

CϵðtR; VLÞ ¼ CϵðVR; tLÞ ¼ −
Vx

GN
aðrtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrtÞr2ðd−1Þt

q �Z
rbdy

rt

þ
Z

rh

rt

� ðPϵ
v þ ϵLjKj

d rdÞdr
fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−UðPϵ
v; rÞ

p ;

CϵðVR;ULÞ ¼ −
2Vx

GN
aðrtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrtÞr2ðd−1Þt

q Z
rh

rt

ðPϵ
v þ ϵLjKj

d rdÞdr
fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−UðPϵ
v; rÞ

p ; ðB8Þ

where rbdy represents a cutoff radial location of the
asymptotic boundary. One can perform a very similar
analysis of the time dependence of the CAny proposals
in (5), (7) to the one in the main text. One of the differences,
however, is that the effective potential UðPϵ

v; rÞ in (9) has a
modification K → −K [36]. Denoting again KjΣþ ¼ −jKj
and KjΣ−

¼ jKj, we have

UðPϵ
v; rÞ≡ −fðrÞr2ðd−1Þ −

�
Pϵ
v þ ϵ

jKj
d

rd
�

2

: ðB9Þ

To study the complexity growth evolution in the perturbed
geometry, we must also evaluate its dependence on the
location uR;L, vR;L where Σϵ intersects with the left/right
horizon rh. In this case, we derive

vR − vt ¼
Z

rh

rt

dr
fðrÞ

�
1 −

Pϵ
v þ ϵjKj

d rdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UðPvϵ; rÞ

p
�
; ðB10Þ

where vt ¼ vRðrtÞ.
We may also perform the expansion around the final slice

where (12) allows us to approximate

lim
r→rf

UðPϵ
v; rÞ≃

1

2
ðr− rfÞ2U 00ðPϵ

v; rÞþOðjr− rfj3Þ: ðB11Þ

The CAny proposal near the final turning point rf then can
be evaluated as follows:

2In the following, we will work in scaled coordinate where the
AdS scale lAdS ¼ 1.
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CϵðVR;ULÞ ¼
Vx

GN
Pϵ
∞v; Pϵ

∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrfÞr2ðd−1Þf

q
; ðB12Þ

where rf is a root of the function in (13).
The result above can be used to evaluate the contribu-

tions in (B7) as

CϵðVR; tLÞ ¼
Vx

GN
Pϵ
∞ log etLVR; ðB13Þ

CϵðVR;ULÞ ¼
Vx

GN
Pϵ
∞ logULVR; ðB14Þ

CϵðtR; VLÞ ¼
Vx

GN
Pϵ
∞ logVLetR : ðB15Þ

However, there will also be an early time contribution in the
shockwave geometry, given by the term

CϵðVL;URÞ ¼
Vx

GN
Pϵ
−∞ logULVR; ðB16Þ

where

Pϵ
−∞ ¼ lim

t→−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrIÞr2ðd−1ÞI

q
; ðB17Þ

and rI ¼ limt→−∞ rt, for which there is a sign flip in
K → −K. Using the blackening factor (B1), we explicitly
find that Pϵ

∞ ¼ Pϵ
−∞. (B7) then transforms into

CϵðtL; tRÞ ≃
VxPϵ

∞

GN
½U1etR þ logðU1 − αÞV2 þ � � �

þ logððVn þ αnÞetLÞ�: ðB18Þ

Extremizing (B18) with respect to an arbitrary interception
point (Vi, Ui) in the multiple shockwave geometry,

dCϵðtL; tRÞ
dVi

¼ 0;
dCϵðtL; tRÞ

dUi
¼ 0; ðB19Þ

leads us to the location

Vi ¼ −
αi
2
; Ui ¼

αi
2
: ðB20Þ

Replacing the interception points into (B18) generates,

Cϵ ≃
VxPϵþ∞

GN

�
tR þ tL þ 2

�Xn
k¼1

tk − ntðbÞ�

��
; ðB21Þ

where the result is expressed up to the addition of constant
terms. Given the ordering of the insertion times, we
reproduce the switchback effect property [35,36],

Cϵ ∝ jtRþ t1jþ jt2− t1j þ � � �þ jtn− tLj− 2ntðbÞ� : ðB22Þ

Notice that the minimization protocol introduced in (19)
does not alter the result above.
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