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We construct new Carroll strings in flat space by considering the Carroll limit of equivalent relativistic
string theories at the classical level. In the limit these Carroll strings are no longer equivalent and have
different degrees of freedom. This fact is due to a general phenomenon that the configuration space and
canonical Lagrangians are no longer equivalent after a singular redefinition of the variables and of the
parameters of the starting Lagrangians.
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I. INTRODUCTION

Carroll symmetry, which was introduced by [1,2] as the
limit of velocity of light going to zero, c → 0, of Poincaré
symmetry, has in recent years received a lot of attention
because it arises in different physical systems. Carroll
structures emerge when one considers asymptotically flat
spacetimes in gravity [3–5], where the corresponding
symmetry is the BMS group [6,7] which is isomorphic
to the conformal Carroll group [8], in the geometry of the
black-hole near horizon [9–11], null surfaces [12], relativ-
istic fluids [13], and in condensed matter [14,15]. Very
recently Carrollian amplitudes have been computed from
strings [16]. An introductory review of some aspects of
non-Lorentzian theories can be found in [17]. Dynamical
realizations of the conformal Carroll structures [8] have
been studied, for example, through the construction of
Carrollian particles. A massive nonconformal Carroll
particle was introduced as Carroll limit of relativistic
massive particle [18] and can also be obtained by the
technique of the coadjoint orbits of the Carroll group [12].
The massless Carroll particle was also considered in [18].
The symmetries of massive and massless free Carroll

particles are infinite dimensional. In the massless case the

symmetry contains the finite conformal Carroll group
introduced in [19,20] and also the BMS symmetry [6,7].
In the case of two nonconformal interacting particles the
symmetry algebra is finite dimensional [18]. Recently two
models of two interacting conformal Carroll particles [21],
which can be obtained as the Carrollian limit of two
relativistic conformal particles [22], have been constructed.
The first model describes particles that do not move and
exhibits infinite dimensional symmetries which are remi-
niscent of the BMS symmetries. A second model was
also proposed, where the particles have nonzero velocity
and therefore, as a consequence of the limit c → 0, are
tachyons. Infinite dimensional symmetries are also present
in this model.
Some preliminary work on Carroll strings has been

already performed in [23] by considering the formulation in
the phase space configuration of the Nambu Goto string
and by [11] where the near horizon properties of the string
are investigated. We extend the work contained in [23] by
studying alternative but equivalent formulations of the
relativistic string and show that the particle Carroll limit
gives rise to Carroll theories with different number of
degrees of freedom but with the same Carroll algebra.
Analogous considerations can be done for the Carroll string
limit [23].
We also consider the tachyonic relativistic strings which,

in the Carroll limit, produce also new Carroll strings in flat
space time. As a warmup exercise, in the Appendix we
recall the Carroll limit of the different formulations of the
relativistic massive particle, including the tachyon case.
The organization of the paper is as follows. In Sec. II we

discuss the nonequivalence of the configuration and
canonical Lagrangians in a singular limit, in Sec. III we
analyze different formulations of the bosonic relativistic
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string and their Carroll particle limits and in the Appendix
we show the nonequivalence for the Carroll limits of
different formulations of the relativistic particle.

II. NONEQUIVALENCE OF THE
CONFIGURATION SPACE AND
CANONICAL LAGRANGIANS

IN A SINGULAR LIMIT

Since in this paper we are interested in discussing the
nonequivalence of Carroll limits, we start by considering a
general dynamical system described by a set of variables
discrete or continuous and by a Lagrangian depending on
these variables and on their time derivatives. In order to fix
the ideas we will consider discrete variables but the
considerations that we will do can be easily extended to
the continuum case. The equations of motion for such a
system can be obtained by looking for the extrema of the
action functional

S ¼
Z

dtLðqi; q̇i; tÞ; i ¼ 1 � � �N: ð1Þ

Such a system can also be described by introducing the
Hamiltonian through a Legendre transformation and elimi-
nating the velocities in terms of the momenta. This
inversion is not always possible in the full phase space
leading to constraints that determine a submanifold where
this inversion is possible. In this instance we suppose to
follow the Dirac procedure solving the second class
constraints (or using Dirac brackets) and adding to the
canonical Hamiltonian the first class constraints times
arbitrary functions [24]. In any case there exists a well-
defined procedure to get the Hamiltonian from the
Lagrangian [25], and this is the point we will be interested
in. Therefore, in the following general discussion, for sake
of simplicity, we will suppose that there are no constraints.
In the Hamiltonian formalism one requires the equations

of motion that are equivalent to the Lagrange equations
coming from the variation of Eq. (1). As it is well known, it
is possible to derive the Hamilton equations from a
variational principle, introducing an extended Lagrangian
and a corresponding action defined in a space spanned by
qi; q̇i; pi:

SE¼
Z

dtLEðqi; q̇i;pi; tÞ¼
Z
dt

 XN
i¼1

piq̇i−Hðqi;pi; tÞ
!

;

i¼ 1 � � �N: ð2Þ

We would like to emphasise the fact that the two for-
mulations corresponding to Eqs. (1) and (2) are completely
equivalent. The equations of motion of both Lagrangians
coincide when we use the Legendre transform.
Due to this equivalence, if we perform some trans-

formation of the variables in L, this will induce a

corresponding variation in LE such that the two will remain
equivalent. However the situation changes completely if
our transformation is singular. Just to exemplify, suppose
that we scale a single variable qi → qi=ω and suppose that
L is finite, maybe by some ω redefinition of certain
parameters appearing in the Lagrangian, for ω → ∞.
Then, when we evaluate LEðωÞ, starting from LðωÞ and
send ω → ∞, in general we have to make some further
ω-dependent transformation on LEðωÞ to make it finite and
in general inequivalent:

lim
ω→∞

LðωÞ=≈ lim
ω→∞

L̃ðωÞ; ð3Þ

where L̃ðωÞ is LE transformed in such way to get a finite
result. Note that in some cases to get a finite limit it is
also necessary to add some additional terms to the
Lagrangian [27,28].
A further observation concerns the case in which the

Lagrangian L is invariant under a continuous group of
transformations, G, then, as before, we will rescale one or
more variables in such a way that limω→∞ LðωÞ is finite.
Then, in general, the resulting Lagrangian is invariant under
a contraction of the Lie algebra of the original symmetry.
Of course, the Lagrangian LE has the same group of
symmetries G as L and the question arises about the
symmetries of limω→∞ L̃ðωÞ. Generally speaking the two
limiting cases are invariant under the same contracted
symmetry group, but corresponding to two different
realizations.

III. CARROLL STRINGS
FROM RELATIVISTIC STRINGS

A. Canonical action from a tension full string

Let us consider the relativistic Nambu Goto string in the
phase space formulation; the action is given by

S ¼
Z

dτ
Z

2π

0

dσLE ð4Þ

where the Lagrangian density is given by

LE ¼ p · x −
e
2
ðp2 þ T2x02Þ − μp · x0; ð5Þ

where pμ ≡ pμðτ; σÞ, xμ ≡ xμðτ; σÞ, T is the string tension
and eðτ; σÞ; μðτ; σÞ are Lagrange multipliers.
In this case, to perform the particle Carroll limit, we

introduce the invertible change

x0¼ t
ω
; p0¼ωE; e¼ e

ω2
; T¼ωT ð6Þ

and we consider ω → ∞, as already done in [23], and we
obtain
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lim
ω→∞

L̃EðωÞ ¼ −Eṫþ p · ẋ −
e
2
ð−E2 þ T2x02Þ

− μð−Et0 þ p · x0Þ: ð7Þ

The corresponding first class constraints are

Πe ¼
∂L
∂ė

¼ 0; Πμ ¼
∂L
∂μ̇

¼ 0; primary; ð8Þ

−E2þT2x02¼ 0; Et0−p ·x0 ¼ 0; secondary: ð9Þ
The model obtained is the electric Carroll string due to the
presence of the energy E and not the momenta in the
quadratic constraint [29,30].
The Lagrangian and the constraints, Eq. (7) and Eqs. (9),

are invariant under the Carroll transformations

δt ¼ β · xþ at; δxi ¼ ϵijkθjxk þ ai;

δpi ¼ ϵijkθjpk þ βiE; δE ¼ 0; ð10Þ
and assuming δCe ¼ δCμ ¼ 0. The Lagrangian (7) has an
infinite set of symmetries that contain Carroll [23].
As already shown in [23] by going in the conformal gauge

e ¼ 1, μ ¼ 0, the dynamics of this Carroll string is trivial,
since the spatial coordinates of the string are constant in τ.
However the momentum density is not constant.
The number of degrees of freedom is given by Ndof ¼

1=2½2ðDþ 2Þ − 2 × 4� ¼ D − 2 which corresponds to the
transverse degrees of freedom of string.
Notice that the Lagrangian Eq. (7) is related to the

Lagrangian of the nonvibrating nonrelativistic string by the
mapping [31]

E → P; P → −E; x → −t: ð11Þ

B. Lagrangian in configuration space
and with einbeins

If we eliminate the momenta of the relativistic string
Lagrangian (5) we obtain the corresponding Lagrangian in
the configuration space formulated using einbeins variables

L ¼ 1

2e
ẋ2 −

μ

e
ẋ · x0 þ 1

2

μ2

e
x02 −

T2

2
ex02: ð12Þ

In this case, the Carroll limit is

x0 ¼ t
ω
; ω → ∞: ð13Þ

We obtain

lim
ω→∞

LðωÞ ¼ 1

2e
ẋ2 −

μ

e
ẋ · x0 þ 1

2

μ2

e
x02 −

T2

2
ex02: ð14Þ

Note that the tension is not rescaled.

We have

Πe ¼ 0; Πμ ¼ 0; E¼ ∂L
∂ṫ

¼ 0; primary constraints;

ð15Þ

p ¼ ∂L
∂ẋ

¼ 1

e
ðẋ − μx0Þ; ð16Þ

0 ¼ ∂L
∂e

¼ −
1

2
½ðẋ − μx0Þ2 þ T2x02�; ð17Þ

0 ¼ ∂L
∂μ

¼ −eðẋ − μx0Þ · x0: ð18Þ

The canonical Hamiltonian is

Hc ¼
e
2
ðp2 þ T2x02Þ þ μp · x0: ð19Þ

The secondary constraints are

H ¼ p2 þ T2x02 ¼ 0; T ¼ p · x0 ¼ 0: ð20Þ
Assuming T ≠ 0, the first constraint of Eq. (20) implies

p2 ¼ x02 ¼ 0: ð21Þ
Notice that the constraints (21) are irregular ones [32]. If

we substitute them by the linearized constraints

p ¼ x0 ¼ 0; ð22Þ
the constraints (22) become now second class. Therefore
taking into account the three first class constraints of Eq. (15)
and the D − 1 second class ones of (22), the number of
degrees of freedom becomes Ndof ¼ 1=2½2ðDþ 2Þ − 2×
3 − 2 × ðD − 1Þ� ¼ 0. The model has no local degrees of
freedom.
The same result is obtained by performing the Carroll

particle limit Eq. (13) limit in the Nambu-Goto Lagrangian

L ¼ −T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðẋ · x0Þ2 − ẋ2x02

q
; ð23Þ

which gives

L ¼ −T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðẋ · x0Þ2 − ẋ2x02

q
; ð24Þ

from which the constraints (20) can be directly obtained.
The Carroll transformations are given by Eqs. (10) for the
space time variables.
Therefore no magnetic model, with a quadratic con-

straint in the spatial momenta, is produced in the Carroll
limit if we do not scale einbein variables and the tension of
the string. From now on we will call this case as the Electric
Carroll limit.

C. Canonical Lagrangian from a tachyonic string

Now following [33–35] in order to obtain the magnetic
Carroll limit we should consider the tachyonic string.
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To perform this limit [36] in the phase space formulation it
is necessary to change T2 → −T2

LE ¼ p · x −
e
2
ðp2 − T2x02Þ − μp · x0: ð25Þ

The Carroll limit (6) gives

lim
ω→∞

L̃EðωÞ ¼ −Eṫþ p · ẋ −
e
2
ð−E2 − T2x02Þ

− μð−Et0 þ p · x0Þ: ð26Þ

As it is clear from the form of the quadratic constraint
−E2 − T2x02 ¼ 0, if we assume T ≠ 0 we have the con-
straints E2 ¼ x02 ¼ 0 which are irregular constraints [32].
The linear constraint for the spatial coordiantes is x0 ¼ 0.

The counting of degrees of freedom goes as Ndof ¼
1=2½2ðDþ 2Þ − 2ð3þD − 1Þ� ¼ 0. There are no local
degrees of freedom.

D. Tachyonic string Lagrangian
in the configuration space

The tachyonic string is obtained from (12) again if we
change T2 → −T2 obtaining

L ¼ 1

2e
ẋ2 −

μ

e
ẋ · x0 þ 1

2

μ2

e
x02 þ T2

2
ex02: ð27Þ

By performing the Carroll limit (13) we obtain

lim
ω→∞

LðωÞ ¼ 1

2e
ẋ2 −

μ

e
ẋ · x0 þ 1

2

μ2

e
x02 þ T2

2
ex02: ð28Þ

Proceeding as in the case of Sec. III B we obtain as
secondary constraints

H ¼ p2 − T2x02 ¼ 0; T ¼ p · x0 ¼ 0; ð29Þ

which are first class. In this case we obtain a magnetic
model since the quadratic constraint depends on the spatial
momenta.
Their algebra is given by

fHðσÞ;Hðσ0Þg ¼ 4T2
�
T ðσ0Þ∂σ0δðσ − σ0Þ

− T ðσÞ∂σδðσ − σ0Þ�; ð30Þ

fHðσÞ; T ðσ0Þg ¼ HðσÞ∂σδðσ − σ0Þ; ð31Þ

fT ðσÞ; T ðσ0Þg ¼ 4T2½−T ðσ0Þ∂σ0δðσ − σ0Þ
þ T ðσÞ∂σδðσ − σ0Þ�: ð32Þ

We have three primary first class Πe ¼ 0;Πμ ¼ 0; E ¼ 0,
and two secondary first class constraints, therefore we have
three type gauge transformations. We have an arbitrary

transformation in the time coordinate and two dimensional
Euclidean isomorphism. Taking into account the presence
of five first class constraints, the number of degrees of
freedom is given by Ndof ¼ 1=2½2ðN þ 2Þ − 2 × 5� ¼
D − 3.
We can check this statement explicitly if we introduce a

gauge fixing t ¼ 0 to make the first class constraint E ¼ 0
second class; then the reduced phase space is (x, p) and the
canonical Lagrangian is given by

L ¼ ẋ · p −
1

2
eðp2 − T2x02Þ − μp · x0: ð33Þ

Note the difference with respect to the nonvibrating non-
relativistic string [31].
The action is still invariant under reparametrizations of

world sheet τ and σ coordinates. At least locally, this allows
us to identify one of the space coordinates with τ and we
may then choose the unit of length such that

x1 ¼ τ; x2 ¼ σ ð34Þ

and assume a 2π periodicity for the variable x2

x2 ≡ x2 þ 2π: ð35Þ

With these choices the constraints (29) become second
class. Furthermore, we have

L ¼ ẋ · p ¼ p1 þ
XD−1

a¼3

ẋapa: ð36Þ

The constraints (29) become equivalent to

p2 þ
XD−1

a¼3

paxa0 ¼ 0; ð37Þ

p2 − T2

�
1þ

XD−1

a¼3

ðxa0Þ2
�
¼ 0; ð38Þ

or

p2 ¼ −
XD−1

a¼3

paxa0; ð39Þ

p1 ¼�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XD−1

a¼3

ðxa0Þ2 − T−2
XD−1

a¼3

½ðpaxa0Þ2 þ ðpaÞ2�
vuut :

ð40Þ

By choosing the minus sign solution, from Eq. (36) we can
extract the Hamiltonian density
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H¼T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
XD−1

a¼3

ðxa0Þ2−T−2
XD−1

a¼3

½ðpaxa0Þ2þðpaÞ2�
vuut : ð41Þ

This string is propagating in euclidean space, we could
call it an instantonic string. By double dimensional reduc-
tion we recover the tachyonic Carroll particle with zero
energy [34].

IV. CONCLUSIONS

We have constructed new Carroll strings in flat space by
considering the Carroll particle limit of equivalent relativ-
istic string theories at classical level. We have considered
two types of limits one that scales only the space-time
variables and the other one where we also scale the einbein
and the string tension. In the limit these Carroll strings are
no longer equivalent and have different degrees of freedom.
In the case of ordinary string the only limit that produce a
sensible model is the one that scales space-time variables,
einbeins and the string tension. The model obtained is
electric. When we consider the limit of a tachyonic string
the nontrivial model is obtained when we only scale space-
time variables, the model obtained is magnetic. This
nonequivalence should be a general property for other
limits [21,37–39] of free and interacting particles, p-branes
and field theories, in particular about relativistic gravity.
The relation with other approaches to construct Carroll

theories like the seed procedure [30] should be analyzed.
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APPENDIX: RELATIVISTIC PARTICLES

Relativistic timelike particles have tree possible different
actions, the configuration action with only spacetime
coordinates

S ¼ −m
Z

dτ
ffiffiffiffiffiffiffiffi
−ẋ2

p
; ðA1Þ

where m is the mass of the particle; the metric gμν ¼
ð−;þ; � � � ;þÞ and natural units are assumed. The action
with space-time variables and an einbein variable
(Polyakov) formulation is

S ¼
Z

dτ

�
1

2e
ẋ2 −

1

2
em2

�
; ðA2Þ

while the canonical action is

S ¼
Z

dτ

�
p · ẋ −

1

2
eðp2 þm2Þ

�
: ðA3Þ

They are equivalent by elimination of the momenta and the
einbein variables of the canonical action. The analogous
actions for the tachyons are obtained by changing the sign
of the square root and changingm2 → −m2 in the Polyakov
and canonical action. This equivalence is broken when we
consider the Carroll limit. The causal structure admits two
types of time intervals that coincide with light-like and
space-like intervals.

1. Carroll limit (time-like case)

Let us consider the Carroll limit of a massive relativistic
particle, whose action is given by Eq. (A1), trough the
substitution (c ¼ 1)

x0 →
1

ω
t: ðA4Þ

In the limitω → ∞ the Lagrangian is not real and we do not
proceed furthermore.
Let us now consider Eq. (A2) in the limit (A4); if we do

not scale the einbein and the mass we get

lim
ω→∞

LðωÞ ¼ 1

2e
ðẋ2 − e2m2Þ: ðA5Þ

There are two primary constraints

E ¼ ∂L
∂ṫ

¼ 0; Πe ¼
∂L
∂ė

¼ 0; ðA6Þ

where E is the energy and Πe is the momentum of the
einbein variable e. There is also a secondary constraint

p2 þm2 ¼ 0: ðA7Þ
which has real solution only when m ¼ 0. In this case the
p2 ¼ 0 constraint is an irregular one [32].
If we consider the linear constraint p ¼ 0 associated to

the irregular constraint p2 ¼ 0, [32], the canonical
Lagrangian for the linear constraint action becomes

Lc ¼ −Eṫþ p · ẋ − λ · p − μE; ðA8Þ
where λ are D − 1 Lagrangian multipliers. There is no a
configuration space action. The number of degrees of
freedom in configuration space is Ndof ¼ 1=2½2ðDþD−
1þ 1Þ − 2ðD − 1þD − 1þ 1þ 1Þ� ¼ 0. In conclusion
the model has no local physical degrees of freedom and
its action is Carroll invariant under the following boost
transformations
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δCt ¼ β · x; δCxi ¼ 0;

δCpi ¼ βiE; δCE ¼ 0;

δCλ ¼ 0; δCμ ¼ −β · λ: ðA9Þ
The Carroll limit of the canonical action, Eq. (A3), is

defined by

x0 →
1

ω
t; m¼ωM; e¼ ẽ

ω2
: ðA10Þ

Note the scaling of the einbein variable and of the mass.
The Lagrangian is given by [18]

Lc ¼ −Eṫþ p · ẋþ ẽ
2
ðE2 − m̃2Þ ðA11Þ

and describes a particle with constant energy

E2 ¼ m̃2; ðA12Þ
zero velocity and no relation among the momentum and
the velocity. The model obtained is the electric Carroll
particle. The number of degrees of freedom is equal
to Ndof ¼ 1=2½2ðDþ 1Þ − 2 × 2� ¼ D − 1.

2. Carroll limit (space-like or tachyon case)

The configuration relativistic action for a tachyon is

S ¼ −m
Z

dτ
ffiffiffiffiffi
ẋ2

p
ðA13Þ

and the Carroll limit, Eq (A4), gives

S ¼ −m
Z

dτ
ffiffiffiffiffi
ẋ2

p
: ðA14Þ

The primary constraints are

p2 −m2 ¼ 0; E ¼ 0: ðA15Þ

Therefore the Lagrangian coincides with the massless
Galilean particle with m color and vanishing energy [40].
Let us now consider the relativistic tachyon Lagrangian

with einbein variable

LT ¼ 1

2e
ẋ2 þ 1

2
em2: ðA16Þ

By performing the Carroll limit of Eq. (A16) we obtain

lim
ω→∞

LTðωÞ ¼
1

2e
ðẋ2 þ e2m2Þ: ðA17Þ

There are two primary constraints

E ¼ 0; Πe ¼ 0 ðA18Þ
and a secondary constraint

p2 −m2 ¼ 0; ðA19Þ
fixing the modulus of the spatial momentum without any
restriction of the parameter m. Note that the constraints
coincide with those of the configuration action and there-
fore in this case the two limits are equivalent.
This particle is a Carroll tachyon with zero energy and

momentum p. Also its velocity ẋ is not zero. The model is
the magnetic Carroll particle [35]. In conclusion, taking
into account the presence of three first class constraints, the
number of degrees of the physical freedom is equal
to Ndof ¼ 1=2½2ðDþ 1Þ − 2 × 3� ¼ D − 2.
In analogous way the limit of the tachyon canonical

Lagrangian

LTE ¼ p · ẋþ 1

2
eðp2 −m2Þ ðA20Þ

gives

lim
ω→∞

L̃TE ¼ −Eṫþ p · ẋþ ẽ
2
ðE2 þ m̃2Þ ðA21Þ

where

ẽ ¼ eω2; m̃2 ¼ m2

ω2
: ðA22Þ

We get the constraints

Πẽ ¼ 0; E2 þ m̃2 ¼ 0 ðA23Þ
with solutions only for m̃ ¼ 0. The particle has zero energy
and momentum. The model obtained is the conformal
Carroll particle. The number of degrees of freedom is equal
to Ndof ¼ 1=2½2ðDþ 1Þ − 2 × 2� ¼ D − 1.
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