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We study energy-momentum and charge transport in strongly interacting holographic quantum field
theories in an anisotropic thermal state by contrasting three different holographic methods to compute
transport coefficients: standard holographic calculation of retarded Green’s functions, a method based on
the null-focusing equation near horizon and the novel method based on background variations. Employing
these methods we compute anisotropic shear and bulk viscosities and conductivities with anisotropy
induced externally, for example by an external magnetic field. We show that all three methods yield
consistent results. The novel method allows us to read off the transport coefficients from the horizon data
and express them in analytic form from which we derive universal relations among them. Furthermore we
extend the method based on the null-focusing equation to Gauss-Bonnet theory to compute higher
derivative corrections to the aforementioned transport coefficients.
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I. INTRODUCTION

Quark-gluon plasma produced in heavy-ion collisions is
well described as a strongly interacting relativistic fluid, see
Refs. [1–4] for reviews. Anisotropies in pressure gradients in
directions transverse to the beam, that are present in off-
central collisions, played an important role in establishing
this hydrodynamic description early on, through matching
the experimentally observed flow parameters to hydrody-
namic simulations, see Refs. [5–7] for recent updates. There
is a second source of anisotropy that arises from expansion
of the plasma along the beam direction which is faster than
its transverse expansion. Finally, intense magnetic fields1

are produced in off-central collisions, leading to yet another

source of anisotropy in the plasma. Indeed, a back-of-the-
envelope estimate based on the Biot-Savart law leads to a
maximal magnetic field of B ≈ 1015–1019 G at Relativistic
Heavy Ion Collider and B ≈ 1016–1021 G at LHC [9–16].
Another important physical system subject to extremely

high magnetic fields is a neutron star. The strength of the
magnetic field can reach 1015 G on the surface of a
magnetar [17] and 1016 G inside it [18,19]. Moreover,
the strength can be amplified during a binary merger and
can exceed 1016−17 G [20–23], overlapping with the values
of the magnetic field produced in heavy-ion collisions [24]
in the later times of the plasma evolution before freeze-out.
Although it is still an open question whether neutron stars
with quark matter cores exist, the characteristics of neutron
star matter have been demonstrated to agree better with the
anticipated features of nearly conformal quark matter than
with those of nuclear matter [25,26]. Even if quark matter
does not exist inside isolated neutron stars, it can be created
in neutron star binary mergers [27–29]. When the antici-
pated extremely large magnetic fields during a merger event
are taken into account, the deconfined quark matter
accommodates magnetic-field-induced anisotropy. As sug-
gested in [30], neutron star matter during a merger event is
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1Large vorticities are produced in off-central collisions which
break the rotational invariance in the plasma [8] also leading to
anisotropic transport. We will however not discuss vortical effects
in this paper.
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not only sensitive to the equation of state but also to the
bulk viscosity. A complete understanding of the transport
properties requires the inclusion of effects arising from
anisotropy, even though these effects might be subdominant.
Despite abundant experimental evidence and numerical

hydrodynamic simulations, transport of energy-momentum
and charge in these anisotropic plasma states has not been
adequately addressed from a theoretical point of view. There
are two obvious reasons for this: First is the insufficiency of
perturbative QCD in computing associated transport coef-
ficients in the presence of strong correlations. The second is
the shortfall of lattice QCD methods, which are suitable to
compute Euclidean rather than retarded correlation functions
which are required in Kubo formulas for transport. These
shortcomings hold as well in the isotropic plasma states.
Nevertheless, while further advances in computing isotropic
transport coefficients in lattice QCD are within reach by
analytic continuation fromEuclidean to real-time correlators,
see e.g. [31], this will be much harder to achieve in
anisotropic states.
Gauge-gravity duality [32–34] comes into play here.

Anisotropic plasma states in holographic quantum field
theories have been extensively studied in applications to
condensedmatter, see e.g. [35,36] for recent reviews, but also
in applications to QCD and the quark-gluon plasma
in [37–52]. On the gravitational side these states are realized
by planar black hole solutions with coordinates ðr; t; xiÞ
where r is the holographic direction, t is time and xi are the
spatial field theory directions, with the spatial metric gij
beingdiagonalwith unequal components. These holographic
studies include plasmas where the anisotropy is due to an
external magnetic field, see Refs. [53–55] for reviews.
The main purpose of our paper is to explore transport of

conserved quantities, energy-momentum and charge in
anisotropic plasma states in strongly coupled holographic
quantum field theories. We will do this using various
different approaches: (i) traditional holographic technique
to compute retarded Green’s functions from fluctuations of
the background; we will refer to this as the Gubser-Pufu-
Rocha (GPR)method after [56]which improved the standard
holographic computation and applied it to computation of the
bulk viscosity, (ii) extending the method of [57]—based on
the null-focusing equation near the horizon—to anisotropic
black holes which we refer to as the Eling-Oz (EO) method,
and (iii) using a novel method [58] that relates transport
coefficients directly to horizon data by varying parameters of
the background. We refer to this latter method as “back-
ground variation” (BV) for short.
An obvious motivation to invoke the gauge-gravity

duality here is that the strong coupling limits of transport
coefficients, such as the shear viscosity to entropy ratio
obtained from the duality [59], are much closer to obser-
vation [5–7] than perturbative QCD results [60,61]. In
addition to shear, in nonconformal but isotropic plasmas
energy-momentum transport is characterized also by the
bulk viscosity which has also been extensively studied in

holography [56,57,62–72]. There is however an important
difference between the holographic computation of shear
and bulk viscosity. Shear viscosity is obtained from the
transversely polarized graviton fluctuation on AdS (anti–de
Sitter) black hole and does not mix with the other
fluctuations, leading to a single massless fluctuation
equation. For isotropic and homogeneous fluids, the result
is universal, that is, independent of presence and details of
the other sectors in the gravitational action e.g. scalar
potentials, and given by η=s ¼ 1=4π. It is easy to under-
stand the reason for this universality. As clearly explained
in [56], in the absence of a mass term in the fluctuation
equation, one can define a “graviton flux” that is conserved,
hence its value on the boundary and at the horizon becomes
the same. Thus one can read off the transport coefficient
directly from the horizon which leads to universal values.
The same holds for electric conductivity which can also be
directly read off from the horizon, see Ref. [73].2

This argument is also valid for shear viscosity in non-
conformal holographic theories3 as presence of other matter
fields that break conformal invariance of the dual field
theory does not affect universality at the horizon [81].
This ceases to be the case for the “massive” fluctuations,

e.g. dual to bulk viscosity, which maps to trace of the
graviton fluctuation and mixes with fluctuation of other
scalars in the dual background. Even though one can again
construct a conserved flux [56,82], its value depends on a
nontrivial coefficient that can only be fixed by determining
the full solution to the fluctuation equation from boundary
to horizon which is now hard because of the mass term. The
bottom line is that horizon data itself does not seem to be
sufficient to fix transport coefficients that are dual to
massive fluctuations.
An independent approach was put forward by Eling and

Oz in [57], see also [83,84], based on relating the null-
focusing (or Raychaudhuri) equation [85] near the horizon
to positivity of entropy production in the dual quantum
field theory (QFT). This approach does determine the
transport coefficients in terms of the horizon data, however
it is built on positive entropy production. In particular, it
will not work for nondissipative transport, e.g. anomalous
conductivities, which does not contribute to entropy pro-
duction (see e.g. [86–88]). Certain types of coefficients
associated with dissipationless transport, such as anoma-
lous conductivities in the presence of ‘t Hooft anomalies,
turn out to be free of radiative corrections and hence can be

2The horizon formula for conductivity leads to “bulk univer-
sality” and it does not imply any universality from the boundary
perspective. However, it has important applications in quantum
critical phenomena [74,75].

3The result is modified if one goes beyond the two-derivative
(super)gravity approximation [76], see Ref. [77] for a review and
[78] for a recent study. Adding such corrections is important to
reproduce the temperature dependence of η=s observed in heavy-
ion collisions [5,7,79] as was shown in [80].
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obtained directly in perturbative QFT without resorting to
holography. However, contribution of dynamical gauge
fields to anomalous transport at strong coupling remains an
open problem. Even though this has been addressed in
holography in [89–91], analytic expressions that relate
transport to horizon data are hard to get.4 Nevertheless, the
approach of Eling and Oz will be crucial to our paper. We
will not only prove the EO formula for bulk viscosity using
the traditional holographic techniques, but also extend them
to anisotropic states and to include a certain type of higher
derivative corrections, in particular in the Gauss-Bonnet
theory.
Turning back to the main focus of anisotropic transport,

we notice that computation of these “massive” transport
coefficients in anisotropic states in the traditional approach
will be quite cumbersome. First, the number of transport
coefficients multiply in the presence of anisotropies. Now
there will be two shear viscosities: one when shear
deformation is on the plane transverse to the direction of
anisotropy,5 and another when it’s along the direction of
anisotropy. Similarly, there are two electric conductivities
and three bulk viscosities, see Sec. III. Second, the bulk
fluctuations dual to a generic fluctuation will mix other
modes becoming “massive.”
These difficulties led us in our companion paper [58]

to introduce the BV method which computes generic
transport coefficients directly from the horizon data. This
is based on the realization that, as the transport coefficients
in QFT are computed from the vanishing frequency limit of
retarded Green’s functions, they can be naturally mapped to
variations of the background parameters, such as charge
and mass, in the dual gravitational black hole background.
We introduced this method in [58], which we then used
to calculate anisotropic bulk viscosities. We also compared
with GPR and EO using the holographic QCD model
of [92–94]—see Ref. [95] for a review—finding perfect
agreement.
In the present work, we provide derivation of the BV

method in more detail and expand on its applications to
anisotropic transport coefficients, including anisotropic
conductivities and charged plasmas. Moreover we extend
the EO method to include anisotropies and higher deriva-
tive corrections which allows for computing small ‘t Hooft
coupling corrections to transport coefficients.
The structure of this work is as follows. In Sec. II, we

review the computation of bulk viscosity by Gubser et al.
[56], which requires solving fluctuation equations. We
then show how this result can be incorporated into back-
ground variations. In Sec. III we use this method to obtain
an expression for the magnetic bulk viscosities in terms

of background variations. In Sec. III, we also discuss
magnetic conductivity and a universal relation between
magnetic conductivity and magnetic shear viscosity. In
Sec. IV, we show how the obtained result coincides with an
alternative method for computing transport at the horizon,
which was first used by Eling and Oz [57]. In addition, we
investigate here anisotropic transport in a class of higher
derivative theories given by the Gauss-Bonnet correction.
In Sec. V, we employ a specific holographic model [92–94]
(with the full back reaction of flavor sector) to obtain
numerical results for the viscosities based on the derived
expressions. Finally, we conclude with the discussion in
the Sec. VI.

II. ISOTROPIC VISCOSITY

A. Viscosity with GPR method

As explained in the Introduction, we will switch back
and forth between the three different holographic methods
to compute transport coefficients. We first review the
holographic bulk viscosity computation put forward by
Gubser et al. in Ref. [56] and generalized and further
developed by [82] and others. After reviewing the GPR
method in the case of isotropic states below, we will then
extend this method to study transport in anisotropic states
and, in addition, use this as a starting point to introduce a
novel means to compute transport coefficients that we coin
“background variations” [58].
For an isotropic and relativistic fluid, conservation laws

for energy-momentum and charge are given by

∂μTμν ¼ FμνJν; ∂μJμ ¼ 0: ð1Þ

Given the four-velocity uμ of the fluid, the constitutive
equations can be written as

Jμ ¼ quμ þ Jμð1Þ; Tμν ¼ ϵuμuν þ pΔμν þ Tμν
ð1Þ;

Δμν ¼ ημν þ uμuν; ð2Þ

where the quantities with subscript (1) denote the dissipa-
tive contributions at first derivative order. At this order Tμν

ð1Þ
is given by

Tμν
ð1Þ ¼ −2ηΔ̂μναβ

∂αuβ − ζΔμνΔαβ
∂αuβ;

Δ̂μναβ ¼ ΔμðαΔβÞν −
1

3
ΔμνΔαβ; ð3Þ

whereas for Jμð1Þ we have Jμð1Þ ¼ −σTΔμν
∂ν

μ
T. Here we

denote A���ðμBνÞ��� ¼ ðA���μBν��� þ A���νBμ���Þ=2. In holo-
graphic computations, the shear viscosity was found to
be universally given by [96]

η ¼ s
4π

: ð4Þ

4Analytic or semianalytic expressions are essential to obtain
generic relations between transport coefficients, and hence highly
desirable.

5We will assume a single anisotropic direction in this paper.
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For a conformal fluid, the bulk viscosity is zero, so to
obtain a nonvanishing bulk viscosity we must consider a
fluid that is nonconformal, which can be done by intro-
ducing a dilaton potential in the dual gravity action. We
then consider the Einstein-dilaton theory

S ¼ N
Z

d5x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ þ Lmatterðϕ; FÞ

�

¼ N
Z

d5xL; ð5Þ

where the precise form of the matter action is not important.
We can take it to be the Maxwell Lagrangian as we will do
below. We consider the following metric Ansatz

ds2 ¼ e2AðrÞðfðrÞ−1dr2 − fðrÞdt2 þ dx2

þHMNðr; tÞdxMdxNÞ; ð6Þ

where HMNðr; tÞ are fluctuations. We can use diffeomor-
phism symmetry to choose a gauge where the dilaton
fluctuation is set to zero [56]. To compute bulk viscosity,
we only need to turn on the components related to the scalar
sector, which are Htt, Hrr, Hrt, as well as the spatial trace,
whereas we turn off dilaton fluctuations. To be specific,
we write

H11 ¼ H22 ¼ H33 ¼ hðrÞe−iωt;
Hrt ¼ hrtðrÞe−iωt;
Htt ¼ −fðrÞðΘðrÞ þ hðrÞÞe−iωt;
Hrr ¼ fðrÞ−1ðΓðrÞ þ hðrÞÞe−iωt: ð7Þ

After eliminating the other fluctuations, we obtain a
decoupled equation for h which reads

h00ðrÞþ
�
f0ðrÞ
fðrÞ þK1ðrÞ

�
h0ðrÞþ

�
ω2

fðrÞ2þK2ðrÞ
�
hðrÞ ¼ 0

ð8Þ
where the background-dependent function K1ðrÞ ¼ 3A0 þ
d
dr logðϕ02=A02Þ, while K2ðrÞ depends on the choice of the
matter action. It has a simple pole at the horizon where fðrÞ
vanishes. Having derived the equation for h, one then
writes down the bilinear Lagrangian which will enable one
to obtain the Kubo formula for the bulk viscosity.
We can then expand the Lagrangian in (5) quadratically

in the sources to find

Lð2Þ ¼ ∂rJ þ h⃗�T
�
∂L

∂h⃗�
− ∂r

∂L

∂h⃗�0

�
; h⃗ ¼ fh;Θ;Γg; ð9Þ

where the J -term is the only part that is nonvanishing on-
shell. This term can be related to the retarded Green’s
function as [97,98]

ImGRðωÞ ¼ −NF ; F ¼ −ImJ; ð10Þ

where the trace-trace retarded correlator in the QFT is
given by

GRðωÞ ¼ −i
Z

dtd3xeiωt
��

1

2
Ti

iðt; x⃗Þ; 1
2
Tk

kð0; 0Þ
��

:

ð11Þ

Here F is a conserved flux of background fluctuations
which, therefore, can be computed at any r, and most easily
near the horizon, where it is given by

F ¼ −i lim
r→rh

expð3AÞϕ
02f

8A02 ðh0h� − h�0hÞ: ð12Þ

Near the horizon, Eq. (8) turns into

h00 ¼ h0

rh − r
−

ω2h
f02h ðrh − rÞ2 þOðr − rhÞ: ð13Þ

Solving Eq. (13) and imposing infalling boundary con-
ditions [98] yields

h ¼ c−ðωÞðrh − rÞ− iω
4πT ¼ c−ðωÞ

�
1 −

iω
4πT

logðrh − rÞ
�
;

ð14Þ

where we used that T ¼ − 1
4π f

0
h and c−ðωÞ is a function that

in general depends on frequency ω, however we will only
need c− ≡ c−ð0Þ. Then, plugging Eq. (14) into Eq. (12),
we find

ζ ¼ −
4

9
lim
ω→0

1

ω
ImGRðωÞ ¼ sc2−ϕ02

h

36πA02
h

; ð15Þ

where s is the entropy density given by

s ¼ 4πN expð3AhÞ; ð16Þ

Ah is the value of the scale factor A at the horizon and c−
can be obtained numerically by solving the equation for h
for ω ¼ 0 with the UV boundary condition

lim
r→rb

hðrÞ ¼ 1; ð17Þ

where rb is the location of the boundary. Clearly, the result
(15) depends on a quantity, i.e. c−, that requires the full
solution of the fluctuation equation from the horizon to
the boundary. This can only be done numerically. Below
we introduce a method which will allow one to express
the result completely in terms of horizon data in a semi-
analytic fashion.
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B. Transforming fluctuations to background variations:
Case of zero magnetic field

In this section we show that the result of Eq. (15), which
depends on a numerical constant that requires the full
solution of the fluctuation equations, can instead be written
in terms of variations of background fields. The idea is to
relate the fluctuations in the limit of vanishing frequency,
which one needs to obtain the Kubo formulas that give the
transport coefficients, to variations of the background with

respect to its parameters such as charge and temperature (or
equivalently entropy).
To proceed we first consider diffeomorphism gauge

symmetries of the sources in a generic background. In
the GPR computation, the gauge symmetries are used to
turn off the dilaton fluctuation, which we will denote
below as χðrÞ. We will require the same. Under an
infinitesimal diffeomorphism r ↦ rþ ξðrÞ the fluctuations
transform as

χðrÞ → χðrÞ þ ϕ0ðrÞξðrÞ; hðrÞ → hðrÞ þ 2A0ðrÞξðrÞ;

ΘðrÞ → ΘðrÞ þ f0ðrÞ
fðrÞ ξðrÞ; ΓðrÞ → ΓðrÞ − f0ðrÞ

fðrÞ ξðrÞ þ 2ξ0ðrÞ: ð18Þ

In order to eliminate χðrÞ, we take ξðrÞ ¼ −δϕðrÞ=ϕ0ðrÞ. We can then write the fluctuations in Eq. (6) as background
variations,

χðrÞ ¼ 0; hðrÞ ¼ 2δAðrÞ − 2
A0ðrÞ
ϕ0ðrÞ δϕðrÞ;

ΘðrÞ ¼ δfðrÞ
fðrÞ −

f0ðrÞ
fðrÞϕ0ðrÞ δϕðrÞ;

ΓðrÞ ¼ − δfðrÞ
fðrÞ þ f0ðrÞ

fðrÞϕ0ðrÞ δϕðrÞ
− 2

δϕ0ðrÞ
ϕ0ðrÞ þ 2

ϕ00ðrÞδϕðrÞ
ϕ0ðrÞ2 :

ð19Þ

The mapping outlined above is not one-to-one because
setting ω ¼ 0 and taking ω → 0 limit do not necessarily
coincide. To make these two equivalent, in particular, one
needs to start with the fluctuation equation and impose an
additional constraint that arises from the rt-component of
Einstein’s equations. The ω → 0 limit of this fluctuation
that satisfies the constraint would then coincide with the
background variation defined at strictly ω ¼ 0.
That is, solving the equations (19) for the background

variations, we obtain

δϕ

ϕ0 ¼ −
1

2

Z
r

rb

dr̃ðΘðr̃Þ þ Γðr̃ÞÞ þ Cϕ;

δA ¼ 1

2
hþ A0

ϕ0 δϕ;

δf ¼ fΘþ f0

ϕ0 δϕ; ð20Þ

which is guaranteed to be a proper variation of the back-
ground so long as h, Θ, and Γ satisfy the full fluctuation
equation, including the constraint coming from the
rt-component of the Einstein equations.6

However, these relations do not completely absorb
fluctuations into background variations yet, as the fluctua-
tions are turned on at the UV boundary, whereas the
variations of the background fields are not if the sources
are kept fixed when the background is varied. To turn off
the fluctuations at the boundary as well, we further consider
reparametrization symmetries of the background, which are
given by

r → rþ r0; ð21aÞ

A → Aþ logΛ; r → Λr; ρ → Λ3ρ; ð21bÞ

f → f0f; A → Aþ 1

2
log f0; ρ → f3=20 ρ; ð21cÞ

where r, A and f are the holographic coordinate, scale
factor and the blackening factor in the conformal coor-
dinate system (6) with HMN set to zero, and ρ is the charge
density. These symmetries were shown to hold in the
absence of charge in [99] and above is a natural generali-
zation with charge. The infinitesimal versions of these
symmetry parameters are

r0 ¼ ϵr; Λ ¼ 1þ ϵΛ; f0 ¼ 1þ ϵf; ð22Þ

and they generate the following variation of the back-
ground:

6One might be worried that this argument fails because (19) is
not an algebraic equation for the full variation, so that the solution
contains the integration constant Cϕ. However, as we shall see
explicitly below, this constant is identified with the infinitesimal
constant variation of the r-coordinate (denoted by ϵr below),
which confirms that the solution is a variation of a regular
background.
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δϵA¼ ϵΛþðrϵΛþ ϵrÞA0 þ ϵf
2
; δϵf¼ ðrϵΛþ ϵrÞf0 þ ϵff;

δϵϕ¼ ðrϵΛþ ϵrÞϕ0; δϵρ¼ ð3ϵΛþ 3ϵf=2Þρ: ð23Þ

We can now use these infinitesimal reparametrizations to
turn off the fluctuations at the boundary, i.e. we will undo
the UV boundary condition of Eq. (17). The symmetry
transformation of Eq. (23) also modifies the UV value ofΘ.
However, because only the r-derivative of Θ turns out to be
physical, the UV value is arbitrary and we can take

lim
r→rb

ΘðrÞ ¼ CΘ; ð24Þ

where CΘ is an arbitrary constant that will drop out at the
end of our computation. To turn off these UV values, we
take the infinitesimal parameters to be

ϵf ¼ −CΘ; ϵΛ ¼ 1

2
ðCΘ − 1Þ: ð25Þ

Absence of the sources also sets ϵr ¼ −Cϕ − rbϵΛ, but as it
turns out, this parameter cancels in our analysis so its value
is not important. Note that the values of these infinitesimal
parameters are not necessarily small, this is due to the fact
that the wave functions of the fluctuations, contrary to what
their name suggests, are similarly not infinitesimal at the
boundary [see Ref. (17)].
To obtain a formula for viscosity in terms of background

fields we want to express the GPR expression for the bulk
viscosity in (15) in terms of background variations.
Consider then the near horizon expansion of the back-
ground fields:

AðrÞ ¼ Ah þ A0
hðr − rhÞ þOððr − rhÞ2Þ;

fðrÞ ¼ f0hðr − rhÞ þOððr − rhÞ2Þ: ð26aÞ

Let us also write down the horizon expansion of the
fluctuation equations:

hðrÞ ¼ hh þ h0hðr − rhÞ þOððr − rhÞ2Þ; ð27aÞ

ΘðrÞ ¼ Θr

r − rh
þ Θh þ ΘI0

h ðr − rhÞ þOððr − rhÞ2Þ: ð27bÞ

In addition, we note that Θþ Γ is regular at the horizon.
A crucial observation here is that the horizon value

of h, i.e. hh, becomes the same as the quantity that was
introduced in (14) in the ω → 0 limit: hh ¼ limω→0 c−.
Moreover Θr is not independent but can be obtained from
the fluctuation equations. Using the rr-component of the
Einstein fluctuation equations near the horizon, we obtain

Θr ¼
hh
2A0

h
; ð28Þ

so that for the total variation of the background fields, i.e.
the sum of the variations in (20) and in (23) at the horizon,
we find

δÂ ¼ 1

2
hh − A0

hδr −
1

2
þ A0

h

2
rhðCΘ − 1Þ þOðr − rhÞ;

ð29aÞ

δf̂¼ f0h
2A0

h
hh −f0hδrþ

f0h
2
rhðCΘ −1ÞþOðr− rhÞ; ð29bÞ

δϕ̂ ¼ −ϕ0
hδrþ

ϕ0
h

2
rhðCΘ − 1Þ þOðr − rhÞ; ð29cÞ

where δr ¼ − 1
2

R
rh
rb
dr̃ðΘðr̃Þ þ Γðr̃ÞÞ − rbðCΘ − 1Þ=2. We

will also need the shift of the horizon location, which can
easily be worked out from the variation of the blackening
factor as

δrh ¼ −
δf̂
f0h

				
r¼rh

¼ δr −
rh
2
ðCΘ − 1Þ − 1

2A0
h
hh: ð30Þ

The full variation of the horizon values of A and ϕ are
found to be

δAh ¼ A0
hδrh þ δÂjr¼rh ¼ −

1

2
;

δϕh ¼ ϕ0
hδrh þ δϕ̂jr¼rh ¼ −

ϕ0
hhh
2A0

h
: ð31Þ

Note the cancellations between the first and second terms of
δAh and δϕh. Now, using these expressions we can express
the quantity that appears on the rhs of (15) neatly as

ϕ0
hhh
A0
h

¼ δϕh

δAh
: ð32Þ

This means that we can express the bulk viscosity entirely
in terms of horizon data as

ζ ¼ N
9
e3Ah

�
δϕh

δAh

�
2

: ð33Þ

We can further simplify this expression by considering
what δAh really means. The charge ρ is only affected by
the transformations (23) so that the total variation is
δρ=ρ ¼ −3=2. Because s ∼ expð3AhÞ, comparing with
(31) we see that s and ρ transform in the same way and
therefore the ratio q ¼ ρ=s is invariant. Consequently,
one has

1

3

δϕh

δAh
¼ s

∂ϕhðs; qÞ
∂s

¼ s
∂ϕhðs; ρÞ

∂s
þ ρ

∂ϕhðs; ρÞ
∂ρ

: ð34Þ
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Finally, from Eq. (15) we obtain an expression for the bulk
viscosity given by

ζ ¼ s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ

�
2

: ð35Þ

This result agrees with the expression that was found by
Eling and Oz [57] and which was numerically shown to be
equivalent to Eq. (15) in Ref. [69]. Derivation of [57]
followed from the Raychaudhuri equation near the horizon.
Our derivation instead follows from a reinterpretation of the
holographic Kubo formula for bulk viscosity in terms of
variations of the background fields.

III. ANISOTROPIC TRANSPORT INDUCED
BY MAGNETIC FIELD

A. Anisotropic viscosities with the GPR method

After the warm up in the previous section, we now focus
on the main interest of this paper: holographic transport
in anisotropic states. In particular we assume that the
anisotropy is brought by the presence of an external
magnetic field, which we holographically model by the
spatial components of a bulk gauge field. In the presence of
a background magnetic field Bμ and when the field theory
enjoys parity and time-reversal symmetry, the leading order
dissipative correction to stress tensor reads [100,101]

Tμν
ð1Þ ¼ −2η⊥Πμναβ

∂αuβ − 2ηkbðμΠνÞαbβ∂αuβ

− ζ⊥ΠμνΠαβ
∂αuβ − ζ×ðΠμνbαbβ þ bμbνΠαβÞ∂αuβ

− ζkbαbβbμbν∂αuβ; ð36Þ

where we defined the projectors used the definitions

Πμναβ ¼ ΠμðαΠβÞν −
1

2
ΠμνΠαβ; Πμν ¼ Δμν − bμbν;

bμ ¼ Bμ=jBj; ð37Þ

withΔμν being the projector transverse to fluid velocity. For
the charge current we have

Jμð1Þ ¼ −σkbμbνT∂ν
μ

T
− σ⊥ΠμνT∂ν

μ

T
: ð38Þ

The following constraints on these transport coefficients
arise from positivity of entropy production [100]

η⊥ ≥ 0; ηk ≥ 0; ζ⊥ ≥ 0; ζk ≥ 0;

ζ⊥ζk ≥ ζ2×; σk ≥ 0; σ⊥ ≥ 0: ð39Þ

Holographic values (at infite ‘t Hooft coupling and infinite
N) of magnetic shear viscosities η⊥ and ηk were obtained in
Ref. [102],

η⊥
s

¼ 1

4π
;

ηk
s
¼ 1

4π

g33
g11

				
r¼rh

; ð40Þ

where the z-direction points along the magnetic field.
We will now compute the bulk viscosities ζk, ζ⊥, and ζ×.

We will do this first by deriving the associated holographic
Kubo formulas, following the GPR method, by modifying
the computation in Sec. II A to include a background
magnetic field. We will then generalize the background
variation method in Sec. II B to this case.
A background magnetic field can be incorporated in the

holographic action as follows:

S ¼ N
Z ffiffiffiffiffiffi

−g
p �

R −
1

2
ð∂ϕÞ2 − VðϕÞ þ Lmatterðϕ; FÞ

�
;

ð41Þ

where for the matter sector we simply take the Maxwell
term given by

Lmatterðϕ; FÞ ¼ −
1

4
ZðϕÞF2: ð42Þ

We consider a background magnetic field and chemical
potential. This necessitates an anisotropic metric

ds2¼ e2AðrÞ
�
−fðrÞdt2þe2WðrÞðdx2þdy2Þþdz2þ dr2

fðrÞ
�
:

ð43Þ

The gauge field is given by the Ansatz

Aμ ¼


ΦðrÞ;− yB

2
;
xB
2
; 0; 0

�
; ð44Þ

where the chemical potential is given by the source of the
temporal componentΦ, i.e. ΦðrÞjbdry ¼ μ. When the above
Ansätze are substituted into Einstein equations,

Rμν −
1

2
gμνR ¼ Tμν; ð45aÞ

Tμν ¼
�
1

2
∂μϕ∂νϕ −

1

4
gμνð∂ϕÞ2 þ

1

2
gμνV½ϕ�

�

þ Z½ϕ�
2

�
4Fμ

λFνλ − gμνFλκFλκ

�
; ð45bÞ

one obtains the following system of differential equations:

A00 − A02 þ 2

3
ðW00 þW02Þ ¼ −

1

6
ϕ02; ð46Þ

ðW0e3Aþ2WfÞ0 ¼ −
2B2Z½ϕ�
e2W−A ; ð47Þ
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f00

f
þ 2A00 þ f0

f
ð5A0 þ 2W0Þ þ 2A0ð3A0 þ 2W0Þ

−
2e2AV½ϕ�

3f
−
8Φ02Z½ϕ�
3fe2A

¼ 4B2Z½ϕ�
3fe2ðAþ2WÞ ; ð48Þ

3A0
�
4A0 þf0

f
þ 4W0

�
þ 2W0

�
f0

f
þW0

�
−
1

2
ϕ02−

e2AV½ϕ�
f

þ 2Φ02Z½ϕ�
fe2A

¼−
2B2Z½ϕ�
fe2ðAþ2WÞ : ð49Þ

Let us analyze these equations in some detail. For the
moment we do not want to specify the UV boundary
conditions. We will only assume that there is a UV
boundary at rb where the conformal factor AðrÞ becomes
large. In fact, choose the scale function A to monotonically
decrease from boundary to interior and everywhere satisfy
A0 < 0which is consistent with the requirement that A itself
can be used as a holographic coordinate.
On the other hand Einstein’s equation (47) leads to the

inequality ðW0eð3Aþ2WÞfÞ0 < 0. This follows from the fact
that Z½ϕ� in the action should be positive definite which
itself follows from the requirement of a positive definite
kinetic energy of the bulk gauge field. In addition, for
asymptotically AdS boundary one needs that W → 0 as
r → rb. Finally, the blackening factor f > 0 everywhere
outside the horizon, that is rb ≤ r < rh and it goes to 1 on
the boundary. The aforementioned inequality guarantees
that W0 expð3Aþ 2WÞf → 0þ as r → rh which, in turn,
requires that W is a monotonically increasing function
everywhere outside the horizon:

W0ðrÞ > 0; rb ≤ r < rh: ð50Þ

This equation will be very useful in proving inequalities
below that will restrict transport properties.
In fact the metric functions satisfy more restrictions. It is

straightforward to obtain a modified version of the holo-
graphic a-theorem in the presence of anisotropy from
Einstein’s equations, see e.g. [103],

d
dr


�
A0 þ 2

3
W0

�
e−Aþ2

3
W

�
≤ 0: ð51Þ

Furthermore, assuming asymptotically AdS boundary, one
can show that A0 þ 2

3
W0 → −∞ at the boundary. Let us

assume rb ¼ 0 as usual. Asymptotically AdS means that
A0 → −1=r. Solving (47) near the boundary, with the addi-
tional assumption that Z approaches a constant, one finds
W → W0r4 log r=l with W0 < 0. That is A0 þ 2

3
W0 < 0

everywhere. Multiplying this with W0, which we showed to
be positive definite above, we find that A0 < 0 which is
consistent with the discussion above.

Then we consider the fluctuated metric

ds2 ¼ e2AðrÞ
�
−fðrÞdt2 þ e2WðrÞðdx2 þ dy2Þ þ dz2 þ dr2

fðrÞ

þHMNðr; tÞdxMdxN
�
; ð52Þ

where the scalar sector metric fluctuations are given by

H11 ¼ H22 ¼ e2WðrÞh⊥ðrÞe−iωt; Hrt ¼ hrtðrÞe−iωt;
H33 ¼ hkðrÞe−iωt; Hrr ¼ fðrÞ−1ðΓðrÞ þ hkðrÞÞe−iωt;
Htt ¼ −fðrÞðΘðrÞ þ hkðrÞÞe−iωt: ð53Þ

We see that we now have two spatial scalar fluctuations
h⊥ðrÞ and hkðrÞ, which satisfy coupled fluctuation equa-
tions, unlike the case for the isotropic hðrÞ whose
decoupled equation was given in Eq. (8). However, to
obtain an analytic result for the bulk viscosity, only the near
horizon behavior will be relevant. For this purpose, one can
construct a linear combination of fluctuations for which a
decoupling indeed occurs near the horizon. Specifically, the
following fluctuations which we call ΔðrÞ and ΣðrÞ,

ΔðrÞ ¼ 1

3

�
hkðrÞ −

A0

A0 þW0 h⊥ðrÞ
�

and

ΣðrÞ ¼ hkðrÞ þ 2h⊥ðrÞ
3

; ð54Þ

satisfy the equations of motion

Δ00 þ
�
f0

f
þKð1Þ

Δ

�
Δ0 þ

�
ω2

f2
þKð2Þ

Δ

�
ΔþKð3Þ

Δ Σ ¼ 0;

ð55aÞ

Σ00 þ
�
f0

f
þKð1Þ

Σ

�
Σ0 þ

�
ω2

f2
þKð2Þ

Σ

�
ΣþKð3Þ

Σ Δ ¼ 0;

ð55bÞ

where Kð1Þ
Δ ;Kð2Þ

Δ ;Kð3Þ
Δ ;Kð1Þ

Σ ;Kð2Þ
Σ ;Kð3Þ

Σ are coefficients that
depend on the background fields and are subleading near
the horizon. We now have two spatial fluctuations in the
scalar sector, and we must choose which one to turn on at
the boundary. To distinguish these choices, we define

lim
r→rb

�ΔðrÞ
ΣðrÞ

�
¼ vI; ð56Þ

where I is a label. We consider two cases, namely

vΔ ¼
�
1

0

�
; vΣ ¼

�
0

1

�
: ð57Þ
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Near the horizon, we can solve Eq. (55) analytically and
impose infalling boundary conditions, leading to

ΣIðrÞ ≈ ΣI
hðrh − rÞ− iω

4πT ≈ ΣI
h

�
1 −

iω
4πT

logðrh − rÞ
�
; ð58aÞ

ΔIðrÞ≈ΔI
hðrh − rÞ− iω

4πT ≈ΔI
h

�
1−

iω
4πT

logðrh − rÞ
�
; ð58bÞ

where ΣI
h and ΔI

h are coefficients that can be obtained by
numerically solving the fluctuation equations from the
boundary to the horizon for ω ¼ 0. Again performing
integration by parts, we can write our quadratically

expanded Lagrangian Lð2Þ
IJ evaluated on the fluctuations

satisfying the boundary conditions I, J as [82]

Lð2Þ
IJ ¼ ∂rJIJ þ h⃗�T

�
∂LIJ

∂h⃗�
− ∂r

∂LIJ

∂h⃗�0

�
; h⃗ ¼ fΔ;Σ;Θ;Γg:

ð59Þ
Here the index I (J) refers to the boundary condition for the
conjugated (unconjugated) fields, and

JIJ ¼
27e3Aþ2WfðA0 þW0Þ2

ð3A0 þ 2W0Þ2 Δ�
I ðrÞΔ0

JðrÞ

þ 9

4

e3Aþ2Wfϕ02

ð3A0 þ 2W0Þ2 Σ
�
I ðrÞΣ0

JðrÞ: ð60Þ

From Eq. (59) we can obtain the retarded Green’s function

ImGR
IJðωÞ ¼ −NF IJ; F IJ ¼ −ImJIJ: ð61Þ

Taking F IJ to the horizon, we obtain

NF IJ ¼
ωs
π

1

ð3A0
h þ 2W0

hÞ2
�
9

16
ϕ02
h Re

�
ðΣI

hÞ�ΣJ
h

�

þ 27

4
ðA0

h þW0
hÞ2Re

�
ðΔI

hÞ�ΔJ
h

��				
r→rh

þOðω2Þ:

ð62Þ

The on-shell action only depends on the boundary values of
Σ and Δ, and taking derivatives with respect to them yields
the following dictionary in terms of the components of the
boundary stress tensor,

1

V4

∂Son−shell
∂ΣðrbÞ

¼ 1

2

X3
k¼1

Tkk;

1

V4

∂Son−shell
∂ΔðrbÞ

¼ T33 − ðT11 þ T22Þ=2; ð63Þ

where V4 is the volume of spacetime. By using the
expansion of the boundary stress tensor in Eq. (36), we
can find the Kubo formulas for the bulk viscosities

ζ⊥ ¼ −lim
ω→0

1

ω
ImGO1O1

ðωÞ; ζ× ¼ −lim
ω→0

1

ω
ImGO1T33ðωÞ;

ζk ¼ −lim
ω→0

1

ω
ImGT33T33ðωÞ; ð64Þ

where O1 ¼ ðT11 þ T22Þ=2. Applying these formulas to
our case, we identify the coefficients of the corresponding
terms i.e. the anisotropic bulk viscosities with the following
specific combinations of the flux of bulk fluctuations:

ζ⊥ ¼ N lim
ω→0

1

ω

�
FΔΔ

9
−
4FΣΔ

9
þ 4FΣΣ

9

�
; ð65aÞ

ζ× ¼ N lim
ω→0

1

ω

�
−
2

9
FΔΔ þ 2

9
FΣΔ þ 4

9
FΣΣ

�
; ð65bÞ

ζk ¼ N lim
ω→0

1

ω

�
4

9
FΔΔ þ 8

9
FΣΔ þ 4

9
FΣΣ

�
: ð65cÞ

These are the holographic Kubo formulae which will serve
as the starting point for our derivation in terms of back-
ground variations below.

B. Transforming fluctuations to background variations:
Finite magnetic field

The GPR result in Eq. (65) depends on the horizon
values of fluctuations. In this section, we will see that, in
analogy to Sec. II B, we can express these results solely in
terms of horizon values of background fields by rewriting
fluctuations with vanishing frequency in terms of variations
of the background. As before, we will relate fluctuations to
background variations in the gauge where dilaton fluc-
tuation is turned off, yielding the following relations:

χðrÞ ¼ 0; ð66aÞ

hkðrÞ ¼ 2δAðrÞ − 2
A0ðrÞ
ϕ0ðrÞ δϕðrÞ; ð66bÞ

h⊥ðrÞ ¼ 2δAðrÞþ 2δWðrÞ− 2
A0ðrÞ
ϕ0ðrÞδϕðrÞ− 2

W0ðrÞ
ϕ0ðrÞ δϕðrÞ;

ð66cÞ

ΘðrÞ ¼ δfðrÞ
fðrÞ −

f0ðrÞ
fðrÞϕ0ðrÞ δϕðrÞ; ð66dÞ

ΓðrÞ ¼ −
δfðrÞ
fðrÞ þ f0ðrÞ

fðrÞϕ0ðrÞ δϕðrÞ − 2
δϕ0ðrÞ
ϕ0ðrÞ

þ 2
ϕ00ðrÞδϕðrÞ

ϕ0ðrÞ2 ; ð66eÞ

for the wave functions defined in (53). On the other
hand, we will also need global symmetries of the
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background—which can be obtained from symmetries of
the action—in order to switch off the boundary values of
the sources as above. At the level of background solutions,
these symmetries are [52]

r → rþ r0; ð67aÞ

A→ Aþ logΛ; r→ Λr; B→ Λ2B; ρ→ Λ3ρ; ð67bÞ

f→ f0f; A→Aþ1

2
logf0; B→ f0B; ρ→ f3=20 ρ; ð67cÞ

B → Λ2⊥B; W → W þ logΛ⊥; ρ → Λ2⊥ρ; ð67dÞ

where each line corresponds to a separate class of sym-
metry, hence there are four separate classes of symmetry
transformations. The infinitesimal version of these sym-
metry parameters are

r0 ¼ ϵr; Λ¼ 1þ ϵΛ; f0 ¼ 1þ ϵf; Λ⊥ ¼ 1þ ϵ⊥; ð68Þ

and they generate the following variation of the back-
ground:

δϵA¼ ϵΛþðrϵΛþ ϵrÞA0 þ ϵf
2
; δϵf¼ ðrϵΛþ ϵrÞf0 þ ϵff;

δϵϕ¼ ðrϵΛþ ϵrÞϕ0; δϵρ¼ ð3ϵΛþ 3ϵf=2þ 2ϵ⊥Þρ;
δϵW ¼ ϵ⊥þðrϵΛþ ϵrÞW0; δϵB¼ ðϵf þ 2ϵΛþ 2ϵ⊥ÞB:

ð69Þ

Wewill then perform a symmetry transformation to remove
the fluctuations for two boundary conditions labeled by I in
Eq. (57). Using Eq. (54), we find that the fluctuations ΔðrÞ
and ΣðrÞ at the boundary are given by

lim
r→rb

ΔIðrÞ ¼ lim
r→rb

�
1

3

h
hIkðrÞ − hI⊥ðrÞ

i�
;

lim
r→rb

ΣIðrÞ ¼ lim
r→rb

�hIkðrÞ þ 2hI⊥ðrÞ
3

�
: ð70Þ

Using Eqs. (66) and (70), this relates the variation of the
fluctuation to the shifts in the background as

lim
r→rb

δϵΔIðrÞ ¼−
2

3
ϵI⊥ and lim

r→rb
δϵΣIðrÞ ¼ 2ϵIΛþ ϵIf þ

4

3
ϵI⊥:

ð71Þ

Turning off the fluctuations at the UV boundary then
requires

ϵΔf ¼ −CΘ; ϵΔΛ ¼ −1þ 1

2
CΘ; ϵΔ⊥ ¼ 3

2
;

ϵΣf ¼ −CΘ; ϵΣΛ ¼ −
1

2
þ 1

2
CΘ; ϵΣ⊥ ¼ 0: ð72Þ

As in the previous section, the value of ϵr is also determined
by requiring the absence of the source term for the generated
δϕ, but its value is not needed in the analysis below.
In analogy to the warm-up exercise in the previous

section next we work out fluctuations near the horizon in
order to relate them to horizon values of background
variations. In general one has

AðrÞ ¼ Ah þ A0
hðr − rhÞ þOððr − rhÞ2Þ;

fðrÞ ¼ f0hðr − rhÞ þOððr − rhÞ2Þ;
WðrÞ ¼ Wh þW0

hðr − rhÞ þOððr − rhÞ2Þ;
ϕðrÞ ¼ ϕh þ ϕh

0ðr − rhÞ þOððr − rhÞ2Þ: ð73Þ

Let us also denote horizon expansion of the fluctuation
equations as

ΔIðrÞ ¼ ΔI
h þ ΔI0

h ðr − rhÞ þOððr − rhÞ2Þ; ð74aÞ

ΣIðrÞ ¼ ΣI
h þ ΣI0

h ðr − rhÞ þOððr − rhÞ2Þ; ð74bÞ

ΘIðrÞ ¼ ΘI
r

r− rh
þΘI

hþΘI0
h ðr− rhÞþOððr− rhÞ2Þ: ð74cÞ

Θr is the only coefficient that must be obtained from
the fluctuation equations. From the rr-component of the
Einstein fluctuation equations, we extract

ΘI
r ¼

3ΣI
h

2ð3A0
h þ 2W0

hÞ
: ð75Þ

Using Eqs. (75), (66), and (72) we obtain the total back-
ground variations at the horizon

δÂI ¼ 3A0
hΣI

hþ6ðA0
hþW0

hÞΔI
h

2ð3A0
hþ2W0

hÞ
−A0

hδr
Iþ ϵIΛþ rhϵIΛA

0
hþ

ϵIf
2
;

ð76aÞ

δŴI ¼ 3W0
hΣI

h − 9ðA0
h þW0

hÞΔI
h

2ð3A0
h þ 2W0

hÞ
−W0

hδr
I þ ϵI⊥ þ rhϵIΛW

0
h;

ð76bÞ

δf̂I ¼ 3ΣI
hf

0
h

2ð3A0
h þ 2W0

hÞ
− f0hδr

I þ rhϵIΛf
0
h þOðr − rhÞ;

ð76cÞ

δϕ̂I ¼ −ϕ0
hδr

I þ rhϵIΛϕ
0
h þOðr − rhÞ; ð76dÞ
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where, following the steps outlined in the previous section,

δrI ¼ −rbϵIΛ −
1

2

Z
rh

rb

dr̃ðΘIðr̃Þ þ ΓIðr̃ÞÞ: ð77Þ

The horizon values of W, A and ϕ change as

δAh ¼ A0
hδrh þ δÂjr¼rh ; δWh ¼ W0

hδrh þ δŴjr¼rh ;

δϕh ¼ ϕ0
hδrh þ δϕ̂jr¼rh ; ð78Þ

where the shift of the horizon location can be computed
from variation of the blackening factor as before:

δrIh ¼ −
δf̂I

f0h

				
r¼rh

¼ δrI − rhϵIΛ −
3ΣI

h

2ð3A0
h þ 2W0

hÞ
: ð79Þ

Now we will relate fluctuations at the horizon to variations
of the background. As in Sec. II B, the variations we
consider here keep the ratio q ¼ ρ=s invariant. This means
that variation of a general function ghðs; q; BÞ obeys

δghðs; q; BÞ ¼ δs
∂ghðs; q; BÞ

∂s
þ δB

∂ghðs; q; BÞ
∂B

: ð80Þ

All in all, combining Eqs. (76), (78)– (80) we arrive at the
following relations between horizon values of fluctuations
and variations of the background:

ΣΔ
hϕ

0
h

ð3A0
h þ 2W0

hÞ
¼ −

2

3
B
∂ϕhðs; q; BÞ

∂B
; ð81aÞ

ΣΣ
hϕ

0
h

ð3A0
h þ 2W0

hÞ
¼ s

∂ϕhðs; q; BÞ
∂s

þ 2

3
B
∂ϕhðs; q; BÞ

∂B
; ð81bÞ

3ðA0
h þW0

hÞΔΔ
h

2ð3A0
h þ 2W0

hÞ
¼ −B

∂ðAhðs; q; BÞ þWhðs; q; BÞÞ
∂B

þ 1

2
;

ð81cÞ

3ðA0
h þW0

hÞΔΣ
h

2ð3A0
h þ 2W0

hÞ
¼ 3

2
s
∂ðAhðs; q; BÞ þWhðs; q; BÞÞ

∂s

þ B
∂ðAhðs; q; BÞ þWhðs; q; BÞÞ

∂B
−
1

2
:

ð81dÞ

We can further simplify these equations upon using the
following relations:

B
∂ðAhðs; q; BÞ þWhðs; q; BÞÞ

∂B
¼ B

3

∂Whðs; q; BÞ
∂B

; ð82aÞ

s
∂ðAhðs; q; BÞ þWhðs; q; BÞÞ

∂s
¼ 1

3
þ 1

3
s
∂Whðs; q; BÞ

∂s
;

ð82bÞ

which follow from the relation

s ¼ 4πN expð3Ah þ 2WhÞ; ð83Þ

that constrains the derivative of the combination 3Ah þ 2Wh.
Combining Eq. (82) with Eq. (34), one finds

ΣΔ
hϕ

0
h

ð3A0
h þ 2W0

hÞ
¼ −

2

3
B
∂ϕhðs; ρ; BÞ

∂B
; ð84aÞ

ΣΣ
hϕ

0
h

ð3A0
h þ 2W0

hÞ
¼ s

∂ϕhðs; ρ; BÞ
∂s

þ ρ
∂ϕhðs; ρ; BÞ

∂ρ

þ 2

3
B
∂ϕhðs; ρ; BÞ

∂B
; ð84bÞ

3ðA0
h þW0

hÞΔΔ
h

2ð3A0
h þ 2W0

hÞ
¼ −

B
3

∂Whðs; ρ; BÞ
∂B

þ 1

2
; ð84cÞ

3ðA0
h þW0

hÞΔΣ
h

2ð3A0
h þ 2W0

hÞ
¼ s

2

∂Whðs; ρ; BÞ
∂s

þ ρ

2

∂Whðs; ρ; BÞ
∂ρ

þ B
3

∂Whðs; ρ; BÞ
∂B

: ð84dÞ

Substitution of Eq. (84) into Eq. (65) through Eq. (62), yields

ζ⊥ ¼ s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ
þ B

∂ϕh

∂B

�
2

þ s
3π

�
s
∂Wh

∂s
þ ρ

∂Wh

∂ρ
þ B

∂Wh

∂B
−
1

2

�
2

; ð85aÞ

ζ× ¼ s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ
þ B

∂ϕh

∂B

��
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ

�

þ s
3π

�
B
∂Wh

∂B
þ s

∂Wh

∂s
þ ρ

∂Wh

∂ρ
−
1

2

�

×

�
s
∂Wh

∂s
þ ρ

∂Wh

∂ρ
þ 1

�
; ð85bÞ

ζk ¼
s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ

�
2

þ s
3π

�
s
∂Wh

∂s
þ ρ

∂Wh

∂ρ
þ 1

�
2

:

ð85cÞ

These relations constitute our final result for the anisotropic
bulk viscosities induced by an external magnetic field. The
results are (semi)analytic, in the sense that values of transport
coefficients directly follow if one knows the background
analytically. We also note that, as in the cases of isotropic
bulk viscosity and anisotropic shear viscosities, the transport
coefficients are expressed purely in terms of horizon data.
When taking the nonmagnetic limit for Eq. (85), it is
important to note that the anisotropic shear viscosities
introduced in Eq. (36) are only traceless for the transverse
tensor Πμν. This means that part of the isotropic shear
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viscosity, which is traceless for the tensor Δμν, will be
contained by the dilaton-independent part of the anisotropic
bulk viscosities in Eq. (85). Specifically, taking the non-
magnetic limit yields

lim
B→0

ζ⊥ ¼ ζ þ 1

3
η; ð86aÞ

lim
B→0

ζ× ¼ ζ −
2

3
η; ð86bÞ

lim
B→0

ζk ¼ ζ þ 4

3
η: ð86cÞ

Finally, it is straightforward to check that all the constraints
that arise from the second Eq. (39) are automatically satisfied
for Eq. (85).

C. Anisotropic conductivities induced by magnetic
field and universal relations

We can easily generalize our analysis to compute electric
conductivity in the presence of an external magnetic
field. As the magnetic field breaks isotropy, as above,
there are separate components parallel and transverse to B.
Holographically the situation is modeled by considering a
gauge field

Aμ ¼


ΦðrÞ;− yB

2
;
xB
2
; 0; 0

�
þ aμ; ð87Þ

where aμ is a small fluctuation. Metric fluctuations
decouple completely from fluctuations of the gauge field.
Focusing solely on the gauge field fluctuations then, we
expand the Lagrangian quadratically in the sources as

Lð2Þ ¼ eAZðϕÞ
�
ja01j2−

ω2

f2
ja1j2þ e2W ja03j2 −

ω2

f2
e2W ja3j2

�

þ �� � : ð88Þ

This can be put in the standard form

Lð2Þ ¼ ∂rJ þ a�μ

�
∂L
∂a�μ

− ∂r
∂L
∂a�0μ

�
; ð89Þ

where the J -term is the only part that is nonvanishing on-
shell. This term can be related to the retarded Green’s
function as [97,98]

ImGRðωÞ ¼ −NF ; F ¼ −ImJ ; ð90Þ

where GR is the thermal retarded Green’s function of the
electric current Ji in the boundary field theory

GRðωÞ ¼ −i
Z

dtdx3eiωth½Jiðt; x⃗Þ; Jið0; 0Þ�i: ð91Þ

Here we find from the flux F from the holographic action
(41) as

F ¼ −
i
2
lim
r→rh

ZðϕÞ expðAÞf½ða01a�1 − a�01 a1Þ

þ expð2WÞða03a�3 − a�03 a3Þ�: ð92Þ

Fluctuation equations for a1 and a3 are of the form

a00i þ
�
f0

f
þK

�
a0i þ

ω2

f2
ai ¼ 0; ð93Þ

where K is some function depending on the background
fields, which we can solve near the horizon as

ai ¼ c

�
1 −

iω
4πT

logðrh − rÞ
�
: ð94Þ

For ω ¼ 0, it follows from Eq. (93) that we have a trivial
flow which allows us to obtain c ¼ 1 and we can thus
extract from Eq. (92) the conductivities

σk ¼ N expðAh þ 2WhÞZðϕhÞ; σ⊥ ¼ N expðAhÞZðϕhÞ:
ð95Þ

Interestingly, comparison to Eq. (40) leads to an interesting
relation between the magnetic shear viscosities and con-
ductivities:

ηk
η⊥

¼ σ⊥
σk

: ð96Þ

This relation between anisotropic viscosities and conductiv-
ities were already observed7 in [104,105].
Furthermore we find by substituting the analytical expres-

sions (40) and (95) for the transport coefficients in the above
ratio, that one can express it in terms of horizon data:

η⊥
ηk

¼ σk
σ⊥

¼ e2Wh: ð97Þ

This simple expression is quite useful and leads to a universal
inequality.Using the fact thatW is amonotonically increasing
function that is positive definite everywhere, see Eq. (50) and
above, we find the universal inequality

η⊥
ηk

¼ σk
σ⊥

≥ 1: ð98Þ

7This observation was in a different setting where the
anisotropy gave rise to a different kind of boost symmetry
breaking, namely along the direction of anisotropy as opposite
to on the transverse plane [102]. This leads to a different relation
with one side of this equation being inverted.
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We note that these type of inequalities in ratios of different
components of transport coefficients are ubiqitious in holo-
graphic QCD theories, see for example [106] for a similar
inequality for the ratio of Langevin diffusion constants.

IV. TRANSPORT FROM EO METHOD

In this section we will use the EO approach, introduced
in [57,83], to compute the entropy production current of a
plasma by considering Einstein equations near the horizon.
This will allow us to reproduce the results for bulk and
shear viscosities in anisotropic plasmas shown in the
previous section, however we will also go beyond this
and extend the result to a class of higher derivative theories.
We work with the following generic two-derivative action
with a Gauss-Bonnet term8

S ¼
Z

d5x
ffiffiffiffiffiffi−gp

16π

�
R −

ð∂ϕÞ2
2

− VðϕÞ − ZðϕÞF2

4

þ λ

2
ðR2 − 4RABRAB þ RABCDRCDABÞ

�
ð99Þ

where λ is the Gauss-Bonnet coupling constant. The
equations of motion that follow from this action read

∇M½ZFMN � ¼ 0; ð100Þ

EAB ≡ RAB −
1

2
gABRþ 2λHAB − T AB ¼ 0; ð101Þ

where HAB is the Lanczos tensor given by

HAB¼
1

2
ðRRAB−2RACBDRDC−2RACRC

BþRAL
CDRCDB

LÞ

−
1

8
gABðR2−4RCDRCDþREFCDRCDEFÞ; ð102Þ

and T AB is the energy-momentum tensor given by

T AB ¼ 1

2
∂Aϕ∂Bϕþ Z

2
FACFC

B

−
1

2
gAB

�
V þ 1

2
ð∂ϕÞ2 þ Z

4
F2

�
: ð103Þ

Our starting point is theOð∂0Þ background with a metric
Ansatz that holds for an arbitrarily boosted frame with
arbitrary magnetic field direction, specifically

ds2 ¼ ð−gttuμuν þ g11Πμν þ g33bμbνÞdxμdxν þ grrdr2;

ð104Þ

Πμν ¼ Δμν − bμbν; bμ ¼
Bμ

jBj ; ð105Þ

where fgtt; g11; g33; grrg are functions of only the holo-
graphic direction, and at this point both the four-velocity uμ

and the magnetic field Bμ are taken to be constant. The
background is assumed to be that of a black hole, namely
there exists a horizon at rh such that

gttðrhÞ ¼
1

grrðrhÞ
¼ 0: ð106Þ

The temperature T and Hawking’s entropy s are given by

T ¼
�
g0tt
4πj

�				
rh

; s ¼ e−W

4
ðg11Þ32

				
rh

; ð107Þ

where we defined

j ¼ ffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p
; e−2W ¼ g33

g11
: ð108Þ

The Ansatz for the gauge field is given by

Aμ ¼ −Atuμ þAμ; ð109Þ

where Aμ is the magnetic potential related to the external
magnetic field through

Bμ ¼ ϵμνρσuν∂ρAσ: ð110Þ

The Oð∂0Þ field strength associated to this gauge field is

F ¼ −A0
tuμdr ∧ dxμ − ϵμνρσuρBσdxμ ∧ dxν: ð111Þ

At this order, Maxwell’s equations can be integrated once
into

Q ¼
ffiffiffiffiffiffi−gp

ZVA0
t

j2
¼ 4sZVA0

t

j
; ð112Þ

where Q is an integration constant. Just as in [83] we will
assume the following horizon behavior:

AμðrhÞ ¼ −μuμ þAμ; ð113Þ

where μ is the associated chemical potential.9

�
EAB

�
ΠAB

g11
−
2BABB

g33

��
rh

¼ 4πT½Δ2 − Δ1

þ 2πλTðΔ2
1 − Δ2Þ�

− Zhð4seWhÞ−4
3B2; ð114Þ

8Note that we are choosing the normalization to beN ¼ 1
16πGN

,
with GN ¼ 1.

9As discussed in [87], this choice corresponds to introducing
the chemical potential in the dual quantum field theory through
twisted boundary conditions of the fermions along the thermal
circle.
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�
EAB

4uA

j

�
δBr −

ffiffiffiffiffiffi
grr
gtt

r
uB

��
rh

¼ 4πTðΔ2 þ 2Δ1Þ − 2Vh þ Zhð4seWhÞ−4
3B2 þ Q2

16s2Zh
; ð115Þ

where the subscript h denotes that the function is evaluated at the horizon, and Δ1 and Δ2 are defined as follows:

Δ1 ¼
1

j
g011
g11

				
rh

; Δ2 ¼
1

j
g033
g33

				
rh

; ð116Þ

which from (114) and (115) can be evaluated as10

2πλTΔ1 ¼ λ
ð1þϒÞ

2

�
Vh

3
−

Q2

96Zhs2

�
−
Zhλ

12

�
4seWh



−4
3B2 þ 1 −ϒ

2
; ð117Þ

2πλTΔ2 ¼ λð2 −ϒÞ
�
Vh

3
−

Q2

96Zhs2

�
−
Zhλ

3

�
4seWh



−4
3B2 þ ðϒ − 1Þ; ð118Þ

with ϒ defined as

ϒ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32λZ2

hs
2B2ð4seWhÞ−8

3

λð4seWhÞ43Q2 þ 8Zhs2
�
B2Zhλ − 4ð4seWhÞ43ðλVh − 9Þ



ðλQ2 þ 32ð3 − λVhÞZhs2Þ2

vuut
: ð119Þ

Notice that in the absence of magnetic field ϒ ¼ 1.
Following the standard fluid-gravity procedure we will
now assume functions fgtt; g11; g33; grrg and tensors
fuμ;Πμν; Bμg to be slowly varying functions of the boun-
dary coordinates, note that the magnetic field will now
satisfy the following Bianchi identity:

uμ∂μBν ¼ −
2

3
θBν þ σναBα − ΩναBα þ uν∂ρBρ: ð120Þ

We focus on the near horizon, so it is convenient to switch
to Eddington-Finkelstein coordinates using the coordinate
transformation

uμdxμ ¼ uνdyμ −
ffiffiffiffiffiffi
grr
gtt

r
dv; Δμνdxν ¼ Δμνdyν;

dr ¼ dv ð121Þ

In this coordinate system, the metric takes the form11

ds2 ¼ ð−gttuμuνþ g11Πμνþ g33bμbνÞdyμdyνþ 2juμduμdv:

ð122Þ

Following [57] we consider the following projection of
Einstein equations evaluated at the horizon:

Eh ≡ EABlAlBjrh ; ð123Þ

where lA ¼ ðuμ; 0Þ is a null vector when evaluated at the
horizon. We can now evaluate (123) order by order in
gradient expansion, making an extensive use of the Bianchi
identity (120),

Eð0Þ
h ¼ 0; ð124Þ

Eð1Þ
h ¼ 2πT

s
∂αðsuαÞ; ð125Þ

Eð2Þ
h ¼−

2

3

�
1−

2

3
πTλð4Δ1−Δ2Þ

��
Sk−

1

2
S⊥ −uα∂αWh

�
2

− 2ð1− 2πTλΔ1Þe−2WhΣ2− ð1− 2πTλΔ2Þσ2T
−
1

2
ð∂μϕhÞ2−

Zh

2
ð4seWÞ−2

3

�
e2WðVμB̂μÞ2þVαVβΠαβ

�

þ ∂αðsuαÞOð∂Þ; ð126Þ

where we defined

S⊥ ¼ Πμν
∂μuν; Sk ¼ B̂μB̂ν

∂μuν;

σμνT ¼ Π̂μνρσ
∂ρuσ; Σμ ¼ ΠμσB̂ρ

∂ðρuσÞ; ð127aÞ

Π̂μνρσ ¼ΠμðρΠσÞν−
1

2
ΠμνΠρσ; Vα ¼−∂αμ−μaα: ð127bÞ

10There are two solutions for fΔ1;Δ2g, we pick the one that
matches the known B → 0 limit.

11In principle we should also add higher order corrections
to the metric, however at this order in the derivative expan-
sion we expect to be able to chose a fluid frame such that
we can reabsorb these corrections into a redefinition of T
and uμ [57].
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We can then rewrite the projection of Einstein’s equation
at the horizon Eh ¼ 0 as

2πT
s

∂αSα¼
2

3

�
1−

2

3
πTλð4Δ1−Δ2Þ

��
Sk−

1

2
S⊥−uα∂αWh

�
2

þ2ð1−2πTλΔ1Þe−2WhΣ2þð1−2πTλΔ2Þσ2T
þ1

2
ð∂μϕhÞ2þ

Zh

2
ð4seWÞ−2

3

×

�
e2WðVμB̂μÞ2þVαVβΠαβ

�
þOð∂3Þ; ð128Þ

where Sα ≡ suα. Identifying Sα as the entropy current in the
dual boundary theory allows us to understand (128) as
the entropy production rate in the system.12 To have a
positive definite production rate, in accordance with the
second law of thermodynamics, we need the following
constraints to hold:

2πTλΔ1 ≤ 1; ð129Þ

2πTλΔ2 ≤ 1; ð130Þ

2πTλð4Δ1 − Δ2Þ ≤ 3: ð131Þ

We can compare this result to the entropy production that
follows from the dissipative energy-momentum tensor (36)
and the U(1) current (2), namely [100]

T∂αSα ¼ ξkS2k þ 2ξ×SkS⊥ þ ξ⊥S2⊥ þ 2ηkΣ2 þ 2η⊥σ2T
þ σkðṼμB̂μÞ2 þ σ⊥ṼμṼνΠμν; ð132Þ

where Ṽ ¼ Eμ − T∂μ
μ
T, with E some external electric field.

Under first order hydrostatic equations, i.e. Taμ ¼ −∂μT,
and in the absence of an electric field one has that Ṽμ ¼ Vμ.
Then, comparing (128) and (132) allow us to compute the
viscosities and conductivities, finding the shear viscosities

ηk ¼
s
4π

e−2Whð1 − 2πTλΔ1Þ; ð133aÞ

η⊥ ¼ s
4π

ð1 − 2πTλΔ2Þ; ð133bÞ

the bulk viscosities

ζ⊥ ¼ s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ
þ B

∂ϕh

∂B

�
2

þ s
3π

�
s
∂Wh

∂s
þ ρ

∂Wh

∂ρ
þ B

∂Wh

∂B
−
1

2

�
2

þ λ
sT
18

�
1 − 2s

∂Wh

∂s
− 2ρ

∂Wh

∂ρ
− 2B

∂Wh

∂B

�
2

ð4Δ1 − Δ2Þ; ð134aÞ

ζ× ¼ s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ
þ B

∂ϕh

∂B

��
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ

�

þ s
3π

�
B
∂Wh

∂B
þ s

∂Wh

∂s
þ ρ

∂Wh

∂ρ
−
1

2

��
s
∂Wh

∂s
þ ρ

∂Wh

∂ρ
þ 1

�

þ λ
sT
9

�
1þ s

∂W
∂s

þ ρ
∂W
∂ρ

��
1 − 2s

∂Wh

∂s
− 2ρ

∂Wh

∂ρ
− 2B

∂Wh

∂B

�
ð4Δ1 − Δ2Þ; ð134bÞ

ζk ¼
s
4π

�
s
∂ϕh

∂s
þ ρ

∂ϕh

∂ρ

�
2

þ s
3π

�
s
∂Wh

∂s
þ ρ

∂Wh

∂ρ
þ 1

�
2

− λ
2sT
9

�
1þ s

∂Wh

∂s
þ ρ

∂Wh

∂ρ

�
2

ð4Δ1 − Δ2Þ; ð134cÞ

and the conductivities

σk ¼
Zh

4π
se2Whð4seWhÞ−2

3; ð135aÞ

σ⊥ ¼ Zh

4π
sð4seWhÞ−2

3: ð135bÞ

When writing Eqs. (133)–(135) we used that

uμ∂μF ¼ ∂F
∂s

uμ∂μsþ
∂F
∂ρ

uμ∂μρþ
∂F
∂B2

uμ∂μB2

¼ −
�
s
∂F
∂s

þ ρ
∂F
∂ρ

�
ðSk þ S⊥Þ − B

∂F
∂B

S⊥; ð136Þ

12We are finding that the entropy that enters naturally in
Eq. (128) obeying positivity of entropy production is Hawking’s
entropy whereas the entropy of the boundary field theory is
expected to be Wald’s [107]. For a discussion on this see the
recent paper [108].
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where F here stands for any scalar function of the entropy
density, the charge density, and the magnetic field. The
identity (136) follows from the first order conservation of
both the entropy current s and the charge density ρ, as well
as a projection of the Bianchi identity. These last identities
are summarized as follows:

∂αðsuαÞ ¼ Oð∂2Þ; ð137Þ

∂αðρuαÞ ¼ Oð∂2Þ; ð138Þ

uα∂αB2 ¼ −2S⊥B2: ð139Þ

Note that on the λ → 0 limit the viscosities match those
computed from the BV method. In the isotropic limit,
i.e. B → 0, we recover a single shear and bulk viscosities
given by13

η ¼ s
4π

�
1 − λ

�
Vh

3
−

Q2

96Zhs2

��
; ð140Þ

ζ ¼ s
4π

�
∂ϕh

∂s
þ ∂ϕh

∂ρ

�
2

: ð141Þ

We note that there are no corrections to the bulk viscosity
due to the Gauss-Bonnet term, while the shear viscosity
does receive a correction. Note that (140) is consistent with
the bulk viscosity computed in [76,109].

V.MAGNETIC BULKVISCOSITIES IN REALISTIC
HOLOGRAPHIC QCD MODEL

In this section, we explore properties of anisotropic
viscosities applied to QCD. Certain aspects of energy-
momentum transport in anisotropic states were studied in
holographic QCD literature, see e.g. [52,110,111], but a
comprehensive analysis including both shear and bulk
viscosities is missing, which is what we aim to do here.
Specifically, we focus on the bulk viscosities in an
anisotropic state induced by an external magnetic field.14

We will employ a “realistic” holographic QCD model that
goes under the name of Veneziano-QCD (V-QCD) [92]
(that was built on the earlier improved holographic QCD
(IHQCD) model [93,94]). This model, which we review
below, is realistic in the sense that it not only reproduces the
salient features of QCD (confinement, chiral symmetry
breaking and asymptotic freedom in the vacuum state,
global aspects of the phase diagram of QCD i.e. presence of
confinement-deconfinement and chiral symmetry breaking
transitions at finite temperature and baryon chemical
potential, the baryonic phase, gapped glueball, meson
and baryon spectra and so on) but also hosts a range of

parameters that makes quantitative agreement with lattice
and observational data possible. Our approach involves
computing anisotropic viscosities using both the method of
background variations and standard fluctuation analysis,
aiming at validating the formulae presented in (85). This we
will do by numerical evaluation techniques.
The V-QCD model has been used to describe different

phases of QCD: the various phenomena at finite temper-
ature [112–116], density [29,72,117–125], and magnetic
field [45,49–52]. Transport in the anisotropic phases in this
model has been discussed in [72,123,125]. The model is
comprised of glue and flavor sectors (S ¼ Sg þ Sf) with the
full back reaction of flavor onto glue sector implemented in
the Veneziano limit [126,127], that is, by taking the number
of both colors Nc and flavors Nf to infinity with their ratio
Nf=Nc fixed. The glue sector is based on the IHQCD
theory [54,93,94]

Sg ¼ M3
pN2

c

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
gMN

∂Mϕ∂Nϕþ VgðϕÞ
�
;

ð142Þ

where Mp is the five-dimensional Planck mass, R is the
Ricci scalar, ϕ is the dilaton field. The flavor sector takes
the tachyonic Dirac-Born-Infeld form [128–131]. In this
article, we will only study the chirally symmetric phase
with zero quark masses in V-QCD, which means that the
tachyon vanishes.15 Moreover, we restrict ourselves to
flavor symmetric configurations, i.e., all sources and field
components are taken to be equal for different quark
flavors.
In this case the flavor action reduces to

Sf ¼−
1

2
M3

pNcNf

Z
d5xVf0ðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgMNþwðϕÞFMNÞ

p
;

ð143Þ

where FMN is the field strength tensor for the Abelian
gauge field. We consider chirally symmetric deconfined
configuration at finite temperature and magnetic field but at
zero density. Magnetic field is introduced by turning on the
gauge potential AM ¼ f0;−yB=22; xB=2; 0; 0g. The back-
ground geometry can be taken to be of the form (43), and a
nonzero dilaton depending on the radial coordinate also
needs to be included.
The V-QCD potentials Vg, Vf and w are constructed with

a set of parameters tuned to experimental data, lattice QCD,
and predictions from perturbative QCD. In this work we
use two different set of potentials. First, we use the 7a
potential set [114,118,132] which was fitted among other
things to lattice data for the QCD equation of state at finite

13We can use relations (86) to find the isotropic viscosities.
14For anisotropic shear in the same setting see Ref. [58].

15Tachyon is dual to the chiral condensate operator in the
boundary theory, see Ref. [95] for a review.
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temperature and small density, setting Nf=Nc ¼ 1. Second,
we use another potential set that was employed in [45,49]
where the flavor-color ratio was chosen asNf=Nc ¼ 0.1, so
that the effects of flavor to the geometry are reduced, to
compare with the 7a results and to study which features of
viscosities remain robust regardless of choice of potentials.
This latter set was not quantitatively fitted to QCD data, but
chosen to agree with various qualitative features. For more
details on V-QCD, we refer to [92,95].
One first numerically constructs the black hole solutions

in the V-QCD model with the desired ranges of magnetic
field and temperature. We follow [117] and use the scale
function A in (52) as the holographic radial coordinate for
the numerical solutions.
The next step in the standard fluctuation analysis (GPR)

is to solve the fluctuation equations (55) with the UV
boundary conditions given in (57). As mentioned earlier, it
is sufficient to solve them for vanishing frequency.
Therefore, we set ω ¼ 0 and solve the fluctuation equations
from horizon to boundary and construct a linear combi-
nation of these solutions that satisfy the UV boundary
conditions (57). From the set of the bulk solutions con-
structed in this procedure, the boundary coefficients ΣI and

ΔJ can be read off and consequently F IJ can be con-
structed. Finally, the magnetic bulk viscosities can be
computed by plugging F IJ into the equations (65).
Using theBVmethod, it is possible to directly compute the

bulkviscosities after the construction of the background.One
needs to read off the horizon values fϕh; Ah;Whg, comput-
ing the entropy density s and constructing them as functions
of fT; Bg. Then, the computation of the derivatives yields the
viscosities as provided in (85).
The results illustrating the temperature and magnetic

field dependence of anisotropic bulk viscosities are pre-
sented in Fig. 1. The top left and right plots depict
temperature dependence of bulk viscosities in the B → 0

limit and at eBphy ¼ 0.5 GeV2, respectively, where e
denotes the elementary electric charge. The bottom plot
shows the magnetic field dependence of bulk viscosities at
a fixed temperature of T=Tc ¼ 1.25, where Tc ¼ 120 MeV
is the critical temperature for deconfinement phase tran-
sition for 7a at B ¼ 0. In all three plots, green, blue, and red
curves correspond to ζ⊥=s, jζ×j=s, and ζk=s, respectively,
scaled by numerical factors as indicated in the plot legends
in order to make the details better visible. Solid colored
curves are obtained through standard fluctuation analysis
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FIG. 1. Top-Left: Temperature dependence anisotropic bulk viscosities at B → 0 limit. Top-Right: Temperature dependence
anisotropic bulk viscosities at eBphy ¼ 0.5 GeV2. Bottom: Magnetic field dependence anisotropic bulk viscosities at T=Tc ¼ 1.25.
Colored solid curves are obtained from standard fluctuation analysis while dotted gray curves are from background variations. In both
figures, the bulk viscosities are scaled differently (since there is ordering of ζk=s > jζ×j=s > ζ⊥=s) for better visibility.
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(GPR), while the dotted gray are obtained through the
formulae (85) derived using the background variation
method. We observe that the two methods, GPR and
BV, are in perfect agreement. We observe that the magni-
tudes of bulk viscosity to entropy ratios are ordered as
ζk=s > jζ×j=s > ζ⊥=s. These inequalities are not obvious
from the analytic formulae (85).Moreover, the ratio of ζk=s is
larger than the universal value (1=4π) of the shear viscosity-
entropy ratio, whereas the ratios of ζ×=s and ζ⊥=s are
smaller, but still of the same order. As evident from the top
plots in Fig. 1, ζk=s and ζ⊥=s decrease with increasing
temperature while jζ×j=s exhibits the opposite behavior.
When the magnetic field is increased, they all decrease as
seen from the bottomplot in Fig. 1.We also note that both the
magnetic field and temperature dependence of bulk viscos-
ities are overall very mild. This implies that the error one
would make by treating them constant would be small in
practice.
In Fig. 2, we compare these results with a different set of

V-QCD potential sets used in [45,49]. Bulk viscosities,
normalized to their B → 0 values (ζ⊥=ζ⊥ð0Þ, ζ×=ζ×ð0Þ,
ζk=ζkð0Þ), are depicted in separate plots. Each plot includes
two sets of curves showing the magnetic field dependence
at fixed temperature: red curves for the 7a potentials and
gray curves for the potentials used in [45,49]. Temperature

values considered for each potential set are identical, i.e.,
T=Tc ¼ f1.29; 1.42; 1.54; 1.72; 1.84g. For each set, dark-
ness of the curves decreases with increasing temperature.
Even though the two potential choices are rather different,

the results have obvious similarities. First, the magnetic field
dependence becomes more pronounced at lower temper-
atures, suggesting that neglecting the magnetic field depend-
ence of bulk viscosities in simulations would be a better
approximation at higher temperatures. Second, all three
ratios, ζ⊥=ζ⊥ð0Þ, ζ×=ζ×ð0Þ, ζk=ζkð0Þ, decreasewith increasing
magnetic field. This decrease is particularly notable at lower
temperatures because of more pronounced magnetic field
dependence as mentioned earlier. Consequently, dissipative
processes governed by these transport coefficients become
less significant as temperature decreases and magnetic
field strengthens, hence the plasma approaches the ideal
fluid limit.
To conclude this section, we discuss consistency checks

of generic hydrodynamic relations (see Ref. [100]) that we
carried out numerically: (i) the bulk viscosities satisfy the
Onsager relations in the entire magnetic field range, (ii) they
obey the anticipated relations atB ¼ 0, i.e. Eq. (86), (iii) the
combination [from Eq. (86)] corresponding to ζ at B → 0
limit exhibits a temperature dependence that aligns with the
earlier observations [69].
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FIG. 2. Comparison of different V-QCD potentials: Red and gray curves denote the magnetic field dependence of anisotopic bulk
viscosities (at fixed temperature) for the potentials used in [114,118,132] and [45,49] respectively. For both sets of the curves, the
darkness decreases with temperature. The considered temperature values are T=Tc ¼ f1.29; 1.42; 1.54; 1.72; 1.84g. The bulk viscosities
are scaled with B → 0 values i.e. ζ⊥ð0Þ, ζ×ð0Þ, ζjjð0Þ.
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VI. DISCUSSION

In this work we studied transport in anisotropic phases of
matter by means of holography, focusing particularly on
anisotropy induced by a background magnetic field. Firstly,
we established a connection between the GPR method for
computing bulk viscosity, which relies on solving fluc-
tuation equations, and the EO method, which only requires
varying the background. Unlike the holographic formula
for electric conductivity or shear viscosity, see e.g. [73],
this connection is nontrivial because on the GPR side it
involves a numerical coefficient that represents the flow of
gravitational fluctuations from the UV boundary to the
horizon. We showed that the GPR formula for bulk
viscosity can be written as the EO formula by absorbing
fluctuations into background variations and turning off the
UV boundary condition for the fluctuations using repar-
ametrization invariance. This connection was then used to
compute a formula for the three distinct bulk viscosities that
occur in an anisotropic phase induced by an external
magnetic field, which is solely given in terms of back-
ground field variations. From the expression in terms of
variations of the background fields, it follows immediately
that the constraints on the anisotropic bulk viscosities
coming from the Second Law of Thermodynamics are
satisfied. Furthermore, we validated the expressions and
also the connections between the background variation
method and GPR method through a numerical comparison
of the results obtained from both approaches. V-QCD, a
realistic bottom-up effective holographic model of QCD,
was used for this purpose. In addition, the numerical results
present a thorough investigation of magnetic bulk viscos-
ities, including their dependencies on temperature, mag-
netic field, and model parameters.
In addition to anisotropic bulk viscosities, we also

derived horizon formulae for anisotropic conductivities
induced by a background magnetic field. It is found that
the ratio of the longitudinal and transverse conductivity can
be universally related to the ratio of the magnetic shear
viscosities. This relation will however be modified by
higher derivative corrections to the gravity theory as these
modify shear viscosity but not conductivity, see Sec. IV.
The fact that transport coefficients of the boundary field

theory can solely be expressed in terms of horizon data is
consistent with the generic lore of the membrane paradigm
[133–135], see also [73,84]. Expressing fluctuations of
background fields in terms of background variations provide
this connection between the boundary and the horizon.
Apart from the practical advantage of using background
variations—one needs to solve differential equations only
once for the background, not a second time also for the fluc-
tuations as in the GPRmethod—it also reveals an alternative
formulation of the fluid-gravity correspondence [136]. This
is clear from the fact that background variations connect the
standard holographic calculation of retarded Green’s func-
tions to the method of Eling and Oz [84] which is essentially

based on recasting the null-focusing equation at the horizon
as the entropy balance law (local second law). EO, in turn, is
based on the fluid-gravity correspondence.
However, we emphasize that, while the EO approach is

blind to dissipationless transport, the method of back-
ground variations that we introduce here can in principle
also provide analytic formulae for transport that do not
generate entropy. It will be interesting to employ our
method to study anomalous transport. More specifically,
anomalies caused by dynamical gauge fields (e.g. gluons
in QCD) which are expected to receive radiative correc-
tions. Even though this has been addressed in holography
in [89–91,137]—see Ref. [138] for the latest study—
general analytic expressions that relate transport to horizon
data are still missing. Since the BV method is shown to
be successful for massive fluctuations and is not built on
positive entropy production, it can potentially be used to
investigate contributions of dynamical gauge fields to
anomalous transport. In addition, theBVmethod canperhaps
be employed to study the Hall viscosity [100,139] in three
dimensions which is another nondissipative transport
coefficient that can appear in hydrodynamics subject to a
background magnetic field. Lastly, although not nondissi-
pative, it is found for shear viscosity that metric fluctua-
tions become massive in the case of translation symmetry
breaking [140,141]. It might be that themethod can be of use
here as well.
Another question is whether it is possible to incorporate

higher derivative corrections in our method of background
variations. In principle there is no obstacle apart from the
technicalities. In fact, that we were able to extend the Eling-
Oz method to include these corrections in Sec. IV strongly
suggests that this should be possible. We plan to turn to this
problem in future work.
We close with the hope that the method we introduced in

this paper, and its companion [58], will prove useful in the
vast field of applications of gauge-gravity duality to both
particle and condensed-matter physics.
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