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In order to investigate the potential observational signals of different regularization ambiguities in loop
quantum cosmological models, we systematically compute and compare the primordial scalar power
spectra and the resulting angular power spectra in the standard loop quantum cosmology (LQC) and
Thiemann regularized versions, modified LQC-I/II (mLQC-I/II), using both the dressed metric and the
hybrid approaches. All three loop quantum cosmological models yield a nonsingular bounce with a
postbounce physics that converges rapidly in a few Planck seconds. Using Starobinsky potential and the
initial conditions for the background dynamics chosen to yield the same inflationary e-foldings, which are
fixed to be 65 in all three LQC models, we require that all three models result in the same scale-invariant
regime for the primordial power spectrum with a relative difference of less than 1%. This permits us to
explore the differences resulting from the deep Planck regime in the angular power spectrum. For the
adiabatic states, our results demonstrate that the angular power spectrum predicted by the hybrid approach
has a smaller deviation from the angular power spectrum predicted by the standard Λ cold dark matter
(ΛCDM) cosmological model at large angles in comparison with the dressed metric approach for all three
models. The angular power spectrum predicted by mLQC-I in both the hybrid and the dressed metric
approaches shows the smallest deviation from the one predicted by the standard ΛCDM cosmological
model at large angular scales, except for the case of fourth order adiabatic initial states in the hybrid
approach. On the contrary, mLQC-II results in the largest deviations for the amplitude of the angular power
spectrum at large angles and is most disfavored.
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I. INTRODUCTION

Inflation, a finite quasi–de Sitter expanding phase,
which, in its simplest form, is realized by a single scalar
field known as the “inflaton” evolving under the influence
of a plateaulike potential, not only resolves longstanding
puzzles in the standard big bang cosmology but also serves
as a causal mechanism to seed the acoustic peaks in the
cosmic microwave background (CMB) and accounts for the
distribution of large-scale structure from the evolution of
primordial quantum vacuum fluctuations [1–3]. However,
classical inflationary spacetimes are past incomplete [4],
and the big bang singularity is inevitable when the Universe
evolves backward to the regime where the energy density
and spacetime curvature diverge close to the Planck regime.
To address this issue, one solution is to extend the infla-
tionary spacetimes to the Planck regime by considering the
quantum geometry effects. One of the most successful

attempts to achieve this goal is loop quantum cosmology
(LQC), where the techniques of loop quantum gravity
(LQG) are applied to symmetry-reduced cosmological
spacetimes [5–8]. A key prediction of LQC is that the
big bang singularity is replaced with a quantum bounce as
spacetime curvature approaches the Planck regime, extend-
ing the spacetime to the contracting branch [7,9], with the
probability for the occurrence of the bounce turns out to be
unity in the consistent histories formulation of quantum
mechanics [10].
At the fundamental level, singularity resolution in LQC

arises due to the underlying discreteness emerging from
quantum geometry, whereby the evolutionary equation
turns out to be a second order discrete quantum difference
equation. Interestingly, under reasonable conditions, the
underlying quantum evolution can be accurately captured
for a class of semiclassical states using effective dynamics
[11–15]. In fact, extensive numerical simulations show that
the effective spacetime description matches the general
relativity trajectory to a great accuracy as soon as spacetime
curvature becomes 1% of the Planck value [7,12].
This implies that the quantum geometric corrections to
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background dynamics quickly diminish away from the
Planck regime. In addition, the effective dynamics accu-
rately captures the underlying dynamics resulting from the
quantum Hamiltonian constraint starting from the bounce
point if one considers states which are sharply peaked at
late times on the classical trajectory. This can be understood
by comparing the expectation value of the volume observ-
able in the quantum theory and the bounce volume in
effective dynamics. For states which are sharply peaked at
late times, this difference is negligible [13]. In this manu-
script, we assume the validity of effective dynamics in the
entire regime which is true when one considers states which
are sharply peaked at late times in the classical regime.
The phenomenological implications of LQC for various

models have been extensively studied, assuming the
validity of the effective dynamics [16,17]. The bounds
on the energy density, expansion, and shear scalar in
different models have been found [18–20], and strong
curvature singularities have been shown to be generically
resolved in isotropic models [21–23] as well as anisotropic
models [24–27]. Moreover, it has been demonstrated that a
viable nonsingular inflationary model can be constructed in
an isotropic model [28–31] as well as Bianchi-I spacetime
[32,33]. Effective dynamics also plays an important role in
exploring quantum geometric effects in cosmological
perturbations in LQC [34,35] where different approaches
exist1: the deformed algebra approach [40–42], the separate
universe approach [43], the hybrid approach [44–47], and
the dressed metric approach [48–50]. However, among
these approaches, the latter two are the most widely used to
investigate the phenomenological predictions of LQC
models which have been also used to address anomalies
in CMB [51–55]. Despite these successes, as any quantum
theory, loop quantization of cosmological models faces the
issue of quantization ambiguities. A class of these ambi-
guities in the background dynamics in standard LQC have
been adequately addressed in isotropic [56,57], anisotropic
models [58], as well as black hole spacetimes [59]; however
certain important ambiguities still remain. In this manu-
script our focus is to understand potential observational
imprints two of these: the regularization ambiguity arising
from the treatment of Euclidean and Lorentzian terms in
the Hamiltonian constraint, and the quantization ambigu-
ities which lead to different effective mass functions in
perturbations.
Let us first discuss the regularization ambiguities. In the

standard LQC model, the Lorentzian and Euclidean terms
in the Hamiltonian constraint are combined using classical
symmetry before quantization in Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime [60]. However, if
two terms are treated independently during the quantiza-
tion, they lead to different inequivalent quantizations of
LQC. Two notable examples are the so-called modified

LQC-I (mLQC-I) and the modified LQC-II (mLQC-II)
[61,62], both arising from the Thiemann’s regularization of
the Hamiltonian constraint [63–65]. While classical
identities on gravitational phase space are used to write
the extrinsic curvature of the Lorentzian term of the
Hamiltonian constraint in terms of holonomies in
mLQC-I, the symmetry between extrinsic curvature and
Ashtekar-Barbero connection in spatially flat spacetime is
used to express the Lorentzian part in terms of holonomies
in mLQC-II. In this sense, mLQC-I is closer to construction
followed in full LQG and mLQC-II is only valid in spatially
flat models. It has been demonstrated that the strong
singularities are resolved [23] and the occurrence of
inflation is generic in mLQC-I/II, like the standard LQC
[62]. In contrast to the second order discrete quantum
difference equation in the standard LQC, the quantum
Hamiltonian constraint in mLQC-I/II yields a fourth order
discrete quantum difference equation [66]. Moreover, the
effective modified Friedmann equation contains higher
order terms of energy density for mLQC-I/II, while in
the standard LQC only the quadratic term of the energy
density appears [67]. In addition, the maximum energy
density at the quantum bounce in mLQC-I/II is different
from the maximum energy density in the standard LQC.
In contrast to the dynamics of mLQC-II, which shares
qualitative similarities with standard LQC, mLQC-I
exhibits notable differences. Particularly in the contracting
phase, mLQC-I gives rise to an emergent quasi–de Sitter
spacetime that arises with a Planckian value, implying that
the contracting phase in mLQC-I is purely a quantum
regime without a classical regime [68]. While the nature of
the bounce is asymmetric in mLQC-I [69], the background
dynamics is symmetric in the prebounce and postbounce
branches for mLQC-II as it is in the standard LQC.
Considering such regularization ambiguities with different
physical implications, the pertinent question is how the
quantum effects of spacetime encoded in the preinfla-
tionary phase modify the dynamics of cosmological per-
turbations for each regularization. To answer this question,
one needs to carefully examine how different modifications
to the Hamiltonian constraint lead to modifications of the
primordial power spectrum.
Apart from regularization ambiguities in the background

Hamiltonian, there are also quantum ambiguities related to
treatments of cosmological perturbations. Since LQC is a
quantization of symmetry-reduced homogeneous space-
times and the full connection to LQG is not established yet,
in the two popular approaches—dressed metric and hybrid
approaches—linear perturbations are treated using Fock
quantization in the loop quantized background. The dressed
metric approach is based on the Hamiltonian formulation of
classical perturbations in the Arnowitt-Deser-Misner
phase space, in which the lapse and shift vector are
treated as Lagrange multipliers. In this approach, the
Hamiltonian constraint is expanded up to the second order1See also [36–39] as examples of other approaches.
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in perturbations, then the zeroth order Hamiltonian con-
straint is loop quantized, while the second order constraint
describes the dynamics of linear inhomogeneous perturba-
tions [48–50]. In other words, the inhomogeneous degrees
of freedom can be interpreted as the quantum degrees of
freedom propagating in the quantum spacetime described
by the dressed metric after quantization. In fact, for sharply
peaked states, the evolution of the scale factor in the
dressed metric is governed by the effective dynamics in
LQC. Although the hybrid and the dressed metric
approaches share common features in the sense that the
background geometry is loop quantized while the linear
inhomogeneous perturbations are Fock quantized, there are
some differences between these two approaches. In fact, in
the hybrid approach, the background geometry is loop
quantized, the zeroth mode of the scalar field is quantized
in the standard Schrödinger representation, and the inho-
mogeneous perturbations are Fock quantized [44–46]. The
solution to the resulting quantum dynamical equation is
then solved by using the Born-Oppenheimer ansatz, which
approximates the physical state as a direct product of the
quantum background state and the states only depending on
the gauge invariant modes. Whether or not the differences
at the quantum level translate to any differences in
predictions is a question which remains open, but at the
practical level the difference in the two approaches is tied to
the way polymerization is performed in different steps to
reach quantum geometry modifications to the Mukhanov-
Sasaki equation [70]. In the latter sense, signatures in CMB
resulting from dressed and hybrid approaches can be seen
as originating from quantization ambiguities which affect
the effective mass functions in the Mukhanov-Sasaki
equation [70,71].
The effects of regularization and quantum ambiguities

on the primordial power spectrum were earlier studied in
the literature, and the primordial power spectrum in the
standard LQC and mLQC-I/II has been computed for
the dressed metric approach [72] (see also [73]) as well
as the hybrid approach [74]. It was found that the resulting
primordial power spectra in the standard LQC and mLQC-
I/II have similar patterns with three distinctive regimes: the
infrared regime, the intermediate oscillatory regime (the
enhanced regime), and the ultraviolet regime (the scale-
invariant regime where the predicted primordial power
spectrum by LQC models is well approximated by a power
law power spectrum). In fact, with the adiabatic initial
states, both approaches predict an oscillating pattern of the
primordial power spectrum with amplified amplitude in the
regime preceding the observed scale-invariant primordial
power spectrum in the CMB. Moreover, it has been shown
that all LQC models predict the same amount of inflation
and the scale-invariant regime in the primordial power
spectrum in the ultraviolet regime, while the shape and
amplitude of the primordial power spectrum are distinct for
each regularization and quantum ambiguity in the infrared

and the intermediate regimes. Since the comoving Hubble
horizon is shrinking at the present time due to the
accelerating expansion of the Universe, these superhorizon
modes with amplified amplitude can only be observed
indirectly via non-Gaussianity effects [75–77]. Although it
is not possible to directly detect such quantum gravitational
effects in the primordial power spectrum via the CMB data,
they can be used to constrain the regularization and
quantum ambiguities in LQC models. In fact, it is expected
that the modification of the infrared and the intermediate
regimes of the primordial power spectrum leads to the
modification of the angular power spectrum at large angles,
i.e., low l multipoles. Hence, one can compare the angular
power spectrum predicted by different regularizations and
quantum ambiguities in LQC models with the angular
power spectrum predicted by the standard Λ cold mark
matter (ΛCDM) cosmological model to constrain regulari-
zation and quantum ambiguities. Therefore, in this study,
we revisit the primordial power spectrum for LQC models
in both the hybrid and the dressed metric approaches to
understand the effects of different regularizations and
quantum ambiguities, adiabatic initial states, and the initial
time for which the adiabatic initial states are imposed in the
contracting branch, in the infrared and the intermediate
regimes of the primordial power spectrum. Then, by
calculating the relevant angular power spectrum, we aim
to understand for which model the predicted angular power
spectrum has more or less compatibility with the angular
power spectrum predicted by the standard ΛCDM cosmo-
logical model at large angular scales.
To understand quantization ambiguities, we calculate the

effective mass function for each model in both the hybrid
and the dressed metric approaches for the Starobinsky
potential while solving the background dynamics by fixing
the initial conditions at the bounce. We then compute the
scalar primordial power spectrum2 by imposing zeroth,
second, and fourth order adiabatic initial states in the
contracting branch with an exception to the mLQC-I in
the dressed metric approach, whose initial state is chosen to
be the exact de Sitter solution tailored to the special
properties of the effective mass function in this model
and approach. We compare the primordial power spectrum
predicted by these three models by tuning the inflaton’s
mass and the initial value of the inflaton field at the bounce
in such a way that all models predict the same number of
e-foldings, Ne ¼ 65, and also the same scale-invariant
regime with the relative difference in the power less than
1% in that regime. In this sense, we can compare the
primordial power spectrum for each regularization and
quantum ambiguity in the infrared and the intermediate

2Since we only compute the primordial power spectrum for
scalar perturbations in this manuscript, henceforth, when we refer
to the “primordial power spectrum,” it specifically refers to the
scalar primordial power spectrum.
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regimes, because of which any modifications in the angular
power spectrum can be merely due to such modifications in
the infrared and the intermediate regimes. In doing so, we
find that the shape and amplitude of the primordial power
spectrum in the infrared and the intermediate regimes
depend on the regularization and quantum ambiguities,
the order of adiabatic initial states, and how far from the
bounce they are imposed in the contracting branch. In fact,
it is found that the intermediate regime in the primordial
power spectrum has a larger amplitude if the initial states
are imposed further away from the bounce in the con-
tracting branch, except for mLQC-I in the dressed metric
approach. In addition, we find that the intermediate regime
has a smaller amplitude for higher order adiabatic initial
states in both LQC and mLQC-II and for both the hybrid
and the dressed metric approaches. Moreover, we realize
that the primordial power spectrum has a spike preceding
the scale-invariant regime in the case of fourth order
adiabatic initial states for the mLQC-I model and the
hybrid approach. Furthermore, it turns out that the primor-
dial power spectrum for both LQC and mLQC-II in the
dressed metric approach has a slightly stronger suppressing
regime in the infrared regime in comparison with the hybrid
approach. Finally, for mLQC-I in the dressed metric
approach with the de Sitter initial state, the primordial
power spectrum reaches a constant value in the infrared
regime rather than being suppressed.
Motivated by the fact that each model has different

predictions for the primordial power spectrum in the
infrared and the intermediate regimes, we aim at finding
the relevant angular power spectrum to investigate which
model has the most compatibility with the angular power
spectrum predicted by the standard ΛCDM cosmological
model. Hence, we feed the calculated primordial power
spectrum into the CAMB code3 as an external power
spectrum and compute the angular power spectrum. We
observe larger amplitude at large angles, i.e., low l multi-
poles, for all models in both the hybrid and dressed metric
approaches in comparison with the angular power spectrum
predicted by the standard ΛCDM cosmological model.
However, our results demonstrate that the angular power
spectrum predicted by the hybrid approach has a smaller
deviation from the angular power spectrum predicted by the
standard ΛCDM cosmological model at large angles in
comparison with the dressed metric approach for all three
models, except for the case of mLQC-I with fourth order
adiabatic initial states in the hybrid approach. Moreover,
among these three models, the angular power spectrum
predicted by mLQC-I in both the hybrid and the dressed
metric approaches shows the smallest deviation from the

angular power spectrum predicted by the standard ΛCDM
cosmological model at large angles, except for the case with
fourth order adiabatic initial states in the hybrid approach
due to the presence of a spike preceding the scale-invariant
regime. On the contrary, based on our results, mLQC-II is
disfavored by the data since it predicts the largest amplitude
for the angular power spectrum at large angles among these
three models. Therefore, we conclude that the regulariza-
tion used in mLQC-I is preferred from an observational
perspective since the predicted angular power spectrum has
the smallest deviation at large angles from the angular
power spectrum predicted by the standard ΛCDM cosmo-
logical model.
The manuscript is organized as follows. In Sec. II, we

briefly review the effective dynamics of background
spacetime for three LQC models arising from regulariza-
tion ambiguities, namely the standard LQC, mLQC-I, and
mLQC-II. In Sec. III, we briefly review the cosmological
perturbations in both the hybrid and the dressed metric
approaches and present the effective mass function in the
Mukhnov-Sasaki equation for each model and approach. In
Sec. IV, we numerically solve the background dynamics
and the Mukhanov-Sasaki equation of the linear perturba-
tions for different initial states set in the contracting phase
to compute the primordial power spectrum for each model
and approach. Then, we compute the relevant angular
power spectrum by feeding the numerical primordial power
spectrum into the CAMB code. In this way, we show how
different regularizations and quantum ambiguities lead to
different predictions for the angular power spectrum at
large angles and compare the results with the angular power
spectrum predicted by the standard ΛCDM cosmological
model. Finally, we give a summary and conclusion in
Sec. V. In this manuscript, we use the Planck units
with ℏ ¼ c ¼ 1 while keeping Newton’s constant G
explicitly.

II. A BRIEF REVIEW OF LOOP QUANTUM
COSMOLOGY IN DIFFERENT

REGULARIZATIONS

In this section, we briefly review the effective
dynamics of the background spacetime in three distinct
loop quantum cosmological models for a spatially flat,
homogeneous, and isotropic FLRW spacetime: the
standard LQC and the modified LQCs (mLQCs),
namely mLQC-I and mLQC-II. These models originate
from different regularizations of the classical
Hamiltonian constraint in LQG for FLRW spacetime.
As is well known, the classical Hamiltonian constraint
in LQG is composed of two parts, namely the
Euclidean term and the Lorentzian term. In the standard
LQC, these two terms are combined using classical
symmetry and then loop quantized, while in mLQCs,
separate regularizations of the Lorentzian term are

3Code for Anisotropies in the Microwave Background (CAMB)
is used to calculate cosmological quantities by solving back-
ground and perturbation equations. For details, see https://camb
.readthedocs.io.
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implemented, which result in two distinct variants of
the loop quantum cosmological model, namely mLQCs
[61]. For these three models, the evolution of quantum
dynamics is governed by their own discrete quantum
difference equations. Moreover, when the background
state is chosen to be the semiclassical state, the main
properties of the quantum evolution of loop quantum
cosmological models can be faithfully captured by
the effective dynamics governed by an effective
Hamiltonian constraint, which can be obtained from
the polymerization of the classical Hamiltonian con-
straint of the FLRW spacetime. This effective descrip-
tion provides a convenient approach to studying the
phenomenological implications of the loop quantum
cosmological models, as they have been frequently used
in the literature (see, e.g., [62,67,78]). In the following,
we briefly review the dynamical equations of the
effective dynamics in the standard LQC and mLQCs.

A. The effective dynamical equations in LQC

For a spatially flat, homogeneous, and isotropic FLRW
universe filled with a massive scalar field, the classical
phase space is spanned by 4 degrees of freedom, which can
be chosen as fv; b;ϕ; pϕg, where v denotes the volume of
the universe (related to the scale factor a, i.e., v ¼ a3) with
its conjugate momentum b which equals γH in the classical
theory with γ being the Barbero-Immirzi parameter and
H ¼ ȧ=a the Hubble rate. Besides, ϕ stands for the scalar
field, and pϕ is its conjugate momentum. These canonical
variables satisfy the standard Poisson brackets fb; vg ¼
4πGγ and fϕ; pϕg ¼ 1. The classical dynamics of a
spatially flat FLRW universe filled with a single scalar
field is based on the classical Hamiltonian constraint that
takes the form

H ¼ −
3vb2

8πGγ2
þ p2

ϕ

2v
þ vUðϕÞ; ð2:1Þ

where UðϕÞ represents the potential of the scalar field.
From this Hamiltonian, it is straightforward to obtain the
corresponding Hamilton’s equations and the classical
Friedmann equation. Then the effective Hamiltonian con-
straint in the standard LQC can be formally obtained from
the polymerization of the momentum b in the classical
Hamiltonian constraint. To be specific, the rule of thumb to
obtain the effective Hamiltonian constraint in the standard
LQC is to apply the polymerization ansatz b2 →
sin2ðλbÞ=λ2 in the classical Hamiltonian constraint (2.1).
In this way, one can recover the effective Hamiltonian
constraint of standard LQC in the μ̄ scheme [7], namely

HLQC ¼ −
3vsin2ðλbÞ
8πGγ2λ2

þ p2
ϕ

2v
þ vUðϕÞ: ð2:2Þ

Correspondingly, it is straightforward to obtain the
Hamilton’s equations in LQC, which turn out to be

v̇ ¼ 3v
2γλ

sinð2λbÞ; ḃ ¼ −4πGγðρþ PÞ; ð2:3Þ

ϕ̇ ¼ pϕ

v
; ṗϕ ¼ −vU;ϕ; ð2:4Þ

where U;ϕ stands for the derivative of the potential with
respect to the scalar field. Besides, in the Hamilton’s
equations, the energy density and the pressure of the scalar
field are given, respectively, by

ρ ¼ p2
ϕ

2v2
þ UðϕÞ; P ¼ p2

ϕ

2v2
− UðϕÞ: ð2:5Þ

From the Hamilton’s equation for volume and the relation
between the energy density and the momentum b, one can
obtain the modified Friedmann equation in LQC, which
takes the shape

H2 ¼ 8πG
3

ρ

�
1 −

ρ

ρc

�
; ð2:6Þ

here ρc ¼ 3=8πGλ2γ2 ≈ 0.41ρPl is the maximum energy
density at which the quantum bounce takes place in
LQC. The modified Friedmann equation is well suited
for studying the general aspects of the inflationary
scenario in LQC, and one only needs to make use of
different types of inflationary potentials to investigate
the extension of the relevant inflationary spacetimes to
the Planck regime. For the actual numerical simulation
of the inflationary universe in LQC, the initial conditions
are usually set right at the bounce point, where the
parameter space is essentially a one-parameter space
spanned by the value of the scalar field. More details on
setting up the initial conditions for the background
evolution will be discussed in Sec. IV.

B. The effective dynamical equations in mLQCs

The effective dynamical equations for mLQC-I and
mLQC-II have been obtained in Refs. [62,67]. In particular,
for mLQC-I, the effective Hamiltonian constraint takes the
form

HI ¼
3v

8πGλ2

�
sin2ðλbÞ − ðγ2 þ 1Þsin2ð2λbÞ

4γ2

�

þ p2
ϕ

2v
þ vUðϕÞ: ð2:7Þ

Since the matter sector remains unaltered as in the standard
LQC, the above modified Hamiltonian constraint in
mLQC-I only changes the dynamical equations in the
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geometric sector. It is straightforward to check that the
resulting Hamilton’s equations are given explicitly by

v̇ ¼ 3v sinð2λbÞ
2γλ

fðγ2 þ 1Þ cosð2λbÞ − γ2g;

ḃ ¼ −4πGγðρþ PÞ; ð2:8Þ

where ρ and P are still given by their standard definitions
in (2.5). Although the unique properties of the background
dynamics of the mLQC-I model already become manifest
in the numerical simulations using Hamilton’s equations,
one can reach a deeper understanding of its dynamical
features only when its modified Friedmann equation
becomes available. It turns out that, in contrast to the
standard LQC, where both the contracting and the expand-
ing branches are described by the same modified
Friedmann equation (2.6), these two branches are actually
governed by different modified Friedmann equations in
mLQC-I. In particular, the modified Friedmann equation in
the expanding (postbounce) branch is given by [67]

H2
post ¼

8πG
3

ρ

�
1−

ρ

ρIc

�"
1þ γ2ρ=ρIc

ð1þ γ2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ=ρIcÞ

p
2

#
;

ð2:9Þ

where ρIc ¼ ρc=4ðγ2 þ 1Þ is the maximum energy density
at which the quantum bounce takes place in mLQC-I.
The above modified Friedmann equation reduces to the
classical Friedmann equation when the energy density is far
below the Planck energy density, whereas in the contracting
(prebounce) phase the corresponding modified Friedmann
equation takes the form

H2
pre ¼

8πGαρΛ
3

�
1−

ρ

ρIc

�"
1þ ρð1− 2γ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ=ρIc

p
Þ

4γ2ρIcð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ=ρIc

p
Þ

#
;

ð2:10Þ

with α ¼ 1−5γ2
1þγ2

and ρΛ ¼ 3
8πGαλ2ð1þγ2Þ2. This implies an

emergence of the effective cosmological constant ρΛ and
a rescaled Newton’s constant G̃ ¼ αG in the asymptotic
region of the contracting phase when ρ ≪ ρIc. The different
asymptotic behavior of the modified Friedmann equation in
the expanding and the contracting branches in mLQC-I
provides an intuitive explanation for the asymmetric
evolution of the mLQC-I universe with respect to the
quantum bounce. Although the classical universe is recov-
ered in the future of the expanding branch, there exists only
a quasi–de Sitter phase in the past of the contracting branch
when the universe is filled with matter satisfying the weak
energy condition.

On the other hand, the effective Hamiltonian for mLQC-
II can be written as follows:

HII ¼ −
3v

2πGγ2λ2
sin2

�
λb
2

��
1þ γ2sin2

�
λb
2

��
þ p2

ϕ

2v

þ vUðϕÞ: ð2:11Þ

Correspondingly, the Hamilton’s equations in the geo-
metric sector are given by

v̇ ¼ 3v sinðλbÞ
γλ

f1þ γ2 − γ2 cosðλbÞg;

ḃ ¼ −4πGγðρþ PÞ: ð2:12Þ

Similar to the standard LQC, the modified Friedmann
equation in mLQC-II in both contracting and the expanding
branches takes the same form and is given by

H2¼ 16πG
3

ρ

�
1−

ρ

ρIIc

�

×

�
1þ4γ2ð1þ γ2Þρ=ρIIc

1þ2γ2ρ=ρIIc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4γ2ð1þ γ2Þρ=ρIIc

p �
; ð2:13Þ

with the maximum energy density ρIIc ¼ 4ð1þ γ2Þρc. As a
result, the background evolution of the mLQC-II universe
is also symmetric with respect to the quantum bounce when
the universe is coupled with a massless scalar field.
Moreover, the previous studies have shown that the
qualitative dynamics in two models are also very similar
to each other as well [78]. Consequently, in order to
distinguish mLQC-II from LQC, further information on
the linear perturbations in the two theories is vital to
revealing the quantitative difference in the predictions of
these two models on the CMB observations. In particular, it
is worthwhile to compare the predictions on the primordial
power spectrum from all three models, namely LQC and
mLQCs, which compose the main content of the next two
sections.

III. THE LINEAR PERTURBATION THEORIES IN
LOOP QUANTUM COSMOLOGICAL MODELS:
DRESSED METRIC APPROACH VS HYBRID

APPROACH

In this section, we briefly review the Mukhanov-Sasaki
equation for the linear cosmological perturbations in the
dressed metric and the hybrid approaches in LQC and
mLQCs. For a detailed exposition of the linear perturbation
theory in these three models, we refer the readers to our
previous work [70–72,74]. In the following, we only cite the
main results that are relevant for numerically computing the
primordial power spectrum and the relevant angular power
spectrum in thesemodels. It turns out that in all threemodels,
the linear cosmological perturbations satisfy the modified
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Mukhanov-Sasaki equation,which is characterized by differ-
ent effective mass functions that essentially originate from
regularization ambiguities in the background dynamics and
quantum ambiguities related to treatments of cosmological
perturbations. In terms of the rescaled Mukhanov-Sasaki
variable νk which is related to the comoving curvature
perturbation Rk via νk ¼ zsRk with zs ¼ aϕ̇=H, the modi-
fied Mukhanov-Sasaki equation in each model takes the
generic form

ν00k þ ðk2 þ sÞνk ¼ 0; ð3:1Þ

where s stands for the effective mass term, whose explicit
form is both model and approach dependent. A prime in the
above equation denotes differentiation with respect to the
conformal time η. Moreover, the mode function is normal-
ized according to the Wronskian condition

νkðν0kÞ⋆ − ðνkÞ⋆ν0k ¼ i; ð3:2Þ

with the asterisk standing for the complex conjugate. In the
actual simulations, we set the initial states in the contracting
phase when the relevant modes of interest are inside the
comoving Hubble horizon. Since the adiabatic condition is
well satisfied for thosemodes, the initial states can be chosen
as the adiabatic states, which are essentially the WKB
solutions of Eq. (3.1), namely

νk ¼
1ffiffiffiffiffiffiffiffiffi
2Wk

p e−i
R

η Wkðη̄Þdη̄: ð3:3Þ

Onceplugging the above solutionback intoEq. (3.1), one can
obtain a differential equation of Wk that takes the form

W2
k ¼ k2 þ s −

1

2

W00
k

Wk
þ 3

4

�
W0

k

Wk

�
2

: ð3:4Þ

Starting from the zeroth order solution, Wð0Þ
k ¼ k, the

adiabatic solutions at the second and fourth orders can be
obtained as

Wð2Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k2þ s

p
; Wð4Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðs;kÞp

4jk2þ sj ; ð3:5Þ

where fðs; kÞ ¼ 5s02 þ 16k4ðk2 þ 3sÞ þ 16s2ð3k2 þ sÞ−
4s00ðk2 þ sÞ. However, we should point out that the initial
states of the perturbations in mLQC-I are chosen in the
contracting branch, where the de Sitter phase is a very good
approximation and the effective mass function is well
approximated by s ¼ −2=η2. Therefore, Eq. (3.1) has the
exact solutions, which are [72]

νk ¼ αk
e−ikηffiffiffiffiffi
2k

p
�
1 −

i
kη

�
þ βk

eikηffiffiffiffiffi
2k

p
�
1þ i

kη

�
; ð3:6Þ

where αk and βk are two integration constants. In our
simulations, the initial states of the perturbations are chosen
as the positive frequency modes with αk ¼ 1 and βk ¼ 0.
Given the initial states in the contracting phase, one

should propagate the modified Mukhanov-Sasaki equation
until the end of inflation, where the power spectrum, i.e.,
the correlation function between two modes Pνk , is evalu-
ated for the observable modes that have reentered the
Hubble horizon at present. In order to compare the results
to the observational data, it is common to use the power
spectrum of the comoving curvature perturbation whose
magnitude freezes for the superhorizon modes, and it can
be computed from Pνk as

PRk
¼ Pνk

z2s
¼ k3

2π2
jνkj2
z2s

: ð3:7Þ

It should be noted that the above power spectrum is only
valid in the regime where the adiabatic initial states are real
numbers at the initial time, which means k2 þ s ≥ 0 for

Wð2Þ
k and fðs; kÞ ≥ 0 for Wð4Þ

k . Before we proceed with the
numerical results of the power spectrum, we need to fix the
effective mass term in each model in both the dressed
metric and the hybrid approaches. Since these effective
mass terms have already been discussed in detail in our
previous work [70–72,74], we briefly mention their explicit
forms in both approaches for three different LQC models in
the following subsection.

A. The dressed metric approach in loop quantum
cosmological models: Polymerization aspects

In the dressed metric approach, the quantum fluctuations
propagating on a quantum background spacetime can be
equivalently described as propagating on a continuum
spacetime with a dressed metric derived from effective
dynamics. The general formalism is based on the
Hamiltonian formulation of the perturbation theory in gen-
eral relativity introduced by Langlois [79]. Considering a
single scalar fieldminimally coupled to gravity on a spatially
flat FLRW background, the mass function of the classical
Mukhanov-Sasaki equation is given by

s ¼ U2 −
a00

a
; ð3:8Þ

where the term related to the potential of the scalar field reads

U2¼ 24πGp2
ϕ

a4
−
18p4

ϕ

a6
1

π2a
−12apϕU;ϕ

1

πa
þa2U;ϕϕ; ð3:9Þ

withU;ϕ denoting the derivative of the potential with respect
to the scalar field ϕ. The quantum ambiguities in the dressed
metric approach are due to the presence of the inverse of the
conjugate momentum of the scale factor. In fact, in classical
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theory, πa is directly related to b via πa ¼ −6a2b=κγ.
Correspondingly, π2a is proportional to b2. As already
discussed in the last section, in the loop quantum cosmo-
logical models, the effective backgroundHamiltonian can be
obtained from the polymerization of b2 in the classical
background Hamiltonian. Since the linear perturbations are
propagating on the effective spacetimes as long as the
effective dynamics is valid, the relevant background quan-
tities in the classical Mukhanov-Sasaki equation must be
polymerized in a manner consistent with the polymerization
of the background dynamics. Therefore, in the classical
effective potential (3.9), 1=π2a must be polymerized in the
same manner as in the background dynamics. In contrast,
there is no information on a proper polymerization of 1=πa
from the background dynamics and thus it introduces
quantum ambiguities into the effective mass function in
the modified Mukhanov-Sasaki equation. In the following,
we adopt the polymerization ansatz that was employed in our
previous work [72]. To be specific, 1=πa and 1=π2a are
polymerized in LQC according to the ansatz

1

πa
→ −

4πγλ cosðλbÞ
3a2 sinðλbÞ ;

1

π2a
→

16π2G2γ2λ2

9a4sin2ðλbÞ ; ð3:10Þ

and similarly for mLQC-I, we use the following ansatz:

1

πIa
¼ 8πGγλΘ̃ðbÞ

3a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ γ2Þsin2ð2λbÞ − 4γ2sin2ðλbÞ

p ; ð3:11Þ

1

πIa
2
¼ 64π2G2γ2λ2

9a4ðð1þ γ2Þsin2ð2λbÞ − 4γ2sin2ðλbÞÞ ; ð3:12Þ

with Θ̃ðbÞ ¼ 1–2ð1þ γ2Þ sin2ðλbÞ. And finally, in the case
of mLQC-II, we employ the ansatz

1

πIIa
¼ −

2πγλ cosðλb=2Þ
3a2 sinðλb=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2sin2ðλb=2Þ

p ; ð3:13Þ

1

πIIa
2
¼ 4π2γ2λ2

9a4sin2ðλb=2Þð1þ γ2sin2ðλb=2ÞÞ : ð3:14Þ

Once plugging the above polymerization ansatz into the
classical mass function (3.8), one can obtain the correspond-
ing effective mass function for each model in the dressed
metric approach. Then, given an appropriate initial state in
the contracting phase, we can numerically compute the
evolution of the mode function throughout the evolution
of the Universe until the end of inflation.

B. The hybrid approach in loop quantum cosmological
models: Polymerization aspects

The modified Mukhanov-Sasaki equation in the hybrid
approach can be obtained by the following polymerization
procedures, which are similar to those used in the dressed

metric approach. After all, both approaches apply the same
hybrid quantization of the background dynamics and the
perturbations; i.e., the background is loop quantized in the
μ̄ scheme while the perturbations are Fock quantized. The
main distinctions between these two approaches at the level
of effective dynamics originate from the different forms of
the classical mass function, which are equivalent on the
classical trajectories but lead to different effective mass
functions after polymerization due to quantization ambi-
guities [70]. Here we cite the expressions of the effective
mass functions in the hybrid approach for LQC and
mLQCs. The details of the derivation of the effective mass
functions can be found in our previous work [74]. These
effective mass functions are based on the polymerization of
the classical mass function, which is cast into the form

s ¼ 4πGp2
ϕ

3v4=3

�
19 − 24πGγ2

p2
ϕ

Ω2

�

þ v2=3
�
U;ϕϕ þ

16πGγpϕΛ
Ω2

U;ϕ −
16πG
3

U

�
; ð3:15Þ

whereΩ and Λ are equal in the classical theory, and both of
them are given by vb. We distinguish these two terms only
for the convenience of the effective theory in which they are
polymerized in different ways according to the model under
consideration. To be specific, in the case of standard LQC,
Ω and Λ are polymerized to be

ΩLQC ¼ v
sinðλbÞ

λ
; ΛLQC ¼ v

sinð2λbÞ
2λ

; ð3:16Þ

while in mLQC-I, they are polymerized into

Ω2
I ¼ −

v2γ2

λ2

�
sin2ðλbÞ − γ2 þ 1

4γ2
sin2ð2λbÞ

�
;

ΛI ¼ v
sinð2λbÞ

2λ
: ð3:17Þ

Finally, in mLQC-II, they are polymerized as

Ω2
II ¼

4v2

λ2
sin2

�
λb
2

��
1þ γ2sin2

�
λb
2

��
;

ΛII ¼ v
sinðλbÞ

λ
: ð3:18Þ

Substituting the above polymerization ansatz for Ω and Λ
into the classical mass function (3.15), one can obtain the
effective mass function for each model. Given the func-
tionality for the effective mass term for each regularization,
one is able to proceed to find the curvature power spectrum.
Therefore, the goal of the next section is to compute the
curvature power spectrum for each regularization in both
the dressed metric and the hybrid approaches and then feed
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it into the CAMB code to calculate the relevant angular
power spectrum.

IV. THE PRIMORDIAL SCALAR POWER
SPECTRUM AND THE ANGULAR POWER

SPECTRUM IN LOOP QUANTUM
COSMOLOGICAL MODELS

In this section, we study the primordial power spectrum
and the relevant angular power spectrum of the loop
quantum cosmological models discussed in the previous
section. In Sec. IVA, we first numerically solve the
background equations with the initial conditions set at
the bounce, then solve the Mukhanov-Sasaki equation
given in Eq. (3.1) with different effective mass functions
and appropriate initial states for each model and approach.
Finally, we compute the primordial scalar power spectrum
and the relevant angular power spectrum for each model
and approach and compare the latter with the angular power
spectrum predicted by the standard ΛCDM cosmological
model in Sec. IV B.

A. The primordial power spectra in loop quantum
cosmological models

After reviewing the effective background dynamics and
the modified Mukhanov-Sasaki equations in the standard
LQC and mLQCs, we proceed to compare the observable
predictions of these three models in both the hybrid and the
dressed metric approaches in this section. In fact, we
compute the primordial power spectrum and the relevant
angular power spectrum for different regularizations and
quantum ambiguities, along with appropriate initial states.
As discussed earlier, the main differences among these
models come from different quantizations of the gravita-
tional sector as well as different polymerizations of the
conjugate momentum of the scale factor in the Mukhanov-
Sasaki equation. Such differences are encoded in the time-
dependent effective mass function in the Mukhanov-Sasaki
equation, which takes distinct forms for different regula-
rizations and quantum ambiguities. Besides, to compute the
primordial power spectrum, one first needs to fix the
background dynamics for each model. Hence, we consider
the extension of the inflationary scenario in the loop
quantum cosmological models, with the inflationary phase
driven by a single scalar field and the potential given by the
Starobinsky potential

UðϕÞ ¼ m2

32πG
ð1 − e−

ffiffiffiffiffiffi
16πG
3

p
ϕÞ2: ð4:1Þ

This potential has only one free parameter, i.e., the
inflaton’s mass m, which will be determined by a phe-
nomenological matching of the predicted primordial power
spectrum with the observational data. In fact, with the
scalar power spectrum As and scalar spectral index ns given
at the pivot mode k⋆=a0 ¼ 0.05 Mpc−1 (here a0 stands for

the scale factor at present), respectively by [80]

lnð1010AsÞ ¼ 3.044� 0.014ð68% CLÞ;
ns ¼ 0.9649� 0.0042ð68% CLÞ: ð4:2Þ

According to the Planck Collaboration in the
TT;TE;EE-lowEþ lensing 68% limits data, one can fix
the inflaton’s mass to bem ¼ 2.44 × 10−6 (in Planck units)
by simply matching analytical expressions for power
spectrum and spectral index obtained using the slow-roll
approximation with the observational values in Eq. (4.2).

1. Fixation of the free parameters and the initial
conditions

To obtain the primordial power spectrum, one needs to
first fix the background dynamics and then use the
appropriate initial states to numerically solve the
Mukhanov-Sasaki equation (3.1). In our simulations, we
set the initial conditions for the background dynamics at the
bounce point, where the energy density reaches its maxi-
mum. Due to the rescaling freedom in volume, we choose
vB ¼ 1 for our numerical solutions without loss of general-
ity. The canonical variable b in each model at the bounce
is fixed and takes the value bB ¼ π=2λ in LQC, bIB ¼
arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2þ 2γ2Þ

p
Þ=λ in mLQC-I, and bIIB ¼ π=λ in

mLQC-II. Furthermore, the momentum of the scalar field
pϕ can be determined by using the effective Hamiltonian
constraint while choosing the positive velocity. Therefore,
the only free parameters that need to be fixed are the
inflaton’s mass and the value of the scalar field at
the bounce ϕB. It turns out that the former controls the
amplitude of the primordial power spectrum, and the latter
specifies the duration of the inflationary phase, i.e., the
number of e-foldings Ne, or correspondingly, the spectral
index of the primordial power spectrum in the almost scale-
invariant regime.4 Given the initial value of the inflaton’s
mass and ϕB at the bounce, we solve the background
equations using the SOLVE_IVP module from the SCIPY

package in PYTHON, which numerically integrates a system
of ordinary differential equations. We use the RK45 method
(although the results are the same for different methods),
with absolute and relative tolerances set to be 10−13.
After fixing the background dynamics, we then proceed

with the numerical simulations of the primordial power
spectrum. In fact, we set the initial states of the perturba-
tions to be the adiabatic initial states given in (3.3) in the
contracting branch, except for mLQC-I in the dressed
metric approach, which is specified by the exact de
Sitter solution (3.6). Given the solutions for the background

4The almost scale-invariant regime is where the power spec-
trum can be approximated by the power law power spectrum, i.e.,
PR ¼ Asðk=k⋆Þns−1 where k⋆=a0 ¼ 0.05 Mpc−1, As, and ns are
given in (4.2).
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quantities, we feed these solutions into the Mukhanov-
Sasaki equation with the appropriate initial states to
compute the primordial power spectrum. To this end, we
use the PYOSCODE package, which has been specifically
written to solve second order differential equations with
highly oscillatory solutions [81]. This package combines the
method ofRK45with theWKBapproximation. In fact, when
the solution is nonoscillatory, it uses the RK45method while
controlling the error using higher order corrections and skips
several cycles using the WKB approximation when the
solution is highly oscillatory. This method significantly
improves the speed of the code and allows large numbers
of simulations. Once the solutions of the mode functions are
obtained, we then calculate the primordial power spectrum
when the observable modes exit the Hubble horizon (super-
horizon) in the slow-roll phase.
Finally, to compare the angular power spectrum pre-

dicted by the loop quantum cosmological models with the
angular power spectrum predicted by the ΛCDM best fit to
the Planck TT;TE;EEþ lowEþ lensing data, it is neces-
sary to initially conduct a scale matching for the primordial
power spectrum. In fact, we set the scale factor to be unity
at the bounce in our numerical simulations, while it is
usually fixed to be 1 at the present time by the Planck
mission to find the amplitude and spectral index for the
primordial power spectrum in the standard ΛCDM cos-
mological model. In order to find the correspondence of the
comoving scales with the observational scales, we fix the
amplitude of the curvature power spectrum to be As, i.e.,
PRðk⋆Þ ¼ As to pick some particular comoving wave
number of the pivot scale k⋆=a0 ¼ 0.05 Mpc−1. This
means that the comoving wave number of the pivot mode
obtained in this way depends on the inflaton’s mass and the
initial value of the scalar field ϕB at the bounce. Moreover,
since we solve the exact background equations without
using slow-roll approximations, the inflaton’s mass
obtained from the slow-roll approximation will not result
in the central values for the amplitude of the power
spectrum and spectral index in Eq. (4.2). This means that
there is freedom in choosing the pivot mode for which the
amplitude of the primordial power spectrum matches the
observational data, As, by tuning the inflaton’s mass and
inflaton field at the bounce in such away that the inflationary
predictions are close to the central values of Eq. (4.2).
To restrict above freedom and place each model’s

predictions on an equal footing for later comparison, we
choose the inflaton’s mass and inflaton field at the bounce
while the amplitude of the primordial power spectrum
matches the As for a particular k⋆, which is well inside the
scale-invariant regime. Hence, this will guarantee that the
relevant angular power spectrum completely matches
the angular power spectrum predicted by ΛCDM best fit to
the Planck TT;TE;EEþ lowEþ lensing data at large l
multipoles and has the smallest deviation at large angles,
i.e., low l multipoles for each model. Additionally, as we

will see, different regularizations and quantum ambiguities
modify the infrared and the intermediate regimes in the
power spectrum while producing the same scale-invariant
regime. Hence, in order to compare these models appropri-
ately, we finely tune the inflaton’s mass andϕB in such away
that all three models, LQC and mLQCs, not only predict the
same number of e-folding, i.e., Ne ≃ 65, but also lead to the
relative difference in the amplitude of the power spectrum
being less than 1% in the scale-invariant regime. It should be
mentioned that while the analysis presented in this manu-
script focused on these number of e-foldings, our results did
not change when the e-foldings were changed to 60 or 70. It
turns out that in this case, there is not much freedom in
choosing a quite different pivot mode for different models,
which might affect our conclusion. To achieve this, we
choose the inflaton’s mass to be m ¼ 2.7 × 10−6, which is
different from what is obtained from slow-roll approxima-
tions, i.e.,m ¼ 2.44 × 10−6, and thevalueof the inflaton field
at the bounce is fixed for each model accordingly to achieve
Ne ¼ 65. We again note that the inflaton’s mass is slightly
different fromwhat is obtained from slow-roll approximation
because we numerically solve exact equations, and that is
not because of quantum gravity effects. In this sense, we can
compare the primordial power spectrum with different
regularizations and quantum ambiguities in the infrared
and intermediate regimes which can result in modifications
in the angular power spectrum. In the following we aim to
understand how the amplitude and shape of the primordial
power spectrum in the infrared and the intermediate regimes
would change for different regularizations, quantum ambi-
guities, initial states, and where the initial states are imposed.

2. Comparison of the effective mass functions in different
models and approaches

As we have discussed earlier, the effects of different
regularizations and quantum ambiguities are encoded in the
time-dependent effective mass function. To this end,
the effective mass functions of LQC and mLQC-II in the
contracting branch from where the adiabatic initial states
are imposed are shown in the left panel of Fig. 1 and also in
the expanding branches (including effective mass function
for mLQC-I) in the right panel of Fig. 1 for both the hybrid
and the dressed metric approaches. From these figures, it is
obvious that the effective mass function far away from the
bounce in the hybrid and the dressed metric approaches are
the same for both LQC and mLQC-II. Moreover, the order
of magnitude of the effective mass function is also the same
for both LQC and mLQC-II. However, from the right panel
in Fig. 1, one can see the noticeable differences among
different models near the bounce. From the left panel in
Fig. 1, one can see that the effective mass function is
positive where the adiabatic initial states are imposed for
both LQC and mLQC-II. In Fig. 2, we plot the effective
mass function for mLQC-I in both the hybrid (red curve)
and the dressed metric (blue curve) approaches. From this
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plot, one can see that the effective mass function in the
dressed metric approach is negative in the contracting
branch where the exact de Sitter solution (3.6) is imposed,
and it also goes to a large negative value by further going
into the contracting branch. On the other hand, the effective
mass function for the hybrid approach goes to very large
positive values by further going into the contracting branch.

3. The influence of different initial times on the
primordial power spectrum

In this subsection, we study the effects of choosing
different initial times for setting the initial states in the
contracting phase on the shape of the primordial power
spectrum. As an illustrative example, we plot the primordial
power spectrum for LQC with ϕB ¼ −1.4306 and m ¼
2.7 × 10−6 in the range of the comoving wave number
k∈ ð10−5; 1000Þ while the second order adiabatic initial
states are imposed at t ¼ −106,−5 × 106, and−107 for both

the hybrid (left) and the dressed metric (right) approaches in
Fig. 3. In this plot, the green star is the primordial power
spectrum for adiabatic initial states imposed at t ¼ −106, the
blue triangle is for t ¼ −5 × 106, and the red dotted is for
t ¼ −107. The corresponding k⋆ for imposing adiabatic
initial states at t ¼ −106, −5 × 106, and −107 in the hybrid
approach (left) are k⋆ ¼ 493.396, k⋆ ¼ 492.134, and
k⋆ ¼ 491.459, and for the dressed metric approach (right)
are k⋆ ¼ 490.297, k⋆ ¼ 491.134, and k⋆ ¼ 492.334,
respectively. We should also point out that there are 2000
samples for each primordial power spectrum in the figure.
From these figures, one can see that the primordial power
spectrum in LQC and its modified version, as we will see
later, can be generally divided into three distinctive regimes:
the suppressed infrared regime for k ¼ ð10−5; 10−4Þ, the
amplified oscillatory regime for k ¼ ð10−4; 1Þ, and the scale-
invariant regime for k ¼ ð1; 1000Þ. From these plots, one can
clearly see that the amplification of the power spectrum in the
intermediate regime depends on how far from the bounce the
adiabatic initial states are imposed in the contracting branch.
In fact, as the adiabatic initial states are imposed further in the
contracting branch, the primordial power spectrum has a
larger amplification in the intermediate regime. This behav-
ior is also observed in the case of mLQC-I for the hybrid
approach and mLQC-II for both the hybrid and the dressed
metric approaches with zeroth, second, and fourth order
adiabatic initial states, except for the case of mLQC-I in the
dressed metric approach, where the initial state is specified
using the exact de Sitter solution. This is mainly because
adiabatic initial states are just the approximate solutions of
the Mukhanov-Sasaki equation of the mode function. In
contrast, in the dressedmetric approach ofmLQC-I, the exact
solution of the Mukhanov-Sasaki equation, which is the de
Sitter initial state, is available, and the resulting primordial
power spectrum is then independent of the initial time. In the
case of mLQC-I, as the adiabatic initial states are imposed

FIG. 1. The left panel compares the absolute value of the effective mass function for LQC (sLQC) and mLQC-II (sII) in both the hybrid
and the dressed metric approaches in the contracting branch from where the initial states are imposed. The right panel compares the
absolute value of the effective mass function for LQC, mLQC-I (sI), and mLQC-II in the expanding branch until t ¼ 5.1 × 107 (in
Planck units).

FIG. 2. The effective mass function for mLQC-I in the
contracting branch from where the adiabatic initial states are
imposed for both the hybrid and the dressed metric approaches.

CONSTRAINING REGULARIZATION AMBIGUITIES IN LOOP … PHYS. REV. D 110, 066005 (2024)

066005-11



further in the contracting branch, the scale-invariant regime
occurs in larger wave modes in comparison with LQC and
mLQC-II due to the special properties of the effective mass
function in this model, which is why the chosen initial time
for mLQC-I is very different from the initial time for LQC
and mLQC-II. In fact, to have the same inflationary pre-
dictions compared with two other models, we must choose
the initial time to have different values from the other two
models. Otherwise, the relative difference in the primordial
power spectrum in the scale-invariant regimewill not be less
than 1% when it is compared with two other models.

4. The influence of different initial states on
the primordial power spectrum

With the given initial conditions for the background
dynamics and the initial states for the linear perturbations,

we numerically compute the primordial power spectrum in
both the dressed metric approach and the hybrid approach
for all three models and present these results in Figs. 4–6. In
Fig. 4, we plot the primordial power spectrum for LQCwith
ϕ0 ¼ −1.4306 and m ¼ 2.7 × 10−6 while adiabatic initial
states (zeroth, second, and fourth order) are imposed
at t ¼ −106 for both the hybrid (left) and the dressed
metric (right) approaches. The dashed line denotes the
central value for the amplitude of the primordial power
spectrum, i.e., As ¼ 2.0989 × 10−9, according to the
Planck Collaboration in the TT, TE, EE-lowEþ lensing
68% limits data at pivot scale k⋆=a0 ¼ 0.05 Mpc−1. The
corresponding k⋆ for zeroth, second, and fourth order
adiabatic initial states in the hybrid approach (left) are

kð0Þ⋆ ¼ 493.396, kð2Þ⋆ ¼ 492.754, and kð4Þ⋆ ¼ 490.168 where
the upper indices 0, 2, and 4 denote the order of adiabatic

FIG. 3. The primordial power spectrum for LQC with ϕB ¼ −1.4306 and m ¼ 2.7 × 10−6, while second order adiabatic initial states
are imposed at t ¼ −106, −5 × 106, and −107 for the hybrid (left) and the dressed metric (right) approaches (all in Planck units). The
corresponding k⋆ for imposing adiabatic initial states at t ¼ −106, −5 × 106, and −107 in the hybrid approach (left) are k⋆ ¼ 492.754,
k⋆ ¼ 491.134, and k⋆ ¼ 490.459, and for the dressed metric approach (right) are k⋆ ¼ 92.365, k⋆ ¼ 491.134, and k⋆ ¼ 490.334,
respectively. The dashed line is the central value for the amplitude of the primordial power spectrum, i.e., As ¼ 2.0989 × 10−9,
according to the Planck Collaboration in the TT, TE, EE-lowE þ lensing 68% limits data at pivot scale k⋆=a0 ¼ 0.05 Mpc−1.

FIG. 4. The primordial power spectrum for LQC with different adiabatic initial states (zeroth, second, and fourth order) in the hybrid
approach (left panel) and the dressed metric (right panel) approach, while t ¼ −106, ϕB ¼ −1.4306, and m ¼ 2.7 × 10−6 (all in Planck
units). The corresponding k⋆ for zeroth, second, and fourth order adiabatic initial states in the hybrid approach (left panel) are

kð0Þ⋆ ¼ 493.396, kð2Þ⋆ ¼ 492.754, and kð4Þ⋆ ¼ 490.168 where the upper indices 0, 2, and 4 denote the order of adiabatic initial states, and

for the dressed metric approach (right panel) are kð0Þ⋆ ¼ 490.297, kð2Þ⋆ ¼ 492.365, and kð4Þ⋆ ¼ 494.283, respectively. The dashed line is
the central value for the amplitude of the primordial power spectrum, i.e., As ¼ 2.0989 × 10−9, according to the Planck Collaboration in
the TT, TE, EE-lowEþ lensing 68% limits data.
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initial states, and for the dressed metric approach (right)

are kð0Þ⋆ ¼ 490.297, kð2Þ⋆ ¼ 492.365, and kð4Þ⋆ ¼ 494.283,
respectively. As it is obvious from both panels, the
amplification of the primordial power spectrum in the
intermediate regime depends on the order of adiabatic
initial states in both the hybrid and the dressed metric
approaches. In fact, for higher order adiabatic initial states,
the power spectrum has smaller amplification in the
intermediate regime in both the hybrid and the dress metric
approaches. Moreover, in a very small k regime (the
infrared regime), the suppression of the primordial power
spectrum is slightly stronger in the case of the dressed
metric approach. Apart from that, from the primordial
power spectrum, it is not easy to distinguish the dressed
metric approach from the hybrid approach, where the

amplitude of the primordial power spectrum in the inter-
mediate regime in two approaches looks close to each other
once the same initial states are chosen.
In Fig. 5, we plot the primordial power spectrum for

mLQC-I with ϕ0 ¼ −1.31 andm ¼ 2.7 × 10−6 while initial
states are imposed at t ¼ −2.4 for both the hybrid (left) and
the dressed metric (right) approaches. In this case, we use
zeroth, second, and fourth order adiabatic initial states for
the hybrid approach but use the de Sitter initial state for the
dressed metric approach, which is why only one primordial
power spectrum is plotted in the right panel of Fig. 5. The
corresponding k⋆ for zeroth, second, and fourth order
adiabatic initial states in the hybrid approach (left) are

kð0Þ⋆ ¼ 518.996, kð2Þ⋆ ¼ 518.692, and kð4Þ⋆ ¼ 519.114,

and for the dressed metric approach is kðdsÞ⋆ ¼ 520.332

FIG. 5. The primordial power spectrum for mLQC-I with different adiabatic initial states (zeroth, second, and fourth order) in the
hybrid approach (left) and with the de Sitter initial state in the dressed metric approach (right) while t ¼ −2.4, ϕB ¼ −1.31, and
m ¼ 2.7 × 10−6 (in Planck units). The corresponding k⋆ for zeroth, second, and fourth order adiabatic initial states in the hybrid

approach (left) are kð0Þ⋆ ¼ 518.996, kð2Þ⋆ ¼ 518.692, and kð4Þ⋆ ¼ 519.114 where the upper indices 0, 2, and 4 denote the order of adiabatic

initial states, and for the dressed metric approach is kðdsÞ⋆ ¼ 520.332 (ds denotes de Sitter initial state), respectively. The dashed line is the
central value for the amplitude of the primordial power spectrum, i.e., As ¼ 2.0989 × 10−9, according to the Planck Collaboration in the
TT, TE, EE-lowEþ lensing 68% limits data.

FIG. 6. The primordial power spectrum for mLQC-II with different adiabatic initial states (zeroth, second, and fourth order) in the
hybrid approach (left) and the dressed metric (right) approaches while t ¼ −106, ϕB ¼ −1.54, and m ¼ 2.7 × 10−6. The corresponding

k⋆ for zeroth, second, and fourth order adiabatic initial states in the hybrid approach (left) are kð0Þ⋆ ¼ 478.882, kð2Þ⋆ ¼ 478.500, and

kð4Þ⋆ ¼ 480.513 where the upper indices 0, 2, and 4 denote the order of adiabatic initial states, and for the dressed metric approach are

kð0Þ⋆ ¼ 479.876, kð2Þ⋆ ¼ 479.228, and kð4Þ⋆ ¼ 480.008, respectively. The dashed line is the central value for the amplitude of the
primordial power spectrum, i.e., As ¼ 2.0989 × 10−9, according to the Planck Collaboration in the TT, TE, EE-lowEþ lensing 68%
limits data.
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(ds denotes de Sitter initial state), respectively. From these
figures, it is obvious that the amplitude of the intermediate
regime of the primordial power spectrum is larger for the
dressed metric approach in comparison with the hybrid
approach. Moreover, in the case of the dressed metric
approach, the primordial power spectrum monotonically
increases in the intermediate regime and then becomes
constant at a very small k regime (the infrared regime). In
the case of the hybrid approach, one can see that the
amplification of the primordial power spectrum in the
intermediate regime depends on the order of adiabatic initial
states. However, there are important differences between
LQC and mLQC-I in this case. First, the amplification in the
intermediate regime for mLQC-I is smaller in comparison to
LQC for all zeroth, second, and fourth order adiabatic initial
states in the hybrid approach. Second, for fourth order
adiabatic initial states, there seems to be a peak of large
magnitude in the rightmost part of the intermediate regime,
which precedes the scale-invariant regime.
Finally,weplot theprimordial power spectrum formLQC-

II with ϕ0 ¼ −1.54 and m ¼ 2.7 × 10−6 while adiabatic
initial states (zeroth, second, and fourth order) are imposed at
t ¼ −106 for both the hybrid (left) and the dressed metric
(right) approaches in Fig. 6. The corresponding k⋆ for zeroth,
second, and fourth order adiabatic initial states in the hybrid

approach (left) are kð0Þ⋆ ¼ 478.882, kð2Þ⋆ ¼ 478.500, and

kð4Þ⋆ ¼ 480.513, and for the dressed metric approach are

kð0Þ⋆ ¼ 479.876, kð2Þ⋆ ¼ 479.228, and kð4Þ⋆ ¼ 480.008,
respectively. The behavior of the primordial power spectrum
is very similar to LQC in both the hybrid and the dressed
metric approaches. However, the primordial power spectrum
has a larger amplification in the intermediate regime for

mLQC-II in comparison to LQC. As we will see, these
differences in the intermediate regime lead to different
modifications in the angular power spectrum at large angles,
i.e., low l multipoles.

B. The angular power spectra in loop quantum
cosmological models

In order to compute the angular power spectrum, we feed
the primordial power spectrum computed in Figs. 4–6 into
CAMBcode as an external primordial power spectrum. In fact,
since the inflationary phase is occurring far away from the
bounce regime, the background dynamics are the same as in
the classical cosmology when inflation begins, while the
effect of the preinflationary phase is encoded in the initial
states and also the effective mass function in theMukhanov-
Sasaki equation. Hence, we can use the transfer function
computed by CAMB for the standard cosmology in this case,
while using the primordial power spectrum computed in the
previous section. Before feeding the primordial power
spectrum into the CAMB code, we first take an average over
20 samples to make the power spectrum smoother, then we
use scale matching (explained earlier) to normalize the
primordial power spectrum at k⋆=a0 ¼ 0.05 Mpc−1 to be
able to compare the prediction of the model with observa-
tional data. Therefore, given the primordial power spectrum
for all three models with different initial states, we calculate
the angular power spectrum in both the hybrid and the
dressed metric approaches.
The results for the angular power spectrum are com-

pared in Figs. 7–12. We plot the angular power spectrum
for zeroth order adiabatic initial states for the hybrid
approach in Fig. 7 and for the dressed metric approach
in Fig. 8 in all three models, namely LQC and mLQCs.

FIG. 7. The angular power spectrum predicted by LQC models in the case of the hybrid approach for zeroth order adiabatic initial
state. The black dots are the Planck 2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error
bars for large l multipoles. The green curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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However, we should point out that for mLQC-I in the
dressed metric approach, we compare the angular power
spectrum with the primordial power spectrum in the right
panel of Fig. 5 which is computed for the de Sitter initial
state. The black dots are the Planck 2018 temperature
angular power spectrum, with blue error bars for low l
multipoles and red error bars for large l multipoles. The
green curve is the ΛCDM angular power spectrum best fit
to the Planck Collaboration in the TT, TE, EE-lowEþ
lensing 68% limits data. From Figs. 7 and 8, it is clear that

all three models match the best fit curve at large multipoles
l in both the hybrid approach and the dressed metric
approaches, since they predict the same scale-invariant
regime at large k. However, all three curves deviate from
the best fit curve from the ΛCDM model and predict a
larger angular power spectrum at large angles, i.e., low l
multipoles due to amplification of the primordial power
spectrum in the part of the intermediate regime that is next
to the almost scale-invariant regime. In fact, mLQC-II
exhibits the largest amplitude for the angular power

FIG. 8. The angular power spectrum predicted by LQC models in the case of the dressed metric approach, while zeroth order adiabatic
initial states are used for LQC and mLQC-II and the de Sitter initial state is used for mLQC-I. The black dots are the Planck 2018
temperature angular power spectrum, with blue error bars for low l multipoles and red error bars for large l multipoles. The green curve
is the ΛCDM angular power spectrum best fit to Planck 2018 data.

FIG. 9. The angular power spectrum predicted by LQC models in the case of the hybrid approach for second order adiabatic initial
states. The black dots are the Planck 2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error
bars for large l multipoles. The green curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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spectrum at large angles, followed by LQC, and finally
mLQC-I. Therefore, mLQC-I is the one that can produce
the result closest to that from the ΛCDMmodel in both the
hybrid and the dressed metric approaches. Moreover,
comparing the angular power spectrum from the hybrid
approach with the one from the dressed metric approach
for the same model, one can find that the deviation from
the best fit curve at large angles is larger in the case of the
dressed metric approach. This is because the amplitude of
the intermediate regime, k∈ ð0.01; 10Þ, is larger in the case

of the dressed metric approach right next to the scale-
invariant regime.
In addition, the results for the angular power spectrum

for the second order adiabatic initial states in LQC and
mLQCs are given in Fig. 9 for the hybrid approach and in
Fig. 10 for the dressed metric approach. Note that for
mLQC-I in the dressed metric approach, similar to the case
with the zeroth order adiabatic initial states, we compare
the angular power spectrum obtained from the primordial
power spectrum computed with the de Sitter initial state.

FIG. 10. The angular power spectrum predicted by LQC models in the case of the dressed metric approach, while second order
adiabatic initial states are used for LQC and mLQC-II and the de Sitter initial state is used for mLQC-I. The black dots are the Planck
2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error bars for large l multipoles. The green
curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.

FIG. 11. The angular power spectrum predicted by LQC models in the case of the hybrid approach for the fourth order adiabatic initial
states. The black dots are the Planck 2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error
bars for large l multipoles. The green curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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One can find from the figures that the amplitude of the
angular power spectrum from the second order adiabatic
states is almost the same as that of the zeroth order adiabatic
initial states. That is because although the primordial power
spectrum has a smaller amplitude for the second order
adiabatic initial states in the left part of the intermediate
regime at very small k, they actually have very similar
magnitude in the right part of the intermediate regime next
to the almost scale-invariant regime. Based on these results,
only the latter contributes mostly to the angular power
spectrum at low l multipoles.
In Figs. 11 and 12, we compare the angular power

spectrum predicted by LQC and mLQCs with the fourth
order adiabatic initial states in both the hybrid and the dressed
metric approaches. As one can see from Fig. 11, LQC has a
smaller angular power spectrum at large angles in compari-
sonwith mLQC-I, while the reverse is true for the zeroth and
second order adiabatic initial states in the case of the hybrid
approach. The reason is the presence of a large spike right
before the scale-invariant regime in the primordial power
spectrum with fourth order adiabatic initial states. However,
the angular power spectrum for fourth order adiabatic initial
states in the case of the dressedmetric approach is identical to
zero and second order adiabatic initial states. The reason is
that the difference in the intermediate regime due to the
different order of adiabatic initial states occurs in very small
k, so the contribution to angular power is tiny and almost
indistinguishable.
Finally, we summarize this section by pointing out that

the predictions for the primordial power spectrum and the
relevant angular power spectrum depend on the regulari-
zation ambiguities in the background dynamics, quantum

ambiguities originating from treatments of cosmological
perturbations, the order of adiabatic initial states, and also
how far from the bounce they are imposed in the con-
tracting branch. In fact, we realize that although the angular
power spectra computed in all three models and two
different perturbation approaches are consistent with the
CMB observations at small scales with l ≥ 20, they
actually exhibit different behaviors at large angles for
low l multipoles. In general, the angular power spectrum
computed using the hybrid approach has a smaller
deviation from the angular power spectrum predicted by
the standard ΛCDM cosmological model in comparison
with the dressed metric approach. Besides, among these
three models, mLQC-I shows the smallest deviation from
the angular power spectrum predicted by the standard
ΛCDM cosmological model at large angles for zeroth
and second order adiabatic initial states, while for the fourth
order adiabatic initial states in the hybrid approach, LQC
has the smallest deviation from the angular power spectrum
predicted by the standard ΛCDM cosmological model at
large angles. In any case, mLQC-II has the largest devia-
tions from the angular power spectrum predicted by the
standard ΛCDM cosmological model at large angles.

V. SUMMARY

In this manuscript, we conduct a detailed investigation of
the primordial power spectrum and the relevant angular
power spectrum in loop quantum cosmological models for
a spatially flat FLRW universe filled with a single infla-
tionary scalar field. Our main purpose is to investigate the
potential observational signals from CMB that can be used

FIG. 12. The angular power spectrum predicted by LQC models in the case of the dressed metric approach, while fourth order
adiabatic initial states are used for LQC and mLQC-II and the de Sitter initial state is used for mLQC-I. The black dots are the Planck
2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error bars for large l multipoles. The green
curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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to distinguish three loop quantum cosmological models,
namely the standard LQC and Thiemann regularized
versions mLQC-I/II, arising from regularization ambigu-
ities in the background dynamics, as well as to look for
signals to differentiate two perturbation approaches,
namely the dressed metric approach and the hybrid
approach in LQC. We first briefly reviewed the background
dynamics of these three models for a spatially flat FLRW
spacetime, with an emphasis on the effective dynamics of
each model. Using the effective Hamiltonian constraint,
one can first derive the effective Hamilton’s equations in
each model and then numerically solve the evolution of the
background dynamics of the Universe with a given set of
initial conditions. To facilitate the comparison of three
models, we choose the inflationary potential to be the
Starobinsky potential, which is favored by Planck 2018
data, and the initial conditions are set at the bounce point
with a particular choice of the value of the inflaton field so
that the duration of the inflationary phase in each model is
fixed to be the same number of e-foldings Ne ¼ 65. While
the analysis presented in this manuscript focused on these
number of e-foldings, our results did not change when the
e-foldings were changed to 60 or 70.
Once the background dynamics is fixed, we then proceed

with the linear cosmological perturbations on the quantum
background spacetimes. To numerically compute the pri-
mordial power spectrum and the angular power spectrum in
each model, we appeal to two alternative perturbation
approaches, namely the dressed metric approach and the
hybrid approach, which both use Fock quantized perturba-
tions on the loop quantized background. Our previous work
has demonstrated that the difference in these two
approaches at a practical level is tied to the way polym-
erization is performed at different steps and at a phenom-
enological level both approaches are closely related [70]. In
particular, using the effective dynamics, the modified
Mukhanov-Sasaki equation for each model in the dressed
metric and the hybrid approaches can be obtained by
polymerizing the background quantities, namely the
inverse of the conjugate momentum of the scale factor
and its square, in the classical Mukhanov-Sasaki equation,
and this procedure leads to distinct effective mass functions
for different models and approaches as their unique features
when compared with one another. Equipped with the
modified Mukhanov-Sasaki equation, we then move on
to numerically compute the primordial power spectrum in
each model and perturbation approach. For the initial states
of the linear perturbations, we choose the zeroth, second,
and fourth order adiabatic initial states in the contracting
branch when the adiabatic conditions are satisfied, with an
exception to the mLQC-I in the dressed metric approach,
whose initial states are chosen to be the exact de Sitter
solution tailored to the special properties of the effective
mass function in this model and approach. To compare
these models appropriately, we set the inflaton’s mass and

the initial value of the scalar field at the bounce in such a
way that all models predict not only approximately the
same number of inflationary e-foldings, which is Ne ¼ 65,
but also almost the same scale-invariant regime for the
primordial power spectrum with a relative difference of less
than 1%. As a result, all the differences in the predicted
primordial power spectrum in LQC and mLQC-I/II from
the dressed metric approach and the hybrid approach can be
traced to the differences in the infrared and the intermediate
regimes, which are supposed to encode the quantum
gravitational effects.
From the resulting primordial power spectrum for each

model and approach, we find some interesting results. First,
the moment when the adiabatic initial states of the linear
perturbations are imposed in the contracting phase can
affect the amplitude of the primordial power spectrum in
the intermediate regime. This is true for all three models in
both the dressed metric and the hybrid approach, except
mLQC-I in the dressed metric approach, in which the exact
de Sitter initial state is employed. The amplitude of the
primordial power spectrum increases when the adiabatic
initial states are chosen at an earlier time in the contracting
phase. This is mainly because these states are just the
approximate solutions of the Mukhanov-Sasaki equation of
the mode function. In contrast, in the dressed metric
approach of mLQC-I, the exact solution of the
Mukhanov-Sasaki equation, which is the de Sitter initial
state, is available, and the resulting primordial power
spectrum is then independent of the initial time. Second,
when different adiabatic initial states are employed, the
amplitude of the primordial power spectrum also depends
on the order of these states. To be specific, irrespective of
the perturbation approach, in LQC and mLQC-II, the fourth
order adiabatic initial states result in the primordial power
spectrum with the lowest amplitude in the intermediate
regime as compared to the zeroth and second order
adiabatic initial states. When the order of the adiabatic
initial states decreases, the amplitude of the primordial
power spectrum increases. The only exception to this
observation is mLQC-I in the hybrid approach, where
we find the primordial power spectrum resulting from the
fourth order adiabatic initial states has a larger amplitude
than that from the second order adiabatic initial states.
Moreover, in this case, there appears a peak of large
magnitude in the rightmost part of the intermediate regime,
which precedes the scale-invariant regime. Third, the
primordial power spectrum for both LQC and mLQC-II
in the dressed metric approach has a slightly stronger
suppressing regime in the infrared regime in comparison
with the hybrid approach. Moreover, for mLQC-I in the
dressed metric approach with the de Sitter initial state, the
primordial power spectrum reaches a constant value in the
infrared regime rather than being suppressed. Finally, from
the primordial power spectrum, it is not easy to distinguish
the dressed metric approach from the hybrid approach in
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LQC and mLQC-II, where the amplitude of the primordial
power spectrum in the intermediate regime in the two
approaches looks close to each other once the same initial
states are chosen. The differences in the primordial power
spectrum between these two approaches become only
discernible in mLQC-I, where one has to choose different
initial states for the two approaches. As a result, to
distinguish the observational effects of these two
approaches and the regularization ambiguities, one must
go through further steps to compute the angular power
spectrum in each model and approach.
When the numerical primordial power spectrum is fed

into the CAMB code, the relevant angular power spectrum
for each model and approach can be obtained. From our
results, we find that although all the models and approaches
can result in the angular power spectrum, which is con-
sistent with the angular power spectrum predicted by the
standard ΛCDM cosmological model at small scales with
l ≥ 20, they do have distinct predictions on the angular
power spectrum at large angles with l < 20. To be specific,
in the dressed metric approach, the order of the adiabatic
initial states in LQC and mLQC-II would not affect the
amplitude of the angular power spectrum at large angles
with l < 20. Besides, the predicted angular power spectrum
at large angles always has a larger deviation from the
angular power spectrum predicted by the standard ΛCDM
cosmological model in mLQC-II than in LQC. This
immediately makes mLQC-II less appealing as compared
with LQC. Furthermore, although mLQC-I predicts a
primordial power spectrum with a Planck scale infrared
regime, it turns out that the resulting angular power
spectrum from mLQC-I is largely improved at large angles,
with the smallest deviations from the angular power
spectrum predicted by the standard ΛCDM cosmological
model among all three models. This implies that in the
dressed metric approach, the averaged amplitude of the
resulting primordial power spectrum takes the lowest
values in the rightmost part of the intermediate regime
neighboring the scale-invariant regime since only this part
of the primordial power spectrum significantly contributes
to the angular power spectrum at large angles. On the other
hand, in the hybrid approach, we observe a similar pattern
for the zeroth and second order adiabatic initial states,
while the deviation of the angular power spectrum at large
angles from the angular power predicted by the standard
ΛCDM cosmological model is smaller in comparison with
the dressed metric approach. The deviation of the angular
power spectrum at large angles from the angular power
spectrum predicted by the standard ΛCDM cosmological
model is always largest inmQLC-II and smallest inmLQC-I.

In particular, it is worth emphasizing that with the
simplest zeroth and second order adiabatic initial states
set in the contracting phase, one can obtain an angular
power spectrum that is close to the angular power
spectrum predicted by the standard ΛCDM cosmological
model even at low l multipoles from mLQC-I by using the
hybrid approach. As compared with the results in LQC
and mLQC-II, similar results between mLQC-I and
ΛCDM are very striking since no special choice of the
initial states of the linear perturbations is required. In this
sense, mLQC-I seems to be a more favorable construction
of the quantum cosmological theory from LQG, and the
hybrid approach also appears easier to reconcile with the
observations. Finally, with the fourth order adiabatic
initial states, LQC results in an angular power spectrum
with the least deviation from the angular power spectrum
predicted by the standard ΛCDM cosmological model at
large angles. In this case, the results from mLQC-I are less
satisfactory due to the spike in the intermediate regime.
These results are very interesting since by construction
mLQC-I follows the procedure in LQG more directly than
any other considered model.
To conclude, our investigations on the angular power

spectrum predicted by LQC and mLQCs models in both the
dressed metric approach and the hybrid approach reveal
that quantization regularization and quantum ambiguities
are not merely theoretical artifacts. Instead, they can lead to
potential signals that can in principle be compared and
tested by direct observational data in the future. Although
with the commonly used adiabatic initial states, none of the
models and approaches actually resolve the anomalies in
the angular power spectrum at large angular scales [80], the
similarities between the angular power spectrum predicted
by mLQC-I and the standard ΛCDM cosmological model
point out a possible new direction to resolve this issue. In
particular, there might be a certain regularization that can
lead to a quantum cosmological model in which the angular
power spectrum is naturally suppressed by setting general
initial states in the contracting phase. It will be interesting
to examine these models with special initial states, as
considered earlier for standard LQC, to explore whether
modified versions of LQC can result in an alleviation of
anomalies in CMB.
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