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We study gravitational collapse in effective loop quantum gravity, focusing on nonmarginally bound
configurations in Lemaître-Tolman-Bondi spacetimes. In the homogeneous limit we recover the effective
dynamics of loop quantum cosmology for Friedman cosmologies with spatial curvature. We study a
particular family of configurations with a homogeneous interior and a sharp boundary where the dust
energy density rapidly and continuously decreases to zero. For these configurations, the gravitational
collapse continues to the Planck regime when a bounce occurs, at which point the dust ball starts to expand,
and a shock wave forms in the gravitational field within the order of a Planck time after the bounce. The
shock slowly moves outward, eventually reaching the horizon which then disappears, at which time there is
no longer a black hole. If the initial configuration is bound, the shock asymptotes to a maximal radius,
whereas for unbound initial configurations the shock escapes to infinity. In all cases, the black hole lifetime
is proportional to the square of the black hole mass, and additionally depends on how strongly bound the
dust profile is; this last quantity also affects the vacuum region outside the dust profile which is not solely
determined by the black hole mass and charge as in spherically symmetric general relativity. We also use
numerics to study a wide range of other types of initial configurations, both bound and unbound, with
qualitatively similar results.
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I. INTRODUCTION

The physics of the gravitational collapse of a star, and the
associated question of the ultimate fate of the star, is a topic of
great interest in astrophysics. Ever since the groundbreaking
work by Oppenheimer and Snyder [1], significant efforts
have been made to construct models and gain a deeper
understanding of the underlying physics when amassive star
undergoes gravitational collapse. It is now widely accepted
that if the mass of the star is sufficiently large, it will
eventually become a black hole. This prediction is based
on Einstein’s theory of gravity and applies in a regimewhere
the theory is believed to be valid; however, the classical
theory also predicts that such a collapse will inevitably lead
to the formation of a singularity in the spacetime [2]—
singularities such as these are commonly thought to be
pathologies of the classical theory that should be resolved by
a complete theory of quantum gravity.
It is then natural to ask what the impact of quantum

gravity may be on the process of gravitational collapse.

For a sufficiently large star, it seems reasonable to expect
that quantum gravity effects will be negligible until well
after the black hole has formed, and that they will only be
large in regions where the spacetime curvature reaches the
Planck scale. Still, it is clearly of interest to develop models
of gravitational collapse that include quantum gravity
effects in order to answer this question more precisely,
and in a quantitative manner.
Our goal in this paper is to study how holonomy

corrections, motivated by loop quantum gravity (LQG),
affect the dynamics of the gravitational collapse of dust,
as captured in the Lemaître-Tolman-Bondi (LTB) space-
time that has been the subject of considerable study in
LQG [3–14].
In addition to the studies of black holes in loop quan-

tum gravity recently reviewed in [15–17], a variety of
approaches has been developed to study gravitational col-
lapse in the context of loop quantum gravity. This includes
models that have a finite number of degrees of freedom,
like the Oppenheimer-Snyder model (corresponding to a
star, with a homogeneous and isotropic interior, and vacuum
exterior) [7,12,18–44] and thin-shell collapse models
[45–48] (see also [32,49–54] for studies of these models in
Wheeler-DeWitt and other approaches to quantum gravity),
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as well as richer models that allow for local degrees of
freedom, typically by including dust [3,4,6–14] or a
scalar field [55–59] in spherically symmetric gravity (see
also [60–64] for studies of such models in other approaches
to quantum gravity).
Here, we will consider the model for the LTB spacetime,

corresponding to dust minimally coupled to gravity in
spherical symmetry. The effective dynamics for the LTB
spacetimes that we use, including corrections from LQG,
are derived by (i) first at the classical level imposing
spherical symmetry, using the dust field as a relational
clock, and fixing the spatial diffeomorphism constraint by
using the areal gauge, and (ii) then holonomy corrections,
due to the discreteness of quantum geometry predicted
by LQG, are included in the resulting Hamiltonian from
which the equations of motion can be derived; for details
see [7,9,10]. Further, it has recently been shown that it is
not necessary to gauge fix the diffeomorphism constraint
before including holonomy corrections; rather this step can
be done after including holonomy corrections [11,12]—in
either case, the resulting LQG effective equations of motion
for the LTB spacetime are the same. Note that the choices
of the dust time and areal gauges are equivalent to using
generalized Painlevé-Gullstrand coordinates, a convenient
choice that, already at the classical level, is known to be
well-suited for a Hamiltonian analysis as well as for
numerics [65,66].
In this paper, we will focus on configurations corre-

sponding to gravitational collapse that are not marginally
bound. Collapsing configurations that are marginally
bound are those for which all of the dust content, in the
infinite past, was at infinity with vanishing velocity—in
this sense, these are configurations for which the kinetic
energy and gravitational potential energy of each shell
composing the star sum to zero. In generalized Painlevé-
Gullstrand coordinates, the marginally bound configura-
tions have vanishing spatial curvature (though the
spacetime curvature is nonvanishing). For the LQG effec-
tive equations of motion of interest here, the marginally
bound case has already been studied in some detail [9,10],
so as mentioned above here we will study configurations
that are not marginally bound. Specifically, we will con-
sider a range of initial configurations, including some
where the dust is not sufficiently energetic to escape to
infinity, and others where the dust can escape to infinity
with a leftover velocity; these possibilities correspond,
respectively, to positive or negative spatial curvature in
generalized Painlevé-Gullstrand coordinates. (Note that for
the Oppenheimer-Snyder model of collapse, these possibil-
ities correspond to an interior that is, respectively, a closed
or open Friedman universe.)
There are two intertwined main objectives in this

work. The first is to check the robustness of the main
results derived in the marginally bound case: do the main
features persist beyond the particular family of marginally

bound solutions? The second is to study the impact of
spatial curvature on the results. This is especially important
since only a few studies, such as [33,44], have so far studied
solutions to gravitational collapse in LQG beyond the
spatially flat case.
Concerning the first main objective, numerical simula-

tions starting from a wide range of initial configurations
have shown that for the marginally bound case, LQG
effects cause two main qualitative effects in gravitational
collapse: a bounce occurs in the Planck regime, and a
discontinuity in the gravitational field forms, typically
shortly before or after the bounce (within a time of ∼tPl)
[9,10], although it is possible to choose initial conditions so
the discontinuity forms well before the bounce. This
discontinuity is a shock wave, which is a weak solution
to the dynamics, and the shock is found to slowly move
outward after the bounce, eventually reaching the horizon
at which time the horizon goes away and there is no black
hole anymore; the lifetime of the black hole (between the
initial formation of the horizon and its disappearance when
the shock exits it) was found to be ∼M2=mPl. As a first step
in checking the robustness of these results, it is necessary to
relax the assumption of the dust field being marginally
bound. It is especially important to ensure that the forma-
tion of a shock is a robust prediction, since there were no
hints of such an effect in earlier work—in part this is not
entirely surprising since shocks can only form when there
are local degrees of freedom, so models with a finite
number of degrees of freedom will necessarily be blind to
the possibility of a shock forming. On the other hand, it has
recently been shown that it is possible to obtain a model for
Oppenheimer-Snyder collapse in LQG without the forma-
tion of a shock [12,43] (although at the expense of either a
discontinuity in the dust field or a nonmonotonic areal
radius). However, it turns out that the Oppenheimer-Snyder
model is finely tuned and its dynamics are not represen-
tative: at least in the marginally bound case, for any
collapsing profile of dust where the dust energy density
is continuous and of compact support, a shell-crossing
singularity will necessarily form [13], signaling the for-
mation of a shock wave and the need to consider weak
solutions to the dynamics. This most recent result suggests
that a shock will form in typical solutions to dust collapse in
LQG, at least in the marginally bound case. By studying
configurations beyond this special case, it will be possible
to determine how generally a shock forms during dust
collapse in LQG.
Further, the studies that have considered gravitational

collapse in LQG with nonvanishing spatial curvature have
found that, at least in the simple case of the Oppenheimer-
Snyder model, in the presence of positive spatial curvature
the dynamics become cyclical: the collapse phase ends at a
bounce (generated by LQG effects), and then the radius of
the star begins to increase, but due to the positive spatial
curvature, the interior is (a portion of) a closed Friedman
universe which will eventually recollapse, which will be

CIPRIANI, FAZZINI, and WILSON-EWING PHYS. REV. D 110, 066004 (2024)

066004-2



followed by a bounce, and so on. In this way, the result is a
cyclical process that has been described as a “pulsating
star” [33,44]. Since these results have so far only been
obtained in models for gravitational collapse that are
restricted to a finite number of degrees of freedom, it is
of interest to determine whether such cyclical dynamics
also arise when there are local degrees of freedom. In
particular, if a shock forms, how does this modify the
picture? Does the shock move cyclically, or are the
dynamics no longer cyclic? And although this discussion
has focused on the case of positive spatial curvature, it is
also interesting to understand the impact of negative spatial
curvature on the dynamics as well. By finding numerical
solutions to the dynamics, it will be possible to answer
these questions, and determine the role of spatial curvature
(whether positive or negative) on gravitational collapse
in LQG.
The outline of the paper is as follows. We start by briefly

reviewing the LQG effective dynamics for LTB spacetimes
in Sec. II, and in Sec. III we take the homogeneous limit
(for arbitrary spatial curvature), to obtain the Friedman
universe and recover some results of loop quantum cos-
mology. Then, in Sec. IV we study configurations corre-
sponding to a star with a sharp boundary, close to the
Oppenheimer-Snyder model (with nonvanishing spatial
curvature) but with a continuous energy density for the
dust. It is possible to approximately solve the dynamics for
the collapse for such a configuration, with the result that
there is a bounce, and a shock forms very soon after the
bounce and moves outward. In this section we also discuss
the properties of the vacuum exterior, which are in many
respects similar to what was found for the spatially flat
case, but with the difference that there is quantum hair due
to the presence of spatial curvature. Finally, in Sec. V we
solve the dynamics numerically for a wide range of initial
conditions, first confirming the results found for stars with
sharp boundaries obtained in the previous section, and then
considering other types of configurations. The general
picture is always the same: during the collapse, a bounce
occurs in the Planck regime due to LQG effects, and a
shock wave forms at the latest very soon after the bounce.
We end with a short discussion in Sec. VI.
We use units where c ¼ 1 throughout; in Sec. V devoted

to the numerical analysis, we additionally use units where
G ¼ ℏ ¼ 1 and set the Barbero-Immirzi parameter to γ ¼ 1.

II. EFFECTIVE LQG DYNAMICS
FOR LTB SPACETIMES

In generalized Painlevé-Gullstrand (GPG) coordinates,
the metric for the LTB spacetime is

ds2 ¼ −dt2 þ 1

1þ εðx; tÞ ðdxþ NxdtÞ2 þ x2dΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and ε > −1.

LQG effects on the dynamics of LTB spacetimes can be
captured through a set of effective equations of motion
where corrections (proportional to ℏ) modify the classical
Hamiltonian, expressed in terms of connection and triad
variables, generating the dynamics. These corrections are
due to the fundamental discreteness of quantum geometry
predicted by LQG, and their main effect is to effectively
cause a repulsive force when the spacetime curvature nears
the Planck scale.
Different approaches have been proposed to derive

the LQG effective dynamics for LTB spacetimes
[3,7,9–11,14,40,47,58]; here we use the effective dynamics
derived by performing the so-called “K” loop quantization
after imposing the areal and dust-time gauges before
quantization [7,9,10]. It has recently been shown that the
same effective equations can also be obtained without
needing to impose the areal gauge before the loop quan-
tization [11,12] (and these dynamics also follow from a
covariant action based on a mimetic theory of modified
gravity [12]). In this effective theory, following the notation
in [7,67], the shift vector takes the form

Nx ¼ −
x

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
; ð2:2Þ

where b is the component of the extrinsic curvature in
the angular direction (for further details, see [67]), γ is the
Barbero-Immirzi parameter, and Δ is the minimum area
gap in loop quantum gravity Δ ∼ l2

Pl; the effective dynam-
ics are generated by the Hamiltonian

Hphys ¼ −
1

2Gγ

�jEbj
γΔx

∂x

�
x3sin2

ffiffiffiffi
Δ

p
b

x

�
þ γjEbj

x
þ γx
jEbj

�
:

ð2:3Þ

Here, Eb is the component of the densitized triad in the
angular directions related to metric components through
ðEbÞ2 ¼ x2=ðεþ 1Þ, and is canonically conjugate to b:
fbðx1Þ;Ebðx2Þg ¼ Gγδðx1 − x2Þ. Note thatHphys is derived
from a gauge fixing of the Hamiltonian constraint by using
the dust field as a relational clock [7]; as a resultHphys is the
physical Hamiltonian (not a constraint), and does not
necessarily vanish. The equations of motion can be derived
from the physical Hamiltonian; assuming Eb > 0,

Ėb ¼ fEb;Hphysg ¼ −
x2

γ
ffiffiffiffi
Δ

p ∂x

�
Eb

x

�
sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
;

ð2:4Þ

ḃ¼fb;Hphysg¼
γ

2

�
x

ðEbÞ2−
1

x

�
−

1

2γΔx
∂x

�
x3sin2

ffiffiffiffi
Δ

p
b

x

�
;

ð2:5Þ
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and the energy density of the dust field is given by

ρ ¼ −
Hphys

4πxjEbj ¼
1

8πGx2
∂x

�
x3

γ2Δ
sin2

ffiffiffiffi
Δ

p
b

x
−

x3

ðEbÞ2 þ x

�
:

ð2:6Þ

The two Eqs. (2.4) and (2.5) can be simplified by
changing variables from Eb to ε,

ε ¼ x2

ðEbÞ2 − 1; ð2:7Þ

with the result

ε̇ ¼ −
x

γ
ffiffiffiffi
Δ

p ð∂xεÞ sin
ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
; ð2:8Þ

ḃ ¼ γ

2x
ε −

1

2γΔx
∂x

�
x3 sin2

ffiffiffiffi
Δ

p
b

x

�
; ð2:9Þ

and the dust energy density becomes

ρ ¼ 1

8πGx2
∂x

�
x3

γ2Δ
sin2

ffiffiffiffi
Δ

p
b

x
− xε

�
: ð2:10Þ

The family of solutions with ε ¼ 0 (known as marginally
bound) has already been studied in some detail [9,10,13];
the dynamics simplify considerably since (2.8) is auto-
matically satisfied, and for this set of solutions the equation
for b becomes a conservation law (after rescaling b by a
factor of x). Here we will focus on the case ε ≠ 0, which
requires solving two coupled nonlinear partial differential
equations that are not conservation equations, rendering
them challenging to handle whether analytically or numeri-
cally. In the following, we first consider some particularly
simple configurations where analytical solutions can be
derived (either exact or approximate, depending on the
case), and then develop and use numerical tools tailored to
solve these equations of motion.

III. HOMOGENEOUS AND ISOTROPIC
COSMOLOGY

As a first step, it is interesting to consider the homo-
geneous limit of the LTB spacetime, corresponding to the
Friedman-Lemaître-Robertson-Walker (FLRW) spacetimes.
In the standard comoving Friedman coordinates, the line

element (for arbitrary spatial curvature k) for the FLRW
spacetime is

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
: ð3:1Þ

A connection with the line element (2.1) for the LTB
spacetime in GPG coordinates is obtained by the change

of coordinates xðt; rÞ ¼ aðtÞ · r, with a brief calculation
giving

ds2 ¼ −
�
1 −

H2x2

1 − kx2

aðtÞ2

�
dt2 −

2Hx

1 − kx2

aðtÞ2
dtdxþ 1

1 − kx2

aðtÞ2
dx2

þ x2dΩ2; ð3:2Þ

where H ¼ ȧ=a is the Hubble rate. A direct comparison
between the two line elements indicates that

Nx ¼ −Hx ¼ −
x

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
; ε ¼ −k ·

x2

a2
:

ð3:3Þ

The system of equations (2.4) and (2.5) can be rewritten
in terms of aðtÞ and ρðtÞ. Squaring the first relation of (3.3),

H2 ¼ 1

γ2Δ
sin2
� ffiffiffiffi

Δ
p

b
x

��
1 − sin2

ffiffiffiffi
Δ

p
b

x

�
; ð3:4Þ

and then combining (2.6) and the second equality of (3.3),

H2 ¼
�
8πG
3

ρ −
k
a2

��
1 −

ρ

ρc
þ 3k
8πGρca2

�
; ð3:5Þ

where ρc ≡ 3=ð8πGγ2ΔÞ is the critical energy density in
LQC; this is in agreement with [44], and is precisely the
LQC effective Friedman equation, for any spatial curvature
k, following the “K” loop quantization derived in earlier
work focused on homogeneous and isotropic cosmology
[68,69] (the effective Friedman equation for the spatially
flat k ¼ 0 case was previously derived from the LQG
effective dynamics for LTB spacetimes in [7]).
The continuity equation can be derived by differentiating

(2.6) with respect to t and using both relations in (3.3),
giving

ρ̇ ¼ H
4πGγx2

∂x

�
x2ḃ −

γkx3

a2

�
¼ −3Hρ; ð3:6Þ

and the last equality follows from using (2.9) and then
(2.6). Note that there are no quantum corrections to
the continuity equation, again exactly as found in LQC.
These derivations of the LQC effective Friedman and
continuity equations (which can be combined to derive
the Raychaudhuri equation) show the robustness of the
earlier results in LQC, and provide evidence that the
effective dynamics for the LTB spacetimes are capturing
the same physics as what was earlier found in a simpler
context.
The effects due to LQC cause a nonsingular bounce to

occur in the Planckian regime when the terms in the second
set of parentheses on the right side of (3.5) vanish. Away
from the bounce, LQG effects rapidly become negligible
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and general relativity becomes an excellent approximation
(the classical Friedman equation can be obtained in the
limit Δ → 0, which sends ρc → ∞). There will be a single
bounce in the spatially open and spatially flat cases
(k ¼ 0;−1), and an infinite number of bounces for the
spatially closed case (k ¼ þ1) due to the recollapses that
occur due to the spatial curvature. For further details on the
LQC of FLRW spacetimes, see, e.g., the review [70].

IV. COLLAPSE OF A STAR
WITH A SHARP BOUNDARY

The simplest model for gravitational collapse is the
Oppenheimer-Snyder configuration, where the interior is
composed of a homogeneous dust field and the exterior is
vacuum.While this simple model is of considerable interest
since it is possible to find exact analytical solutions, in the
context of the LQG effective dynamics it is unusual in that a
shell-crossing singularity does not form, as is discussed in
more detail in the Appendix. This is different from the
generic case, since (at least for ε ¼ 0) all initial profiles for
the dust energy density that are continuous and of compact
support necessarily lead to the formation of a shell-crossing
singularity at which point a shock is formed [13]. Although
this last result has so far only been proven for ε ¼ 0, it
seems likely to be true for ε ≠ 0 as well, and we have
checked numerically that a shell-crossing singularity does
indeed occur for the initial configurations (for which ρ is
continuous and of compact support) considered in this
section; see the Appendix for details.
Owing to this important limitation of the Oppenheimer-

Snyder model, here we will study configurations that are
close to Oppenheimer-Snyder (and therefore can in some
contexts be approximated by such a configuration to a high
degree of accuracy), but nonetheless have a continuous
initial profile for ρ, ε, and b for which a shell-crossing
singularity occurs, leading to the formation of a shock.

A. Initial data

A simple initial energy density profile that is continuous,
with a homogeneous interior and a sharp boundary is

ρðt0Þ ¼
8<
:

ρ0; for x < x0;

ρ0 ·
x1−x
x1−x0

; for x0 < x < x1;

0; for x > x1;

ð4:1Þ

where x0 is the boundary of the inner homogeneous
region, and ρðx; t0Þ decreases linearly between x0 and x1
where it reaches 0. By taking x1 − x0 ≪ x0, the boundary
to the star can be made arbitrarily sharp. Up to the bounce,
the dynamics of such a configuration—as confirmed
numerically—can be approximated by the Oppenheimer-
Snyder configuration obtained as the limiting case x1 → x0
wherein

ρðt0Þ → ρOSðt0Þ ¼ ρ0½1 − θðx − x0Þ�; ð4:2Þ

in this limit x0 is the areal radius of the Oppenheimer-
Snyder star at the initial time tin ¼ t0, and θ is the Heaviside
function so ρOSðt0Þ vanishes for x > x0.
Since the innermost region is a portion of an FLRW

universe,

εinðt0; xÞ ¼ −k
x2

aðt0Þ2
: ð4:3Þ

For the exterior, we also wish to choose a configuration
close to Oppenheimer-Snyder. For the Oppenheimer-
Snyder model, the exterior is determined by enforcing
the Israel junction conditions [71], and it is a straightfor-
ward (although tedious) calculation to show that in the
exterior region ε ¼ −kx20=aðt0Þ2. To mimic this behavior,
we set the continuous initial condition for ε:

εðt0; xÞ ¼
�−α · x

2

x2
0

; for x < x0;

−α; for x > x0;
ð4:4Þ

where α ¼ kx20=aðt0Þ2.
Inverting relation (2.6),

bðt0;xÞ¼−
xffiffiffiffi
Δ

p sin−1
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2Δ
x3

�
8πG

Z
x

0

dx̃ x̃2ρðx̃Þþxε

�s #
;

ð4:5Þ

where the negative root is chosen so the profile is initially
collapsing rather than expanding. Therefore, b is fully
determined (up to an overall sign corresponding to con-
traction or expansion) by the choice of initial conditions for
ρ and ε; for the choices made above,

bðt0; xÞ ¼

8>>>>>>>><
>>>>>>>>:

− xffiffiffi
Δ

p sin−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2Δ
x3

�
8
3
πGρ0x3 − αx3

x2
0

	r �
; for 0 < x < x0;

− xffiffiffi
Δ

p sin−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2Δ
x3

�
2
3
πGρ0 ·

4x1x3−3x4−x40
x0−x1

− xα
	r �

; for x0 < x < x1;

− xffiffiffi
Δ

p sin−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2Δ
x3

�
2
3
πGρ0ðx0 þ x1Þðx20 þ x21Þ − xα

	r �
; for x > x1:

ð4:6Þ
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B. Vacuum exterior solutions

Before studying the dynamics, it is worth reviewing
in some detail the general vacuum exterior solution
for x > x1 obtained from the effective LQG dynamics
for the LTB spacetime considered here; this has also been
studied in [44]. For a more general discussion of the
effective geometry of vacuum spherically symmetric space-
times in LQG, including a review of different models
that have been proposed in the literature, see the recent
reviews [15–17].
The stationary solutions to (2.8) and (2.9), putting

aside solutions for which sin
ffiffiffi
Δ

p
b

x cos
ffiffiffi
Δ

p
b

x ¼ 0 (where

sin
ffiffiffi
Δ

p
b

x ¼ 0 corresponds to the Minkowski spacetime,

and cos
ffiffiffi
Δ

p
b

x ¼ 0 corresponds to a fully quantum solution
to the effective dynamics with no classical equivalent that
requires a negative energy density ρ < −ρc), satisfy the
conditions

∂xε ¼ 0; ε ¼ 1

γ2Δ
∂x

�
x3
�
sin2

ffiffiffiffi
Δ

p
b

x

��
: ð4:7Þ

The first condition shows that for these stationary solutions,
ε is independent of t and x.
The simplest such solution is ε ¼ 0, which has already

been analyzed in [67], but other constant values are also
possible, such as

ε ¼ −α; ð4:8Þ

where the minus sign is included for later convenience, and
α < 1 as required by (2.1).
Substituting this expression into the second equation of

the system and integrating over x,

b ¼ −
xffiffiffiffi
Δ

p sin−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
γ2Δα
x2

þ γ2ΔC
x3

s !
; ð4:9Þ

and to obtain the correct classical limit the integration
constant C is fixed to RS ¼ 2GM, where as usual M is the
gravitational mass of the interior region. Then, the shift
vector Nx is

Nx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αþ RS

x

r
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2Δα

x2
−
γ2ΔRS

x3

s
: ð4:10Þ

These vacuum solutions are to some extent the effective
counterpart of Martel-Poisson coordinates [72] although
(as shall be discussed below) they are not diffeomorphic to
the solution with ε ¼ 0 as is the case in general relativity.
The resulting line element is

ds2 ¼ −dt2 þ 1

1 − α

 
dxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αþ RS

x

r

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2Δα

x2
−
γ2ΔRS

x3

s
dt

!
2

þ x2dΩ2; ð4:11Þ

in agreement with [44]. It is straightforward to verify that
ρ ¼ 0, so this is a vacuum solution. (As an aside, note that
this calculation does not prove that there cannot be other
vacuum solutions beyond these, but any such solutions, if
they exist, would necessarily not be stationary; see
also [44].)
The expression for Nx contains two square roots, which

limit its domain. The argument of the first square root is
always positive for α ≤ 0, but for positive α the Nx is real
only for

x ≤
RS

α
; ð4:12Þ

so the generalized Painlevé-Gullstrand coordinates used
here only hold up to this maximal areal radius; other
coordinates must be used beyond this point. Importantly,
the generalized Painlevé-Gullstrand coordinate system is
nonetheless valid for the central region where quantum
gravity effects are strongest and that we are most interested
in here.
The condition that the argument for the second square

root be positive implies

1þ γ2Δα
x2

−
γ2ΔRS

x3
≥ 0; ð4:13Þ

establishing a lower bound xmin, that depends on α, for the
domain of the metric for the vacuum solution in these
coordinates. For the collapse models of interest here, this
lower bound is not an issue, since (as we discuss below) we
find that the matter cannot be compressed into a radius
smaller than xmin. Rather, ρ ≠ 0 in the region x < xmin, and
we find that generalized Painlevé-Gullstrand coordinates
can be used to describe this interior region as well (where
the dust energy density is nonvanishing and therefore the
metric has a different form from the vacuum solution
considered in this section).
It is convenient to introduce the dimensionless variable

x̄ ¼ x=RS; in terms of this variable the condition (4.13)
becomes

δ≡ γ
ffiffiffiffi
Δ

p

RS
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄3

1 − αx̄

r
: ð4:14Þ

This relation is plotted in Fig. 1 for two different values
of α; the regions below the dashed line lie in the region
x < xmin.

CIPRIANI, FAZZINI, and WILSON-EWING PHYS. REV. D 110, 066004 (2024)

066004-6



Next, depending on the value of RS and α, the vacuum
solution can have two, one, or zero Killing horizons where
the norm of the Killing field ξμ ¼ ð1; 0; 0; 0Þ vanishes,
which gives the relation

1 −
RS

x
þ γ2Δα2

x2
−
2γ2ΔRSα

x3
þ γ2ΔR2

S

x4
¼ 0; ð4:15Þ

determining the location of the Killing horizons.
This equation can also be expressed in terms of x̄ and δ,

and the locations of the Killing horizons are shown by the
solid curve enclosing the green region in Fig. 1; the green
region lies between the two Killing horizons and is trapped.
Note that, for each α, there is a critical value for RS where
there is one Killing horizon, and for smaller RS there is no
horizon at all. Equivalently, in terms of δ, there is a critical
value δαh (that is easily computed numerically for any value
of α) for which there is one Killing horizon, and for δ > δαh
there are no Killing horizons.
To make contact with the classical limit, the location of

the outer horizon can be expanded in powers of Δ=R2
S,

xouter ¼ RS

�
1 − ðα − 1Þ2 γ

2Δ
R2
S
þO

�
Δ2

R4
S

��
; ð4:16Þ

and doing the same for the inner horizon gives

xinner ¼ ðγ2ΔRSÞ1=3
�
1þ 1 − 2α

3

�
γ2Δ
R2
S

�
1=3

þ ðα − 1Þ2
3

�
γ2Δ
R2
S

�
2=3

þO

�
Δ
R2
S

��
: ð4:17Þ

It is also of interest to calculate some curvature scalars
for the vacuum solution, for example,

R ¼ γ2ΔRS

x6
ð4αx − 6RSÞ; ð4:18Þ

RμνRμν ¼ γ4Δ2

x12
ð4α4x4 − 40RSα

3x3 þ 140R2
Sα

2x2

− 192R3
Sαxþ 90R4

SÞ: ð4:19Þ

As expected, these curvature scalars both vanish in the
classical limit Δ → 0. (Note also that although these
expressions diverge at x ¼ 0, that point lies outside the
domain of validity of these coordinates for the vacuum
solution: the curvature scalars are finite everywhere these
coordinates hold for the vacuum solution.)
The vacuum solution for α ≠ 0 is qualitatively similar to

the α ¼ 0 vacuum solution studied in [67], but differs in the
quantitative value of the curvature scalars and location of
the Killing horizons; this signifies the failure of the no-hair
theorem as these static solutions do not correspond to the
same spacetime geometry. In classical general relativity,

FIG. 1. This figure shows, for α ¼ −0.5, the position of the inner boundary of the domain xmin [Eq. (4.13), thick dashed line] and the
locations of the inner and outer Killing horizons xin and xout [Eq. (4.15), thick solid line] as a function of δ ¼ γ

ffiffiffiffi
Δ

p
=RS. The region

shaded in yellow lies below xmin, while the region shaded in green shows the trapped region between the Killing horizons. For a given
mass—i.e., fixed δ—there is always an xmin; three values of δ are shown with dotted lines, and the corresponding xmin is marked with a
circle. The location and number of horizons change with δ: if δ < δαh there are two (marked with red crosses), and if δ ¼ δαh there is only
one (marked with a violet cross); otherwise there is none. The thinner dashed and solid lines show the curves of Eqs. (4.13) and (4.15)
for α ¼ 0.2.
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vacuum solutions with different values of α are diffeo-
morphic to each other: one can be transformed into
the other by changing the time coordinate (but leaving
the radial coordinate x the same). This is not the case
for the effective LQG vacuum solutions being considered
here, as is most obvious from the dependence of the
curvature scalars on α. Therefore, although different
values of α corresponded to different coordinate systems
describing the same spacetime in classical general rela-
tivity, the effective LQG solutions with different values of
α correspond to different spacetime geometries. There are
more solutions to the LQG effective dynamics, which
signals the presence of quantum hair: the vacuum sol-
utions depend also on α, in addition to M.
In consequence, for these effective LQG dynamics the

vacuum spherically symmetric solutions have quantum hair
due to the spatial curvature (for the slicing implied by using
GPG coordinates) of the spacetime.

C. Prebounce dynamics

Returning to the study of the dynamics of the gravita-
tional collapse, it is convenient to split the analysis into
two parts, before and after the bounce. Before the bounce,
for a configuration with a sharp boundary as considered
here, the dynamics can be approximated to a high degree of
precision by the Oppenheimer-Snyder collapse, as can be
confirmed numerically. For this reason we will solve the
dynamics for the collapse phase here for the Oppenheimer-
Snyder configuration (4.2) as an approximation to the sharp
boundary configuration (4.1); in the two cases the initial
spatial curvature is the same, given by (4.4).
For the Oppenheimer-Snyder model for gravitational

collapse, the variable of interest is the radius LðtÞ of the
idealized star. Since the interior is a portion of an FLRW
spacetime, the radius L is proportional to the scale factor of
the FLRW spacetime,

LðtÞ ¼ aðtÞ · r0; ð4:20Þ

where r0 is a constant. Substituting into the effective
Friedmann equation (3.5) derived above,

�
L̇
L

�
2

¼
�
8πG
3

ρ −
kr20
LðtÞ2

��
1 −

ρ

ρc
þ 3kr20
8πGρcLðtÞ2

�
:

ð4:21Þ

To maintain consistent notation with the previous sections,
we denote

α ¼ k
Lðt0Þ2
aðt0Þ2

; ð4:22Þ

which fixes r20 ¼ α=k. Finally, substituting this back into
(4.21),

�
L̇
L

�
2

¼
�
8πG
3

ρ −
α

LðtÞ2
��

1 −
ρ

ρc
þ 3

8πGρc
·

α

LðtÞ2
�
;

ð4:23Þ

or, expressing ρ in terms of the gravitational mass M ¼
4π
R
L
0 dx x2ρ ¼ 4πL3=3 of the Oppenheimer-Snyder star,

�
L̇
L

�
2

¼
�
RS

L3
−

α

L2

��
1 − γ2Δ

�
RS

L3
−

α

L2

��
: ð4:24Þ

During the collapse phase before the bounce, the dynamics
of the radius of the Oppenheimer-Snyder star are given by
(4.24), and this also provides an excellent approximation to
the outer radius of a star with a sharp boundary as defined
in Sec. IVA.
As shown in Fig. 2, the solution to this equation of

motion is a star which collapses until it reaches a minimum
value Lmin that satisfies the relation RS=L3

min − α=L2
min ¼

ðγ2ΔÞ−1, which occurs when the spacetime curvature is
Planckian, and then a bounce occurs, with the star starting
to move outward—this second phase will be studied next.

FIG. 2. Solutions to Eq. (4.24) for RS ¼ 10 and three different values of alpha. These solutions are valid only up to the bounce. Times
and lengths are in Planck units, with γ ¼ 1 and Δ ¼ 1.
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This general picture occurs for any value of α, although
the value of Lmin and some other quantitative results will
depend on the specific value of α. Numerical simulations
show that the time between L reaching RS and then
reaching Lmin is of the order ∼M, and only weakly
dependent on the value of α.
Finally note that the minimum value allowed for L

from (4.24) is Lmin ¼ xmin, so it is always possible
to use generalized Painlevé-Gullstrand coordinates for
the exterior. Further, as shown here explicitly, these
coordinates can also be used for the interior during the
prebounce collapse phase, and as we argue next, they
remain valid for the interior after the bounce as well.

D. Postbounce dynamics

A numerical analysis shows that a shell-crossing singu-
larity forms soon after the bounce for the initial conditions
considered here; see the Appendix for details. This shell-
crossing singularity, which as a weak singularity is not
cured by effective loop quantum gravity [73], indicates
the formation of a shock wave [13]. (Therefore, while the
Oppenheimer-Snyder dynamics provide a good approxi-
mation of a realistic collapse before and up to the bounce in
effective LQG, this is no longer the case after the bounce as
no shell-crossing singularity occurs for the nongeneric
Oppenheimer-Snyder configuration.)
When shell crossings occur and shocks form, it is

necessary to look for weak solutions to the dynamics,
which solve the integral form of the equations of motion
(but may not solve the differential equations if disconti-
nuities arise dynamically in the weak solutions). Explicitly,
for an equation of the form u̇þ ∂x½fðu; xÞ� þ gðu; xÞ ¼ 0,
the integral form is obtained from its integral over both
x and t; the result is

R
x ujt2t1 þ

R
t fðu;xÞjx2x1 þ

R
t

R
x gðu;xÞ¼0,

and this is required to hold for all possible bounds for the
integrals over t and x. Although numerics (which we
implement in Sec. V) are often necessary to gain a complete
understanding of the dynamics of weak solutions, for some
simple configurations analytical tools can provide impor-
tant insights.
As a first step in this direction, it is convenient to rewrite

the equations of motion in terms of B ¼ xb, and use the
inverse Liebniz rule on the equation for ε,

Ḃ ¼ −∂x
�

x3

2γΔ
sin2

ffiffiffiffi
Δ

p
B

x2

�
þ γ

2
ε; ð4:25Þ

ε̇¼−∂x
�

x

2γ
ffiffiffiffi
Δ

p εsin

�
2
ffiffiffiffi
Δ

p
B

x2

��
þ ε

2γ
∂x

�
xffiffiffiffi
Δ

p sin

�
2
ffiffiffiffi
Δ

p
B

x2

��
;

ð4:26Þ

and given this form of the equations of motion, it is helpful
to define

mðx;BÞ ¼ x3

2γΔ
sin2

B
ffiffiffiffi
Δ

p

x2
; Gðx;ε;BÞ ¼ xε

2γ
ffiffiffiffi
Δ

p sin
2
ffiffiffiffi
Δ

p
B

x2
:

ð4:27Þ

In general, for a nonlinear wave equation for a field u of the
form u̇ ¼ −vu∂xuþ J that potentially contains some
source terms J (where J does not contain any derivatives
of u), the generalized velocity of the field u is given by vu.
In the same way, the generalized velocity of the B and ε
fields is

vB ¼ ∂Bm ¼ x

2γ
ffiffiffiffi
Δ

p sin
2
ffiffiffiffi
Δ

p
B

x2
; vε ¼ ∂εG ¼ vB: ð4:28Þ

The fact that the velocities of the two fields (which depend
on position and the fields themselves) are identical is
simply due to the fact that B and ε are redefinitions of the
canonically conjugate variables b; Eb. Although expected,
this result is nonetheless important in that it provides a
major simplification of the dynamics and provides an
avenue to solve the dynamics numerically, as shall be
explained in Sec. V.
It is also possible to derive an equation for the velocity of

the shock from the equation of motion for B. Since the
equation for B has the form of a balance law, the Rankine-
Hugoniot condition [74] can be used to calculate the
velocity of the shock,

vshock ¼
dLðtÞ
dt

¼ ½m�
½B�

¼ L3

2γ
ffiffiffiffi
Δ

p
sin2
� ffiffiffi

Δ
p

B
x2

	



Lþ − sin2

� ffiffiffi
Δ

p
B

x2

	



L−

BðLþÞ − BðL−Þ ; ð4:29Þ

here LðtÞ denotes the location of the shock that can be
thought of as the outer boundary of the “star” during the
postbounce phase, and

½f� ¼ lim
x→Lþ

fðxÞ − lim
x→L−

fðxÞ≡ fðLþÞ − fðL−Þ: ð4:30Þ

Since field ε has the same generalized velocity as B, the two
fields will travel together in lock step.
Given this relation for the velocity of the shock, it is

possible to calculate the lifetime of a black hole. The black
hole is initially formed when the radius of the collapsing
star lies at the location of the outer horizon xouter (approx-
imately equal to RS). Then, the collapse ends when L ¼
Lmin and a bounce occurs, and a shell-crossing singularity
occurs shortly after the bounce signaling the formation of a
shock wave near the surface of the star. As shall be shown
below, the shock slowly moves outward, eventually reach-
ing xouter at which time the horizon disappears and there is
no longer a black hole. As mentioned in Sec. IV C, the
duration from the formation of a black hole to the bounce is
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of the order of ∼M, so it remains to calculate the time
required for the shock to travel from Lmin to xouter,
neglecting the (Planckian) time required for the shock to
form after the bounce.
To evaluate this time, a certain number of assumptions

are needed, even for the relatively simple case of a star
with a sharp boundary; all of these assumptions are well
supported by numerical results. Numerics show that after
the bounce, the shock forms very near to the surface of
the star, and the dust energy density at the location of the
shock rapidly grows, while the energy density of the dust
lying inside the shock rapidly decays so that the interior
metric can soon be approximated as Minkowski. Since the
shock separates an interior region that has bounced whereffiffiffiffi
Δ

p
Bint=x2 < −π=2, and an exterior region that has not

yet bounced where
ffiffiffiffi
Δ

p
Bext=x2 > −π=2, the approxi-

mation that the interior region tends to Minkowski gives
BintðLÞ ¼ −πx2=

ffiffiffiffi
Δ

p
. Further, numerics also show that the

region outside the shockwave rapidly approaches the
vacuum solution discussed in Sec. IV B, so

BextðLÞ ¼ −
L2ffiffiffiffi
Δ

p sin−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−γ2Δα
L2

þ γ2ΔRS

L3

r �
: ð4:31Þ

The velocity of the shock is then

dLðtÞ
dt

¼ L3

2γ
ffiffiffiffi
Δ

p
−γ2Δα
L2 þ γ2ΔRS

L3

BextðLÞ þ πL2ffiffiffi
Δ

p
; ð4:32Þ

which can be simplified since soon after the bounce
L3 ≫ L3

min ∼ γ2ΔRS, where Lmin is the minimal radius of
the star, reached at the bounce, while ðγ2ΔRSÞ13 is the
location of the radius at the bounce in the spatially flat case
α ¼ 0. If we further assume that

ðγ2ΔRSÞ23 ≫ γ2Δjαj; ð4:33Þ

or equivalently

RS ≫ γ
ffiffiffiffi
Δ

p
jαj32; ð4:34Þ

then L2 ≫ ðγ2ΔRSÞ23. This last condition holds for black
holes with a mass much larger than mPlanck, for which
RS ≫

ffiffiffiffi
Δ

p
, and then the inequality is satisfied for any

reasonable value for α satisfying jαj ≪ RS=
ffiffiffiffi
Δ

p
.

Given these three approximations, it follows that
jBextðLÞj ≪ πL2=

ffiffiffiffi
Δ

p
, and

dL
dt

≈
γ
ffiffiffiffi
Δ

p

2πL2
ðRS − αLÞ: ð4:35Þ

The time required for the shock wave to travel from Lmin to
xouter ≈ RS is given by

Tþ ¼
Z

RS

Lmin

dL

�
dL
dt

�
−1
; ð4:36Þ

and given the approximations above, together with the
further approximation of taking the lower bound for the
integral to be 0 (which gives an error only of the order of
tPl), the integral simplifies to

Tþ ≈
2π

γ
ffiffiffiffi
Δ

p
Z

RS

0

dL
L2

RS − αL
; ð4:37Þ

with the result

Tþ ≈
πR2

S

γ
ffiffiffiffi
Δ

p ð−αÞ3 ½2 lnð1 − αÞ þ αðαþ 2Þ�; ð4:38Þ

which scales as M2. This expression is positive for all
values of α.
The total lifetime of the black holeT is given by the sumof

the collapse time (the time elapsed between the star’s radius
reaching its Schwarzschild radius and reaching its minimal
value Lmin), the time between the bounce and the formation
of the shock, and the time for the outgoing shock to reachRS
given byTþ. In Planck units the collapse time, as discussed at
the end of Sec. IV C, is of the order of M, while the time
between the bounce and the formation of the shock is of the
order tPl, so for large black holes with M ≫ mPl, the
dominant contribution of order M2 comes from Tþ,

T ≈ Tþ ≈
πR2

S

γ
ffiffiffiffi
Δ

p ð−αÞ3 ½2 lnð1 − αÞ þ αðαþ 2Þ�: ð4:39Þ

Interestingly, numerics suggest that this result also holds
to a goodapproximation for awide range of initial profiles for
the dust energy density, beyond the configurations with a
sharp boundary that have been considered in this calculation.
In the limit α → 0,

T ≈
2πR2

S

3
ffiffiffiffi
Δ

p
γ
; ð4:40Þ

which is precisely the result for the spatially flat case
α ¼ 0 [10].
For any fixed α, T ∝ M2 exactly as was found for the

spatially flat case; however, T depends quite strongly on
the value of α—this is in contrast to other quantities like the
location of the outer Killing horizon that only weakly
depend on α.
Finally, note that if α is positive, the shock will

asymptotically approach a maximal radius. This can be
found by integrating (4.35) from L ¼ 0 to some LðtÞ to
solve for t,

t ¼ −
2π

γ
ffiffiffiffi
Δ

p
α2

�
αL2

2
þ LðtÞRS þ

R2
S

α
ln

�
RS − αL

RS

��
:

ð4:41Þ
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From this expression, it is clear that t diverges as
L → RS=α.
This result is starkly different from expectations obtained

by considering the Oppenheimer-Snyder model (that
implicitly neglects the possibility that a shock wave could
form), where a cyclic “pulsating star” model was found
[33,44]. In contrast, the formation of the shock changes the
dynamics significantly, with the interior region rapidly
emptying (where ρ and ε both tend to zero with increasing t
after the bounce) and the shock moving outward, slowing
down, and eventually asymptotically approaching a maxi-
mal radius of RS=α, but never recollapsing. A caveat to this
result is that the calculation does depend on some assump-
tions, most notably that the energy density in the interior
can be neglected, but this seems reasonable as the shock
wave moves outward at a slow rate, and rapidly absorbs the
dust energy density of the interior which very quickly
becomes highly diluted.

V. NUMERICAL ANALYSIS

The equations of motion (4.25) and (4.26) constitute a
system of nonlinear coupled partial differential equations.
Owing to the formation of a shock in the gravitational field,
it is necessary to allow for weak solutions to the dynamics
and (except for some particularly simple configurations
like the case of a star with a sharp boundary considered
in Sec. IV) numerics are typically needed to solve the
dynamics.

A. Numerical methods

The equations of motion can be rewritten in terms of
dimensionless quantities

x →
ffiffiffiffi
Δ

p
x̃; t →

ffiffiffiffi
Δ

p
t̃; B →

ffiffiffiffi
Δ

p
B̃; ð5:1Þ

where the tildes will be suppressed to keep the notation as
simple as possible. We further use units such that
c ¼ G ¼ ℏ ¼ 1, and fix γ ¼ 1.
We discretize the fields in the radial direction on a set of

points xj where j ¼ 1;…; N, with a constant spacing δx, and
in time at points tn, n ¼ 0;…;Mwith a (potentially variable)
spacing δt. To allow for weak solutions, we consider the
integrated (in space) version of the two equations over a
single spatial cell Ij, extending from xj−1=2 ¼ xj − 1

2
δx to

xjþ1=2 ¼ xj þ 1
2
δx. This approximation entails representing

each field in a cell Ij by its mean value:

BjðtÞ ¼
1

δx

Z
xjþ1=2

xj−1=2

Bðt; xÞdx; εjðtÞ ¼
1

δx

Z
xjþ1=2

xj−1=2

εðx; tÞdx:

ð5:2Þ
With these definitions, integrating the equations of motion
over Ij is mostly straightforward, except for the second term
in the Eq. (4.26) for ε̇ that when integrated becomes

1

2γ

Z
xjþ1=2

xj−1=2

dx ε∂x

�
x sin

�
2B
x2

��
: ð5:3Þ

To handle this term, we assume that ε is nearly constant in Ij
and so can be approximated as εj, which can be taken outside
of the integral that then contains a total derivative and so only
contributes boundary terms. This approximation introduces a
small numerical error that (as shall be seen below) smoothes
out the shock wave in ε, but this error can be in large part
corrected by a simple procedure described at the end of this
subsection.
With this approximation, the discretized equations of

motion are

ḂjðtÞ ¼ −
1

δx
mðx; BÞ




xjþ1=2

xj−1=2
þ γ

2
εj; ð5:4Þ

ε̇jðtÞ ¼ −
1

δx
Gðx; B; εÞ




xjþ1=2

xj−1=2
þ 1

δx
εj · vB




xjþ1=2

xj−1=2
; ð5:5Þ

where m, G, and vB are defined in (4.27) and (4.28).
In general, solving two coupled nonlinear wave equa-

tions can be challenging, but in this case there is an
important simplification due to the fact that both fields
B, ε have the same speed (4.28), and that this speed is
independent of ε, depending only on x, B. As a result, it is
possible to solve the Eq. (5.4) for Ḃj first, and use the fact
that the ε field travels identically to solve for ε̇j next.
To solve for Ḃj, it is necessary to determine the value of

mðx; BðxÞÞ at the edges xj�1=2 of the cells. There are many
algorithms that can reconstruct those values; we opted to
employ the third-order weighted essentially nonoscillatory
(WENO) method [75]. WENO is designed to minimize
numerical oscillations near discontinuities in the solution.
It achieves this by combining multiple low-order approx-
imations of the field in aweightedmanner, favoring smoother
regions over sharp transitions. The third-order WENO
algorithm proceeds as follows (for further details, see [75]):
(1) For each cell Ij define 2 stencils fSjþkg1k¼0 ¼fxjþk−3=2; xjþk−1=2; xjþkþ1=2g composed of three

points each. Then, for each Sjþk define a linearly
interpolating polynomial

p0
jþkðxÞ ¼ Bjþk−1 þ

Bjþk − Bjþk−1

δx
ðx − xjþk−1Þ;

ð5:6Þ

which captures B up to OððδxÞ2Þ for the points
in Sjþk.

(2) For each cell Ij compute the convex combination of
the polynomials for the two stencils,

RjðxÞ ¼
X1
k¼0

ωj
kP

1
l¼0 ω

j
l

p0
jþkðxÞ: ð5:7Þ
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The parameters ωj
k are chosen to favor stencils

where the interpolating polynomial is smoother;
we follow [75] in taking (other proposals can be
found in [76–78])

ωj
0 ¼

1

2ðϵþ ISjÞ2
; ωj

1 ¼
1

ðϵþ ISjþ1Þ2
; ð5:8Þ

if vBðxj; BjÞ ≥ 0; if instead vBðxj; BjÞ < 0 the co-
efficients are swapped. Here ISj ¼ ðBj − Bj−1Þ2
represents a smoothness indicator, and ϵ ∼ 10−5 is
a parameter included to avoid divisions by zero. This
choice, away from sonic points, also boosts the
accuracy of the solution to third order [75].

(3) At each interface xjþ1=2 there are two reconstructed
values for B, calculated from each adjacent cell:
Rjðxjþ1=2Þ and Rjþ1ðxjþ1=2Þ. To determine the value
of B to use in evaluating m at the interface xjþ1=2 for
a given time step, it is necessary to determine
whether the field B is moving to the right, to the
left, or if there is a rarefaction wave; for the equation
of motion (5.4) this can be calculated from the
Godunov flux:

mGðxjþ1=2; Bðxjþ1=2ÞÞ

¼
�minRj≤B≤Rjþ1

mðxjþ1=2; BÞ if Rj ≤ Rjþ1;

maxRjþ1≤B≤Rj
mðxjþ1=2; BÞ if Rjþ1 < Rj:

ð5:9Þ
For a general discussion on the Godunov flux, see
[74], and for more on its use to determine the

dynamics of the B in LQG black hole collapse
models, see [10].
Note that the flux (5.9) can be simplified using

the analytical properties of mðx; BÞ. When comput-
ing the minimum or maximum on any boundary
xjþ1=2, since B∈ ½−πx2jþ1=2; 0�, it follows that the
minimum for m is always one of the endpoints
while the maximum for m is either one of the
endpoints or the stationary point x3jþ1=2=2γ

2 ob-

tained for B ¼ πx2jþ1=2=2.
These three steps form the third-order WENO-Godunov

algorithm to evaluate m at the boundaries of the cells; a
schematic representation of the algorithm is shown in
Fig. 3. Following this procedure, it is possible to compute
the right side of (5.4).
To calculate ε̇j, we follow the same first two steps to

reconstruct two values for εðxjþ1=2Þ, one from each of the
neighboring cells. Then, we determine which of these
two values is to be used to evaluate G and vB at xj�1=2

in (5.5) by looking at the result of mG at that boundary
point. mG could have been evaluated either (a) using the
reconstructed value for B coming from the cell to the left
of the boundary (i.e., from Rjðxjþ1=2Þ), (b) using the
reconstructed value for B coming from the cell to the
right of the boundary (i.e., from Rjþ1ðxjþ1=2Þ), or
(c) using the stationary value B ¼ πx2jþ1=2=2. For case
(a), we evaluate Gðxjþ1=2Þ and vBðxjþ1=2Þ using the B
and ε reconstructed from the cell Ij, while for case
(b) we evaluate Gðxjþ1=2Þ and vBðxjþ1=2Þ using the B and
ε reconstructed from the cell Ijþ1. Finally, for case (c) we

FIG. 3. Schematic representation of the steps of the WENO algorithm for the j-th cell. The black lines give the initial values of the field
in each cell, while the blue and red lines represent the polynomials of Eq. (5.6), the green line shows the linear combination given in
Eq. (5.7), and the green dot is the reconstructed value for the field at Rjðxjþ1=2Þ, as calculated from the cell to the left of xjþ1=2.
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use the same value of B ¼ πx2jþ1=2=2 in which case G ¼
vB ¼ 0 independently of the value of ε.
This procedure allows one to compute the right side of

(5.4) and (5.5). We carry out the final step of computing the
time evolution by using a total variation diminishing
implementation of the Runge-Kutta algorithm [79] of the
same order as the spatial reconstruction. If lj is the spatial
operator that represents the right-hand side of either of (5.4)
or (5.5), and uj is the respective field, the evolution scheme
for every cell j is given by

uð0Þj ¼ unj ;

uð1Þj ¼ uð0Þj þ ljðuð0ÞÞδt;

uð2Þj ¼ 3

4
uð0Þj þ 1

4
uð1Þj þ 1

4
ljðuð1ÞÞδt;

unþ1
j ¼ 1

3
uð0Þj þ 2

3
uð2Þj þ 2

3
ljðuð2ÞÞδt: ð5:10Þ

The time step δt has been chosen at every iteration in order
to satisfy the Courant-Friedrich-Lewy condition δt <
δx=jvmaxj [74], where vmax is the maximum speed at the
boundary of any cell for that time step.
Boundary conditions are imposed at the boundaries of

the domain. At x ¼ 0, since B ¼ xb we assume Bð0Þ ¼ 0,
while εð0Þ ¼ 0 to remain consistent with (4.4). For the
outer boundary, we assume there is no infalling matter
from beyond the outermost lattice point so ḂðxNÞ ¼ 0
and ε̇ðxNÞ ¼ 0.
From the solution for B, ε, there are two quantities of

interest that we will calculate: the energy density ρ of the
dust field, and the function

Θ≡ 4ð1þ εÞ
x2

θþθ−; ð5:11Þ

whose zeros indicate the location of apparent horizons, and
where θþ and θ− denote the expansion of outgoing and
ingoing radial null rays respectively. We use the following
relations to compute these two quantities:

ρðx; tÞ ¼ −
1

4πx2

�
Ḃþ x

2
∂xε

�
; ð5:12Þ

Θ ¼ 1 −
x2

4ð1þ εÞ sin
2
2B
x2

: ð5:13Þ

A final point to discuss is due to the approximation done
to the integral (5.3), that leads to a small error that slowly
accumulates in the solution for ε (and also B, as ε is a
source in the equation of motion for B). In the case of an
open or flat interior (ε ≥ 0), this error has no impact on
the main features of the numerical results for the dynamics
that agree extremely well with analytical results—the only

impact is a small quantitative error on quantities like the
black hole lifetime.
On the other hand, if the interior region has positive

spatial curvature (ε < 0) then the error due to the approxi-
mation in handling (5.3) causes the spatial curvature to be
too large, and in the postbounce phase, when the error
grows sufficiently this causes the shock to split, with part of
the shock recollapsing and the other part continuing to
move outward. An analysis of the discontinuity in B, ε, and
the energy density ρ reveals that this split is due to a
smoothing of the discontinuity in ε that leads to the source
term in the B equation being smaller than it should be,
decreasing the value of B. Since B determines the velocity
vB of the field, the decrease in B leads to vB becoming
negative in a portion of the innermost part of the shock,
thereby causing the shock to split.
To fix this error, for simulations with ε < 0 we perform a

small manual correction to ε, as shown in Fig. 4(a), to
properly align the discontinuity in ε with the discontinuity
in B. Specifically, the shock lies between three points on the
radial lattice, with the innermost point xI having very
nearly the same value of β ¼ B=x2 as at other nearby points
x < xI . The same should be true for ε, but is not due to the
error arising from the approximation used to handle (5.3),
so to fix that we manually correct the value of εðxIÞ to be
equal to the point immediately to its left; this correction is
applied at each time step, but only after the bounce, and
fully solves this problem of an incorrect recollapse. (This
correction is not applied to simulations with ε ≥ 0.)
This procedure, however, gives a slight overcorrection to

the value of εðxIÞ, and therefore the spatial derivative in ε at
x ¼ xI is smaller than it should be. This causes ε to form a
plateau for points lying inside the shock but outside the first
point where this correction was made, as shown in Fig. 4(b),
while ε should be expected to continue to decrease and near
zero as the shock moves outward. Importantly, although this
plateau in ε is a small source of numerical error in the
computation of quantitative predictions like the black hole
lifetime, it does not affect the qualitative dynamics which,
with the correction to ε described above, agree verywell with
analytical results as shall be seen below.
This completes the description of the procedure we use

to numerically determine the dynamics; the Fortran code we
used is available online [80].

B. Configurations with a sharp boundary

We start by considering configurations with a sharp
boundary, as the numerical results for these configurations
can be directly compared with the analytic results obtained
in Sec. IV. The initial configuration for B is given by
B ¼ xbwhere b is set by (4.5), while ε is fixed by (4.4). We
set x1 − x0 ¼ 2δx, and we take the lattice spacing in the
radial direction to be δx ¼ 0.01. We consider a range of
values forM and α, whereM ¼ R x10 dx̃ x̃2ρðx̃; t0Þ is the total
gravitational mass. Specifically, we performed runs with
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different M lying in the interval between 2mPl and 10mPl
(exploring larger masses is not feasible due to the computa-
tional expense associated with solving the dynamics,
especially since the black hole lifetime scales as M2),
and for both positive and negative values of α ranging from
−0.6 to 0.6, while we set x0 ¼ 2M so (given the small tail
between x0 and x1) initially there are no horizons.
Representative frames from a typical simulation forM ¼

5mPl and α ¼ 0.01 are shown in Fig. 5. The left column

shows the fieldsB in red and ε in black at five instants of time,
while the right column shows the dust energydensity in black
and the function Θ in red at those same instants of time; the
roots (if any) of Θ give the location of the inner and outer
apparent horizons and are indicated by black dots.
The dynamics agrees extremely well with the expect-

ations from analytic calculations: the ball of dust collapses,
and the energy density in the interior region grows until it
reaches a critical value, at which point there is a bounce and

(a)

(b)

FIG. 4. An example of the correction applied to the ε field is shown in the top three plots. The energy density ρ is used to identify the
position of the shock, denoted by the three red circular dots. The value of ε at the innermost of these three points is corrected to be
aligned with its value at nearby points lying within the shock (denoted by red triangles), mimicking that property of β ¼ B=x2 just inside
the shock. This correction is only applied to simulations with positive spatial curvature ε < 0, and only starting from a short time after
the bounce. This modification of ε is a slight overcorrection, so spatial derivatives in ε near the correction point are smaller than they
should be, causing the dynamics to freeze at this point, as shown in the bottom three plots. As the value of ε at points to the right also
approach the same value, they freeze as well, leading to the formation of a plateau, rather than continuing to decrease toward zero. This is
a small effect; in this example the value of ε plateaus near −4 × 10−3 instead of continuing to decrease to values of the order of
−3 × 10−3 (as compared to values of −130 × 10−3 outside the shock), and only has a small quantitative effect on the computation of, for
example, the black hole lifetime, but does not affect the main qualitative features of the dynamics. (a) The three upper plots show the
correction applied to ϵ. (b) The three lower plots show the plateau that as a result forms in ϵ.

CIPRIANI, FAZZINI, and WILSON-EWING PHYS. REV. D 110, 066004 (2024)

066004-14



the shock wave forms. The shock then slowly moves
outward, with the energy density and spatial curvature in
the interior region both rapidly decreasing. (Note that
during contraction the density profile exhibits an anoma-
lous peak at the outer edge of the dust ball; this is a

numerical artifact due to the presence of large derivatives in
B, and ε and is a byproduct of computing ρ using finite
differences in (5.12). Importantly, this numerical artifact
has no impact on the dynamics since ρ does not appear in
the equations of motion.) Also, for a given value of M,

FIG. 5. Frames from a simulation with an initial configuration with a sharp boundary given by (4.1) for ρ and (4.4) for ε, with
parameters M ¼ 5; α ¼ 0.01; x0 ¼ 10. Each row shows a different time: the top two rows are during the collapse, the third during the
bounce, and the bottom two during the expansion. The left column shows the ε field in black and the B field in red, while the right
column shows the energy density ρ in black and the functionΘ in red; the black dots show the zeros ofΘ corresponding to the location of
the apparent horizons.
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we find that the location of the outer horizon, as found by
the numerics, is in excellent agreement with the analytical
prediction. Throughout the entire evolution, the two cal-
culations agree up to an error of δx, and for the simulations
we ran this error can be reduced by 4 orders of magnitude
simply by using common root finding techniques on (5.13).
An important observable for nonsingular black holes like

the ones studied here is their lifetime T, as observed by a
distant stationary observer who detects light rays emitted
by the star just before its radius becomes smaller than the
Schwarzschild radius and it becomes a black hole, and later
detects light rays emitted from the shock immediately after
the shock exits the horizon. This observed lifetime is equal
to the coordinate time t elapsed between the formation and
vanishing of the horizons [7]. For configurations with a
sharp boundary, analytic calculations give the result (4.39),
predicting that T is proportional toM2 and has a somewhat
complicated dependence on α.
We show the lifetime as a function ofM in Fig. 6 for two

representative values of α, an example of positive spatial

curvature with α ¼ 0.1, and an example of negative spatial
curvature with α ¼ −0.4. In both cases, we fit the depend-
ence of T onM to a quadratic relation, finding an excellent
fit. Notably, the coefficient toM2 in this fit, denoted by a in
the plots, agrees up to the second decimal digit with the
analytical value derived from (4.39) for the respective
values of α: for α ¼ 0.1 we obtain 9.06M2 þOðMÞ, and
we get 6.46M2 þOðMÞ for α ¼ −0.4.
The dependence of the black hole lifetime on the

parameter α has also been investigated. Keeping the
gravitational mass fixed to M ¼ 5mPl, the parameter a0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
kx20=α

p
was varied within the range of 40 to 1000, with the

results shown in Fig. 7. These numerical results can be
compared to the analytic calculations of Sec. IV; to do this
we fit the numerical results to the function

T ¼ c ·
2 ln ð1 − αÞ þ ð1þ αÞ2 − 1

ð−αÞ3 ; ð5:14Þ

(a) (b)

FIG. 6. The lifetime of a black hole as a function of the gravitational mass M, for configurations with a sharp boundary. The red dots
are the results of numerical simulations for different values ofM and fixed α, while the black curve is the best quadratic fit. For α ¼ −0.4
the best fit is T ¼ 6.46M2 − 1.21M − 0.36, while for α ¼ 0.1 the best fit is T ¼ 9.06M2 − 1.45M − 0.35. (a) α ¼ −0.4. (b) α ¼ 0.1.

(a) (b)

FIG. 7. The lifetime of a black hole as a function of a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kx20=α

p
, for the case M ¼ 5. The red dots are the results of numerical

simulations, while the black curve is the best fit to the function (5.14), with the only free parameter being the overall prefactor, which
analytic calculations give as πR2

S. For negative α, the best fit for the prefactor is 316, while for positive α it is 320. (a) α < 0. (b) α > 0.
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with c as the free parameter, which according to the
analytic calculations should be given by πR2

S (which for
M ¼ 5mPl is 100π). For negative α we find c ¼ 316, while
for positive α we find c ¼ 320; both of the values agree
with the analytic prediction to within an error of 2%. There
is a higher accuracy for the case of a negative spatial
curvature, which we attribute to the larger numerical error,
and the additional corrections needed to the code, for runs
with positive spatial curvature, as discussed in Sec. VA.
The black hole lifetime increases with α, as expected,

and in the limit of α close to 0, the two plots tend to the
same value T ¼ 195.45, which also agrees with what is
found for the spatially flat α ¼ 0 case [9,10]. There are
two other limits of interest: α being very negative, or very
close to 1. In the first of these two limits, for negative α
the lifetime decreases, and eventually vanishes—this is
because, at fixedM, for sufficiently negative α no horizons
ever form, as can be seen in (4.15) and Fig. 1, and then the
lifetime by definition is zero. On the other hand, for α close
to 1, the black hole lifetime can become arbitrarily large
(keeping M fixed), although it will always remain finite
for α < 1.
Finally, we also checked the prediction that for α > 0 the

shock wave asymptotically approaches the maximal value
RS=α [see (4.41)], rather than recollapsing as would be
expected from Oppenheimer-Snyder collapse models that
do not include local degrees of freedom (and therefore do
not allow for the possibility of a shock to form). Owing to
the limitations of numerical simulations with a finite
runtime, it is not possible to directly check asymptotic
predictions like this one. Nonetheless, by running the code
for as long as the numerics remains stable (while main-
taining a reasonable trade-off between the lattice spacing
and the total computational time), we were able to check
that during the entire runtime after the bounce, the shock
continues to move outward at an ever-decreasing velocity,
and this continues to be true well beyond the time tOS that
the Oppenheimer-Snyder model predicts a recollapse—
specifically, we were able to verify this for a time after the
bounce of ∼3.5tOS.
In summary, the numerics for configurations with a sharp

boundary agree very well with the analytic results for the
collapse phase, for the bounce, and for the formation of the
shock, as well as for the outward movement of the shock,
for both positive and negative ε. Nevertheless, a more
rigorous approach to handle the term (5.3) could provide
even more accurate simulations.

C. Results for more general initial profiles

We also considered a variety of other types of initial
configurations for ρ and ε, which together determine the
initial configuration for B through (4.5) and B ¼ xb.
For example, it is possible to consider an initial con-

figuration for the energy density ρ,

ρðxÞ ¼ C

�
1 − tanh

x − x0
σ

�
; ð5:15Þ

whereC¼M=
R∞
0 dxx2ð1− tanh½ðx−x0Þ=σ�Þ. For εðx;t¼0Þ

we took (4.4) up to the small modification of, between
x0 � 10δx, using a third-degree polynomial to interpolate
between the two regimes to ensure that ε is also con-
tinuous and differentiable everywhere (different intervals
were considered for the interpolation; the choice had a
negligible impact on the resulting dynamics). The results
of this run are shown in Fig. 8 for M ¼ 5; α ¼ 0.01;
x0 ¼ 10; σ ¼ 1.1.
This initial configuration is very similar to the one

studied in Secs. IV and V B (and the results shown in
Fig. 8 can be directly compared to Fig. 5), except with a
smoother decrease in ρ at the boundary of the star. As
can be seen by comparing the results, the qualitative
dynamics are very similar, with a bounce soon followed
by the formation of a shock that slowly moves outward.
There are a few differences which consist of quantitative
details; for example, at time t ¼ 1.5 the minimum of Θ
is slightly smaller for the sharper configuration. Other
than small quantitative details like these, the qualitative
results for these two types of configurations are very
similar.
Many more types of initial configurations can be studied.

One possibility is a collapsing dust wave packet, whose
energy density initially has a Gaussian shape,

ρðxÞ ¼ C exp
�
−
ðx − x0Þ2

σ2

�
; ð5:16Þ

where the overall normalization C is proportional to the
total mass M. Note that since ρ is initially very nearly
vanishing close to the origin, in the closed case where
ε < 0 it is necessary for the spatial curvature to be
sufficiently small so that the argument of the square root
in (4.5) is positive for all x. To respect this condition, here
we set

εðx; t ¼ 0Þ ¼

8>><
>>:

0 if x < xl;

−α · ðx−xlÞ2
ðx0−xlÞ2 if xl < x < x0;

−α if x > x0;

ð5:17Þ

where α is a constant, and xl is chosen to be the smallest
possible value that ensures that the argument of the square
root in (4.5) remains positive; xl is found numerically for
each run during the computation of the initial data. Again,
cubic interpolation has been used around x0 to remove the
discontinuity in the derivative of ε.
The results for this set of initial data are shown in Fig. 9

for C chosen so thatM ¼ 5, and α ¼ 0.01, x0 ¼ 10; σ ¼ 2.
These are qualitatively similar to the other types of initial
conditions we have considered so far: the Gaussian shell
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collapses inward, and the width of the profile narrows
during the collapse; then there is a bounce and the
formation of a shock wave that slowly moves outward,
eventually emerging from the outer horizon.
Another initial configuration that is of interest is a double

Gaussian packet where

ρðxÞ ¼ C

�
2 exp

�
−
ðx − x1Þ2

σ21

�
þ exp

�
−
ðx − x2Þ2

σ22

��
;

ð5:18Þ
and the spatial curvature is given by (5.17), where x0 ¼ 10
lies between the two Gaussians; the results obtained for

FIG. 8. Frames from a simulation with an initial configuration with a smooth boundary given by (5.15) for ρ and (4.4) for ε, with
parameters M ¼ 5; α ¼ 0.01; x0 ¼ 10; σ ¼ 1.1. Each row shows a different time: the top two rows are during the collapse, the third
during the bounce, and the bottom two during the expansion. The left column shows the ε field in black and the B field in red, while the
right column shows the energy density ρ in black and Θ in red; the black dots show the zeros of Θ corresponding to the location of the
apparent horizons.
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these initial conditions are shown in Fig. 10 for α ¼ 0.01;
x1 ¼ 7.5; σ21 ¼ 0.5; x2 ¼ 17.5; σ22 ¼ 0.25, and C is chosen
so the total gravitational mass is M ¼ 5. (It is of course
possible to allow different relative factors between the two
Gaussian profiles; here for the sake of concreteness we set

the relative factor to be 2.) As in the other runs, we observe
the same patterns of collapse, bounce, and the formation of
an outgoing shock wave. Moreover, as already observed in
[10] for the ε ¼ 0 case, the second shell does not cause the
outgoing shock to recollapse, and so these dynamics are not

FIG. 9. Frames from a simulation with an initial configuration corresponding to an infalling Gaussian wave packet given by (5.16) for
ρ and (5.17) for ε, with parameters M ¼ 5; α ¼ 0.01; x0 ¼ 10; σ ¼ 2. Each row shows a different time: the top two rows are during the
collapse, the third during the bounce, and the bottom two during the expansion. The left column shows the ε field in black and the B field
in red, while the right column shows the energy density ρ in black and Θ in red; the black dots show the zeros of Θ corresponding to the
location of the apparent horizons.
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affected by the white hole instability problem [81]—rather,
the bounce and shock are robust to infalling dust.
Since the total mass of the system is constant, it follows

that another classical instability that is avoided here is
mass inflation [82]. This is because the inner horizon,

when formed, is not a Cauchy horizon: specifically, in
cases where the inner horizon does form, (i) it does not
always remain at the same radial location but rather moves
inward (during collapse) and then outward (after the
bounce) with the shock, and (ii) it ceases to exist within

FIG. 10. Frames from a simulation with an initial configuration corresponding to two infalling Gaussian wave packets given by (5.18)
for ρ and (5.17) for ε, with parametersM ¼ 5; α ¼ 0.01; x0 ¼ 10; x1 ¼ 7.5; σ21 ¼ 0.5; x2 ¼ 17.5; σ22 ¼ 0.25. Each row shows a different
time: the top two rows are during the collapse, the third during the bounce, and the bottom two during the expansion. The left column
shows the ε field in black and the B field in red, while the right column shows the energy density ρ in black and Θ in red; the black dots
show the zeros of Θ corresponding to the location of the apparent horizons.
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a finite span of time, once the shock reaches the outer
horizon.
We end with a comment concerning configurations with

two (or more) wave packets in ρ. For such a configuration,
it is possible for the energy density to vanish between the
wave packets (or become extremely small). Nonetheless,
for such a configuration it is not necessary to impose that ε
be constant in the vacuum (or near vacuum) region between
the wave packets (as is required in the asymptotic region
where ρ ¼ 0, as discussed in Sec. IV B). The reason for this
is that the condition ∂xε ¼ 0 is required by ε̇ ¼ 0, but in
such an intermediate region located between two wave
packets it is not necessary to impose ε̇ ¼ 0, and as a result
there is no requirement for ε be constant in that region
either.

VI. SUMMARY AND CONCLUSION

We have studied the role of spatial curvature in the
gravitational collapse of dust in the context of effective
LQG, generalizing earlier results that focused on the
spatially flat case [9,10]. Although the quantitative results
are affected by the presence of spatial curvature, the
qualitative features of the dynamics are very similar: the
gravitational collapse continues until the spacetime curva-
ture reaches the Planck scale, at which point there is a
bounce with the dust starting to move outward, and a shock
wave forms (at the latest ∼tPl after the bounce), with a
discontinuity in the gravitational fields as well as the dust
energy density. This occurs for a variety of initial configu-
rations, and for positive and negative spatial curvature.
Interestingly, keeping the spatial curvature fixed, in the

case of an initial configuration corresponding to a homo-
geneous interior with a sharp boundary, the lifetime T of a
black hole has been found to scale with M2, in agreement
with what was found for the spatially flat case [9,10],
although there is also a dependence on the spatial curvature
that can become important for large spatial curvature—see
(4.39) for details. In fact, numerics show that this depend-
ence holds for a wide range of configurations, where the
lifetime depends on the massM and the (constant) value of
the spatial curvature in the exterior vacuum region. After
the shock exits the horizon, the shock continues moving
outward, although at a continually decreasing velocity. The
shock will reach arbitrarily large radii for the cases of
negative and vanishing spatial curvature, while it will
asymptotically approach a maximal radius if the spatial
curvature is positive (in contrast to expectations based on
studies of the Oppenheimer-Snyder model without a shock
that predict a cyclic “pulsating star” [33,44]).
There are also two limiting cases that are of particular

interest. First, it is possible to recover a spatially curved
FLRW cosmology by taking the homogeneous limit, and
the result agrees exactly with the results of loop quantum
cosmology (specifically the “K” loop quantization). This
result demonstrates the robustness of the results of LQC,

and shows that the same physics is being captured here in
the more general context of spherical symmetry. Second,
the vacuum exterior region is also of interest, with it closely
resembling what was observed in the spatially flat case
[67]. In particular, there are two Killing horizons (except
for sufficiently small masses of the order of the Planck
mass), and the corrections to the Schwarzschild metric are
suppressed by a factor of Δ=x2. Nonetheless, despite their
similarities, it is important to emphasize that vacuum
solutions with different spatial curvature are not diffeo-
morphic to each other (as is the case in classical general
relativity); rather, these are different vacuum solutions with
the same mass, with quantum violations of the no-hair
theorem of general relativity.
Finally, since quantum gravity effects have a major

impact on the ultimate fate of gravitational collapse—
replacing the crushing singularity that would form in
general relativity with an outgoing shock wave—it is
natural to expect that this will have important ramifications
for the information loss problem, and on black hole
thermodynamics more generally. In particular, the black
hole lifetime that is predicted to be proportional to M2

suggests that the black hole will expire at a time when
Hawking evaporation remains entirely subdominant (with a
total evaporated mass of the order of mPl), so long as α is
not fine-tuned to a value extremely close to 1. Further,
since the horizons are not eternal, it may be possible to
purify the small amount of Hawking radiation that has
occurred. We leave a detailed exploration of these questions
for future work.
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APPENDIX: FORMATION OF SHELL-CROSSING
SINGULARITIES

Shell-crossing singularities can form in LTB spacetimes,
due to some dust shells overtaking others; for an analysis in
the context of general relativity see [83]. This is studied
most easily using the comoving coordinate R, which moves
with the dust (and keeping the same time and angular
coordinates used for generalized Painlevé-Gullstrand coor-
dinates). The relation between these two sets of coordinates
is captured by the function xðR; tÞ that gives the value of the
areal radius x for the dust shell located at the comoving
radius R, as a function of time.
Using comoving coordinates, the dynamics greatly

simplifies as mðR; tÞ and εðR; tÞ are now constants of
the motion in terms of these coordinates,

∂tmðR; tÞ ¼ 0; ∂tεðt; RÞ ¼ 0; ðA1Þ
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and the dynamics are entirely captured by the equation of
motion for xðR; tÞ,
�
ẋ
x

�
2

¼
�
2Gm
x

þ ε

x2

��
1 − Δ

�
2Gm
x

þ ε

x2

��
; ðA2Þ

an ordinary differential equation to be solved at each radius
R. (Note however that despite the simplification obtained in
going from partial differential equations to ordinary differ-
ential equations, solving these equations for ε ≠ 0 analyti-
cally remains challenging—on the other hand, numerical
solutions are more readily attainable.) These dynamics can
be derived directly from a loop quantization based on the
comoving coordinate R [11,12], or by a coordinate trans-
formation from the effective dynamics expressed in terms
of the generalized Painlevé-Gullstrand coordinates [13].
It is important to emphasize that although the use of the

comoving coordinate R gives dynamics for each individual
dust shell that is decoupled from its neighbors, this
coordinate choice only remains valid so long as the dust
shells do not cross: if the shells do cross, then the comoving
coordinate R fails, and it is necessary to use a different set
of coordinates. This is a common feature of nonlinear wave
equations, and a rich mathematical framework has been
developed to handle such a shell crossing (known in the
mathematical literature as a characteristic crossing) that
signals the formation of a discontinuity in the field and
therefore the need to find weak solutions (i.e., solutions that
are not necessarily everywhere continuous or differentia-
ble) to the dynamics.
In LTB spacetimes, shell-crossing singularities are of

particular interest; these are shell crossings where the
curvature scalars diverge due to the energy density of
the dust field diverging when dust shells cross. The dust
energy density is given by [13]

ρðR; tÞ ¼ ∂Rm
4πx2∂Rx

; ðA3Þ

(this is the same expression as in general relativity [83]) and
it is clear that shell-crossing singularities occur at any R for
which ∂Rm ≠ 0, and at some time ∂Rx vanishes. Note that
since mðR; tÞ is independent of time, the numerator in
ρðR; tÞ is also independent of time. As a result, the question
of whether ρ diverges at some radius R (for which initially
∂Rm ≠ 0) reduces to calculating whether ∂Rx ever vanishes.
In the ε ¼ 0 marginally bound case, for many initial

configurations it is possible to solve the dynamics and
calculate ρ analytically [13]. For ε ≠ 0, numerics are
needed, and in this case it is sufficient to solve for
xðR; tÞ in the region where ∂Rm ≠ 0: then, if any curves
xðR; tÞ for R ¼ R1 and R ¼ R2 cross at t ¼ ti, it necessarily
follows that ∂Rx ¼ 0 for some R1 ≤ R ≤ R2 and some
t ≤ ti, at which spacetime point there is a shell-crossing
singularity.

Physically, the presence of a shell-crossing singularity
shows that distinct dust shells lie at precisely the same
location, which is what causes the energy density (and
therefore curvature scalars) to diverge. It is clear that this is
not a coordinate artifact, but rather a truly physical process
which signals the onset of a discontinuity in the gravita-
tional field and the need to allow for a weak solution to the
dynamics beyond a shell-crossing singularity.
We considered each of the configurations that were

studied in this paper to determine whether a shell-crossing
singularity occurs, with the result that a shell-crossing
singularity was found to occur in every single one of these
configurations. In particular, this includes the configura-
tions with a homogeneous interior and a sharp boundary
studied in Sec. IV.
As a representative example, here we present the results

for the initial configuration given by

ρðR; t0Þ ¼ C

�
1 − tanh

R − R0

σ

�
;

εðR; t0Þ ¼
(
−α · R

2

R2
0

; for R < R0;

−α; for R > R0;
ðA4Þ

where α ¼ kR2
0=aðt0Þ2; these are the same initial conditions

as those given in (4.4) and (5.15), although expressed in
terms of the comoving radius R instead of the areal radius x

FIG. 11. Dynamics of many shells. The initial data are those of
Eq. (A4) with R0 ¼ 10, σ ¼ 1.1, α ¼ 0.01 and C proportional to
the total massM ¼ 5. All shells have strictly positive initial energy
density. The black curves describe the evolution of shells on the
plateau of the distribution of the initial energy density, while the
others depict shells on the tail. As expected, the black shells do not
intersect, whereas the green, blue, and red shells cross the black
ones immediately after the bounce of the latter, in agreement with
the production of the shockwave in the integral equations and with
expectations from the marginally bound case where shell-crossing
singularities typically occur in regions where the dust energy
density varies sufficiently rapidly [13]. Note that a single shell
crossing (between shells where ∂Rm ≠ 0) is sufficient to demon-
strate the presence of a shell-crossing singularity.
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[with the initial condition xðR; t0Þ ¼ R]. This is a configu-
ration with a nearly homogeneous interior, whose boundary
is approximately located at R0 and has width ∼σ, and with a
long tail outside where ρ asymptotes to zero.
It is easy to calculate mðR; t0Þ from ρðR; t0Þ from (A3)

by using the initial condition xðR; t0Þ ¼ R which implies
that ∂Rx ¼ 1 at t ¼ ti. Then, mðR; tÞ ¼ mðR; t0Þ follows
directly from (A1), and it is clear that for this configuration
∂Rm ≠ 0 for all R. As a result, if any of the curves xðR; tÞ
intersect, then it necessarily follows that there is a shell-
crossing singularity (in which case a discontinuity forms in
the gravitational field, and it is necessary to look for a weak
solution to the dynamics).
Several representative curves xðR; tÞ for different R

are shown in Fig. 11. Shell crossings occur soon after
the bounce, and since, as explained above, ∂Rm ≠ 0

everywhere, this implies the presence of at least one
shell-crossing singularity. (Note that not all shells cross;
a single intersection is sufficient to demonstrate the
presence of a shell-crossing singularity.) Therefore, a
discontinuity in the gravitational field is formed, and it
is necessary to consider weak solutions to the dynamics, as
has been done in Secs. IV and V.
Although here we have presented the numerical results

demonstrating the formation of a shell-crossing singularity
for the specific set of initial conditions (A4), using exactly
the same numerical test we have also examined each of
the families of initial data we considered in this paper, and
found that a shell-crossing singularity forms (at the latest a
short time ∼tPl after the bounce) for all of these sets of
initial data, in agreement with the observation of the
formation of a shock in Secs. IV and V.
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