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We explore the classical Regge growth conjecture in the 4d effective field theory that results from
compactifying D-dimensional general relativity on a compact, Ricci-flat manifold. While the higher
dimensional description is given in terms of pure Einstein gravity and the conjecture is automatically
satisfied, it imposes several nontrivial constraints in the 4d spectrum. Namely, there must be either none or
an infinite number of massive spin-2 modes, and the mass ratio between consecutive Kaluza-Klain spin-2
replicas is bounded by the 4d coupling constants.
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I. INTRODUCTION

In the recent work [1]—see [2] for related ideas—it was
studied if a gravitational effective field theory (EFT) that
includes a massive spin-2 particle in its spectrum was
compatible with the classical Regge growth (CRG) con-
jecture [3]. This conjecture states that the classical (tree-
level) S-matrix Aðs; tÞ of any consistent theory can never
grow faster than s2 in the Regge limit, that is, at large s and
fixed and physical t, with s and t being the usual
Mandelstam variables. In terms of equations, it states

lim
s→∞;t<0 fixed

Aðs; tÞ
s3

¼ 0; ð1Þ

where by s → ∞ we mean Λ ≫ s ≫ jtj, with Λ being the
cutoff of the EFT considered.
The main conclusion of [1] was to show the incompat-

ibility of the setup described above with the CRG con-
jecture. If the CRG holds, a gravitational EFT which
includes a massive spin-2 particle—and no other higher
spin particles—would be in the swampland [4].1

This result was in line with the so-called spin-2 swamp-
land conjecture [5–7] and with the recent works studying
the (in)consistency of massive gravity; see [2,8–14] for a
biased selection and [15,16] for reviews.

Regarding the state of the CRG conjecture, though a
complete demonstration is still lacking, there is strong
evidence in favor of it. Using the duality between Anti-de
Sitter space (AdS) and conformal field theories, it
has been proven in [17] that, in the dual picture, the
CRG conjecture follows from the chaos bound of [18].
In flat space, it was shown in [19] that the scattering of
scalar particles in dimensions bigger or equal to five
satisfies it. Here, as we did in [1], we will limit ourselves
to assuming its validity, studying the consequences that
derive from it.
This being said, the logical next step after [1] is to

consider an EFT with not only one but any number of
massive spin-2 particles in the spectrum. This is a
common ingredient in theories with extra dimensions,
where in the 4d EFT the graviton comes typically
accompanied by an infinite tower of massive spin-2
particles, its Kaluza-Klain (KK) replicas.2 In this paper,
we would like to understand how the CRG conjecture is
satisfied in these scenarios.
To do so, we will focus on a very concrete but general

model: we will study general relativity (GR) dimensionally
reduced to four dimensions. Of course, GR in R1;D−1

trivially satisfies the CRG conjecture; the 2 → 2 scattering
of a GR graviton scales with s in the Regge limit at most as
A ∼ s2. The point is that when GR is compactified to 4d
(we go from R1;D−1 to R1;3 × XD−4), the description is
given not only in terms of a graviton but also it includes an
infinite tower of massive spin-2 particles. This provides an
arena where the CRG conjecture can be tested in the
presence of several massive spin-2 states.
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1This conclusion is in tension with [2], where a particular
choice of constants for de Rham-Gabadadze-Tolley massive
gravity was argued to be consistent with the CRG conjecture.
This discrepancy, which deserves further clarification, does not
affect the results of this paper, since they can be derived
independently of [1,2].

2When the length of the internal linternal and external lexternal
dimensions satisfy lexternal ≫ linternal, the mass of the Kaluza-
Klain spin-2 replicas usually becomes much bigger than the
energy scale probed in the EFT and the massive spin-2 states can
be ignored in the low-energy description.
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What we will see in this work is that the CRG conjecture
imposes nontrivial constraints3 on the particle content of
the 4d description. They teach us how the CRG require-
ment can be fulfilled in a 4d EFT containing massive spin-2
particles. Namely, as we will see in Sec. IV, in the spectrum
of the 4d effective field theory:

(i) There must be either none or an infinite number of
massive spin-2 particles. This is in line with the
absence of consistent finite truncations of the graviton
tower, already discussed in the literature [20–23].

(ii) The mass ratio between consecutive massive spin-2
replicas is bounded by the 4d couplings constants.
Similar results imposing unitarity were derived
in [23,24].

Before presenting these results, we will start by the
beginning, briefly recalling the work done in [1].

II. A SINGLE MASSIVE SPIN-2 PARTICLE

In [1] it was studied the tree-level 2 → 2 scattering of a
massive spin-2 particle in a theory containing neither other
massive spin-2 states nor higher-spin particles. We wanted
to check if this setup was compatible with the CRG
conjecture. To do so:

(i) We assumed that the spin-2 particle could couple to
a graviton, a (massive or massless) scalar particle,
and a massive spin-1 particle.4

(ii) We considered both parity-even and parity-odd
interactions.

(iii) We included all contact terms with an arbitrary but
finite number of derivatives.

Exchange diagrams and contact terms are the two sources
of contributions to any classical two-to-two scattering
amplitude. Both can be computed directly using on-shell
methods, in a Lagrangian independent way, as explained
in [25].

(i) Exchange diagrams can be built from the on-shell
cubic couplings. First, one has to list all possible
on-shell three-point interactions between two mas-
sive spin-2 particles and the exchanged particle.
Then, two sets of these vertices (multiplied by
arbitrary constants) are connected through the
correspondent propagator. In four dimensions, we
found 24 independent exchange pieces, reproduc-
ing the results of [26–30].

(ii) Contact terms are a bit more tricky since, in
principle, one can construct infinitely many of them,
introducing more and more derivatives. In [1],
adapting the ideas developed in [28], we included
all contact interactions with an arbitrary, but finite,
number of derivatives.

With all these ingredients, we showed in [1] that a
gravitational theory of a single massive spin-2 particle,
coupled to any other state of spin < 2, can never be made
consistent with the CRG conjecture.

III. SEVERAL MASSIVE SPIN-2 PARTICLES

We will now explain how to generalize the results of the
previous section to incorporate any number of massive
spin-2 particles in the spectrum. As we will see, the
modifications are conceptually quite simple but technically
very involved.
The only novelty concerning the previous computation

lies in the number of the allowed cubic couplings. Besides
the 24 previous pieces, we must include interactions
between two identical and one different massive spin-2
particles, as shown in Fig. 1.
In four dimensions, there are seven parity-even and nine

parity-odd independent on-shell three-point functions of
this kind, with some of them already computed in [23]. We
give the complete list with the explicit expressions in
Appendix A, where we also derive a Lagrangian basis for
the party-even contributions. For practical proposes, let us
denote this set of interactions by

AðhiðmiÞ; hiðmiÞ; hkðmkÞÞ≡
X16
j¼1

ciik;jfjðhi; hi; hkÞ; ð2Þ

where ciik;j are arbitrary constants and fjðhi; hi; hkÞ are the
(9 parity-even and 7 parity-odd) on-shell cubic amplitudes,
given in Appendix A.
This is the first step in accounting for several massive

spin-2 particles, but it is not the end of the story. What we
have just described corresponds to a theory in which any
pair of identical massive spin-2 particles fhiμν; hiμνg only
interacts with one different massive spin-2 state fhkμνg. If
we want to include the possibility that they couple to any
number of different massive spin-2 particles, we need to
replace (2) with

FIG. 1. Cubic interaction between two identical (hiμν with
mass mi), one different (hkμν with mass mk ≠ m) massive spin-2
particles.

3These constraints will be automatically satisfied once a valid
internal geometry is specified.

4Symmetries forbid interactions between two identical massive
spin-2 particles and one massless spin-1 field or one fermion.
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XKii

k¼1

AðhiðmiÞ; hiðmiÞ; hkðmkÞÞ ¼
XKii

k¼1

X16
j¼1

ciik;jfjðhi; hi; hkÞ;

ð3Þ

where the index k ¼ 1;…Kii describes the coupling with
Kii distinguishable (mi ≠ mk) massive spin-2 particles.
Generalizing [1] to include any number of massive

spin-2 fields would correspond to take Kii ¼ arbitrary
and ciik;j ¼ arbitrary, since this is the most general pos-
sibility. Unfortunately, this case is technically very com-
plicated, and little can be done explicitly. It would require
introducing an arbitrarily large number of new constants in
the equations of [1], which were already very complex.
To understand whether the CRG conjecture can be

satisfied in the presence of several massive spin-2 particles,
we find starting with a simpler model more illuminating. As
a proof of concept example, we will study the 4d effective
field theory obtained after dimensionally reducing GR. In
this case, ciik;j are not arbitrary: they are completely fixed
once the internal manifold is specified—GR has no free
parameters—and there will be relations among them.
Similar ideas studying the unitarity of GR under dimen-
sional reductions were derived in [23], which we will use in
this note.

IV. PROOF OF CONCEPT: GENERAL
RELATIVITY

We will start by commenting and motivating again why
this example is interesting. The framework described here
is a summary of [23,31], to which we refer the reader for a
more detailed discussion—we will only introduce the
minimal ingredients to make the note self-contained.
Consider the Einstein-Hilbert action in D > 4

dimensions:

L ¼ MD−2
D

2

ffiffiffiffiffiffiffi
−G

p
RðGÞ; ð4Þ

with MD being the D-dimensional Plank mass. In R1;D−1,
this theory is, of course, consistent with the CRG conjecture
[3]. Dimensionally reducing it to 4d while keeping all
massive modes just means selecting a different background
for the theory. Consequently, one would expect the CRG
conjecture to continue to be satisfied in the 4d picture. The
interesting point is that, while in D-dimensions we have a
description in terms of pure (Einstein) gravity, in 4d the
dimensional reduction of the graviton produces a graviton
but also a tower of massive spin-2, spin-1, and scalar
particles. We can then take any Kaluza-Klain massive spin-2
copies of the graviton and compute its 2 → 2 scattering. In a
generic theory with no other massive spin-2 particles, we
saw in [1] that this scattering would violate the CRG
bounds. In contrast, we will see below how the CRG

conjecture is satisfied in this setup, imposing restrictions in
the effective spectrum.

A. Dimensionally reduced theory

We will study the Lagrangian (4) in the direct product
space MD ¼ R1;3 × XD−4, with metric

ds2 ¼ GABdXAdXB ¼ ημνdxμdxν þ gabdyadyb; ð5Þ

where A ¼ 1;…; D, μ ¼ 1;…4, a ¼ D − 4;…; D and we
require XD−4 to be a closed, smooth, connected, orientable
Ricci-flat5 Riemannian manifold. To obtain the interactions
in the lower dimensional description, one first needs to
expand the metric around the background ḠAB:

GAB ¼ ḠAB þ 2

M
D−2
2

D

δGAB; ð6Þ

and then expand the fluctuations using the usual Hodge
decomposition. Skipping some field redefinitions and
showing only the contributions relevant to our computa-
tions, we have

δGμνðx; yÞ ¼
X
n

hnμνðxÞψnðyÞ þ
1ffiffiffiffi
V

p h0μνðxÞ; ð7aÞ

δGμaðx; yÞ ¼
X
i

Ai
μðxÞYa;iðyÞ þ…; ð7bÞ

δGabðx; yÞ ¼
1

D − 4

1ffiffiffiffi
V

p ϕ0ðxÞgab þ…; ð7cÞ

where

V ¼
Z
XD−4

ffiffiffiffiffiffi
−g

p
dya ≡

Z
XD−4

dvolXD−4
ð8Þ

and fψn; Yn;ig satisfy

Δψn ≡ −□ψ i ¼ m2
nψ i; ð9aÞ

Z
XD−4

ψnψmdvolXD−4
¼ δnm; m2

n > 0; ð9bÞ

ΔYa;i ≡ −□Ya;i þ Rb
aYb;i ¼ m2

i Ya;i; ð9cÞ
Z
XD−4

Ya
i Ya;jdvolXD−4

¼ δij; m2
i ≥ 0; ð9dÞ

with Rab being the internal Ricci curvature. We refer again
to [23,31] for a more detailed discussion of all the
quantities and definitions. Plugging all these expressions

5This is necessary to solve the vacuum equations.
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into (4) and expanding the action, one can obtain the
spectrum and the interactions of the dimensionally reduced
theory. Let us summarize the main results we will need.

1. Spectrum

From the quadratic terms, one can see that the four-
dimensional theory contains the following:

(i) One massless graviton, h0μν.
(ii) A tower of massive spin-2 particles hnμν with squared

masses m2
n > 0. They come from the eigenfunctions

of the scalar Laplacian on XD−4.
(iii) A tower of spin-1 fields Ai

μ with squared masses
m2

i ≥ 0. They come from the eigenfunctions of the
vector Laplacian on XD−4. This tower includes the
killing vectors, which are massless.

(iv) A massless scalar field ϕ0 controlling the internal
volume.

There are more scalar fields in the spectrum coming from
the terms omitted in the decomposition of δGab. We will
ignore them since they will not play any role in our
computation; see Appendix B 1 for the details.
Finally, let us remember that the relation between the

higher dimensional (MD) and the lower dimensional (Md)
Planck mass is given by

Md−2
d ¼ VMD−2

D : ð10Þ

2. Cubic interactions

We are interested in the (classical) scattering
hnihnj → hnkhnl . Therefore, we will only need the three-
point functions involving two (on-shell) massive spin-2
fields to construct the exchange diagrams. We relegate the
explicit expressions to Appendix B 1, while we list here the
relevant interactions:

(i) Three massive spin-2 particles: Aðhn1 ; hn2 ; hn3Þ.
(ii) Two identical massive spin-2 particles—otherwise

this interaction vanishes, see (B4)—and the grav-
iton: Aðhn1 ; hn1 ; h0Þ.

(iii) Two distinct massive spin-2 particles—otherwise
this interaction vanishes, see (B5)—and a spin-1
particle: Aðhn1 ; hn2 ; Ai

μÞ.
(iv) Two massive spin-2 particles and a scalar field:

Aðhn1 ; hn2 ;ϕÞ.
A pictorial representation of the exchange contributions to
the hnihni → hnihni scattering can be seen in Fig. 2. It is
also worth defining in this section the triple overlap
integrals gn1n2n3 :

gn1n2n3 ¼
Z
XD−4

ψn1ψn2ψn3dvolXD−4
; ð11Þ

the ψn1 introduced in expression (7a), which will be used
later on.

3. Contact terms

Finally, to compute any hnihnj → hnkhnl scattering, we
need the (on-shell) 4-point interactions. Repeating the
previous game, one has to insert the decompositions
introduced in Sec. IVA into the action (4) and collect
the terms involving four massive spin-2 particles. We write
the explicit form of this interaction, which we denote by
Acontactðhn1 ; hn2 ; hn3 ; hn4Þ, in Appendix B 2. For posterior
uses, we define here the quartic overlap integrals

gn1n2n3n4 ¼
Z
XD−4

ψn1ψn2ψn3ψn4dvolXD−4
; ð12Þ

which, as discussed in [23], can be written in terms of the
cubic overlap integrals

gn1n2n3n4 ¼
X
i

gn1n2nign3n4ni þ
1

V
δðn1n2Þδðn3n4Þ

¼
X
i

gn1n3nign2n4ni þ
1

V
δðn1n3Þδðn2n4Þ

¼
X
i

gn1n4nign2n3ni þ
1

V
δðn1n4Þδðn2n3Þ: ð13Þ

B. Results

Having introduced all the necessary ingredients, we are
finally in the position to test the CRG conjecture in the EFT
obtained from the dimensional reduction of GR. Let us
briefly recall the steps to follow:
(1) Compute the tree-level hnihnj → hnkhnl scattering.

Using the language presented in the previous sec-
tion, it reads

Aðhni ; hnj ; hnk ; hnlÞ ¼ Acontact þAexhange;

where, to construct the exchange diagrams, we take
two sets of the three-point functions introduced in

FIG. 2. Exchange contributions to the 2 → 2 scattering of a
massive particle hni . The particle is a part of the KK tower of the
graviton in 4d. In the picture, nj ≠ ni.
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Sec. IVA 2, “remove” the exchanged leg, and
connect them through the correspondent propagator.

(2) Expand the total amplitude in the limit s ≫ t, where
s and t are the usual Mandelstam variables

lim
s≫t

Aðhni ; hnj ; hnk ; hnlÞ ¼A0ðtÞs0 þA1ðtÞs1

þA2ðtÞs2 þA3ðtÞs3 þ…:

ð14Þ

In Appendix C, we recall the definition of the
Mandelstam variables and set the conventions for
the kinematics.

(3) Finally, from the previous expansion, we impose that

AnðtÞ ¼ 0; fn ≥ 3; ∀ tg: ð15Þ

We will do this for any of the 54 ¼ 625 choices of
polarization of the scattered spin-2 particles.6

Taking ni ¼ nj ¼ nk ¼ nl, Eq. (15) requires

∀ ni; 4m2
nignininini −

X
k

3m2
nkg

2
ninink ¼ 0; ð16Þ

which can also be written, using expansion (13), as

∀ ni;
X
k

ð4m2
ni − 3m2

nkÞg2ninink þ 4m2
niV

−1 ¼ 0: ð17Þ

These relations, which will be automatically satisfied by
any valid internal geometry, have several consequences
regarding the 4d spectrum. They are not completely new
since they also appear when one demands the dimensional
reduced theory to be unitary [23,24]—actually, in [23], they
were even able to find stronger conditions.7

From (17), it can be deduced that there must be an
infinite number of KK modes in the spectrum. Since the
term outside the sum is positive definite, the sum itself must
produce a negative contribution that compensates it. This
implies that for any hni there must exist some hnl to which
the hni couples (that is, gnininl ≠ 0) and such that

2ffiffiffi
3

p mni < mnl : ð18Þ

Taking mni ¼ mn1 , this equation tells us that there must
exist another spin-2 particle with mass mn2 > mn1 in the

spectrum. We can then apply the same strategy to mn2 and
conclude that the spectrum must contain a third spin-2 state
with massmn3 > mn2 . Repeating this reasoning, we see that
any finite truncation of the KK tower of the graviton is
incompatible with the CRG conjecture. This goes in the
lines of [20]—see also [21,22]—who first showed the
inconsistencies of a truncated KK spin-2 spectrum by using
the breaking of the massive gauge invariances.
On the other side, Eq. (16) is useful to see8 that the mass

ratio of consecutive spin-2 modes is bounded by the 4d
couplings. Since the first term in (16) is positive definite,
the second term cannot be “too negative.” In other words,
for ∀ hni, there must exist some hnk to which hni couples
(that is, gninink ≠ 0) and such that

m2
nk

m2
ni

≤
4

3

gnininini
g2ninink

> 1; ð19Þ

constraining the mass ratios of consecutive spin-2 KK
particles.9

A consequence of the relation (19) is that it seems to be
difficult to generate a consistent gravitational 4d theory in
which part of the graviton KK tower can be integrated out,
leaving a finite—bigger than zero—number of massive
spin-2 particles in the spectrum. For this to make sense, the
mass mΛ of the lightest integrated particle should satisfy
m;E ≪ ΛEFT ≪ mΛ, where m is the mass scale of the
particles kept in the theory, E is the energy at which the
theory is being probed, and ΛEFT is the cutoff of the EFT.
What we learn from (19) is that the 4d coupling constants
bound the gap between the mass of the spin-2 replicas, so
the couplings should be appropriately tuned to achieve the
desired mass separation. Once chosen, one should find the
concrete geometry producing these values for the 4d
couplings, which can be a very nontrivial task.
Equation (17)—or its equivalent expression (16)—and

its consequences are the main result of this paper. They
teach us that, even if we start with a theory compatible with
the CRG conjecture, as it is GR, when it is dimensionally
reduced to 4d, the spectrum of the resulting theory satisfies
two nontrivial constraints:
(1) Either there is none or an infinite number of massive

spin-2 modes.
(2) The gap in the mass ratio of consecutive KK spin-2

states is bounded by the coupling constants of the
theory.

We derived all these conditions by looking at the
hnihni → hnihni amplitude, so one could wonder about

6Not all choices are independent; some of them will be related
by crossing symmetry.

7This is because, while the CRG conjecture cares about terms
scaling with the energy at order s3 ∼ E6 or higher, unitarity in this
context places conditions on terms scaling with the energy at
order E4 or higher.

8This can also be seen from (17) since they are equivalent;
Eq. (16) just gives a cleaner expression.

9If mnk ¼ mniþ1
, then this is the maximum allowed gap

between consecutive massive spin-2 states. If not, this means
that mnk > mniþ1

—since mnk > mni—and so the gap is even
smaller.
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the more general hnihnj → hnkhnl interaction. We also
studied the CRG conjecture for this case. Nevertheless,
the results and constraints derived from it are less powerful
and interesting than the ones we already presented. In
any case, the reader interested can find an ancillary
Mathematica notebook with the code used.10

Before moving to the conclusions, it is worth pausing
here for a moment to make a couple of comments.
As pointed out throughout the section, the constraints

(16) and (17), imposed by the CRG conjecture, had already
appeared in the literature. They are also a requirement for
the dimensionally reduced theory to be unitary [23,24],
which actually demands more stringent conditions. On the
other hand, a condition similar to (18) was derived in [20]
by studying the gauge invariances of a dimensionally
reduced theory when the KK tower of the graviton is
truncated. The novelty here is that we have derived all these
requisites using the CRG conjecture. This is a nontrivial
check of the conjecture: for the first time, it has been tested
under dimensional reduction.
We have studied the dimensional reduction of GR on a

compact, Riemannian, Ricci-flat internal manifold down to
a 4d flat space. A natural question is thus how the
conclusions would change if we modified any of the
ingredients: including matter or higher-derivative correc-
tions, choosing a different external space, and so on. These
considerations can be taken into account all at once by
studying the most generic case, discussed in Sec. III, which
is a formidable task. A more doable approach could be to
study the changes one by one, for instance, by looking at
the scattering of massive spin-2 particles in AdS or by
starting from GR coupled to some matter. Based on the
results of [1] and on the apparent impossibility of con-
structing truncations with a finite number of massive spin-2
modes [20,22], we would expect the conclusions obtained
here to hold in more general scenarios. We leave the
exploration of these ideas for future work.

V. CONCLUSIONS

In this note, we have studied the CRG conjecture in the
4d effective field theory that results from compactifying
D-dimensional general relativity (with D > 4) on a closed,
Ricci-flat manifold. To do so, we have used the tools and
the framework developed in [23].
Whereas the conjecture is trivially satisfied in the

D-dimensional description,11 the 4d picture consists of a
theory of gravity coupled to an infinite number of massive
spin-2 particles. We already saw in [1]—see [2] for related
work—that any gravitational EFT containing a single

massive spin-2 particle cannot be made consistent with
the CRG conjecture. The example studied here, in contrast,
serves as an arena to see how the CRG conjecture is
satisfied in the presence of several massive spin-2 states.
The main result of this work is Eq. (16)—or equivalently

Eq. (17)—which is required for the CRG conjecture to hold
in the 4d framework. Both conditions are automatically met
when choosing a valid internal geometry. From the 4d
perspective, they teach us how the CRG conjecture can be
realized in a theory containing massive spin-2 particles.
These expressions are also part of the conditions for the
theory to be unitary [23,24]. Two consequences follow
from them:

(i) The 4d spectrum must include either no massive
spin-2 fields or an infinite number of them; a finite
truncation would not be possible. This was also
discussed from other points of view in [20–23].

(ii) The mass ratio between the consecutive KK spin-2
replicas is bounded by the 4d coupling constants. We
concrete this point in Sec. IV B. Similar conclusions
(actually a bit stronger) were derived in [23] by
studying unitarity in the 4d theory.

We see, then, that even if we start with a theory satisfying
the CRG conjecture in D dimensions, the conjecture
imposes nontrivial conditions in the 4d spectrum. This
shows the power of the CRG conjecture to discern between
consistent 4d theories, in this case regarding the ones with a
higher-dimensional embedding, in line with the spirit of the
swampland program [4]—see [7,32] for reviews.
It is important to keep in mind that in this work we have

focused on the concrete example of GR dimensionally
reduced to a flat 4d background. Therefore, one could
wonder about other possibilities: starting with GR plus
some matter, including higher-derivative corrections,
changing the external space, and so on. We explained in
Sec. III how to address the most generic situation, which
would simultaneously encode all these possibilities.
Unfortunately, this seems to be a highly complex task,
so it may be smarter to add more ingredients one by one.
These are exciting scenarios that for sure deserve further
investigation.
In any case, we actually expect the conclusions presented

here to hold in more general contexts. In light of the results
of [1] together with this work, it seems pretty unlikely that
the CRG conjecture could be satisfied in a gravitational EFT
with a finite number of massive spin-2 particles, at least in
flat space. We leave the exploration of these avenues and
any other potential cases of interest for future work.
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APPENDIX A: CUBIC VERTICES

In this Appendix, wewill discuss the possible three-point
amplitudes for three massive spin-2 particles, two of which
are identical and different from the third one. We divide this
Appendix into two sections. In the first part, we list all the
parity-even and parity-odd on-shell three-point inter-
actions. In the second part, we give a Lagrangian basis
for the parity-even terms.

1. On-shell amplitudes

Here we list all the possible (parity-even and parity-odd)
on-shell three-point functions between two identical and
one different massive spin-2 particles. In the particular case
d ¼ 4, we also discuss the dimensionally dependent
relations, which come from the fact that any set of five
or more vectors is linearly dependent in four dimensions.
Notation: we denote by Mi;j;kðmi;mj;mkÞ the on-

shell three-point amplitude involving three particles of
spin fi; j; kg, mass fmi;mj;mkg, polarization matrices
fϵ1; ϵ2; ϵ3g, and momentum fp1; p2; p3g. We define Aij ≡
ϵi · pj and Bij ¼ ϵi · ϵj. ε is the Levi-Civita tensor,
εðpi; pj; ϵk; ϵlÞ≡ εμναβpiμpjνϵkαϵlβ.

a. Parity even

There are in general 8 different parity-even on-shell
cubic amplitudes, listed in Table I. Part of this classification
was already discussed in [23].
In d ¼ 4, the Gram matrix of the vectors fpi; ϵiμg must

vanish, from which we obtain

ð−4m2m2
k þm4

kÞX1 þ 2m2
kX2 þ 2m2X 3

þ ð2m2
k − 4m2ÞX 4 þ 2m2

kX5 þ 4X6 þ 4X7 ¼ 0; ðA1Þ

which can be used to ignore, for instance, X7.

b. Parity odd

Regarding the parity-odd terms, in general, there are 13
distinct possibilities, enumerated in Table II.
Dimensional-dependent relations in d ¼ 4—see [28] for

the details—impose

2ðm4
k − 4m2m2

kÞX̃1 þ ð4m2m2
k −m4

kÞX̃2

− ðm2
k − 2m2Þ2X̃3 þ ð2m2m2

k − 4m4ÞX̃4

− 4m4X̃ 5 þ 4ðm2 −m2
kÞX̃6 þ 4m2X̃7 ¼ 0; ðA2aÞ

X̃2 − X̃3 ¼ 0; ðA2bÞ

X̃10 − X̃11 ¼ 0; ðA2cÞ

m2
kX̃ 7 −m2

kX̃ 8 − 2m2X̃11 þ 2X̃12 ¼ 0; ðA2dÞ

which we can use to ignore four of the X̃ i involved in (A2),
writing them as linear combinations of the others.

2. Lagrangian basis

To write a Lagrangian basis, we recall the expression for
the linearized version of the Riemann tensor Rαβμν for a
spin-2 field hμν,

Rαβμν ¼
1

2
½∂μ∂βhνα þ ∂ν∂αhβμ − ∂ν∂βhμα − ∂μ∂αhβν�; ðA3Þ

and define the tensor Fαβμ as

Fαβμ ≡ ∂αhβμ − ∂βhαμ: ðA4Þ

Using these two quantities, a Lagrangian basis for the
parity-even on-shell three-point amplitudes introduced in
Table I is given in Table III below.

TABLE I. All possible parity-even on-shell cubic amplitudes
for two identical, one different massive spin-2 particles.

Meven
2;2;2ðm;m;mkÞ

B12B23B13 ¼ X1

B2
12A

2
31 ¼ X2

B2
13A

2
23 þ B2

23A
2
12 ¼ X3

B13B23A12A23 ¼ X4

B12B23A12A31 þ B12B13A23A31 ¼ X5

B12A12A21A2
31 ¼ X6

B23A2
12A21A31 − B13A12A2

21A31 ¼ X7

A2
12A

2
21A

2
31 ¼ X8

TABLE II. All possible parity-odd on-shell three-point ampli-
tudes for two identical, one different massive spin-2 particles.

Modd
2;2;2ðm;m;mkÞ

B13B23εðp1; p2; ϵ1; ϵ2Þ ¼ X̃1

B12B23εðp1; p2; ϵ1; ϵ3Þ − B12B13εðp1; p2; ϵ2; ϵ3Þ ¼ X̃2

A31B12ðεðp1; ϵ1; ϵ2; ϵ3Þ þ εðp2; ϵ1; ϵ2; ϵ3ÞÞ ¼ X̃ 3

A21B13εðp1; ϵ1; ϵ2; ϵ3Þ − A12B23εðp2; ϵ1; ϵ2; ϵ3Þ ¼ X̃4

A21B13εðp2; ϵ1; ϵ2; ϵ3Þ − A12B23εðp1; ϵ1; ϵ2; ϵ3Þ ¼ X̃5

A2
31B12εðp1; p2; ϵ1; ϵ2Þ ¼ X̃ 6

ðA21A31B13 − A12A31B23Þεðp1; p2; ϵ1; ϵ2Þ ¼ X̃7

A31B12ðA21εðp1; p2; ϵ1; ϵ3Þ þ A12εðp1; p2; ϵ2; ϵ3ÞÞ ¼ X̃8

A2
21B13εðp1; p2; ϵ1; ϵ3Þ − A2

12B23εðp1; p2; ϵ2; ϵ3Þ ¼ X̃9

A12A21ðB23εðp1; p2; ϵ1; ϵ3Þ − B13εðp1; p2; ϵ2; ϵ3ÞÞ ¼ X̃10

A12A21A31ðεðp1; ϵ1; ϵ2; ϵ3Þ þ εðp2; ϵ1; ϵ2; ϵ3ÞÞ ¼ X̃11

A12A21A2
31εðp1; p2; ϵ1; ϵ2Þ ¼ X̃12

A21A31A12ðA21εðp1; p2; ϵ1; ϵ3Þ þ A12εðp1; p2; ϵ2; ϵ3ÞÞ ¼ X̃13
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The relation with Table I is given by

X 1 ¼ L1; ðA5aÞ

X 2 ¼
�
m2 −

3

2
m2

k

�
L1 − L2 þ L3 − L4; ðA5bÞ

X 3 ¼ ðm2
k − 2m2ÞL1 þ 2L2 − L5; ðA5cÞ

2X4 ¼ ð2m2 −m2
kÞL1 − 2L2 − L4 þ L5; ðA5dÞ

X 5 ¼ m2
kL1 − L3 þ L4; ðA5eÞ

4X6 ¼ 3m4
kL1 − 2m2

kðL3 − L4Þ þ L7; ðA5fÞ

4X7 ¼ 6m2
kð2m2 −m2

kÞL1 − 4m2
kL2 þ 2ðm2

k − 2m2ÞL3

þ 4ðm2 −m2
kÞL4 þ 2m2

kL5 þ L6; ðA5gÞ

8X8 ¼ 5m4
kð2m2 −m2

kÞL1 − 2m4
kL2 þ 2m2

kðm2
k − 2m2ÞL3

þm2
kð4m2 − 3m2

kÞL4 þm4
kL5 þm2

kL6

þ ð2m2 −m2
kÞL7 − L8: ðA5hÞ

It is important to bear in mind that Lagrangians are off-shell
quantities. Under field redefinitions or integration by parts,
they give rise to the same (on-shell) dynamics. This being
said, notice that the lhs of Eq. (A5) is defined on-shell.
Therefore, the equality only makes sense when the rhs—the
linear combination of Lagrangians—is also evaluated
on-shell.

APPENDIX B: COUPLINGS FROM GR

1. Cubic couplings

In this Appendix, we write the three-point interactions
that result from plugging the decomposition (7) into the
Einstein-Hilbert action. These results were published ini-
tially in [23,31].

To start, we need to fix the notation. A particle i has
momentum pi and mass mi. We denote its polarization
tensor by ϵi. This tensor is symmetric and traceless.
Formally, when constructing the interactions, we will
write the polarization matrices as a product of vectors
ϵi ¼ ϵiμν ≡ ϵiμϵiν. This does not mean that the polarization
matrices have rank one; it is only a trick to keep track of the
contractions more easily. To simplify the expressions, we
call Aij ≡ ϵi · pj, Bij ¼ ϵi · ϵj, and pij ¼ pi · pj. Finally,
we put the external legs of the amplitude (the massive
spin-2 particles) on-shell, whereas we keep the exchanged
particle off-shell.
This being said, the vertices involving (at least) two

massive spin-2 particles are as follows.
(i) Three massive spin-2 particles fhn1 ; hn2 ; hn3g:

Aðhn1 ; hn2 ; hn3Þ
¼ −

gn1n2n3

4M
D−2
2

D

B23½4A13ðB23A12 − 2B12A32Þ

þð2p12 −m2
n1ÞB12B23� þ 5 permutations; ðB1Þ

where we have implicitly assigned the numbers

f1; 2; 3g≡ fhn1 ; hn2 ; hn3g; ðB2Þ

(we will also do this for the other interactions) and
have introduced the triple overlap integrals

gn1n2n3 ¼
Z
XD−4

ψn1ψn2ψn3dvolXD−4
: ðB3Þ

(ii) Two massive spin-2 particles and the graviton
fhn1 ; hn2 ; h0g:

Aðhn1 ;hn2 ;h0Þ

¼ 1

4M
d−2
2

d

δn1;n2 ½8ðB23A12−B13A21ÞðB23A12þB12A31Þ

þðB12Þ2ðp33B33−4A31A32Þ�þ1↔2: ðB4Þ

(iii) Two massive spin-2 particles and one spin-1 particle
fhn1 ; hn2 ; Ai3

μ g:

Aðhn1 ; hn2 ;Ai3
μ Þ ¼

ffiffiffi
2

p

M
D−2
2

D

gn1n2i3ð2B12B13A21 −B2
12A31

− ð1↔ 2ÞÞ; ðB5Þ

with

gn1n2i3 ¼
Z
XD−4

∂
aψn1ψn2Ya;i3dvolXD−4

; ðB6Þ

TABLE III. Lagrangians describing parity-even three-point
amplitudes for two identical, one different massive spin-2
particles.

Lagrangian basis L2;2;2ðm;m;mkÞ
hμ1νh

ν
2αh

α
3μ ¼ L1

F1μα
β F2

νμαh3βν ¼ L2

F1μα
β h2βνF3

νμα þ h1βνF2μα
β F3

νμα ¼ L3

h1μαh2νβR3
μναβ ¼ L4

h1μαR2
μναβh

3νβ þ R1
μναβh

2νβh3μα ¼ L5

R1μναβF2δ
μνF3

αβδ þ F1δ
μνR2μναβF3

αβδ ¼ L6

F1
αβδF

2δ
μνR3μναβ ¼ L7

R1μν
αβ R2γδ

μν R
3αβ
γδ ¼ L8
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with it being antisymmetric in the first two indices—
so necessarily n1 ≠ n2.

(iv) Two massive spin-2 particles and one scalar particle
fhn1 ; hn2 ;ϕg:

Aðhn1 ; hn2 ;ϕÞ ∝ ϕB2
12: ðB7Þ

As commented in [1], for any polarization of the
spin-2 particles, this term scales with s as sn, n ≤ 2:
it does not contribute to the CRG equations. For this
reason, for our purposes, it is enough to write the
part that gives the dependence on the kinematics.

2. Quartic couplings

Following the notation introduced in the previous
section, the on-shell 4-point interaction between any four
massive spin-2 particles fhn1 ; hn2 ; hn3 ; hn4g that are part of
the KK tower of the graviton is given by

Acontactðhn1 ; hn2 ; hn3 ; hn4Þ

¼ 1

MD−2
D

�
gn1n2n3n4B12B34ððp12 −m2

n1ÞB14B23

þA14½B34A23 − B24A32 − B23ðA41 þ 2A43Þ�Þ

þ
X
i

1

2
m2

nign1n2nign3n4niB12B34B14B23

�

þ 23 permutations; ðB8Þ

where

gn1n2n3n4 ¼
Z
XD−4

ψn1ψn2ψn3ψn4dvolXD−4
: ðB9Þ

APPENDIX C: KINEMATICS

In this Appendix, we will write the definitions of the
variables used to compute the 2 → 2 scattering of
Sec. IV B.
The incoming particles are labeled by 1 and 2, and

outgoing particles by 3 and 4. Momentum conservation
requires

p1 þ p2 ¼ p3 þ p4; ðC1Þ

where we take

pμ
i ¼ ðEi; pi sin θi; 0; pi cos θiÞ; ðC2Þ

with E2
i ¼ p2

i þm2
i and θ1 ¼ 0, θ2 ¼ π, θ3 ¼ θ,

θ4 ¼ θ − π. The Mandelstam variables are

s¼−ðp1þp2Þ2; t¼−ðp1−p3Þ2; u¼−ðp1 −p4Þ2;
ðC3Þ

and we are taking the metric η ¼ diagð−1; 1; 1; 1Þ. They
satisfy

sþ tþ u ¼ m2
1 þm2

2 þm2
3 þm2

4; ðC4Þ

with mi being the mass of the particle i. When m1 ¼ m2 ¼
m3 ¼ m4 ¼ m—and Ei ¼ E; pi ¼ p—the Mandelstam
variables have the simple expressions

s ¼ 4E2; cos θ ¼ 1 −
2t

4m2 − s
: ðC5Þ

To construct the polarization matrices of the spin-2
particles, we first introduce the polarization vectors:

ϵμ1ðpiÞ ¼ ð0; 0; 1; 0Þ; ðC6aÞ

ϵμ2ðpiÞ ¼ ð0; cosðθiÞ; 0;− sinðθiÞÞ; ðC6bÞ

ϵμ3ðpiÞ ¼
1

mi
ðpi; ei sinðθiÞ; 0; ei sinðθiÞÞ; ðC6cÞ

from which the polarization matrices can be constructed,
adapting the conventions of [33], as

ϵμνT;1
ðpiÞ ¼

1ffiffiffi
2

p ðϵμ1ðpiÞϵν1ðpiÞ − ϵμ2ðpiÞϵν2ðpiÞÞ; ðC7aÞ

ϵμνT;2
ðpiÞ ¼

1ffiffiffi
2

p ðϵμ1ðpiÞϵν2ðpiÞ þ ϵμ2ðpiÞϵν1ðpiÞÞ; ðC7bÞ

ϵμνV;1
ðpiÞ ¼

1ffiffiffi
2

p ðϵμ3ðpiÞϵν1ðpiÞ þ ϵμ1ðpiÞϵν3ðpiÞÞ; ðC7cÞ

ϵμνV;2
ðpiÞ ¼

1ffiffiffi
2

p ðϵμ3ðpiÞϵν2ðpiÞ þ ϵμ2ðpiÞϵν3ðpiÞÞ; ðC7dÞ

ϵμνS ðpiÞ ¼
ffiffiffi
3

2

r �
ϵμ3ðpiÞϵν3ðpiÞ −

1

3

�
ημν þ 1

m2
i
pμ
i p

ν
i

��
;

ðC7eÞ

where T, V, and S stand for tensor, vector, and scalar
polarizations, respectively.
Regarding the propagators, the propagator of a scalar

particle with mass M is

−i
p2 þM2 − iϵ

: ðC8Þ
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For a massive spin-1 particle, first we need to introduce the
projector

Πμνðm̃Þ ¼ ημν þ
pμpν

m̃2
; ðC9Þ

from which one can write the propagator of a massive spin-
1 particle with mass m1 as

Pμν ¼
−iΠμνðm1Þ
p2 þm2

1 − iϵ
: ðC10Þ

Finally, the propagator of a massive spin-2 particle of mass
m is

Pμ1μ2;ν1ν2 ¼
−i
2

Πμ1ν1Πμ2ν2 þ Πμ1ν2Πμ2ν1 −
2
3
Πμ1μ2Πν1ν2

p2 þm2 − iϵ
;

ðC11Þ

withΠν1ν2 ¼ Πν1ν2ðmÞ, whereas for a massless spin-2 (in de
Donder gauge) it reads

P̃μ1μ2;ν1ν2 ¼
−i
2

ημ1ν1ημ2ν2 þ ημ1ν2ημ2ν1 − ημ1μ2ην1ν2
p2 − iϵ

: ðC12Þ
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