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General relativity (GR) as described in terms of curvature by the Einstein-Hilbert action is dynamically
equivalent to theories of gravity formulated in terms of spacetime torsion or nonmetricity. This forms what
is called the geometrical trinity of gravity. The theories corresponding to this trinity are, apart from GR, the
teleparallel (TEGR) and symmetric teleparallel (STEGR) equivalent theories of general relativity,
respectively, and their actions are equivalent to GR up to boundary terms B. We investigate how the
Gibbons-Hawking-York (GHY) boundary term of GR changes under the transition to TEGR and STEGR
within the framework of metric-affine gravity. We show that B is the difference between the GHY term of
GR and that of metric-affine gravity. Moreover, we show that the GHY term for both TEGR and STEGR
must vanish for consistency of the variational problem. Furthermore, our approach allows to extend the
equivalence between GR, TEGR and STEGR beyond the Einstein-Hilbert action to any action built out of
the curvature two-form, thus establishing the generalized geometrical trinity of gravity. We argue that these
results will be particularly useful in view of studying gauge/gravity duality for theories with torsion and
nonmetricity.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is a theory
with tremendous success in describing gravity [1–3]. In
standard formulations of GR, gravity is described entirely
in terms of spacetime curvature. However, torsion as well
as nonmetricity are two additional geometric quantities
any given spacetime may exhibit [4]. In recent years,
progress has been made towards understanding theories of
gravity including torsion and nonmetricity, as well as their
implications to cosmology and black hole physics (see
e.g. [5–11]). Our motivation is to examine theories of
gravity containing torsion and nonmetricity within the

context of gauge/gravity duality. Within gauge/gravity
duality, a theory of gravity in an (asymptotically local)
anti–de Sitter spacetime provides us with a dual descrip-
tion of the dynamics of a strongly coupled conformal field
theory (CFT) [12–15]. In addition this dual CFT is
realized holographically, in the sense that it is defined
on the boundary of the spacetime in which gravity
propagates. Gauge/gravity duality has been used success-
fully to analyze extensively the transport properties of
strongly coupled CFTs (see e.g. [16–20]). However, these
analyses have been performed almost entirely in torsion-
free, metric curved spacetimes [21]. We aim at introducing
torsion and nonmetricity into this duality in order to
describe spin and hypermomentum transport in strongly
coupled systems. In particular, we want to understand the
hydrodynamic transport of spin and hypermomentum in
strongly coupled fluids, such as Dirac and Weyl semi-
metals or the quark gluon plasma [26–33], by using the
fluid/gravity correspondence [34–36]. Since the spin and
hypermomentum of the dual fluid are encoded on the
boundary of the spacetime by definition, it is important to
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study the gravitational boundary terms involved in tor-
sionful and nonmetric theories of gravity.
Theories in which either torsion or nonmetricity are

nonvanishing while curvature vanishes identically are
called teleparallel and symmetric teleparallel theories of
gravity, respectively. We focus on a subset of these theories,
the teleparallel equivalent of general relativity (TEGR) [6–
10,37,38] and the symmetric teleparallel equivalent of
general relativity (STEGR) [39–45]. As the names suggest,
these theories are dynamically equivalent to GR. A par-
ticular advantage of these reformulations of GR is the fact
that their dynamics are described by Lagrangians reminis-
cent of gauge theory Lagrangians. For example, model
Lagrangians for (S)TEGR are

LTEGR ∝ Tμ ∧ ⋆Tμ; LSTEGR ∝ Qμν ∧ ⋆Qμν; ð1Þ

where Tμ and Qμν are the differential forms of torsion and
nonmetricity, respectively [46].
There are several points in relation to actions of the form

(1) that we would like to emphasize. First, the gauge
degrees of freedom of Tμ and Qμν are defined on vector
spaces that are locally isomorphic to the underlying
spacetime. As a result, the standard Hodge dual used in
defining gauge theories with internal degrees of freedom
must be modified in nontrivial ways in order to take into
account their action on the gauge indices [10,48]. In
particular, it is necessary to define a generalized Hodge
dual whose explicit expression is not known for all
dimensions [49]. As a result, it is not obvious how to
write down the most general (S)TEGR Lagrangians in
dimensions different than four. Hence, the gauge theory-
like Lagrangians (1) have only limited use in arbitrary
dimensions, and for explicit calculations. A version of the
(S)TEGR Lagrangian without generalized Hodge duals is
needed [50].
The second feature of (S)TEGR we focus on is its

boundary term. It is well-known that GR has a well-defined
variational formulation in spacetimes with boundaries only
if a boundary Gibbons-Hawking-York (GHY) term is
included alongside the bulk Einstein-Hilbert Lagrangian
[3,5,52,53]. A so far unsolved issue is whether a GHY
equivalent term must be included alongside the bulk actions
in (1) (see e.g. [8,54–57]).
Finally, we note that the geometrical trinity of gravity

was established for the Einstein-Hilbert action [55–58].
However, extensions of GR, including arbitrary polyno-
mials of the Riemann tensor, are routinely studied in the
literature, see e.g. [15]. It is then necessary to understand
whether such extensions may be equivalently recast as
extensions of (S)TEGR.
In the present paper, we use the formalism developed in

[5] to address all three of these points. In particular, we
consider GR from the point of view of metric-affine gravity
(MAG) [4]. MAG describes the contributions of both

torsion and nonmetricity to curvature in terms of a single
geometric object, the deformation one-form Aμ

ν defined in
(7). This allows us to rederive TEGR and STEGR simulta-
neously. We show that the boundary term generated when
transitioning from GR to one of its equivalents, simply
translates the GHY term of GR to the GHY term of MAG
generated by the curvature two-form. Since curvature is set
to zero when we enforce teleparallelism, we conclude that
(S)TEGR does not need a boundary term. In addition, our
formalism is defined naturally in any dimension. Thus, our
derivation of the geometrical trinity also provides the
Lagrangian of (S)TEGR in general dimensions, see (31).
Finally, we investigate under which conditions we may

generalize the equivalence between GR and (S)TEGR to
extended theories of gravity. We show that the geometrical
trinity of gravity exists for any GR extension that may be
written in terms of the curvature two-form alone. In contrast
to the ordinary geometrical trinity, the boundary term for
our generalized trinity does not vanish identically. Instead it
is given by a specific expression, which for topological
gravity takes the form of a Chern-Simons gauge theory for
the deformation one-form, defined as the difference
between the full and the Christoffel connections. This
boundary term in not necessary for the variational problem
to be well-defined. Instead, in general, it imposes boundary
conditions on the bulk torsion or nonmetricity in order for
the action to be equivalent to the corresponding GR
extension.
In Sec. II, we begin our investigation by setting up the

geometric notions necessary to understand our results. In
Sec. III, we then derive the equivalence between GR and
(S)TEGR, as well as their corresponding GHY terms, from
the point of view of MAG via a differential geometric
formalism. A generalization of our proof to higher-curva-
ture extensions of GR is given in Sec. IV. Finally, in Sec. V
we summarize our results and provide some outlook for
further research. We express our results in a more familiar
tensor calculus notation in the Appendix.

II. GEOMETRIC SETUP

In this section we define the basic geometric objects
necessary for understanding the derivation of our main
result in Secs. III and IV. For a more thorough discussion of
the formalism employed, the reader may consult [5].
We begin by considering an n-dimensional manifoldM,

the spacetime where our theory of gravity lives on. We
assume M is equipped with a connection one-form ωμ

ν ¼
Γμ
ρνθρ and a metric ds2 ¼ gμνθμ ⊗ θν, as well as a coframe

basis θμ of the cotangent spaces of M, which is not
necessarily holonomic (dθμ ≠ 0) [63]. The fields ωμ

ν , gμν
and θμ are the dynamical fields of the theories of gravity we
consider. The gravitational Lagrangians we focus on are
those built out of the field strengths of the aforementioned
dynamical fields defined as
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the curvature two-form∶ Ωμ
ν ≔ dωμ

ν þ ωμ
ρ ∧ ωρ

ν ¼ 1

2
Rμ

νρσθ
ρ ∧ θσ;

the torsion two-form∶ Tμ ≔ Dθμ ¼ dθμ þ ωμ
ν ∧ θν ¼ 1

2
Tμ

ρσθ
ρ ∧ θσ;

the nonmetricity one-form∶ Qμν ≔ −Dgμν ¼ −ðdgμν − ωρ
μgρν − ωρ

νgμρÞ ¼ Qμνρθ
ρ; ð2Þ

where d denotes the exterior derivative and D the exterior covariant derivative with respect to the connection ωμ
ν [64]. The

components of the curvature two-form are those of the Riemann tensor Rμ
νρσ, while those of torsion and nonmetricity are

the torsion tensor Tμ
ρσ and nonmetricity tensor Qμνρ, respectively.

We define GR, TEGR and STEGR in terms of Ωμ
ν, Tμ and Qμν as

GR Ωμ
ν ≠ 0; Tμ ¼ 0; Qμν ¼ 0;

TEGR Ωμ
ν ¼ 0; Tμ ≠ 0; Qμν ¼ 0;

STEGR Ωμ
ν ¼ 0; Tμ ¼ 0; Qμν ≠ 0: ð3Þ

The definition (3) also clarifies the naming of (S)TEGR as
teleparallel theories; both TEGR and STEGR have by
definition vanishing curvature, meaning a vector parallel
transported by D in those theories remains parallel to itself.
In addition, STEGR is symmetric in the sense that the
fundamental dynamical field, Qμν, is symmetric in its two
indices unlike the two-form Tμ in TEGR.
GR is special within this family of theories, because the

vanishing of both Tμ and Qμν constrains the connection ω
μ
ν

to be the Christoffel connection: If we denote the
Christoffel connection by ω̊μ

ν, its corresponding covariant
derivative, D̊, is the unique covariant derivative satisfying

0¼ T̊μ ¼ D̊θμ ¼ dθμþ ω̊μ
ν ∧ θν⇔ dθμ ¼−ω̊μ

ν ∧ θν; ð4aÞ

0 ¼ Q̊μν ¼ −D̊gμν ¼ −dgμν þ ω̊ρ
μgρν þ ω̊ρ

νgμρ: ð4bÞ

In discussing (S)TEGR it is useful to isolate the part of the
connection that allows for nontrivial torsion and nonme-
tricity. We do this by defining the deformation one-form

Aμ
ν ≔ ωμ

ν − ω̊μ
ν ; ð5Þ

with respect to which we may express Tμ and Qμν as

Aμν þ Aνμ ¼ Qμν; Aμ
ν ∧ θν ¼ Tμ: ð6Þ

The latter equations do not imply that the antisymmetric
part of Aμν consists of torsion only. In fact, we have
ðAμν − AνμÞ ∧ θν ¼ 2Tμ −Qμν ∧ θν. This will be crucial
when discussing the STEGR boundary term, as this anti-
symmetric part is how nonmetricity enters the equations.
To give more intuition for the properties of Aμν, we invert

(6) and expressAμν in terms of torsion andnonmetricity [4] as

Aμν ¼ −ϑ½μcTν� þ
1

2
ðϑμcϑνcTρÞθρ þ

1

2
Qμν þ ðϑ½μcQν�ρÞθρ;

ð7Þ

where c is the interior product and ϑμ is the dual frame to θμ,
ϑνcθμ ¼ δμν . In terms of components, we have

Aμνρ ¼ gμσðΓσ
ρν − Γ̊σ

ρνÞ ¼
1

2
ð−Tρνμ þ Tνμρ þ TμρνÞ

þ 1

2
ð−Qρνμ þQνμρ þQμρνÞ: ð8Þ

Weobserve that the torsion terms define the contorsion tensor
Kμνρ, well-known in Einstein-Cartan theories of gravity
[65–71], while the nonmetricity terms define a Weyl con-
nection in the special case whereQμν ¼ Qgμν for some one-
formQ (see e.g. [25]). Furthermore, from (7) we see that Aμν

captures any deviation from GR, be it due to torsion or
nonmetricity. Therefore, the deformation one-form allows us
to describe both TEGR and STEGR simultaneously within a
single formalism.
To complete our discussion of geometric preliminaries,we

introduce a boundary ∂M in our spacetimeM, as well as the
decomposition of the dynamical fields in contributions
normal and tangent to ∂M. Again, a thorough discussion
ofwhat follows alongwith proofsmaybe found in [5] and the
references therein. The geometry of ∂M is described by
tangent vectors eaμ and a normal vector nμ, fulfilling
eaμnμ ¼ 0. Latin indices denote internal indices of the
boundary manifold and take values in f0;…; n − 2g. We
normalize nμ as nμnμ ¼ ε, where ε ¼ −1 for spacelike and
ε ¼ þ1 for timelike boundaries. The connection one-form
on the boundary is induced by the connection in the bulk via

ωb
a ¼ ebμðdeμa þ ωμ

νeνaÞ; ð9Þ
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whereas general tensors are pulled back to ∂M as usual by
contraction with eaμ. In this manner, ϕa ≔ eaμθμ defines a
basis coframe on ∂M and γab ≔ eμaeνbgμν a boundary metric.
These pullbacks allow us to decompose θμ and gμν into
tangent and normal contributions as

θμ ¼ eμaϕa þ Nnμϕ; gμν ¼ eaμebνγab þ εnμnν; ð10Þ

whereN ≔ 1=
ffiffiffiffiffiffiffiffiffiffiffiffijnμnμj

p
is the normalization factor of nμ and

ϕ ≔ ε
N nμθ

μ. The embedding of ∂M inM is characterizedby
the extrinsic curvature one-forms [72],

Ka ≔ eaμDnμ and K̃a ≔ eμaDnμ ¼Ka−eμanνQμν; ð11Þ

which differ only due to nonmetricity. The projections of the
components of these one-forms to the boundary give the
well-known expressions of extrinsic curvature in tensor
language [5].

III. (S)TEGR ACTION AND ITS BOUNDARY TERM
IN DIFFERENTIAL GEOMETRY

In the present section, we present our derivation of the
GHY boundary term for (S)TEGR. The derivation boils
down to two steps, first we consider the Einstein-Hilbert
Lagrangian of GR and use (5) to express it in terms of Aμ

ν

and Ωμ
ν. Second, we enforce teleparallelism by setting

Ωμ
ν ¼ 0. During the first part of this derivation a boundary

term appears which we must treat carefully as it is this
boundary term that holds all the information regarding the
GHY term for (S)TEGR.
To begin our derivation, we insert the deformation one-

form (5) into the curvature definition (2) to obtain

Ωμ
ν ¼ Ω̊μ

ν þ D̊Aμ
ν þ Aμ

ρ ∧ Aρ
ν; ð12Þ

where Ω̊μ
ν ≔ dω̊μ

ν þ ω̊μ
ρ ∧ ω̊ρ

ν is the curvature two-form
built from the Christoffel connection ω̊μ

ν , that is the
curvature two-form of GR. For the Einstein-Hilbert action
in generic n dimensions, this implies

SEH
Ω̊

¼ 1

2κ

Z

dnx
ffiffiffiffiffiffi
−g

p
R̊þ SEH

Ω̊;GHY

¼ 1

2κ

Z

ημν ∧ Ω̊μν þ SEH
Ω̊;GHY

ð13aÞ

¼ 1

2κ

Z

ημν ∧ ðΩμν − D̊Aμν − Aμρ ∧ Aρ
νÞ þ SEH

Ω̊;GHY
;

ð13bÞ

where we define ημν ≔ �ðθμ ∧ θνÞ in which � denotes the
Hodge duality. We supplement the action by the well-
known GHY term of GR, given by

SEH
Ω̊;GHY

¼ ε

κ

Z

∂M
K̊a ∧ ηnaj

∂M ¼ ε

κ

Z

∂M
dVol∂M

ffiffiffiffiffi

jγj
p

K̊a
a;

ð14Þ

where the extrinsic curvature one-form was defined in (11)
(forQμν ¼ 0) and we abbreviate ηna ≔ nμeaνημν. Recall that
the GHY term is necessary to obtain a well-defined
variational problem [3,52,53]. According to (3), the action
in (13b) represents TEGR if Qμν ¼ 0 ¼ Ωμν, in which case
Aμ

ν is called the contorsion one-form, while it represents
STEGR if we choose Tμ ¼ 0 and Ωμν ¼ 0 instead.
Next, we consider the Aμν terms in (13). In particular, we

focus on D̊Aμν, which is the all important boundary term
mentioned earlier. To see this explicitly, we isolate this term
and consider the action

SD̊A ≔ −
1

2κ

Z

M
ημν ∧ D̊Aμν

¼ −
1

2κ

Z

M
Aμν ∧ D̊ημν −

1

2κ

Z

∂M
Aμν ∧ ημνj

∂M: ð15Þ

The first term on the right-hand side of (15) vanishes
identically after we recall the definitions of the Hodge star
operator � and the Christoffel exterior covariant derivative
D̊ from (4). These definitions imply

D̊ημν ¼ D̊

� ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp

ðn − 2Þ! εσ1…σ2ρ1…ρn−2g
σ1μgσ2νθρ1 ∧ … ∧ θρn−2

�

¼ 0; ð16Þ

such that only the boundary term remains in SD̊A,

SD̊A ¼ −
1

2κ

Z

∂M
Aμν ∧ ημνj

∂M: ð17Þ

To proceed, we need to express SD̊A entirely in terms of
boundary data. To achieve this, we use the definition
of Aμ

ν ¼ ωμ
ν − ω̊μ

ν as well as the 3þ 1 decomposition of

the connection [73]. We derive said decomposition by
employing

δμν ¼ eμaeaν þ εnμnν ð18Þ

to decompose the indices of ωμ
ν into boundary normal and

tangent contributions. Namely,
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ωμ
ν ¼ δμαδ

β
νωα

β ¼ eμaebνðeaαeβbωα
βÞ þ nμnνðnαnβωα

βÞ
þ εnμeaνðnαeβaωα

βÞ þ εeμanνðeaαnβωα
βÞ: ð19Þ

The decomposition of ωμ
ν then amounts to determining the

projections in parentheses in (19). The projection of ωμ
ν on

∂M in both indices is given in (9) as

eaμeνbω
μ
ν ¼ ωa

b − eaμde
μ
b: ð20Þ

The corresponding projections in which one of the indices
is projected to the normal vector nμ instead are obtained
from the extrinsic curvatures Ka and K̃a in (11), which
decompose as

Ka ≔ eaμDnμ ¼ eaμdnμ þ eaμω
μ
νnν and

K̃a ≔ eμaDnμ ¼ eμadnμ − eμaων
μnν: ð21Þ

We solve for the projections of the connection as

eaμnνω
μ
ν ¼ Ka − eaμdnμ and nμeνaω

μ
ν ¼ −K̃a þ eμadnμ:

ð22Þ

Lastly, the twice normal projected part of the connection is
obtained from the normal component of nonmetricity,

Qnn ≔ nμnνQμν ¼ 2nμDnμ ¼ 2nμdnμ þ 2nμω
μ
νnν; ð23Þ

yielding

nμnνω
μ
ν ¼ 1

2
Qnn − nμdnμ: ð24Þ

We thus obtain the 3þ 1 decomposition of the connection as

ωμ
ν ¼ eμaebνðωa

b−eaρde
ρ
bÞþnμnν

�
1

2
Qnn−nρdnρ

�

þεnμeaνðeρadnρ− K̃aÞþ εeμanνðKa−eaρdnρÞ ð25Þ

which immediately implies the 3þ 1 decomposition of the
deformation one-form (5) [74],

Aμ
ν ¼ eμaebνAa

b þ
1

2
nμnνQnn þ εnμeaνðK̊a − K̃aÞ

þ εeμanνðKa − K̊aÞ; ð26Þ

where Aa
b ≔ ωa

b − ω̊a
b is the boundary deformation one-

form. Knowing this decomposition, we come back to the
boundary action (17) which evaluates to

SD̊A ¼ −
1

2κ

Z

∂M
Aab ∧ ðeaμebνημνÞ

�
�
�
∂M

−
ε

2κ

Z

∂M
ð2K̊a − K̃a − KaÞ ∧ ηna

�
�
�
∂M

: ð27Þ

We further simplify this boundary term by examining the
Hodge dual in Aab ∧ ðeaμebνημνÞj∂M. Using the definition
ημν ¼ �ðθμ ∧ θνÞ we obtain

Aab ∧ ðeaμebνημνÞj∂M
¼

ffiffiffiffiffiffiffiffiffiffiffiffijdetgjp

ðn−2Þ! εμνρ1…ρn−2e
μ
aeνbe

ρ1
c1 � � �eρn−2cn−2A

ab ∧ϕc1 ∧…ϕcn−2 ;

ð28Þ

where ϕa ¼ eaμθμ is the boundary coframe. Note that all n
indices of the ε-symbol take their values on the (n − 1)-
dimensional boundary. As a result, Aab ∧ ðeaμebνημνÞj∂M
vanishes identically. This simplifies the boundary action
(27) to

SD̊A ¼ −
ε

2κ

Z

∂M
ð2K̊a − K̃a − KaÞ ∧ ηnaj

∂M: ð29Þ

Inserting everything into the Einstein-Hilbert action (13), we
obtain

SEH
Ω̊

¼ 1

2κ

Z

M
ημν ∧ Ω̊μν þ

ε

κ

Z

∂M
K̊a ∧ ηnaj

∂M

¼ 1

2κ

Z

M
ημν ∧ ðΩμν − Aμρ ∧ Aρ

νÞ þ
ε

κ

Z

∂M
K̊a ∧ ηnaj

∂M þ SD̊A

¼ 1

2κ

Z

M
ημν ∧ ðΩμν − Aμρ ∧ Aρ

νÞ þ
ε

2κ

Z

∂M
ðK̃a þ KaÞ ∧ ηnaj

∂M: ð30Þ

At this point, we have finished the first part of our
derivation of (S)TEGR. In the second part, we must enforce
teleparallelism by setting Ωμν ¼ 0. Naively setting the
curvature 2-form to zero would leave us with a bulk term
quadratic in Aμν and a boundary term depending on the

extrinsic curvature. However, a more careful treatment of
the boundary term reveals that it needs to be eliminated
as well.
To see this, let us recap a few details regarding GHY

terms which have been discussed in [5]. For the gravity
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actions S we consider, taking variations results in
δS ¼ δSeom þ δSbdy, where δSbdy is a boundary contribu-
tion. Enforcing Hamilton’s principle, we expect δS ¼ 0 to
yield the equations of motion of a system, but this is spoiled
by Sbdy. We resolve this by including the GHY term SGHY
to the action constructed such that δSGHY ¼ −δSbdy and
0 ¼ δðSþ SGHYÞ ¼ δSeom is enforced. The crucial point in
the above discussion is that a nontrivial δSbdy stems solely
from the variation with respect to curvature. In other words,
if we consider a generic action S constructed out of the
torsion and nonmetricity fields alone, δS ¼ δSeom is
already satisfied. The addition of a GHY term would
actually spoil the well-definedness of the variational
principle, unless its variation is tuned to vanish identically,
since it would result in δðS þ SGHYÞ ¼ δSeom − δSbdy.
Thus, in treating the boundary term of (30), we must first

separate it into the GHY term for curvature and remaining
boundary part. Then and only then we can consistently take
the teleparallel limit by setting both the curvature and its
corresponding GHY term to zero. For (30), the entire
boundary term is in fact the GHY term due to curvature [5].
Therefore, the telepallel limit for the Einstein-Hilbert action
consists of setting Ωμν ¼ 0 and eliminating the boundary
term. Hence, the complete and well-defined action for
(S)TEGR is

SðSÞTEGR ¼ −
1

2κ

Z

M
ημν ∧ Aμρ ∧ Aρ

ν: ð31Þ

The action SðSÞTEGR coincides with the differential form
(S)TEGR Lagrangian found in [39] and the components of
(31) also reproduce the (S)TEGR bulk actions considered
in e.g. [10,48,56]. It is particularly interesting to note that
the components of the Lagrangian in (31) are

ημν ∧ Aμρ ∧ Aρ
ν ¼ 2

ffiffiffiffiffi

jgj
p

dVolMAμ
ρ½μjAρνjν�; ð32Þ

which also have been found to be the components of

Tμ ∧ ⋆Tμ ð33Þ

in [10,48] for 3þ 1d TEGR. However, ⋆ denotes a
generalized Hodge dual which is necessary for soldered
bundles and a gauge interpretation of the TEGR

Lagrangian. The generalization of this Hodge dual to
arbitrary dimensions is involved and not known so far
[49]. Hence, it is not immediately clear what the component
expression of (33) is in general dimensions. In contrast to
that, our expression (32) has well-defined and directly
accessible components in an arbitrary number of dimen-
sions. Apart from the bulk dynamics of (S)TEGR, our
formalism also establishes unambiguously the (S)TEGR
GHY term. We find it to vanish identically. This is the first
main result of our paper.
Our second main result is a new systematic interpretation

of the boundary term. Namely, we see that the (S)TEGR
boundary term (17) is not a GHY term, but rather the
difference between the GHY term of GR and the one of
metric-affine gravity. That is, [75]

SD̊A ¼ SEHΩ;GHY − SEH
Ω̊;GHY

: ð34Þ

As a final comment we note that while our derivation is
in the language of differential forms, it may equally well be
reformulated in a more traditional way in terms of tensor
components. We show this explicitly in the Appendix.

IV. GENERALIZATION TO LðΩ̊μ
νÞ

THEORIES OF GRAVITY

In the present section, we will go beyond the Einstein-
Hilbert theory of gravity and consider whether general
extensions of GR built out of Ω̊μ

ν are equivalent to
extensions of (S)TEGR. In this way, we derive a general-
ized geometrical trinity (GGT) of gravity beyond the linear
Lagrangian regime.
Consider a generic action depending only on Riemannian

curvature,

SΩ̊ ¼
Z

M
LðΩ̊μ

νÞ þ SΩ̊;GHY; ð35Þ

in which we do not fix the form of the Lagrangian L. The
GHY term corresponding to L was derived in [5] and takes
the form

SΩ̊;GHY ¼ ε

Z

∂M
K̊a ∧ �ðφna − φanÞj∂M; ð36Þ

where �φμ
ν is defined via �φμ

ν ∧ δΩ̊μ
ν ¼ δΩ̊μ

ν
LðΩ̊μ

νÞ [76]. The action built out of the curvature Ωμ
ν reads

SΩ ¼
Z

M
LðΩμ

νÞ þ SΩ;GHY; ð37aÞ

SΩ;GHY ¼ −
Z

∂M

�

−εK̃a ∧ �φna þ εKa ∧ �φan þ
1

2
Qnn ∧ �φnn

��
�
�
�
∂M

: ð37bÞ
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To simplify the derivation of theGGT,we use the trick of [5,77] and introduce Lagrangemultipliers ̊ρμν into SΩ̊. These allow us
to linearize the terms in the action depending on the curvature, namely [78]

SΩ̊ ¼
Z

M
ðLð̊ρμνÞ þ �φμ

ν ∧ ðΩ̊μ
ν − ̊ρμνÞÞ þ SΩ̊;GHY

¼
Z

M
ðLð̊ρμνÞ þ �φμ

ν ∧ ðΩμ
ν − D̊Aμ

ν − Aμ
ρ ∧ Aρ

ν − ̊ρμνÞÞ þ SΩ̊;GHY; ð38Þ

where in the last equality we used the curvature decomposition (12). Given the linearization of the action, the derivation of the
GGT follows as in the previous section with ημν replaced by �φμ

ν. The equivalent of SD̊A in (15) in the present case yields

SD̊A
φ ¼ −

Z

M
�φμ

ν ∧ D̊Aμ
ν ¼ −

Z

∂M
Aμ

ν ∧ �φμ
νj
∂M −

Z

M
Aμ

ν ∧ D̊ � φμ
ν: ð39Þ

We expand the ∂M term in SD̊A
φ in terms of boundary components by using the index decomposition (18), as well as the

decomposition (26) of Aμ
ν. We arrive at

SD̊A
φ ¼ −ε

Z

∂M
K̊a ∧ �ðφna − φanÞj∂M −

Z

∂M

�

−εK̃a ∧ �φna þ εKa ∧ �φan þ
1

2
Qnn ∧ �φnn

��
�
�
�
∂M

−
Z

∂M
Aab ∧ �φabj∂M −

Z

M
Aμ

ν ∧ D̊ � φμ
ν

¼ −SΩ̊;GHY þ SΩ;GHY −
Z

∂M
Aab ∧ �φabj∂M −

Z

M
Aμ

ν ∧ D̊ � φμ
ν: ð40Þ

The result (40) for SD̊A
φ is formally the same as (27) after the replacement ημν → �φμν has beenmade. Thus, whenever the final

two terms in (40) vanish identically, we can apply our argument for the geometrical trinity in Einstein gravitymutatismutandis.
Explicitly, in that case we have SD̊A

φ ¼ −SΩ̊;GHY þ SΩ;GHY so that

SΩ̊ ¼
Z

M
LðΩ̊μ

νÞ þ ε

Z

∂M
K̊a ∧ �ðφna − φanÞj∂M ¼

Z

M
Lð−Aμ

ρ ∧ Aρ
νÞ≡ SA; ð41Þ

where we enforced teleparallelism by setting Ωμ
ν ¼ 0

and eliminating the corresponding GHY term SΩ;GHY
for consistency. The result (41) means that the GR
and (S)TEGR actions are equivalent after replacing
Ω̊μ

ν ↦ −Aμ
ρ ∧ Aρ

ν and eliminating the GHY boundary
term. In tensor components, the corresponding replace-
ment reads R̊μ

ναβ ↦ Aμ
ρβAρ

να − Aμ
ραAρ

νβ, where the com-
ponents of the deformation one-form are given by (8).
In the general case, however, there is no reason to expect

that the boundary terms vanish identically, in fact they
don’t in four-dimensional Chern-Simons modified gravity
for instance. Thus, in this case our Lagrange multiplier
method is not convenient for obtaining (symmetric) tele-
parallel equivalents of GR extensions. We can, however,
ascertain a particular algorithm for deriving these exten-
sions for a fixed Lagrangian. This proceeds as follows:
(1) Start with an action constructed solely from the

Riemannian curvature Ω̊μ
ν. Add an appropriate

GHY term to the action. For generic actions (35)
the GHY term is given by (36).

(2) Rewrite Ω̊μ
ν in the action by means of Eq. (12),

which amounts to inserting Ω̊μ
ν ¼ Ωμ

ν − D̊Aμ
ν−

Aμ
ρ ∧ Aρ

ν.
(3) Impose the vanishing curvature condition Ωμ

ν ¼ 0
of teleparallel gravity, i.e. impose the gauge
dωμ

ν ¼ −ωμ
ρ ∧ ωρ

ν.
(4) As indicated by (40), the GHY term SΩ;GHY is

always present in the boundary contributions found
in step 2. Hence, we may always obtain a well-
defined variational problem in the teleparallel limit
by subtracting SΩ;GHY from the action.

The additional boundary terms present in (40) (apart
from the GHY contributions) are not necessary for estab-
lishing the well-posedness of the variational problem, as the
teleparallel gravity action is a function of the first deriv-
atives of the metric and/or coframe. Instead, they seem to
define a boundary field theory, whose role is to modify the
boundary behaviour of the bulk fields a lá [79]. Thus, we
posit that the additional boundary terms define a boundary
field theory that is necessary for matching the degrees of
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freedom between GR and (S)TEGR extensions by enforc-
ing the appropriate boundary conditions on the bulk fields.
We leave the analysis of this question for particular GR
models for future work.
In conclusion, we find that a generalization of the

geometrical trinity of gravity can also be defined between
extensions of GR and (S)TEGR, which can be calculated
using our prescribed algorithm. This constitutes what we
call the generalized geometrical trinity of gravity. Note that
in the appropriate limit our results reproduce those of [80].
Beyond the theories considered here, one may investigate
theories of gravity built on the irreducible components
of curvature, torsion or nonmetricity with respect to
SOð1; n − 1Þ [4]. In general, these theories have different
symmetries and, hence, different degrees of freedom and
there is a priori no reason to expect any equivalence
relation between them. In this sense, our work may be used
as a guideline for building (S)TEGR theories that may, even
in principle, make predictions differing from those of GR.

V. CONCLUSIONS AND OUTLOOK

In this work, we have employed the 3þ 1 decomposition
of the connection within metric-affine gravity to elucidate
the precise role of boundary terms appearing in the
derivation of the geometrical trinity of gravity. We have
further established that the actions of TEGR and STEGR
are in no need of GHY terms in order to admit a well-
defined variational formulation. In particular, we showed
that the boundary term known in the literature for TEGR
and STEGR is a difference of GHY terms. Furthermore, we
have generalized the geometrical trinity of gravity by
showing that any extension of GR built on the curvature
two-form Ω̊μ

ν can be mapped to an extension of (S)TEGR.
We provide an explicit four-step algorithm on how to arrive
at said extension at the end of Sec. IV. Said extensions also
exhibit nontrivial boundary terms, whose role in this case is
not to ameliorate an ill-defined variation. Rather they
enforce, in general, nontrivial boundary conditions on
the bulk fields.
In view of our results, it will be interesting to reevaluate

existing results, which were derived including the GHY
term of GR to the (S)TEGR Lagrangian. This will influence
how we understand the thermodynamic properties of black
holes within (S)TEGR, which were previously shown to be
equivalent to those of GR precisely because of the included
GHY term [8,54]. For example, we may apply Wald’s
formalism to TEGR, which relies solely on the assumption
of diffeomorphism invariance, by adapting the results of
[81] for STEGR. This is particularly important in view of
applying the fluid/gravity correspondence to torsionful
spacetimes, since the zeroth order contribution in the
hydrodynamic derivative expansion is defined entirely in
terms of thermal equilibrium [82,83]. As a precursor to
establishing fluid/gravity duality for spin currents, it is
necessary to establish holographic renormalization [84–86]

for gravity theories with torsion, for which the results
presented here are expected to be useful. In addition, it will
be of interest to reexamine theories of gravity which consider
generalized Lagrangians depending on the torsion/nonme-
tricity scalar as well as theGHY term in nonlinear fashion. In
particular, it will also be of interest to check whether the
reformulation of modified theories of gravity in [11] in terms
of a non-diffeomorphisminvariant decomposition of curva-
ture is equivalent to the construction presented here. As a
final point in this regard, we can use the (S)TEGR action (31)
in order to derive a closed form for the generalized Hodge
duals of torsion and nonmetricity, defined in [10,48,49], for
arbitrary dimension.
Furthermore, the generalized geometrical trinity of

gravity has interesting implications for string theory.
Namely, our proof of the equivalence may be applied
mutatis mutandi to theories of gravity obtained from string
theoretic constructions, after the matter fields have been
consistently integrated out of the low-energy spectrum.
This suggests we may reformulate the graviton dynamics
within string theory in terms of torsion or nonmetricity
degrees of freedom. It would be interesting to carry out this
reformulation explicitly in textbook string and supergravity
theories [87–90]. Including matter fields in the above
reformulations is also an interesting, but challenging
problem since enforcing supersymmetry leads to nontrivial
constraints on the connection [91].
An additional interesting venue of research are topo-

logical theories of gravity. In view of our generalized
geometrical trinity of gravity, the existence of these
topological theories of gravity expressed in terms of
curvature implies the existence of topological theories of
torsion or nonmetricity. It would be interesting to derive
and examine the properties of such topological theories. We
note that a first step in this direction has already been taken
for Gauss-Bonnet gravity, within the setting of teleparallel
gravity. Namely, the authors of [92] have used the Gauss-
Bonnet Lagrangian to derive a topological invariant based
entirely on torsion. In addition, recently the symmetric
teleparallel extension of Gauss-Bonnet gravity has been
worked out in [93]. Similarly, such invariants should exist
as well for topological actions containing higher powers of
the curvature two-form.
Finally, note we considered the cases of spacelike and

timelike boundaries. However, spacetimes may also have
boundaries with a lightlike normal vector, nμnμ ¼ 0.
These are particularly important from the point of view
of gauge/gravity duality, since hypersurfaces with light-
like boundaries are used to compute quantum complexity
[94–96]. Furthermore, lightlike hypersurfaces are impor-
tant in spacetimes containing black holes, since the black
hole horizons may be interpreted as a lightlike boundary.
Hence, it would be interesting to extend our analysis to the
case of lightlike boundaries based on the formalisms
in [97,98].
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APPENDIX: TENSOR COMPONENT
FORMULATION OF THE (S)TEGR RESULTS

The results of Sec. III translate to the familiar tensor
component formulations of (S)TEGR qualitatively. The
transformation of the Einstein-Hilbert action to (S)TEGR
may be found inmany references, see [7,44] for example.We
will therefore not repeat the derivation at this point. However,
the connection of the (S)TEGR boundary term to the GHY
term proceeds different as in differential form language.
Since the qualitative results coincide with those presented in
Sec. III, we only give their derivation in tensorial language
for TEGR. They generalize to STEGR similarly.
We adapt the notations from [7]. Recall that the

Riemannian Ricci tensor R̊ transforms to the torsion scalar

T and the TEGR boundary term B ≔ 2∇̊μTν
ν
μ as

R̊ ¼ R − T þ B: ðA1Þ

To convert the integral of B into a boundary term, we
invoke Stokes’ theorem and obtain

Z

M
dVolM

ffiffiffiffiffi

jgj
p

B ¼
Z

∂M
dVol∂M

ffiffiffiffiffi

jγj
p

2εnμTν
νμ: ðA2Þ

Showing the connection of the TEGR boundary term and
the GHY term thus is the same as performing the 3þ 1
decomposition of nμTν

νμ which we do next. Decomposing
the indices of the torsion tensor by means of (18) yields

nμTν
νμ ¼ eaνe

ρ
anμTν

ρμ ðA3Þ

since nμnνnρTμ
νρ vanishes due to the antisymmetry of Tμ

νρ.
From [5] we use the 3þ 1 decomposition of torsion in the
form

eaμTμ ¼ Ta þ NKa ∧ ϕ; ðA4Þ

whereTa ≡Dϕa is theboundary torsion two-formandϕ and
N have been defined in (10). This decomposition implies that
its tensor components transform to the boundary as

eaνe
ρ
bn

μTν
ρμ ¼ eρbn

μTa
ρμ þ Ka

b: ðA5Þ

The Riemannian limit of the latter equation yields

eρbn
μTa

ρμ ¼ −K̊a
b: ðA6Þ

We insert these results into (A2) to obtain
Z

M
dVolM

ffiffiffiffiffi

jgj
p

B ¼ 2ε

Z

∂M
dVol∂M

ffiffiffiffiffi

jγj
p

ðKa
a − K̊a

aÞ:

ðA7Þ
This is the difference between the GHY term of the
Lagrangian R̊ and the one of R in components. Analogous
to the differential geometric formulation in Sec. III we
transition from the GR action to the TEGR action in
components by setting R ¼ 0. Since the GHY term is there
to cancel the boundary terms which are nonvanishing under
variation of the action, it introduces nonvanishing boundary
terms in the variational calculation if R ¼ 0 is imposed. In
this way it makes the variational problem ill-defined again.
Thus, we need to cancel the GHY term in the transition to
TEGR additional to imposing R ¼ 0. Hence, we find the
same behavior as in the differential form calculation in
Sec. III. Of course, this result also implies that a GHY term
must be included in the Riemannian Einstein-Hilbert action
before transforming to TEGR. Hence, the transformed
Einstein-Hilbert action in tensor components reads

SEH¼ 1

2κ

Z

M
dVolM

ffiffiffiffiffi

jgj
p

R̊þε

κ

Z

∂M
dVol∂M

ffiffiffiffiffi

jγj
p

K̊a
a

¼ 1

2κ

Z

M
dVolM

ffiffiffiffiffi

jgj
p

ðR−TþBÞ

þε

κ

Z

∂M
dVol∂M

ffiffiffiffiffi

jγj
p

K̊a
a

¼ 1

2κ

Z

M
dVolM

ffiffiffiffiffi

jgj
p

ðR−TÞþε

κ

Z

∂M
dVol∂M

ffiffiffiffiffi

jγj
p

Ka
a:

ðA8Þ

TEGR is therefore completely described by the action

STEGR ¼ −
1

2κ

Z

M
dVolM

ffiffiffiffiffi

jgj
p

T: ðA9Þ
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This result proves that (A9) is the full TEGR action.
Schematically, (A9) means that the GHY term needs to be
canceled in the transition from general relativity to TEGR

while noTEGRboundary termB is needed. The results of the
tensor component formulation of TEGR thus coincide with
the differential form formulation in Sec. III.
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