
Nucleon electric and magnetic polarizabilities in holographic QCD

Federico Castellani *

INFN, Sezione di Firenze, and Dipartimento di Fisica e Astronomia, Universitá di Firenze,
Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy

(Received 19 June 2024; accepted 12 August 2024; published 3 September 2024)

We analyze the resonance contributions to the generalized Baldin sum rule, namely the sum of the
generalized electric and magnetic nucleon polarizabilities αEðQ2Þ and βMðQ2Þ, within the holographic
QCD model by Witten, Sakai, and Sugimoto (WSS). In particular, we account for the contributions from
the first low-lying nucleon resonances with spin-1=2 and spin-3=2 and both parities. After having
extrapolated the WSS model parameters to fit experimental data on baryonic observables, we compare our
findings with alternative predictions in literature, finding a qualitative agreement with all of them.
Moreover, at least for the proton case, where data are available, our results are in qualitative accordance
with resonance contributions extracted from experimental nucleon-resonance helicity amplitudes.
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I. INTRODUCTION

Nucleons compose a great part of the visible matter we are
surrounded by, but despite that, our knowledge about their
internal properties still needs to be completed. If on the one
hand scattering processes at high energy provide a useful
tool to probe the physics of the single constituents of
nucleons, on the other hand, low-energy scattering processes
allow us to extract crucial insights and information about the
internal collective structure of neutron and proton, described
in terms of composite properties as mass, charge, spin or
polarizabilities. In particular, polarizabilities quantify nucle-
ons’ response to an external electromagnetic field and the
rearrangement of their internal charge, spin, or magnetiza-
tion distributions. In the case in which the probing photon is
virtual, i.e., with strictly positive momentum-squared Q2,
polarizabilities acquire a Q2 dependence and are called
generalized polarizabilities. The study of the low-Q2 (less
than 1 GeV2) behavior of those observables provides a
unique key to analyzing the properties and the collective
dynamics of the nucleon constituents and at the same time a
strict validity test of chiral effective field theory (χEFT) and
lattice QCD computations (where available). In the present
work, we will focus on the electric and magnetic generalized
nucleon polarizabilities αEðQ2Þ and βMðQ2Þ.
How the generalized polarizabilities depend onQ2 can be

introduced in two different ways, namely through virtual

Compton scattering (VCS) and forward doubly virtual
Compton scattering (VVCS) [1,2]; while in the former
scattering process, the initial probing photon is virtual
and the final one is real, in the latter both of them are virtual
and have equal momentum. Then, it is important to stress
that at finite-exchanged momentum squared a relation
between the generalized polarizabilities arising from these
two different types of scattering processes is not known up to
now, and they are only connected in the real photon limit [3].
From an experimental point of view, several virtual

Compton scattering experiments have been conducted
over the last twenty years, from Jefferson Lab [4–6], to
MAMI [7–11] andBates [12,13], aimedatmeasuring the low-
Q2 behavior of αEðQ2Þ and βMðQ2Þ for the proton. While
some data agreeswith theoretical understanding arising from,
for instance, χEFTs, no single calculation completely
describes the experimental results. In particular, the most
puzzling discrepancy comes from the observed low-energy
behavior of the electric polarizability, which contrasts the
expected predictions suggesting a monotonic decrease with
increasing Q2 [14]. In particular, an unexpected peak at
around Q2 ∼ 0.3–0.4 GeV2 has been observed. It is com-
monly suggested, as in [14], that one can identify mesonic
cloud effects as a possible origin of this disagreement between
theory and experiments. Nevertheless, none of the current
theoretical approaches, for instance, based on heavy baryon
chiral perturbation theories (HBχPT) [15], effective
Lagrangian [16], nonrelativistic quark constituent models
[17–19] or Skyrme model [20], manage to account for the
nontrivial shape of αEðQ2Þ. An analysis based on first
principles could involve lattice QCD, but the high computa-
tional costs make the latter an arduous path for the moment.
JLab is currently planning future measurements

of proton’s generalized polarizabilities to catch better
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the shape of αEðQ2Þ with higher accuracy and reduce the
currently large uncertainties in the available data on the
very low-Q2 behavior of βMðQ2Þ [21].
On the other hand, the analysis of the forward VVCS

generalized polarizabilities is currently a hot topic as well;
indeed it allows the extraction of relevant information on
nucleon properties, their internal structure, and also atomic
spectroscopy-related problems such as the so-called ‘proton
radius puzzle’ (see Refs. [22,23] for more details on the
subject). Furthermore, their study is highly interested in the
determination of the evolution withQ2 of specific sum rules
connecting dynamical nucleon properties, such as nucleon
structure functions and photoabsorption cross sections, and
combinations of the generalized polarizabilities themselves.
Among these, in this work, we will mainly focus on the so-
called generalized Baldin sum rule relating the sum of
αEðQ2Þ and βMðQ2Þ to a certain integral over the Bjorken
parameter of the F1ðx;Q2Þ structure function [1].
In these directions, developments are also awaited from a

theoretical point of view. The χEFT’s studies have well
under control the processes involving nucleons and pion
loops while partially describing processes in which nucleon
resonances enter into the game. Given that the latter could
play a role in the low-energy behavior of observables such
as electric and magnetic polarizabilities, it is useful to
develop a complementary theoretical approach to account
for their effects.
In the present work, we study the VVCS electric and

magnetic nucleon generalized polarizabilities and the
Baldin sum rule at low-Q2 within the Witten Sakai
Sugimoto (WSS) holographic model. The latter is based
on a specific D4 −D8 setup in type IIA string theory,
displaying on its gauge theory side a SUðNcÞ Yang-Mills
theory, with Nf quarks and a tower of massive adjoint
fields. This theory shares with QCD relevant infrared
features, such as confinement, mass gap, and chiral
symmetry breaking [24,25]. Remarkably, the related non-
perturbative physics, in the large Nc limit, can be captured
by a dual classical supergravity description.
Following closely what has been done in [26] for the

nucleon spin polarizabilities, we aim to compute in theWSS
model the resonance contributions to αEðQ2Þ þ βMðQ2Þ at
the low-Q2 for both nucleons; we will focus on low-lying
nucleon resonances, with spin-3=2 and spin-1=2 and both
parities. To compare our findings with data, we extrapolate
the WSS model parameters setting the masses of the
nucleons and Δð1232Þ resonance to their experimental
values. Our results show that the Δð1232Þ resonance gives
the dominant contribution to the generalizedBaldin sum rule
at low-Q2. Moreover, we find that αEðQ2Þ þ βMðQ2Þ in the
model displays a smooth falloff with increasing momentum
squared forQ2 ≳ 0.05 GeV2. However, at much smallerQ2

a peak is observed (see Fig. 6); the latter may be just an
artifact of the model, as it is suggested, at least for the proton
case, by a comparison of our results with the expected trend

for the resonances contribution obtained from helicity
amplitudes data interpolation.
This work is organized as follows.
In Sec. II, we review some basic features of lepton-

nucleon scattering, introducing the relevant objects for our
analysis such as the hadronic tensor, the helicity ampli-
tudes, and the generalized polarizabilities.
In Sec. III, we provide a short introduction to theWitten-

Sakai-Sugimotomodel of holographicQCD,mostly focus-
ing on the main ingredients for the holographic description
of baryonic states and electromagnetic current.
In Sec. IV, we present our results for the low-lying

resonance contributions to the sum of the nucleon electric
and magnetic generalized polarizabilities at low-Q2.
In particular, we account for positive parity Δð1232Þ,
N(1440), and N(1710), and negative parity N(1535) and
N(1650), resonances. Collecting all the above-mentioned
contributions, we compare our findings, with chiral per-
turbation theory [22,27] and MAID model predictions
[28,29], findings from parametrization fits of the
F1ðx;Q2Þ structure function to experimental data [30,31],
and with the expected behavior of the resonance contri-
butions obtained from data interpolation of nucleon-reso-
nance helicity amplitudes.
In Sec. V, we finally provide comments and conclusions.

II. NUCLEON INTERNAL STRUCTURE

Information on the low-energy behavior of generalized
nucleon polarizabilities can be experimentally extracted from
the study of inclusive lepton-nucleon scattering processes,

lN → l0X; ð1Þ
where X represents the unobserved hadronic final state and
the lepton l is usually chosen to be an electron. In particular,
the dominant lepton-nucleon inelastic interaction is given by
the one-virtual photon exchange with virtuality defined as1

q2 ¼ Q2 > 0; ð2Þ
where qμ is the photon momentum. Another important
kinematic variable is the Bjorken variable,

x ¼ −
Q2

2p · q
¼ −

Q2

2ν
; ν ¼ p · q; ð3Þ

with pμ the target nucleon momentum. Notice that x ranges
between 0 and 1.

A. Hadronic tensor and unpolarized structure functions

The whole information on the hadronic part of the
scattering process (1) is encoded in the so-called hadronic

1Here we will work with a mostly plus signature metric
ð−;þ;þ;þÞ.
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tensor (for more details see e.g., [1,32–34]). The latter can
be expressed in terms of certain matrix elements of the
electromagnetic current Jμ between the initial nucleon and
final X state as

Wμν ¼ 1

4π

X
X

hp; sjJμjXihXjJνjp; sið2πÞ4δðpþ q − pXÞ;

ð4Þ

where p and s are the target nucleon momentum and spin.
Moreover, it is customary to rewrite the symmetric ðWfμνgÞ
and antisymmetric ðW½μν�Þ parts of the hadronic tensor in
terms of the unpolarized F1ðx;Q2Þ, F2ðx;Q2Þ and polar-
ized g1ðx;Q2Þ, g2ðx;Q2Þ structure functions, respectively.
Here we will focus on F1ðx;Q2Þ and F2ðx;Q2Þ only2;
actually, as it will be clear in the following, the sum of the
electric and the magnetic generalized polarizabilities will
be given in terms of a moment of F1ðx;Q2Þ.
Explicitly ðWfμνgÞ for spin 1=2 targets reads3

Wfμνg ¼
�
ημν −

qμqν

q2

�
F1

−
��

pμ −
ν

q2
qμ
��

pν −
ν

q2
qν
��

F2

ν
: ð5Þ

The behavior of the structure functions at low energy can
not be determined using perturbative tools since notori-
ously QCD is strongly coupled in the infrared. Holography
provides a complementary suited tool that we will employ,
as in [26], to study the low-lying nucleon resonance
contributions to F1ðx;Q2Þ and F2ðx;Q2Þ. These contribu-
tions are encoded in the related helicity amplitudes which
we introduce below.

B. Helicity amplitudes

The virtual Compton scattering processes, with baryon
target B and final state BX (in the present case, B will
be the nucleon and BX a baryonic resonance) can be
described in terms of the helicity amplitudes, namely
projections on the virtual photon polarization vectors of
certain electromagnetic current’s matrix elements (for
detailed reviews see Refs. [35–37]). More specifically, in
the zero photon energy Breit frame,4 they are given by5

Gþ
BXB

¼ 1

2m
hBX; hX ¼ þ1=2jϵþμ JμjB; h ¼ −1=2i;

G−
BXB

¼ 1

2m
hBX; hX ¼ þ3=2jϵþμ JμjB; h ¼ 1=2i;

G0
BXB

¼ 1

2m
hBX; hX ¼ 1=2jϵ0μJμjB; h ¼ 1=2i; ð6Þ

where h; hX are the initial and final helicities and the
virtual photon polarization vectors and momentum are
given by

ϵμ� ¼ 1ffiffiffi
2

p ð0;∓ 1;−i; 0Þ; ϵμ0 ¼
1

Q
ðq; 0; 0; 0Þ;

qμ ¼ ð0; 0; 0; qÞ; q ¼ −Q: ð7Þ

Notice that the G−
BXB

amplitude is nonzero only for
scattering processes involving helicity 3=2 resonances.
Notably, the resonance contributions to F1ðx;Q2Þ and
F2ðx;Q2Þ can be written in terms of helicity amplitudes
as [35]

F1ðx;Q2Þ¼
X
mX

δððpþqÞ2þm2
XÞm2

×ðjGþ
BXB

j2þjG−
BXB

j2Þ;�
1þ ν2

Q2m2

�
F2ðx;Q2Þ¼−

X
mX

δððpþqÞ2þm2
XÞν

× ½jGþ
BXB

j2þjG−
BXB

j2þ2jG0
BXB

j2�;
ð8Þ

where mX is the resonance mass. In the case in which one
wants to consider the more realistic possibility of having
nonsharp resonances, the above expressions (8) can be
approximated by replacing the Dirac delta functions as
follows [26,35]:

δððpþqÞ2þm2
XÞ→

1

4πmX

ΓX

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpþqÞ2j

p
−mXÞ2þΓ2

X=4
:

ð9Þ

Here ΓX are the resonance widths, which we will simply
take as inputs from experimental data [38].6

2See Ref. [26] for an analysis of polarized structure functions
in holographic QCD.

3Electromagnetic current conservation yields that qμWμν ¼ 0.
4The Breit frame can be defined as the frame having the

photon, nucleon and final resonance spatial momenta collinear.
Moreover, it is useful to further choose the frame in which energy
is set to zero, q0 ¼ 0. Notice that this implies E ¼ EX.

5Here, we will choose the normalization convention in [35] for
the helicity amplitudes with the overall factor 1=ð2mÞ, wherem is
the nucleon mass.

6In recent works e.g. [39,40], decay properties of low-lying
resonances as Roper and Nð1535Þ in the context of the Witten-
Sakai-Sugimoto holographic model have been studied. It would
be interesting to understand what are the effects of these
dynamical properties on the low-energy behavior of the reso-
nance contributions to the generalized polarizabilities. We leave
this interesting issue to future works.
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C. Electric and magnetic polarizabilities

The collective response of a nucleon probed by an
external electromagnetic field can be recast in two different
sets of generalized polarizabilities: electric and magnetic
[αEðQ2Þ and βMðQ2Þ] and forward and longitudinal-
transverse spin polarizabilities [γ0ðQ2Þ and δLTðQ2Þ].
Here we will focus only on the formers, while for an
analysis of the latter, we refer to [26].
Interestingly, from a theoretical point of view, the sum of

αEðQ2Þ and βMðQ2Þ can be simply related to the structure
function F1ðx;Q2Þ through a generalization to virtual
photons of the so-called Baldin’s sum rule [1]

αEðQ2Þ þ βMðQ2Þ ¼ 8αemm
Q4

Z
x0

0

dx xF1ðx;Q2Þ: ð10Þ

Here, αem is the fine structure constant and x0 is the
so-called pion-production threshold

x0 ¼
Q2

Q2 þ ðmπ þmÞ2 −m2
; ð11Þ

which excludes the elastic scattering contribution from the
integral (mπ is the pion mass). For a fully detailed review of
properties and sum rules involving generalized electric and
magnetic polarizabilities, see e.g., [1,32–34]. Using (8), we
can now express the sharp resonance contributions to (10)
as follows:

αEðQ2Þ þ βMðQ2Þ ¼
X
mX

ðjGþ
BXB

j2 þ jG−
BXB

j2Þ

×
8αemm3

Q4

Z
x0

0

dx xδððpþ qÞ2 þm2
XÞ

¼
X
mX

8αemm3

ðQ2 þm2
X −m2Þ3

× ðjGþ
BXB

j2 þ jG−
BXB

j2Þ; ð12Þ

In the more realistic case, where resonance decay widths
are taken into account through (9), the above result is
modified as

αEðQ2ÞþβMðQ2Þ¼2αemm
πQ4

X
mX

ΓX

mX

× ½jGþ
BXB

j2þjG−
BXB

j2�F 1ðQ2;mX;ΓXÞ;
ð13Þ

with

F 1ðQ2;mX;ΓXÞ¼
Z

x0

0

dx
x2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpþqÞ2j

p
−mXÞ2þΓ2

X=4
:

ð14Þ

III. HOLOGRAPHIC QCD:
THE WITTEN-SAKAI-SUGIMOTO MODEL

TheWSS model [24,25] is currently the top-down model
that provides the holographic theory closest to large Nc
QCD in the low-energy regime. The gauge theory describes
the infrared dynamics of a specific configuration of Nc D4-
braneswrapped on a circle of radiusM−1

KK andNf D8 branes.
This is actually a ð3þ 1Þ-dimensionalSUðNcÞ gauge theory
with Nf quarks and a tower of adjoint matter fields, whose
mass scale is given by MKK. The theory also contains a ’t
Hooft-like parameter λ measuring the ratio between the
confining SUðNcÞ string tension and M2

KK . In the planar,
strongly coupled regime (Nc ≫ 1, λ ≫ 1 andNf ≪ Nc) the
theory is holographically described by the classical super-
gravity solution sourced by theD4 branes and probed by the
D8 ones. In particular, the effective low-energy action on the
latter captures the hadronic sector of themodel. Since theD8

branes are wrapped on a S4 sphere in the background, the
related effective description (focusing on the particular
Nf ¼ 2 case) is given by a five-dimensional Uð2Þ Yang-
Mills-Chern-Simons action of the form [25],

Sf ¼ −
κ

2

Z
d4xdz

��
1

2
hðzÞF̂μνF̂μν þ kðzÞF̂μzF̂μz

�

þ 2Tr
�
1

2
hðzÞFμνFμν þ kðzÞFμzFμz

��
ð15Þ

þ Nc

24π2

Z �
3

2
Â ∧ TrF2 þ 1

4
Â ∧ F̂2

�
: ð16Þ

Here, we have split the gauge field A in his SUð2ÞAaTa

(a ¼ 1, 2, 3),7 andUð1Þ Â parts. Moreover, here μ, ν are flat
Minkowski indices, z∈ ð−∞;∞Þ is the holographic coor-
dinate, and (with MKK ¼ 1 units)

κ¼ Ncλ

216π3
; hðzÞ¼ð1þz2Þ−1=3; kðzÞ¼ð1þz2Þ; ð17Þ

where the functions hðzÞ and kðzÞ account for the curvature
of the background.
In the model, mesons are holographically identified

with gauge field fluctuations. For instance, in the Nf ¼ 1
case, these can be decomposed in terms of two complete
function bases fψnðzÞg and fϕnðzÞg as Aμðxμ; zÞ ¼P∞

n¼1 B
ðnÞ
μ ðxμÞψnðzÞ andAzðxμ; zÞ ¼

P∞
n¼0 φ

ðnÞðxμÞϕnðzÞ,
in such away that themodesBðnÞ

μ andφðnÞ get canonical mass
andkinetic terms in theMinkowskipart of (15). Toobtain this,
fψnðzÞg are required to satisfy the eigenvalues equation,

−hðzÞ−1∂zðkðzÞ∂zψnðzÞÞ ¼ λnψnðzÞ; ð18Þ

7The SUð2Þ generators Ta are normalized as
TrðTaTbÞ ¼ 1

2
δab.
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while fϕnðzÞg are given by

ϕn>0ðzÞ¼ λ−1=2n ∂zψnðzÞ; ϕ0ðzÞ¼ðκπÞ−1=2kðzÞ−1: ð19Þ

Then the BðnÞ
μ modes can be identified with vector and axial

meson fields, for n odd and even respectively. On the other
hand, while for n > 0 the fϕnðzÞgmodes can be taken out by

a redefinition of BðnÞ
μ , ϕ0ðzÞ is recognized as the pion field.

For Nf ≥ 2, baryons in the WSS model are represented
by soliton solutions with nontrivial instanton number
(coinciding with the baryon number),

nB ¼ 1

64π2

Z
d3xdzϵMNPQFa

MNF
a
PQ; ð20Þ

in the Euclidean subspace with coordinates xM;M ¼
1; 2; 3; z [25,41]. The construction and quantization of
these types of solutions, in the large λ and large Nc regime,
have been discussed in detail in the seminal works [41,42].
In the Nf ¼ 2 case, the nB ¼ 1 solution depends on a set of
parameters, namely the instanton position in the four-
dimensional space XM, its size ρ, and a set of global
SUð2Þ parameters aIðI ¼ 1, 2, 3, 4, with

P
I a

I2 ¼ 1).
Minimizing the energy of the solution classically fixes
Z ¼ 0 and ρ2 ¼ ðNc=8π2κÞ

ffiffiffiffiffiffiffiffi
6=5

p
.

The quantum description of this solution is obtained by
promoting the instanton parameters to time-dependent
operators in terms of which one builds up a nonrelativistic
Hamiltonian, whose eigenstates, characterized by quantum
numbers fB ¼ ðl; I3; nρ; nzÞ; sg, are identified with the
baryonic states. Here, l=2 (with l integer) fixes the spin
S and isospin I representations (with only I ¼ S states
allowed), I3 and s are the eigenvalues of the third
components of the isospin and spin, and nρ, nz are quantum
numbers related to the operators ρ and Z.
The baryon states take the form8

jp⃗; B; si ¼ eip⃗·X⃗RnρðlÞðρÞψnzðZÞjs; I3i; ð21Þ

where RnρðlÞðρÞ and ψnzðZÞ are eigenfunctions of the ρ and
Z parts respectively of the Hamiltonian, while js; I3i
contains the SUð2Þ information of the state. For instance,
the nucleon ground states are obtained by setting
fB ¼ ðl ¼ 1; I3 ¼ �1=2; nρ ¼ 0; nz ¼ 0Þ; s ¼ �1=2g,
where I3 ¼ 1=2 (resp. I3 ¼ −1=2) corresponds to the
proton (resp. neutron). Baryon properties under parity
transformations are encoded by the nz quantum number;
positive parity baryons have nz even, whereas negative
parity ones have nz odd. For more details, we refer
to [26,41,42]. The mass formula for the baryonic eigen-
states (withMKK ¼ 1 and up to a subtraction of the vacuum
energy [41]) reads,

M ¼ M0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2

6
þ 2

15
N2

c

r
þ 2ðnρ þ nzÞ þ 2ffiffiffi

6
p ;

M0 ¼ 8π2κ: ð22Þ

In the planar regime,M ∼ Nc is parametrically large, which
justifies the nonrelativistic approximation used in the
quantization of the model.

A. Electromagnetic current

In the Nf ¼ 2 WSS model, the electromagnetic current,
being a combination of the isoscalar ĴμV and the isovector
Ja¼3μ
V components, can be built up holographically in terms

of the classical baryon solution field strength as [42]

Jμ ¼ J3Vμ þ
1

Nc
ĴVμ

¼ −κ
�
kðzÞTrðFμzτ

3Þ þ kðzÞ
Nc

F̂μz

�
z→∞

z→−∞
: ð23Þ

After the above-mentioned quantization procedure, this is
promoted to an operator. Its expectation values between
nucleon (B) and resonance (BX) states is given in terms of
the following expressions [26,42–44]:

hĴ0Vð0ÞiBX;B ¼ Nc

2
hhX; IX3 jh; I3iF1

BXB
ðq⃗2ÞδnρXnρ ;

hĴiVð0ÞiBX;B ¼ Nc

4M0

hhX; IX3 jfF1
BXB

ðq⃗2Þ½2pi − iϵijaqjSa� þ 2qiF3
BXB

ðq⃗2Þ − F2
BXB

ðq⃗2Þðqiqa − q⃗2δiaÞSa�gjh; I3iδnρXnρ ;

hJ3;0V ð0ÞiBX;B ¼ 1

4
hhX; IX3 jhnρXjfF1

BXtB
ðq⃗2Þ½4I3 þ iϵijapiqjρ2Tr½τ3aτaa−1��

þ F2
BXB

ðq⃗2Þ½−M0iqaρ2Tr½τ3∂0ðaτaa−1Þ� þ ðp⃗ · q⃗qa − q⃗2paÞρ2Tr½τ3aτaa−1��gjnρijh; I3i;

hJ3;iV ð0ÞiBX;B ¼ M0

4
½iF1

BXB
ðq⃗2Þϵijaqj þ F2

BXB
ðq⃗2Þðqiqa − q⃗2δiaÞ�hnρXjρ2jnρihhX; IX3 jTr½τ3aτaa−1�jh; I3i; ð24Þ

8Following conventions in [35], hB; p⃗0; s0jB; p⃗; si ¼ 2mð2πÞ3δs0sδ3ðp⃗0 − p⃗Þ.
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where we used the short notation

hpX; BX; hXj · jp; B; hi ¼ h·iBX;B: ð25Þ

Moreover, in (24) we have defined

F1
BXB

ðq⃗2Þ ¼
X∞
n¼1

gvnhnzXjψ2n−1ðZÞjnzi
q⃗2 þ λ2n−1

;

F2
BXB

ðq⃗2Þ ¼
X∞
n¼1

gvnhnzXj∂Zψ2n−1ðZÞjnzi
λ2n−1ðq⃗2 þ λ2n−1Þ

: ð26Þ

Notice that, since the WSS model exhibits the so-called
vector meson dominance, all the matrix elements in (24) are
written in terms of form factors (26) which are given in turn
as functions of meson eigenfunctions ψnðzÞ, eigenvalues λn
and vector mesons decay constants,

gvn ¼ −2κ½kðzÞ∂zψ2n−1ðzÞ�z¼þ∞: ð27Þ

B. Helicity amplitudes in the WSS model

Now, having in place all the ingredients, we can attempt
to holographically evaluate the helicity amplitudes (6) in
the Breit frame. It is important to stress that, in the model,
the latter frame choice is the quite natural one in dealing
with a nonrelativistic quantum mechanic problem. In the
Breit frame, using (24), the polarization vectors in (7) and
defining the operators

Oa ¼ Tr½τ3aτaa−1�; ð28Þ

we get the following expressions for the G�
BXB

helicity
amplitudes [26]

Gþ
BXB

¼−
1

8
ffiffiffi
2

p
M0m

ðδηX;ηF1
BXB

ðq⃗2Þq

þδηX;−ηF
2
BXB

ðq⃗2Þq2Þ½2 ffiffiffiffiffiffiffiffiffiffi
mXm

p
δIX;IδnρXnρ

− iM2
0hnρXjρ2jnρihhX;IX3 jðO2− iO1Þjh;I3i�; ð29Þ

and

G−
BXB

¼ ðδηX;ηF1
BXB

ðq⃗2Þqþ δηX;−ηF
2
BXB

ðq⃗2Þq2Þ

×
iM0

8
ffiffiffi
2

p
m
hnρXjρ2jnρihhX; IX3 jðO2 − iO1Þjh; I3i:

ð30Þ

The explicit expressions for the matrix elements appearing
in the above formulae can be found in e.g., [26].

IV. NUMERICAL RESULTS: COMPARISON WITH
EXPERIMENTAL DATA

In this section, we collect our results for the low-lying
resonance contributions to the sum of electric and magnetic
generalized polarizabilities of both nucleons at low-Q2. In
doing that, as it was done in [26], we extrapolate the WSS
model parameters to realistic QCD data, namely fixing
Nc ¼ 3 and setting the difference between the masses
of the ground state nucleon and of the Δð1232Þ, as deduced
from (22), to its the experimental value

mΔð1232Þ −m ≈ 293 MeV → MKK ≈ 488 MeV: ð31Þ

Furthermore, we fix the remaining free parameter λ as
in [45], requiring that

M0 ¼ m ≈ 939 MeV;→ λ ≈ 54.4: ð32Þ

The strategy we carry out is the following: as in [25], we get
the eigenfunctions ψ2n−1ðzÞ and the eigenvalues λ2n−1
numerically solving the differential equation (18); from
these, we obtain the decay constants (27) and so the
F1;2
BXB

ðq⃗2Þ factors in (26). Since we are interested in
analyzing a low-energy regime, we can approximate
the sums in (26) considering only the first mesonic
states in the numerical computation (actually we used
the first 32 modes). Hence, from expressions (29) and
(30) we can account for the helicity amplitudes describing
each nucleon-resonance transition γB → BX.

9 Finally,
using the sum rule (12), we can holographically evaluate
αEðQ2Þ þ βMðQ2Þ and compare this with MAID
predictions and findings from alternative theoretical
approaches.

A. Resonance contributions to αEðQ2Þ+ βMðQ2Þ
Here we will focus on a few low-lying resonances’

contributions to αEðQ2Þ þ βMðQ2Þ, following essentially
similar steps to the ones of the analysis in [26]
for the evaluation of the generalized nucleon spin polar-
izabilities in the WSS model. In particular, we will consider
the positive parity Δð1232Þ ðl ¼ 3; nρ ¼ 0; nz ¼ 0Þ,
Nð1440Þ ðl ¼ 1; nρ ¼ 1; nz ¼ 0Þ, Nð1710Þ ðl ¼ 1; nρ ¼
0; nz ¼ 2Þ and negative parity Nð1535Þ ðl ¼ 1;
nρ ¼ 0; nz ¼ 1Þ, Nð1650Þ ðl ¼ 1; nρ ¼ 1; nz ¼ 1Þ reso-
nances. Using (12), (29), (30) and taking from [26] the
expressions for the expectation values of the operator (28)
between nucleon states and different possible resonances,
we obtain that

9The comparison between helicity amplitudes in the WSS
model and the experimental data (for the proton case) can be
found in e.g., [26,43,44].
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ðαEðQ2Þ þ βMðQ2ÞÞX;ηX¼1 ¼
αemmXm2Q2

4M2
0ðQ2 þm2

X −m2Þ3 ðF
1
BXB

ðq⃗2ÞÞ2
�
δIX;I

�
δnρXnρ þ 2I3

4

3
M2

0hnρXjρ2jnρi2
�

2

þ δIX;Iþ1

32

9
M4

0hnρXjρ2jnρi2
�
; ð33Þ

ðαEðQ2Þ þ βMðQ2ÞÞX;ηX¼−1 ¼
αemmXm2Q4

4M2
0ðQ2 þm2

X −m2Þ3 ðF
2
BXB

ðq⃗2ÞÞ2
�
δIX;I

�
δnρXnρ þ 2I3

4

3
M2

0hnρXjρ2jnρi2
�

2

þ δIX;Iþ1

32

9
M4

0hnρXjρ2jnρi2
�
: ð34Þ

Here, we have distinguished between the positive and
negative parity resonance contributions. Notice that the
only difference between the neutron and proton cases

follows from the isospin eigenvalues I3 in (33)
and (34). Now, let us analyze the neutron and proton cases
separately.

1. Neutron

In Figs. 1 and 2, we show the first low-lying spin-1=2
resonance contributions to neutron’s αEðQ2Þ þ βMðQ2Þ at
low Q2. The Δð1232Þ contribution, shown in Fig. 3, is as
expected the dominant one; it is isospin-independent
and thus it is the same as that for the proton. The first
subdominant contribution appears to be given by the Roper
resonance.

2. Proton

In Figs. 4 and 5, we show the first low-lying spin-1=2
resonance contributions to proton’s αEðQ2Þ þ βMðQ2Þ at

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

0.05

0.10

0.15

(α+β) N (1440) (Q2 ) [10–4 fm3 ]

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

(α+β) N (1710) (Q2 ) [10–4 fm3 ]

FIG. 1. Contributions to the neutron αEðQ2Þ þ βMðQ2Þ from
sharp nucleon positive parity resonances N(1440) (top) and N
(1710) (bottom).

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

0.001

0.002

0.003

0.004

0.005

0.006

0.007

(α+β) N (1535) (Q2 ) [10–4 fm3 ]

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

0.00005

0.00010

0.00015

(α+β) N (1650) (Q2 ) [10–4 fm3 ]

FIG. 2. Contributions to the neutron αEðQ2Þ þ βMðQ2Þ from
sharp nucleon negative parity resonances N(1535) (top) and N
(1650) (bottom).

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

1

2

3

4

(α+β) Δ(Q2 ) [10–4 fm3 ]

FIG. 3. Contribution to the neutron (and proton) αEðQ2Þ þ
βMðQ2Þ from sharp nucleon Δð1232Þ resonance.
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low Q2. As we mentioned before, the dominant Δð1232Þ
contribution is the same as the neutron one in Fig. 3. The
next subdominant contribution is again given by the Roper
resonance.

3. Total resonance contribution to Baldin sum rule

Summing up all the contributions from the low-lying
nucleon sharp resonances analyzed above we obtain the
results shown with the solid blue lines in Fig. 6.10 Then, we
can compare that with MAID model predictions [28,29]
(solid red lines), and with interpolation (solid green line) of
proton helicity amplitudes data [46,47]. In particular, for
the low-lying nucleon resonances, we have interpolated the
experimental data on the helicity amplitudes A1=2ðQ2Þ and
A3=2ðQ2Þ, from which we have extracted the functions
Gþ

BXB
ðQ2Þ and G−

BXB
ðQ2Þ, respectively [26]. Subsequently,

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

0.05

0.10

0.15

0.20

0.25

(α+β) N (1440) (Q2 ) [10–4 fm3 ]

0.2 0.4 0.6 0.8
Q2 [(Gev/c)2 ]

0.0002

0.0004

0.0006

0.0008

(α+β) N (1710) (Q2 ) [10–4 fm3 ]

FIG. 4. Contributions to the proton αEðQ2Þ þ βMðQ2Þ from
sharp nucleon positive parity resonances N(1440) (top) and N
(1710) (bottom).
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0.00030

(α+β) N (1650) (Q2 ) [10–4 fm3 ]

FIG. 5. Contributions to the proton αEðQ2Þ þ βMðQ2Þ from
sharp nucleon negative parity resonances N(1535) (top) and N
(1650) (bottom).
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14
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FIG. 6. Total contributions to the proton (top) and neutron
(bottom) to the Baldin sum rule from a few low-lying nucleon
resonances up to photon virtualities of 0.30 GeV2. In the proton
case, the green solid line represents the low-energy behavior
for the low-lying nucleon resonance contributions to
αEðQ2Þ þ βMðQ2Þ, following from the interpolation of exper-
imental data from helicity amplitudes for γp → BX scattering
processes, similarly to what has been done in [26,47,48]. Notice
that the latter interpolation should be seen, in any case, as a useful
‘qualitative’ validity check for our holographic computations. It
would be interesting in the future to obtain a more quantitative
interpolation/extrapolation for the resonance contribution to the
Baldin sum rule and its related uncertainty extracted with a
Monte Carlo-based approach similar to the one used in [47,48].
The solid (resp. dotted) blue line represents our results for the
contribution of the sharp (resp. not-sharp) resonances. Finally, the
red lines correspond to the MAID model predictions [28,29] for
the Q2 evolution of the generalized Baldin sum rule.

10The dotted blue lines represent our predictions from the
evaluation of the not-sharp resonance contributions to αEðQ2Þ þ
βMðQ2Þ in (13).
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using the latter and (12), we have estimated the expected
contribution of the resonances to the sum of the electric and
magnetic proton-spin polarizabilities.
As it can be seen in Fig. 6, our results, even displaying

a smaller magnitude, are (at least for Q2 ≳ 0.05 GeV2)
in qualitative agreement with the decreasing trend shown
by the above-mentioned interpolation (green line).
Furthermore, in our approach, we find that αEðQ2Þ þ
βMðQ2Þ decreases to zero for decreasing Q2, contrarily
to the expected slope.11 Notice that this is a common feature
of the resonance-nucleon helicity amplitudes and so gen-
eralized polarizabilities in the WSS model. As it was
argued in [43,44] this might be due to the fact that the
holographic model does not properly account for resonance
decays (since in the large λ regime baryon states are very
massive and stable). Finally, it is useful to perform a
comparison with alternative theoretical predictions based
for instance on chiral perturbation theory [22] and findings
deriving from empirical parametrization of the structure-
function F1ðx;Q2Þ [30,31]; also in these cases, we can
observe a qualitative agreement on what has been found for
the behavior of the generalized Baldin sum rule with Q2,
highlighting how in the low-energy regime the dominant
contribution to polarizabilities comes from the resonance
region.

V. CONCLUSIONS

In this work, we computed the nucleon resonance
contributions to the sum of the electric [αEðQ2Þ] and
magnetic [βMðQ2Þ] nucleon generalized polarizabilities
at low-Q2 within the WSS holographic QCD model
[24,25]. Following a similar analysis to the one in [26],
we focused on calculating the contribution to the Baldin
sum rule from the first few low-lying nucleon resonances
since these are difficult to account for in other alternative
theoretical approaches. More precisely, we adopted the
following strategy. The electron-nucleon scattering proc-
esses by which information on the generalized polariz-
abilities is extracted can be described by a cross-section,
given in turn in terms of the leptonic and hadronic tensors.
The latter, in the case of unpolarized scattering processes,
can be written as a function of the so-called nucleon
structure functions F1ðx;Q2Þ and F2ðx;Q2Þ containing
the whole information on the nucleon internal structure
[32–34]. Then, to account for the resonance contributions
to F1ðx;Q2Þ and F2ðx;Q2Þ, it is common to associate them

to the experimentally accessible helicity amplitudes G�;0
BXB

,
related to the electromagnetic current matrix elements
between the target nucleon (B) and the final resonance
state ðBXÞ [35–37]. Finally, in terms of F1ðx;Q2Þ (or
equivalently of a certain combination of G�;0

BXB
) we can

obtain an expression for αEðQ2Þ þ βMðQ2Þ as shown
in Eq. (10).
We thus evaluated the relevant helicity amplitudes and

consequently the resonance contributions to the Baldin sum
rule, analyzing the one-point functions of the holographic
electromagnetic current between initial and final baryon
states. We set the WSS model parameters to catch the
resonance physics well, i.e., fixing the masses of the target
nucleon and the lightest resonance Δð1232Þ to their
experimental values. Then, we found that for Q2 ≳
0.05 GeV2 the sum of the resonance contributions to
αEðQ2Þ þ βMðQ2Þ displays a monotonic decreasing trend
with increasing Q2 [with a key role played by the
kinematically preferred Δð1232Þ contribution].
Both in the proton and neutron cases, our findings are in

qualitative agreement with the MAID predictions [28,29],
chiral perturbation theory results [22], and finding deriving
from structure-function F1ðx;Q2Þ parametrization fit to
experimental data [30,31]. Moreover, similarly to the
analysis in [26,47], we compared our results for the proton
with the expected behavior for the resonance contributions
only to the sum of the electric and magnetic polarizabilities
extracted from the experimental data interpolation of
helicity amplitudes for γp → BX scattering processes,
obtaining a qualitative agreement.
Our analysis suggests that the resonance contributions to

the low-energy behavior of αEðQ2Þ þ βMðQ2Þ seem to be
an essential ingredient in driving the Q2 evolution of the
generalized Baldin sum rule at low energy, and at the same
time provides a useful solidity check for the predictions
from alternative approaches based on for instance chiral
perturbation theory or structure-functions empirical para-
metrization. Moreover, the agreement of our results with
the data interpolating trend of the resonance contributions
only, suggests that the WSS model, in its validity regime,
manages to catch the qualitative features of the nucleon
resonance physics at low energy.
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