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We study the out-of-equilibrium dynamics induced by a local perturbation in fracton field theory. For the
Z4- and Z8-symmetric free fractonic theories, we compute the time dynamics of several observables such as
the two-point Green’s function, hϕ2i condensate, energy density, and the dipole momentum. The time-
dependent considerations highlight that the free fractonic theory breaks causality and exhibits instantaneous
signal propagation, even if an additional relativistic term is included to enforce a speed limit in the system.
We show that it is related to the fact that the Lieb-Robinson bound does not hold in the continuum limit of
the fracton field theory, and the effective bounded speed of light does not emerge. For the theory in finite
volume, we show that the fracton wave front acquires fractal shape with nontrivial Hausdorff dimension and
argue that this phenomenon cannot be explained by a simple self-interference effect.
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I. INTRODUCTION

Fractons are conjectural states of matter possessing a
number of exotic properties that do not allow us to describe
them within the conventional framework of quantummany-
body theory using such concepts as symmetry breaking,
band structures, quasiparticles, or topological phases [1–6].
Continuum fractonic models—fracton quantum field the-
ories—have been analyzed in detail [7–10] and were shown
to be very distinct in many regards from their relativistic
counterparts.
Foremost, since the lattice theory spectrum consists of

immobile particles or particles with restricted mobility,
which are called fractons, at the level of the low-energy
theory, there are local defects, whose locations are restricted.
Also, the ground-state degeneracy of the system on a

lattice scales exponentially with the system size and hence
diverges in the continuum limit. Therefore, the continuum
version of the theory possesses an infinite number of

ground states. In particular, this leads to UV/IR mixing,
which means that a low-energy observer is sensitive to
short-distance physics. This is a challenge because a
continuum field theory is usually expected to give a
consistent description of low-energy physics, which does
not depend on its UV completion.
Finally, even though fracton field theories are neither

Lorentz invariant nor SOð2Þ rotationally invariant, they
possess exotic global symmetries, including subsystem
symmetries such that their charges act differently in differ-
ent subspaces of the total space.
Given the very peculiar property of restricted mobility,

out-of-equilibrium dynamics of such systems can be highly
nontrivial and not resembling that of regular isotropic or
smoothly anisotropic theories. By quenching a fracton field
theory, one can get deeper insight into its response proper-
ties and unveil features that cannot be deduced from
equilibrium considerations.
In quantum field theory (QFT), quenches have been

extensively studied in a number of diverse settings. The
number of exactly solvable models is restricted and mainly
includes conformal field theories (CFTs) [11–15]. Some
other results were obtained for free field theories and the
simplest interacting theories [16–25]. At the same time, the
study of global quench setups is promising as demonstrated
by their intensive exploration in terms of AdS/CFT corre-
spondence as a model of thermalization [26–30].
In Ref. [25], some of the authors of this paper initiated

analysis of time-dependent properties of fractonic matter by
considering a global quench in fracton field theory, where
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the behavior of the two-point correlation function after the
abrupt change of system parameters as well as after an
abrupt change of the symmetry of the theory has been
analyzed. However, global perturbation of the theory reveals
its homogeneous temporal dynamics, but not the spatio-
temporal properties, which become visible in the scenario of
inhomogeneous—local—quench. Hence, in the present
paper, we continue this research line and study the dynamics
of the fracton field subject to a local perturbation. Our goal
is to see how the structure of fractonic theories affects the
propagation of local excitations. To contextualize our
findings, we put the observables calculated for the fracton
field theory in comparison with those in locally quenched
relativistic field theory.
In a local quench prescription, the initial state of the

system is perturbed locally at one (single quench) or several
points (double quench, triple quench, etc.), and its sub-
sequent evolution is reflected in the behavior of quantum
mechanical observables—correlation functions. Local
quenches have recently been studied in various theoretical
areas, such as condensed matter theory [31–36], entangle-
ment and quantum gravity [37–41], and complexity and
chaos [42].
The so-called geometric quench introduced in Ref. [12]

involves joining two different theories with a boundary at
some time moment. In Ref. [43], an attempt is made to
generalize this setup to a higher-dimensional case. Another
example is the operator local quench, which is a setup
describing creating a localized excited state prepared by
inserting a local operator into the path integral that defines
the state [40]. Even though localized excited states have
been studied in diverse contexts [38–40,42,44–68], most of
the known examples of local quenches are related to two-
dimensional CFT [45,46,63,69]. Recently, we have studied
operator local quenches in massive scalar field theory [70],
which is a natural extension of earlier considerations [38],
where the form of observables after a local excitation was
completely fixed by conformal symmetry. The method of
the straightforward calculation of correlators using Wick’s
theorem, proposed in this work, allows us to rederive
previously known results and study QFTs with arbitrary
interactions without having to confine ourselves to consid-
ering only conformal theories. Also, conformal derivation
was limited to two dimensions, while this approach works in
arbitrary dimensions. The latter fact, in particular, makes it
possible to rederive the results obtained earlier in holo-
graphic correspondence AdSdþ1=CFTd, where the time
evolution of the state on the CFTd side is dual to a falling
massive particle in AdSdþ1 (dþ 1-dimensional anti-de
Sitter spacetime) [69].
In this paper, we rely on this approach to study operator

local quenches in 2þ 1-dimensional fracton field theory,
which is a low-energy limit [8] of the XY-plaquette
model [71]. In the latter theory, a compact scalar field,
ϕs ∼ ϕs þ 2π, is defined on each site s of a periodic square

lattice with spacing a and the number of sites Lx and Ly in
the x and y direction, correspondingly. Its Hamiltonian
reads [8]

H ¼ u
2

X
s

π2s − K
X
s

cos ðΔxyϕsÞ; ð1Þ

where πs denotes conjugate momenta of the scalar
field, and

Δxyϕx̂;ŷ ¼ ϕx̂þ1;ŷþ1 − ϕx̂þ1;ŷ − ϕx̂;ŷþ1 þ ϕx̂;ŷ:

The coordinates ðx̂; ŷÞ are integer labels of the sites,
x̂ ¼ 1;…; Lx and ŷ ¼ 1;…; Ly. Hamiltonian (1) is invari-
ant under momentum dipole symmetries [which are Uð1Þi
subsystem symmetries along ith coordinate line on the
lattice, ϕs → ϕs þ φ] as well as under Z4 rotations of the
lattice. The continuum limit of the XY-plaquette model is
achieved by taking the double limit a → 0; Li → ∞ such
that product aLi is kept fixed. The resulting Lagrangian
density is given by [8]

L¼μ0
2
ð∂tϕÞ2−

1

2μ
ð∂x∂yϕÞ2; ½ϕ�¼0; ½μ0�; ½μ�¼1; ð2Þ

where μ0 and μ are parameters with mass dimension þ1.
The Uð1Þi symmetries of the lattice model become in the
continuum limit a momentum dipole symmetry ϕðt; x; yÞ →
ϕðt; x; yÞ þ fxðxÞ þ fyðyÞ for arbitrary functions fx and fy.
The symmetry under Z4 spatial rotations is preserved in the
continuum limit.
The paper is organized as follows. In Sec. II, we review

the operator local quench protocol and the fracton field
theory we are studying. The postquench dynamics of the
two-point function is described in Sec. III, and the dynamics
of the energy and dipole momentum densities is described
in Sec. IV. In Sec. V, we show that the Lieb-Robinson bound
of a discretized fractonic theory does not support the
emergence of the finite speed of light in the continuous
theory. In Sec. VI, we generalize our considerations onto the
finite volume case. In Sec. VII, we comment on the fractal
structure of the excitations in the locally quenched theory in
finite volume. We also note there that there is a considerable
difference between local and global quench setups in fractal
behavior of the corresponding excitations. Section VIII is an
outlook.

II. SETUP

A. Operator local quench

An insertion of a local operator O at spacetime point
ðt0; x0Þ creates an excited state jΨðtÞi evolving in time,

jΨðtÞi ¼ N O · e−iHðt−t0Þ · e−εHOðt0; x0Þj0i; ð3Þ
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where N O is a normalization factor, which ensures that
hΨjΨi ¼ 1, and the UV regularization parameter ε pre-
serves a finite norm of the state. Choosing ðt0; x0Þ ¼ ð0; 0Þ,
the evolution of some observable O after the single-point
local quench (3) reduces to a three-point Lorentzian
correlation function:

hOðt; xÞiO ¼ h0jO†ðiε; 0ÞOðt; xÞOð−iε; 0Þj0i
h0jO†ðiε; 0ÞOð−iε; 0Þj0i : ð4Þ

To evaluate it, it is easier to perform calculations in
imaginary time and then transform the result to real times
by Wick rotation t → −iτ.1 Usually, the observable O is a
composite operator, and the calculation requires regulari-
zation. One of the possibilities is the point-splitting scheme,
where the spacetime point, at which the observable is
defined, is split into two separated ones, and then the
correlation function (4) is calculated using Wick’s con-
tractions [70]. The final correlation function consists of a
finite part and a term, which in the limit of merging points
contains a constant and a divergence. The sum of the finite
part and the constant is interpreted as the actual value of the
observable, while the divergent part is discarded (i.e.,
the correlator is renormalized). For example, in the case
of the two-dimensional CFT stress-energy tensor, the
constant coming from the point splitting corresponds to
the anomalous term in its transformation law [70].
At this point, we do not consider theories with inter-

actions, but only free field theories, in which all informa-
tion is encoded in the two-point correlation functions. In
momentum space, it means that the theory is completely
determined by its dispersion relation. We will use this
machinery to study local quenches in a free QFT with
discrete rotational symmetries—the massive scalar fracton
field theory.

B. Fracton field theory

In this paper, we consider scalar fracton field theories
introduced in Ref. [25] with underlying Zn symmetry and a
relativistic and a mass terms added for the purpose of
regularization. This Zn invariance translates into the
following Euclidean dispersion relation2:

ω2 ¼ −
1

μ0

�
ϵðk2 þ q2Þ þ fαðk; qÞ

μ
þ μm2

�
; ½ϵ� ¼ 1;

½fα� ¼ 4; α ¼ n
4
: ð5Þ

The function fαðk; qÞ of momenta k and q reflects the
underlying symmetry of the theory. We also assume that
this general form of the dispersion relation includes a
rotationally invariant part ϵðk2 þ q2Þ which tames the
divergences corresponding to the UV/IR mixing of frac-
tonic theories, i.e., when k → ∞ and q → 0 or vice versa,
and a mass term, which regulates IR divergences, when
both k and q tends to 0.
In coordinate space, function fα corresponds to higher-

derivative operators in the action. In the case of n ¼ 2, the
expression for fα is given by k2q2 as follows from Ref. [8].
For higher orders, the expression for fαðk; qÞ can be
derived through the transformation to polar coordinates
with stretched angular coordinate, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2

p
cosðαφÞ

and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2

p
sinðαφÞ. The result is given by [25]

fα ¼ ðk2 þ q2Þ2 cos2ðαφÞ sin2ðαφÞ

¼
�ðkþ iqÞ4α − ðk2 þ q2Þ2α
4ðk2 þ q2Þα−1ðkþ iqÞ2α

�
2

: ð6Þ

Specific examples of such fracton free field theories
include:

(i) Z4-symmetric theory, which is invariant under 90°
spatial rotations. The Euclidean action is given by
the low-energy limit of the XY-plaquette lattice
model (2) with an added relativistic and a mass term

S ¼ A
2

Z
dτdxdy

�
μ0ð∂τϕÞ2 þ ϵð∂xϕÞ2

þ ϵð∂yϕÞ2 þ
1

μ
ð∂x∂yϕÞ2 þ μm2ϕ2

�
; ð7Þ

where A is a normalization constant that we keep
here for generality but fix it to be equal to 1=ð4πÞ in
the calculations. The global momentum dipole
symmetry of the original theory is now broken by
the presence of mass. The dispersion relation is
given by (5) with α ¼ 1 (see Appendix A for details)

ω2 ¼ −
1

μ0

�
ϵðk2 þ q2Þ þ k2q2

μ
þ μm2

�
: ð8Þ

(ii) Z8-symmetric theory, which is invariant under 45°
rotations. The dispersion relation is given by (5) with
α ¼ 2,

ω2¼−
1

μ0

�
ϵðk2þq2Þþ4ðk3q−kq3Þ2

μðk2þq2Þ2 þμm2

�
: ð9Þ

III. DYNAMICS OF TWO-POINT FUNCTION
AND ϕ2 CONDENSATE

In free theory, the dynamics is fully determined by the
behavior of two-point correlation functions. Hence, two
cases with different properties can be studied: i. when two

1For a discussion on analytical continuation, we refer the
reader to Appendix A of Ref. [70].

2Note that in the d ¼ 3 case the field ϕ has zero mass
dimension (2). This means that the coefficient before the ϕ2

term has mass dimension 3=2. We write this coefficient as μm2 to
deal with the usual dimension-1 mass parameterm, using μ to add
up one more dimension, so that ½μm2� ¼ 3.
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operators are defined at different spacetime points and ii. when they are defined at the same point—the so-called ϕ2

condensate. In this paper, we will consider local quenches corresponding to the insertion of ϕ operator.
Let us define equal-time two-point correlation function with the equilibrium part subtracted, namely,

Gðt; x; yÞ≡ h0jϕðiε; 0; 0Þϕðt; x; yÞϕðt; 0; 0Þϕð−iε; 0; 0Þj0i
h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i − hϕðt; x; yÞϕðt; 0; 0Þi: ð10Þ

A similar one was studied before in the context of global quenches [17,18,25] and represents a perturbation of the two-point
function caused by quench excitation. By the Wick theorem, it transforms to

Gðt; x; yÞ ¼ h0jϕðiε; 0; 0Þϕðt; x; yÞj0ih0jϕðt; 0; 0Þϕð−iε; 0; 0Þj0i
h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i

þ h0jϕðiε; 0; 0Þϕðt; 0; 0Þj0ih0jϕðt; x; yÞϕð−iε; 0; 0Þj0i
h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i : ð11Þ

Calculating Wick’s contractions using the two-point function in mixed representation (A6), we get

h0jϕðiε; 0; 0Þϕðt; x; yÞj0ih0jϕðt; 0; 0Þϕð−iε; 0; 0Þj0i þ h0jϕðiε; 0; 0Þϕðt; 0; 0Þj0ih0jϕðt; x; yÞϕð−iε; 0; 0Þj0i

¼
 
1

A

Z
dkdq
ð2πÞ2

e−ω
ffiffiffiffiffiffiffiffiffiffi
ðε−itÞ2

p
þikxþiqy

2ω

! 
1

A

Z
dkdq
ð2πÞ2

e−ω
ffiffiffiffiffiffiffiffiffiffiffi
ðεþitÞ2

p

2ω

!
þ c:c:; ð12Þ

with the overall normalization factor given by

hϕðiε; 0; 0Þϕð−iε; 0; 0Þi ¼ 1

A

Z
dkdq
ð2πÞ2

e−2εω

2ω
: ð13Þ

The dynamics of the ϕ2 condensate after the local
quench by operator ϕ is given by another type of corre-
lation function, namely,

hϕ2ðt; x; yÞiϕ ¼ h0jϕðiε; 0; 0Þϕ2ðt; x; yÞϕð−iε; 0; 0Þj0i
h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i :

ð14Þ

Objects of this type have been studied in works on operator
local quenches [70]. To deal with divergences of composite
operator ϕ2, we split the point at which this operator is
inserted into two separate ones, ðt1; x1Þ and
ðt2; x2Þ ¼ ðt1 þ δ1; x1 þ δ2Þ, and take the limit δ1;2 → 0

at the end of the calculation. After that, Wick’s contractions
are performed, and we obtain

hϕ2ðt; x; yÞiϕ ¼ h0jϕðiε; 0; 0Þϕ2ðt; x; yÞϕð−iε; 0; 0Þj0i
h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i

¼ lim
ðt2;x2;y2Þ→ðt1;x1;y1Þ

h0jϕðiε; 0; 0Þϕðt1; x1; y1Þϕðt2; x2; y2Þϕð−iε; 0; 0Þj0i
h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i

¼ 2 ·
h0jϕðiε; 0; 0Þϕðt; x; yÞj0ih0jϕðt; x; yÞϕð−iε; 0; 0Þj0i

h0jϕðiε; 0; 0Þϕð−iε; 0; 0Þj0i þ h0jϕ2ðt; x; yÞj0i; ð15Þ
where the last term is divergent and should be subtracted. We calculate each contraction numerically starting with the two-
point function in mixed representation (A6),

h0jϕðiε; 0; 0Þϕðt; x; yÞj0ih0jϕðt; x; yÞϕð−iε; 0; 0Þj0i ¼
���� 1A
Z

dkdq
ð2πÞ2

e−ω
ffiffiffiffiffiffiffiffiffiffi
ðε−itÞ2

p
þikxþiqy

2ω

����
2

: ð16Þ
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The numerical results for the postquench dynamics of
the relativistic free scalar theory and the fracton field theory
are shown in Fig. 1 for the two-point function and in Fig. 2
for the ϕ2 condensate. One can see that, in the fracton field
theory containing the relativistic regulator term, two types
of dynamics are present. The severe anisotropy of the
fractonic term leads to instantaneous propagation of exci-
tations along the x and y axes, and emergence of wavelike
patterns beyond the light cone. On the other hand, the
relativistic regulator imposes a speed limit on the propa-
gation of square-shaped wave fronts.

IV. DYNAMICS OF THE ENERGY DENSITY
AND DIPOLE MOMENTUM

It is instructive to compare the dynamics of the two-point
correlation functions with the propagation of energy
density E given by the following expression,

hEðt; x; yÞiϕ ¼ hϕðiε; 0; 0ÞjEðt; x; yÞjϕð−iε; 0; 0Þi
hϕðiε; 0; 0Þϕð−iε; 0; 0Þi ; ð17Þ

where the Euclidean energy density is

E ¼ 1

2
ð−ð∂τϕÞ2 þ ð∂xϕÞ2 þ ð∂yϕÞ2 þm2ϕ2Þ ð18Þ

for the relativistic field theory and

E ¼ 1

2

�
−μ0ð∂τϕÞ2 þ

1

μ
ð∂x∂yϕÞ2 þ μm2ϕ2

�
ð19Þ

for the massive fracton scalar field theory (see also
Appendix C). Adding the relativistic regulator ϵ to the
fractonic theory modifies this expression to

E ¼ 1

2

�
−μ0ð∂τϕÞ2 þ ϵð∂xϕÞ2 þ ϵð∂yϕÞ2

þ 1

μ
ð∂x∂yϕÞ2 þ μm2ϕ2

�
: ð20Þ

The corresponding numerical results for the postquench
dynamics are shown in Fig. 2.
Another observable important in this context is the dipole

momentum, since its conservation in time is a characteristic
feature of fractonic theories. While, strictly speaking, by
introducing the relativistic regularization of the UV/IR
mixing we violate the dipole momentum conservation, it
is still interesting to look at its dynamics. Specifically, we
consider the postquench dynamics of the square of the time
component of dipole, given by the following correlation
function (see Appendix C for details),

FIG. 1. Dynamics of the nonequilibrium two-point function after a local quench corresponding to operator ϕ insertion. (a)–(c) Spatial
profiles of perturbations for fixed time moments in the relativistic model for m ¼ 1, ε ¼ 0.05. (d)–(f) The same for the Z4-symmetric
fractonic model; m ¼ 1, μ0 ¼ μ ¼ 1, ε ¼ 0.05, ϵ ¼ 0.1. (a) Relativistic, t ¼ 1. (b) Relativistic, t ¼ 8. (c) Relativistic, t ¼ 20.
(d) Z4; t ¼ 1. (e) Z4; t ¼ 8. (f) Z4; t ¼ 20.
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hJ20i ¼
hϕðiε; 0; 0ÞjJ20ðt; x; yÞjϕð−iε; 0; 0Þi

hϕðiε; 0; 0Þϕð−iε; 0; 0Þi ; ð21Þ

where the time component of the dipole current is

J0 ¼ μ0∂tϕ: ð22Þ

In Fig. 3, we show the spatial profile of hJ20i for t ¼ 100.
One can see that the general structure is similar to other
observables, but a manifold of excitation fronts emerges
and leads to a complex interference picture near the corners
of the square formed by the wave fronts.

V. INSTANTANEOUS SIGNAL PROPAGATION
AND THE LIEB-ROBINSON BOUND

As evident from the postquench evolution profiles
shown in the previous sections, a local pointlike

FIG. 2. Dynamics of the observables after a local quench corresponding to insertion of operator ϕ. (a),(b) Spatial profiles of the
perturbations of ϕ2 condensate for fixed moments of time t ¼ 20 and t ¼ 100 in Z4-symmetric fractonic model. (c) Spatial profile of
the perturbations of ϕ2 condensate for a fixed moment of time t ¼ 20 in Z8-symmetric fractonic model. (d) Spatial profile of the
perturbations of the energy density for a fixed moment of time t ¼ 20 in Z4-symmetric fractonic model. For all cases, m ¼ 1, ε ¼ 0.05,
μ0 ¼ μ ¼ 1, and ϵ ¼ 0.1. (a) hϕ2i; Z4; t ¼ 20. (b) hϕ2i; Z4; t ¼ 100. (c) hϕ2i; Z8; t ¼ 20. (d) hEi; Z4; t ¼ 20.

FIG. 3. Spatial profile of hJ20i after a local quench correspond-
ing to operator ϕ insertion for a fixed moment of time t ¼ 100 for
m ¼ 1, ε ¼ 0.05, μ0 ¼ μ ¼ 1, and ϵ ¼ 0.1.
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perturbation of fractonic medium instantaneously excites
points far away from the perturbation region, violating
causality. Adding a relativistic term to the action changes
the excitation patterns but does not recover causal dynam-
ics. On the other hand, the fracton field theory can be
viewed as a continuum limit of a many-body lattice
quantum theory with local interactions, for which the
Lieb-Robinson bound setting an effective light cone can be
expected to exist. Hence, it is important to analyze this
apparent discrepancy and understand whether the Lieb-
Robinson bound induces the finite speed of signal propa-
gation in the continuum theory.
First, we briefly remind the reader of the main con-

ditions, which a lattice many-body quantum model should
satisfy to ensure the existence of the Lieb-Robinson bound.
For that, we shall closely follow Ref. [72]. Let us consider a
general harmonic system on lattice L , defined by a
Hamiltonian of the form

HN ¼ 1

2

" X
i;j∈L

p̂iPi;jp̂j þ x̂iXi;jx̂j

�
; ð23Þ

with a locality constraint: Xi;j ¼ 0 for dði; jÞ > R, where
dði; jÞ is the length of the shortest path on the lattice
between sites i and j and R is a fixed constant. For many
systems including the discretization of the fracton field
theory considered here, Pi;j ¼ δi;j, so we shall assume
this in the subsequent discussion. Then, introducing
rescaled time,

τ≡ ffiffiffiffiffiffiffiffiffi
kXk

p
jtj; ð24Þ

one can claim that the Lieb-Robinson bound is satisfied
[72],

ffiffiffiffiffiffiffiffiffi
kXk

p
k½x̂iðtÞ; x̂j�k ≤

ffiffiffiffi
R

p
e2dði;jÞ logð

eRτ
2dði;jÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

dði; jÞp �
1 −

�
eRτ

2dði;jÞ

�
2
�

for dði; jÞ > eRτ=2: ð25Þ

In this case, an effective light cone arises, the interior of
which is defined as

dði; jÞ < cjtj ∝ eRτ=2; ð26Þ

with effective speed of light c given by

c ∝
1

2
eR

ffiffiffiffiffiffiffiffiffi
kXk

p
: ð27Þ

To derive the exact emergent speed of light, more assump-
tions are required, but it is only important for us whether it
is bounded from above or not.

Now, let us construct the discretization of the fracton
field theory, which is given in the continuum limit by its
Lagrangian density,

L¼ μ0
2
ð∂tϕÞ2−

1

2μ
ð∂x∂yϕÞ2−

ϵ

2
ð∂xϕÞ2−

ϵ

2
ð∂yϕÞ2−

μm2

2
ϕ2;

ð28Þ

where we included the mass term and the relativistic
regulator. The corresponding Hamiltonian density is

H ¼ μ0
2
ð∂tϕÞ2 þ

1

2μ
ð∂x∂yϕÞ2 þ

ϵ

2
ð∂xϕÞ2 þ

ϵ

2
ð∂yϕÞ2

þ μm2

2
ϕ2: ð29Þ

The derivatives can be discretized as

∂xϕ→
1

1=N

h
ϕixþ1;iy −ϕix;iy

i
;

∂yϕ→
1

1=N

h
ϕix;iyþ1−ϕix;iy

i
;

∂x∂yϕ→
1

1=N2

h
ϕixþ1;iyþ1−ϕixþ1;iy −ϕix;iyþ1þϕix;iy

i
; ð30Þ

where we assumed that the system is defined on a square
lattice ½0; L� × ½0; L�, ix and iy denote sites, and N2 is the
total number of sites. To simplify consideration, we fix
L ¼ 1. In contrast with (2.2) in Ref. [8], we introduce here
lattice constant a ¼ 1=N. On the resulting lattice, it is
handy to define finite-difference operators,

Δxϕix;iy ≡
ϕixþ1;iy − ϕix;iy

1=N
;

Δyϕix;iy ≡
ϕix;iyþ1 − ϕix;iy

1=N
: ð31Þ

The corresponding discretized Hamiltonian is

HN ¼ 1

2N2

X
fix;iyg∈L

�
μ0π

2
ix;iy

þ N4

μ
½ϕixþ1;iyþ1 − ϕixþ1;iy

− ϕix;iyþ1 þ ϕix;iy �2 þ ϵN2½ϕixþ1;iy − ϕix;iy �2

þ ϵN2½ϕix;iyþ1 − ϕix;iy �2 þ μm2ϕ2
ix;iy

�
; ð32Þ

where π is the canonical momentum operator. After some
transformations, it acquires the following form,
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HN ¼ μ0
2N2

X
fix;iyg;fjx;jyg∈L

�
πix;iyδix;jxδiy;jyπjx;jy

þ N4

μμ0

��
4þ 4μϵ

N2
þ μ2m2

N4

�
ϕix;iyδix;jxδiy;jyϕjx;jy

−
�
2þ μϵ

N2

�
ϕix;iyδix;jxδiy;jyðΔ̃x þ Δ̃yÞϕjx;jy

þ ϕix;iyδix;jxδiy;jyΔ̃x;yϕjx;jy

��
; ð33Þ

where we defined lattice operators Δ̃ as

Δ̃xϕix;iy ≡ ϕixþ1;iy þ ϕix−1;iy ;

Δ̃yϕix;iy ≡ ϕix;iyþ1 þ ϕix;iy−1;

Δ̃x;yϕix;iy ≡ ϕixþ1;iyþ1 þ ϕix−1;iyþ1 þ ϕixþ1;iy−1 þ ϕix−1;iy−1:

ð34Þ

In the intermediate calculation, we used the translational
invariance and reshuffled the indices.
Introducing shorthand notations, δi;j ≡ δix;jxδiy;jy ,

ϕi ≡ ϕix;iy , and redefining coordinate (field) and momen-
tum operators as

x̂i ≡ N−1ϕi;

p̂i ≡ N−1πi; ð35Þ

we can rewrite the Hamiltonian in the conventional
harmonic form,

HN ¼ μ0
2

" X
i;j∈L

p̂iPi;jp̂j þ x̂iXi;jx̂j

#
; ð36Þ

with Pi;j ¼ δi;j and Xi;j ¼ Xδi;j, where

X ¼ N4

μμ0

h
fðN; μ; ϵÞ − gðN; μ; ϵÞðΔ̃x þ Δ̃yÞ þ Δ̃x;y

i
; ð37Þ

and

fðN; μ; ϵÞ ¼ 4þ 4μϵ

N2
þ μ2m2

N4
;

gðN; μ; ϵÞ ¼ 2þ μϵ

N2
: ð38Þ

To get a bound on the norm kXk, we first obtain
spectrum of this matrix. Through a direct substitution, it
can be shown that any plane wave is an eigenfunction of X,

X
j∈L

Xi;j exp

�
2πi
N

k · j

�
¼ λk exp

�
2πi
N

k · i

�
; ð39Þ

where k ¼ ðkx; kyÞ and kx, ky, ix, iy, jx, jy take integer
values from 0 to N − 1, with the eigenvalues

λk ¼ 16N4

μμ0
sin2
�
πkx
N

�
sin2
�
πky
N

�

þ 4N2ϵ

μ0

�
sin2
�
πkx
N

�
þ sin2

�
πky
N

��
þ μm2

μ0
: ð40Þ

We shall show that the emergent speed of light in the
fractonic theory can be unbounded from above. Let us pick
a particular norm, kXk ¼ kXk2, namely, the spectral norm,
in (27). Then, the following identity holds:

kXk2 ¼ jλjmax: ð41Þ

Here, the critical difference between the fractonic theory
and the relativistic theory becomes clear. First, let us
assume that the dispersion relation contains only the
relativistic and massive terms, but not the fractonic part,
and take for simplicity μ ¼ μ0 ¼ ϵ ¼ 1. Then,

kXk2 ¼ 8N2 þm2; ð42Þ

and in the continuum limit, one obtains

c ∝
1

2
eR

ffiffiffiffiffiffiffiffiffiffiffi
kXk2

p
¼ 1

2
· e ·

2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8N2 þm2

p
→ 2

ffiffiffi
2

p
e;

as N → ∞: ð43Þ

On the other hand, in the discrete version of the fractonic
theory, the leading term in the dispersion relation scales as
∼N4; hence, in the continuum limit, R

ffiffiffiffiffiffiffiffiffiffiffikXk2
p

∼ N → ∞.
At this point, it is only an indication of the fact that there

is no continuum limit of the Lieb-Robinson bound in
fracton systems, because in the lhs of (25) there is also
commutator k½x̂iðtÞ; x̂j�k, which can in principle compen-
sate for the rapid growth of

ffiffiffiffiffiffiffiffiffikXkp
. Hence, we need to

analyze it as well.
For that, we rely on (56) from Ref. [72]. If Pi;j ∝ δi;j, the

commutator of position operators at different times in the
harmonic theory can be represented as a series

Cxx
i;jðtÞ≡ i½x̂iðtÞ; x̂j� ¼

X∞
n¼0

ð−1Þnt2nþ1ðXnÞi;j
ð2nþ 1Þ! ; ð44Þ

that boils down to matrix-valued function

CxxðtÞ ¼ sin ðt ffiffiffiffi
X

p Þffiffiffiffi
X

p : ð45Þ

It can be evaluated in the diagonal basis of X in the
momentum space and then Fourier transformed back to the
coordinate representation:
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Cxx
i;jðtÞ ¼

1

N2

X
k

sinðt ffiffiffiffiffi
λk

p Þffiffiffiffiffi
λk

p exp

�
2πi
N

ðk · i−k · jÞ
�
: ð46Þ

Prefactor N−2 here comes from inversion of the basis
vectors.
In the continuum limit, we should rather consider the

commutator of field operators

½ϕiðtÞ;ϕj� ¼ N2½x̂iðtÞ; x̂j�; ð47Þ

which we denote as C̃xx
i;jðtÞ ¼ N2Cxx

i;jðtÞ.
The apparent superluminal signal propagation occurs

along the symmetry lines of the fractonic theory, so it is
sufficient to analyze behavior of the commutator along one
of the coordinate axes. Specifically, we can pick up two
points lying on the y axis, i ¼ i0 ¼ 0 and j ¼ jr ¼ ð0; rNÞ,
with rN ∈Z, which turn into (0,0) and ð0; rÞ in the
continuum limit. Then,

C̃xx
i0;jr

ðtÞ ¼
X
k

sinðt ffiffiffiffiffi
λk

p Þffiffiffiffiffi
λk

p e−2πirky : ð48Þ

In the case of the nonregularized fractonic theory withm ¼
0 and ϵ ¼ 0, we can proceed by splitting the sum into three
parts: summation over points with momenta ðkx; 0Þ, sum-
mation over points with momenta ð0; kyÞ (for these two
groups λk ¼ 0), and summation over other points (kx > 0,
ky > 0). We get

C̃xx
i0;jr

ðtÞ ¼ tN þ t
XN−1

ky¼1

e−2πirky þ
XN−1

kx;ky¼1

sinðt ffiffiffiffiffi
λk

p Þffiffiffiffiffi
λk

p e−2πirky :

ð49Þ

The next step is to find an upper bound on the last sum
in (49),�����

XN−1

kx;ky¼1

sinðt ffiffiffiffiffi
λk

p Þffiffiffiffiffi
λk

p e−2πirky

�����
≤
XN−1

kx;ky¼1

j sinðt ffiffiffiffiffi
λk

p Þj
j ffiffiffiffiffiλkp j je−2πirky j ≤

XN−1

kx;ky¼1

1

j ffiffiffiffiffiλkp j : ð50Þ

Recalling (40), the fact that sin x > x=2 for x∈ ð0; π=2Þ,
and the symmetry sin α ¼ sinðπ − αÞ, one can obtain the
following estimate,

XN−1

kx;ky¼1

1

j ffiffiffiffiffiλkp j ≤
ffiffiffiffiffiffiffi
μμ0

p
π2

XbN2c
kx;ky¼1

1

kxky
; ð51Þ

where bN
2
c denotes the integer part of the fraction. The

resulting sum can be estimated from above by integral

PbN
2
c

kx;ky¼1
1

kxky
¼
�PbN

2
c

k¼1
1
k

�
2

≤
�
1þ R bN2cþ1

1
du
u

�
2

¼
�
1þ ln

�
bN
2
c þ 1

		
2
:

ð52Þ

The second term of (49) is

t
XN−1

ky¼1

e−2πirky ¼ t

�
−1þ e−2πirN − 1

e−2πir − 1

�
; ð53Þ

and for any r∈ ð0; 1Þ,���� e−2πirN − 1

e−2πir − 1

���� ≤ 2

je−2πir − 1j : ð54Þ

Now, using the fact that, if a ¼ bþ cþ d and jcj ≤ f,
jdj ≤ g, then a ≥ b − f − g, one can derive the following
lower bound on the commutator:����C̃xx

i0;jr
ðtÞ
���� ≥ tðN − 1Þ − 2t

je−2πir − 1j

−
ffiffiffiffiffiffiffi
μμ0

p
π2

�
1þ ln

�
bN
2
c þ 1

��
2

: ð55Þ

Since the linear term grows faster than the logarithmic one,
the norm of the commutator is divergent for largeN, for any
distances along the cross x ¼ 0 and y ¼ 0 and any values of
time except t ¼ 0. Hence, lhs of (25), which in the
continuum case takes the form

ffiffiffiffiffiffiffiffiffikXkp k½ϕiðtÞ;ϕj�k, is a
product of two terms unbounded from above, and the Lieb-
Robinson bound is satisfied only for smaller and smaller
values of times t as the lattice spacing goes to zero. As a
result, in the continuum limit, the effective speed of light in
the fractonic theory can be unbounded.
This calculation also explains why introducing the

massive term and the relativistic regulator does not remove
the noncausal signal propagation. In the expression for
eigenvalues (40), these terms scale slower with N than
the fractonic term and hence cannot compensate for the
unlimited growth of kXk and k½ϕiðtÞ;ϕj�k in the con-
tinuum limit.

VI. LOCAL QUENCH IN FINITE VOLUME

The norm of a state locally perturbed by an operator in a
theory defined on a plane is infinite. Hence, it is instructive
to study postquench dynamics in a regularized theory,
where the norm divergence is removed by putting the
system on a finite torus. Here, we consider the evolution
of observables after a local quench with operator ϕ on a
2þ 1-dimensional Lorentzian torus, i.e., x ∼ xþ Lx,
y ∼ yþ Ly. Starting with the general form of the two-point
function (refer to (B5) in Appendix B), nonequilibrium
Green’s function Gðt; x; yÞ (10) is calculated via the
following Wick’s contractions,
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hϕðiε; 0; 0Þϕðt; x; yÞihϕðt; 0; 0Þϕð−iε; 0; 0Þi þ hϕðiε; 0; 0Þϕðt; 0; 0Þihϕðt; x; yÞϕð−iε; 0; 0Þi

¼
 

1

ALxLy
·
e−m

ffiffiffiffiffiffiffiffiffiffi
ðε−itÞ2

p

2m
þ 1

ALxLy

X
n;s≠0

eiknxþiqsy

0
@e−ωns

ffiffiffiffiffiffiffiffiffiffi
ðε−itÞ2

p

2ωns

1
A
1
A

×

0
@ 1

ALxLy
·
e−m

ffiffiffiffiffiffiffiffiffiffiffi
ðεþitÞ2

p

2m
þ 1

ALxLy

X
n;s≠0

e−ωns

ffiffiffiffiffiffiffiffiffiffiffi
ðεþitÞ2

p

2ωns

1
Aþ c:c:; ð56Þ

and the correlation function of ϕ2 condensate hϕ2iϕ (14),

hϕðiε; 0; 0Þϕðt; x; yÞihϕðt; x; yÞϕð−iε; 0; 0Þi ¼
����� 1

ALxLy
·
e−m

ffiffiffiffiffiffiffiffiffiffi
ðε−itÞ2

p

2m
þ 1

ALxLy

X
n;s≠0

eiknxþiqsy

0
@e−ωns

ffiffiffiffiffiffiffiffiffiffi
ðε−itÞ2

p

2ωns

1
A
�����
2

ð57Þ

with the normalization factor

N ¼ hϕðiε; 0; 0Þϕð−iε; 0; 0Þi

¼ 1

ALxLy
·
e−2mε

2m
þ 1

ALxLy

X
n;s≠0

e−2ωnsε

2ωns
: ð58Þ

The sums over Fourier modes will be calculated
numerically.
As a warm-up, we first consider the evolution of ϕ2

condensate in the Klein-Gordon massive free theory. Note
that the massless limit m → 0 of the two-point function
(B5) does not exist. This is a general result for any number

of compact dimensions since the divergent term e−m
ffiffiffi
τ2

p
=m

in the series does not depend on d. However, in the flat-
space limit Lx;y → ∞, this divergence vanishes, and the
two-point function becomes well defined. Both massless
and massive flat-space limits Lx;y → ∞ can be obtained
analytically. For d ¼ 2þ 1, we showed in Ref. [70] that

hϕ2ðt; x; yÞiϕ;3d ≈
Lx;Ly→∞

4εe2εm
���e−m ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðε−itÞ2þρ2
p ���2��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðε − itÞ2 þ ρ2
p ���2 ;

where ρ2 ¼ x2 þ y2: ð59Þ

In contrast with the local quench in CFT2 [38], after which
the perturbation propagates as a solitonlike wave and does
not dissipate, in d ¼ 2þ 1 dimensions (d > 2 in general;
see Ref. [70]), the amplitude of the perturbation (59) decays
even in the massless limit.
The numerical results for the postquench dynamics are

shown in Fig. 4, for the two-point function, and in Fig. 5,
for the ϕ2 condensate. Interestingly, the spatial profiles of
correlation functions have highly irregular fractal-looking
structures, Figs. 4(c)–4(i). In the case of relativistic field

theory, Fig. 4(c), they appear at larger times simply due to
self-interference of the propagating wave front after it
circumvents the torus several times. However, for fractons,
it is more than that. Naively, one can expect that it is a
similar self-interference effect because the noncausally
propagating excitations instantaneously wind around the
torus for infinitely many times and can interfere immedi-
ately. At the same time, as one can see from, e.g., Fig. 4(d),
the set of equidistant parallel lines cannot be viewed as a
periodic continuation of the original “cross-shaped” exci-
tation across the boundary. These patterns are intricately
connected with mathematical properties of sums like (B5)
similar to those arising in the description of the Talbot
effect in optics [73].

VII. FRACTIONAL DIMENSION
OF THE WAVE FRONTS

As is clear from Figs. 4 and 5, evolution of the fractonic
model results in rather complicated irregular spatial dis-
tributions of the observable values immediately after the
quench and, as we discussed above, goes beyond the self-
interference effect in contrast with the conventional rela-
tivistic model, where highly oscillating patterns emerge at
larger times, after the wave front circumvents the torus and
interferes with itself. What is interesting to note is that the
spatial profiles of hϕðt; x; yÞϕð0Þi and hϕ2ðt; x; yÞi in the
fractonic theory are not just highly oscillating but exhibit
multiscale self-similarity, i.e., can be regarded as fractals. To
show that, we resort to studying fractional dimensions of
one-dimensional sections of the two-dimensional patterns
using the method suggested in Ref. [74] and previously used
by us in Ref. [75]. To perform the case study, we focus on
the evolution of hϕ2ðt; x; yÞi, and for each value of t, we
take one-dimensional section of the function profile along
the x ¼ y line. For the sake of completeness, we provide a
brief explanation of the method here.
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To compute fractional dimension of a one-dimensional
profileOðxÞ≡ hϕ2ðt0; x; xÞi, where coordinate x and value
O have different geometric meanings, the conventional
box-counting algorithm cannot be applied. According to
Ref. [74], the profile needs to be represented as a discrete
set of values fOig of length N (in our simulations, we
discretize it into N ¼ 5000 points). Then, for some integer
δ, functions returning the maximal and the minimal values
of the set within the δ neighborhood of the ith element of
the set are defined as

uδðiÞ ¼ sup
i0 ∈RδðiÞ

Si0 ;

bδðiÞ ¼ inf
i0 ∈RδðiÞ

Si0 ; ð60Þ

where RδðiÞ ¼ fi0∶ ji0 − ij ≤ δ; i0 ∈ ½1; N�g, and periodic
boundary conditions on the set of indices are assumed;
uδðiÞ and bδðiÞ are the upper and the lower enveloping
curves of fOig. Then, an analog of the box-counting
function is defined as

FIG. 4. Dynamics of the nonequilibrium two-point function after a local quench corresponding to the insertion of operator
ϕ. (a)–(c) Spatial distribution of perturbations for fixed moments of time in the relativistic model. The parameters are Lx ¼ Ly ¼ 30,
m ¼ 1, and ε ¼ 0.05. (d)–(f) The same for the Z4-symmetric fractonic model; Lx ¼ Ly ¼ 30, m ¼ 1, ε ¼ 0.05, μ0 ¼ μ ¼ 1, and
ϵ ¼ 0.1. (g)–(i) The same for the Z8-symmetric fractonic model; Lx ¼ Ly ¼ 30, m ¼ 1, ε ¼ 0.05, μ0 ¼ μ ¼ 1, and ϵ ¼ 0.1.
(a) Relativistic, t ¼ 10. (b) Relativistic, t ¼ 20. (c) Relativistic, t ¼ 100. (d) Z4; t ¼ 10. (e) Z4; t ¼ 20. (f) Z4; t ¼ 100. (g) Z8; t ¼ 10.
(h) Z8; t ¼ 20. (i) Z8; t ¼ 100.
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FIG. 5. Dynamics of the ϕ2 condensate after a local quench corresponding to the insertion of operator ϕ. (a)–(c) Spatial distribution of
perturbations for fixed moments of time in the Z4-symmetric fractonic model. (d)–(f) The same for the Z8-symmetric fractonic model.
For all cases, Lx ¼ Ly ¼ 30, m ¼ 1, ε ¼ 0.05, μ0 ¼ μ ¼ 1, and ϵ ¼ 0.1. (a) Z4; t ¼ 10. (b) Z4; t ¼ 20. (c) Z4; t ¼ 100. (d) Z8; t ¼ 10.
(e) Z8; t ¼ 20. (f) Z8; t ¼ 100.

FIG. 6. Fractional dimension of the one-dimensional
x ¼ y section of hϕðt; x; yÞ2i profile as a function of time for
the fractonic and the relativistic theories. The parameters
are Lx ¼ Ly ¼ 30, m ¼ 1, and ε ¼ 0.02 for both cases and
μ0 ¼ μ ¼ 1 and ϵ ¼ 0.1 for the fractonic case.

FIG. 7. Upper (red) and lower (green) envelops of a smooth,
though peaked, sample curve (black) with amplitude profile AðxÞ
for δ ¼ 40 (5000 points in total). The nonvanishing value of VðδÞ
between the envelopes contributes to the fractional dimension
estimated by (62).
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VðδÞ ¼ 1

δ2
X
i

ðuδðiÞ − bδðiÞÞ: ð61Þ

It returns the number of δ × δ blocks within the band
between uδðiÞ and bδðiÞ envelopes. The fractional dimen-
sion dH is then obtained by fitting this function with a
power-law

VðδÞ ¼ a
δdH

: ð62Þ

It is worth noticing that the scaling is never perfectly
algebraic, but the resulting fit errors are rather small. To
estimate dH, we make fit of VðδÞ for a range δ∈ ½2; 80�. The
result for dH of the one-dimensional sections of hϕ2i as a
function of t is shown in Fig. 6.
It should be noted that this method tends to overesti-

mate the fractional dimension and gives dH ≃ 1.1 for
regular nonfractal curves with a few sharp peaks as in
Fig. 7 (a typical example of this is the profiles of
excitations in the relativistic theory at small times).
This artifact is unavoidable when the Hausdorff dimension
is estimated numerically. If the δ value is larger than the
characteristic width of the peak, the difference between
the upper and the lower envelopes is non-negligible and
contributes to (62) shifting dH from 1. By taking this into
account, we can see from Fig. 6 that the Hausdorff
dimension of the wave front in relativistic field theory
acquires nontrivial values after a certain period of time,
when the signal circumvents the torus and self-interferes.
For the fracton field theory, the dimension is rather high
from the very beginning and always exceeds that of the
relativistic wave front.

Remarkably, it is the analysis of fractional dimensions
that allows us to make a comparison between the local
quench setup of this paper and the simpler setup of global
quench in fractonic theories, which was investigated in
Ref. [25]. In that setup, the system is taken out of
equilibrium by abrupt change of the parameters or the
symmetries of the system. Since the excitation is global,
one-point correlation functions depend trivially on spatial
coordinates. Hence, we should compare two-point function
instead of hϕ2ðt; x; yÞi correlator. In Fig. 8, we plotted the
corresponding dependencies. In the local quench setup, the
fractonic theory fractional dimension still grows faster than
in the relativistic theory, although the difference is now less
pronounced. The global quench setup (here, the boundary
global quench, which is characterized by the slab width)
comes as the complete opposite: not only do fractional
dimensions both for the fractonic and the relativistic cases
hardly grow, but even the dimension in the fractonic case
lies lower than for the relativistic one.
This hints to us that, even if the dynamics of two systems

look quite similar in their irregular character, the systems
may demonstrate different behavior of the features char-
acterizing this irregularity.3

VIII. CONCLUSIONS

We have analyzed the out-of-equilibrium dynamics
following a local pointlike quench in fracton field theories,
and, rather expectedly, it turns out to be very distinct from
that of conventional relativistic quantum fields. While in the
relativistic settings the initially localized excitation

FIG. 8. Fractional dimension of the one-dimensional x ¼ y section of the two-point function profile as a function of time for the
fractonic and the relativistic theories in the cases of the local (a) and global (b) quench. The parameters are (a) Lx ¼ Ly ¼ 30, m ¼ 1,
and ε ¼ 0.02 and (b) slab width τ0 ¼ 0.01 for both the relativistic and fractonic cases and μ0 ¼ μ ¼ 1 and ϵ ¼ 0.1 for the fractonic case.

3For more on this issue, refer to an upcoming paper [76].
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propagates outward continuously delocalizing, in free
fractonic theory, the very notion of local quench is some-
what questionable: due to the strong UV/IR mixing, a
pointlike perturbation instantaneously excites the system
along the lines of discrete symmetry of the theory, creating a
nonlocal pattern of correlations in no time. This observation
is supported by the fact that the Lieb-Robinson bound for
fractonic theories degenerates along the mobility directions
in the continuum limit and no longer imposes causality
constraints. By introducing mass and the relativistic regu-
larization term, it is possible to induce causal dynamics of
wave fronts in the fractonic theory; however, the noncausal
instantaneous propagation of signals does not go away, and
these two coexist, leading to nontrivial interference patterns.
It should be noted that mass and the relativistic regularizaion
violate the dipole momentum conservation law—the defin-
ing feature of fractons—but still allow one to obtain a
tractable approximate story of what happens during the
strongly singular and UV/IR mixed dynamics of the non-
regularized theory. In particular, the postquench dynamics
in fracton field theories preserves the Zn symmetry of the
theory, as can be seen from the geometry of causal wave
fronts. When the free fracton field is placed in a finite
volume, fractal-like patterns of excitations emerge across
the whole space immediately after the quench. This effect is
observed only for locally introduced perturbation, not for
the global (as in Ref. [25]) one and goes beyond self-
interference of noncausally propagating signals requiring
further investigations.
A few questions arise from these considerations. First of

all, while the fractonic theories by definition violate the
Lorentz symmetry, the fact that they do it in a way that
results in noncausal signal propagation is undesirable.
Finding a modification of the fractonic model that has a
strict propagation speed limit is an important problem.
Studying out-of-equilibrium dynamics in an interacting
fracton field theory can potentially shed light on this issue.
Along the same lines, it is interesting to more deeply
understand the connection between noncausal propagation
and the emergence of fractal excitation patterns. While it is
tempting to relate these two aspects, the fact that the
interference of instantaneously propagating signal alone
cannot explain these structures leads to a question of if this
effect persists in modifications of fracton field theories
with restored causality.
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APPENDIX A: FRACTONIC PROPAGATOR
ON A TWO-DIMENSIONAL PLANE

The action of the Euclidean free massive fracton field
theory [8,10] with the relativistic regularization [25] is
given by (7). The corresponding equation of motion reads

−μ0ϕ̈ − ϵð∂2xϕþ ∂
2
yϕÞ þ

1

μ
∂
2
x∂

2
yϕþ μm2ϕ ¼ 0: ðA1Þ

In momentum space, it takes the form

�
μ0ω

2 þ ϵðk2 þ q2Þ þ k2q2

μ
þ μm2

�
ϕ ¼ 0; ðA2Þ

and the corresponding dispersion relation of the theory is

ω2ðk; qÞ ¼ −
1

μ0μ
ðϵμðk2 þ q2Þ þ k2q2 þ μ2m2Þ: ðA3Þ

The Euclidean two-point function of the massive scalar
fractonic field (A1) is given by the Fourier transform
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hϕðτ; x; yÞϕð0; 0; 0Þi ¼ 1

A
Fω;k;q

�
μ

μ0μω
2 þ ϵμðk2 þ q2Þ þ k2q2 þ μ2m2

�

≡ 1

A

Z
dωdkdq
ð2πÞ3

μeiωτþikxþiqy

μ0μω
2 þ ϵμðk2 þ q2Þ þ k2q2 þ μ2m2

: ðA4Þ

The Fourier transformation with respect to ω gives

Fω

�
μ

μ0μω
2 þ ϵμðk2 þ q2Þ þ k2q2 þ μ2m2

�
¼ 1

2μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0μ

ϵμðk2 þ q2Þ þ k2q2 þ μ2m2

r

× exp

"
−jτj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵμðk2 þ q2Þ þ k2q2 þ μ2m2

μ0μ

s #
: ðA5Þ

The other two transformations with respect to k and q cannot be calculated analytically, so we leave the correlation function
in the mixed representation with explicit dependence on x and y coordinates,

hϕðτ; x; yÞϕð0; 0; 0Þi ¼ 1

2Aμ0

Z
dkdq
ð2πÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0μ

ϵμðk2 þ q2Þ þ k2q2 þ μ2m2

r
e
−
ffiffiffi
τ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵμðk2þq2Þþk2q2þμ2m2

μ0μ

q
þikxþiqy

: ðA6Þ

Note that we substituted jτj with
ffiffiffiffi
τ2

p
in the final expression

in order to make clear how to perform analytical continu-
ation to the Lorentzian time, τ → it. For a detailed
discussion of this aspect, we refer the reader to
Appendixes A and B of [70].
The integral (A6) is divergent for m ¼ 0 and ϵ ¼ 0.

However, its derivatives are well defined and can be
expressed analytically. After performing integration over
k and q in turn, we obtain, in Euclidean signature,

∂τhϕðτ; x; yÞϕð0; 0; 0Þi ¼
ffiffiffiffiffiffiffi
μμ0

p
Að2πÞ2τ ðexpðuÞEið−uÞ

þ expð−uÞEiðuÞÞ; ðA7Þ

where u ¼ xy
ffiffiffiffiffiffiffi
μμ0

p
=τ, and EiðuÞ is the exponential

integral. By analytical continuation, we obtain, in the

Lorentzian signature,

∂thϕðt;x;yÞϕð0;0;0Þi¼
ffiffiffiffiffiffiffi
μμ0

p
2Aπ2t

ðcosðuÞCiðuÞ−sinðuÞSiðuÞÞ;
ðA8Þ

where u ¼ xy
ffiffiffiffiffiffiffi
μμ0

p
=t and SiðuÞ and CiðuÞ are the trigo-

nometric integrals.

APPENDIX B: FRACTONIC PROPAGATOR
IN THE FINITE-VOLUME THEORY

Let us consider Euclidean theory (A1) on a 2þ 1-
dimensional torus x ∼ xþ Lx, y ∼ yþ Ly. Its Green’s
function is a solution to the following system with periodic
boundary conditions

8>><
>>:

A
�
−μ0∂2τ − ϵð∂2x þ ∂

2
yÞ − 1

μ ∂
2
x∂

2
y þ μm2

	
Kðx⃗1 − x⃗2Þ ¼ δð3Þðx⃗1 − x⃗2Þ;

Kðτ; xþ Lx; yÞ ¼ Kðτ; x; yÞ;
Kðτ; x; yþ LyÞ ¼ Kðτ; x; yÞ;

ðB1Þ

where x⃗i ¼ fτi; xi; yig are Euclidean 3-vectors. The solution can be written as an infinite series over the discrete spectrum of
modes

hϕðτ; x; yÞϕð0; 0; 0Þi ¼ 1

ALxLy

X∞
n¼−∞

X∞
s¼−∞

Z
dω
2π

eiωτþiknxþiqsy

μ0ω
2 þ ϵðk2n þ q2sÞ þ 1

μ k
2
nq2s þ μm2

; ðB2Þ

where kn ¼ 2πn=Lx and qs ¼ 2πs=Ly are Matsubara-like frequencies. It is only possible to evaluate analytically the
integral over ω,
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Z
dω
2π

eiωτ

ω2 þ ω2
ns

¼ 1

2jωnsj
e−jωnsj·jτj ≡ 1

2jωnsj
e−jωnsj

ffiffiffi
τ2

p
; ðB3Þ

which results in

hϕðτ; x; yÞϕð0; 0; 0Þi ¼ 1

2ALxLyμ0

X∞
n¼−∞

X∞
s¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0μ

ϵμðk2n þ q2sÞ þ k2nq2s þ μ2m2

r
e
−
ffiffiffi
τ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵμðk2nþq2s Þþk2nq

2
sþμ2m2

μ0μ

q
þiknxþiqsy; ðB4Þ

where we substitute jτj →
ffiffiffiffi
τ2

p
as in (A6).

In fact, Eq. (B4) can be generalized onto the case of arbitrary free field dispersion relation ωns ≡ ωðkn; qsÞ,

hϕðτ; x; yÞϕð0; 0; 0Þi ¼ 1

ALxLy

X∞
n¼−∞

X∞
s¼−∞

e−ωns

ffiffiffi
τ2

p
þiknxþiqsy

2ωns
: ðB5Þ

Taking into account that both relativistic, ωns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ q2s þm2

p
, and regularized fractonic, ωns ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵμðk2n þ q2sÞ þ k2nq2s þ μ2m2
p

=
ffiffiffiffiffiffiffi
μ0μ

p
, discrete dispersion relations are symmetric under the sign inversion of n and s,

we can transform this expression to

hϕðτ; x; yÞϕð0; 0; 0Þi ¼ 1

ALxLy
·
e−ω0

ffiffiffi
τ2

p

2ω0

þ 1

ALxLy

X∞
n¼1

ðcosðknxÞ þ cosðknyÞÞ ·
e−ωn

ffiffiffi
τ2

p

ωn

þ 2

ALxLy

X∞
n¼1

X∞
s¼1

cosðknxÞ cosðqsyÞ ·
e−ωns

ffiffiffi
τ2

p

ωns
; ðB6Þ

where ω0 ¼ m and ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

p
for the relativistic

dispersion relation and ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵμk2n þ μ2m2

p
=
ffiffiffiffiffiffiffi
μμ0

p
for the

regularized fractonic dispersion relation.

APPENDIX C: FRACTONIC ENERGY DENSITY
AND DIPOLE MOMENT

In the mostly minus signature, the Lagrangian density of
the relativistic massive scalar field theory is given by

L¼ 1

2
gμν∂μϕ∂νϕ−

1

2
m2ϕ2¼ 1

2
ðϕ̇2− ð∇ϕÞ2−m2ϕ2Þ; ðC1Þ

leading to the energy density following from the Noether
theorem

E ¼ δL
δð∂0ϕÞ ∂0ϕ − g00L ¼ 1

2
ðϕ̇2 þ ð∇ϕÞ2 þm2ϕ2Þ: ðC2Þ

In the mostly plus signature, the corresponding
Lagrangian density and the energy density take the form

L ¼ −
1

2
gμν∂μϕ∂νϕ −

1

2
m2ϕ2 ¼ 1

2
ðϕ̇2 − ð∇ϕÞ2 −m2ϕ2Þ;

ðC3Þ

and

E ¼−
δL

δð∂0ϕÞ∂0ϕþ g00L¼ 1

2
ðϕ̇2þð∇ϕÞ2þm2ϕ2Þ: ðC4Þ

In the Euclidean metric (t → −iτ, g00 → −g00,
∂0ϕ → i∂0ϕ), we get

L ¼ 1

2
ðϕ̇2 þ ð∇ϕÞ2 þm2ϕ2Þ; ðC5Þ

and

E¼−
δL

δð∂0ϕÞ∂0ϕþg00L¼1

2
ð−ϕ̇2þð∇ϕÞ2þm2ϕ2Þ: ðC6Þ

In the same way, we obtain the following expressions for
the Euclidean fracton field theory:

L ¼ 1

2

�
μ0ð∂τϕÞ2 þ

1

μ
ð∂x∂yϕÞ2 þ μm2ϕ2

�
ðC7Þ

and
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E ¼ −
δL

δð∂0ϕÞ ∂0ϕþ g00L

¼ 1

2

�
−μ0ϕ̇2 þ 1

μ
ð∂x∂yϕÞ2 þ μm2ϕ2

�
: ðC8Þ

Then, the Euclidean energy density can be calculated by
applying Wick’s theorem to the two-point function,

hEiϕ ¼ −
hϕðε; 0; 0Þ∂τϕðτ; x; yÞih∂τϕðτ; x; yÞϕð−ε; 0; 0Þi

hϕðε; 0; 0Þϕð−ε; 0; 0Þi

þ hϕðε; 0; 0Þ∂xϕðτ; x; yÞih∂xϕðτ; x; yÞϕð−ε; 0; 0Þi
hϕðε; 0; 0Þϕð−ε; 0; 0Þi

þ hϕðε; 0; 0Þ∂yϕðτ; x; yÞih∂yϕðτ; x; yÞϕð−ε; 0; 0Þi
hϕðε; 0; 0Þϕð−ε; 0; 0Þi

þm2hϕðε; 0; 0Þϕðτ; x; yÞihϕðτ; x; yÞϕð−ε; 0; 0Þi
hϕðε; 0; 0Þϕð−ε; 0; 0Þi :

ðC9Þ

The remaining correlation functions are to be calculated
from the momentum-space two-point function by Fourier
transform,

h∂τϕðτ; x; yÞϕðτ0; 0; 0Þi

¼ −
τ − τ0

2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ − τ0Þ2

p Z
dkdq
ð2πÞ2 e

−ω
ffiffiffiffiffiffiffiffiffiffiffi
ðτ−τ0Þ2

p
þikxþiqy; ðC10Þ

h∂xϕðτ; x; yÞϕðτ0; 0; 0Þi ¼
i
A

Z
dkdq
ð2πÞ2

ke−ω
ffiffiffiffiffiffiffiffiffiffiffi
ðτ−τ0Þ2

p
þikxþiqy

2ω

ðC11Þ

and

h∂x∂yϕðτ; x; yÞϕðτ0; 0; 0Þi

¼ −
1

A

Z
dkdq
ð2πÞ2

kqe−ω
ffiffiffiffiffiffiffiffiffiffiffi
ðτ−τ0Þ2

p
þikxþiqy

2ω
: ðC12Þ

We are also interested in the dipole momentum, which is
globally conserved in pure fractonic theories. In the
Lorentzian signature, the dipole current is given by [8]

J0 ¼ μ0∂tϕ;

Jxy ¼ −
1

μ
∂
x
∂
yϕ ðC13Þ

with the conservation law

∂0J ¼ ∂x∂yJxy: ðC14Þ

In this paper, we consider the square of the zero component
of the current, J20,

hJ20i ¼
hϕðiε; 0; 0Þjð∂tϕ0ðt; x; yÞÞ2jϕð−iε; 0; 0Þi

hϕðiε; 0; 0Þϕð−iε; 0; 0Þi : ðC15Þ

The correlation function has a form similar to that of ϕ2

condensate (14) and thus can be calculated in the same way,

hJ20i ¼
j R dkdqe−ω ffiffiffiffiffiffiffiffiffiffi

ðε−itÞ2
p

þikxþiqyj2
4Aπ2

R
dkdqω−1e−2εω

: ðC16Þ

In the case of finite volume, the integral over momenta is
changed to the sum over Fourier modes.
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[32] J.-M. Stéphan and J. Dubail, Local quantum quenches
in critical one-dimensional systems: Entanglement, the
Loschmidt echo, and light-cone effects, J. Stat. Mech.
(2011) P08019.

[33] M. Ganahl, E. Rabel, F. H. L. Essler, and H. G. Evertz,
Observation of complex bound states in the spin-1=2
Heisenberg XXZ chain using local quantum quenches,
Phys. Rev. Lett. 108, 077206 (2012).

[34] A. Bayat, B. Alkurtass, P. Sodano, H. Johannesson, and S.
Bose, Measurement quench in many-body systems, Phys.
Rev. Lett. 121, 030601 (2018).

[35] M. Gruber and V. Eisler, Magnetization and entanglement
after a geometric quench in the XXZ chain, Phys. Rev. B 99,
174403 (2019).

[36] L. Rossi, F. Dolcini, F. Cavaliere, N. Traverso Ziani, M.
Sassetti, and F. Rossi, Signature of generalized Gibbs
ensemble deviation from equilibrium: Negative absorption
induced by a local quench, Entropy 23, 220 (2021).

[37] P. Calabrese and J. L. Cardy, Evolution of entanglement
entropy in one-dimensional systems, J. Stat. Mech. (2005)
P04010.

[38] P. Caputa, J. Simón, A. Štikonas, and T. Takayanagi,
Quantum entanglement of localized excited states at finite
temperature, J. High Energy Phys. 01 (2015) 102.

[39] S. He, T. Numasawa, T. Takayanagi, and K. Watanabe,
Quantum dimension as entanglement entropy in two dimen-
sional conformal field theories, Phys. Rev. D 90, 041701
(2014).

[40] M. Nozaki, T. Numasawa, and T. Takayanagi, Quantum
entanglement of local operators in conformal field theories,
Phys. Rev. Lett. 112, 111602 (2014).

[41] J. S. Cotler, M. P. Hertzberg, M. Mezei, and M. T. Mueller,
Entanglement growth after a global quench in free scalar
field theory, J. High Energy Phys. 11 (2016) 166.

[42] D. S. Ageev and I. Y. Aref’eva, When things stop
falling, chaos is suppressed, J. High Energy Phys. 01 (2019)
100.

[43] B. Doyon, A. Lucas, K. Schalm, and M. J. Bhaseen, Non-
equilibrium steady states in the Klein-Gordon theory,
J. Phys. A 48, 095002 (2015).

[44] A. F. Astaneh and A. E. Mosaffa, Quantum local quench,
AdS/BCFT and Yo-Yo string, J. High Energy Phys. 05
(2015) 107.

[45] P. Caputa, M. Nozaki, and T. Takayanagi, Entanglement of
local operators in large-N conformal field theories, Prog.
Theor. Exp. Phys. 2014, 093B06 (2014).

[46] C. T. Asplund, A. Bernamonti, F. Galli, and T. Hartman,
Holographic entanglement entropy from 2d CFT: Heavy
states and local quenches, J. High Energy Phys. 02 (2015)
171.
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