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We construct a modified non-Bogomol’nyi-Prasad-Sommerfield sine-Gordon theory which supports
stable static kinks of arbitrary topological degree N. We use this toy model to study problems that are
interesting for higher-dimensional soliton theories supporting multisolitons. We construct a 2-kink
collective coordinate model and use it to generate scattering trajectories, which are compared to full-
field dynamics. We find that the approximation works well, but starts to fail as radiation becomes more
important, due to our model becoming less Bogomol’nyi-Prasad-Sommerfield or when the initial kink
velocities are large. We also construct the quantum 2-kink using various approximations and consider how
these quantum corrections affect the binding energy of the 2-kink.
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I. INTRODUCTION

Kinks are solitons in one dimension. They are most often
used as toymodels for solitons in more complicated, higher-
dimensional theories. In fact, it was Skyrmewho derived the
sine-Gordon model as “a simplified model” of the Skyrme
model [1] and thoroughly studied its kink solution, inter-
preted as particles [2] (the sine-Gordon model had pre-
viously been used in the study of surfaces with constant
negative curvature and crystal dislocations). Since then
authors have studied more models and their kink solutions,
dynamics, and quantum corrections to their masses.
In this paper, we will construct a modified sine-Gordon

theory which supports multikinks. Here, we define a
multikink as a static solution that can be continuously
deformed into multiple well-separated 1-kinks, each a
solution to the equations of motion. Static multikinks have
been seen in a 1D (one-dimensional) theory on a nontrivial
background geometry [3]. However, the geometry breaks
translation symmetry meaning that there is no solution that

can be interpreted as widely separated kinks. Many soliton
theories are BPS (Bogomol’nyi-Prasad-Sommerfield),
meaning that solutions satisfy a first-order differential
equation and have no binding energy. Our theory is non-
BPS. In the following paragraphs, we argue why these non-
BPS kinks can serve as better toy models for solitons in
higher-dimensional theories than BPS kinks.
In higher dimensions, multisolitons are often the most

interesting part of the theory. For example, there is a rich
landscape of static multiskyrmion [4] and monopole
solutions [5]. All known one-component kinkmodels satisfy
the BPS property [6], and these theories cannot support static
stablemultikinks.Hence aBPSkink theory cannot be used as
a toy model for problems involving multisolitons since they
do not support static multikinks. The attractive interaction of
separated solitons is vital to understanding these multi-
solitons, as well as the stability and structure of vortex
and skyrmion lattices, which appear in condensed matter
theory [7,8]. However, the interaction of BPS kinks is
repulsive (e.g., sine-Gordon). There can be attractive dynam-
ics, but only between a kink and an antikink,whosedynamics
will be very different than two kinks.
Another major idea in soliton theory is the collective

coordinate approximation, first introduced by Manton for
vortex scattering [9]. Here one constructs a manifold of
configurations, sometimes called the configuration space,
parametrized by the “collective coordinates” of the solitons
(e.g., their positions). Themanifold has ametric and potential
induced by the field theory. Soliton dynamics are then
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described as geodesics on the manifold, crucially depending
on the metric and potential. These have been constructed for
integrable models such as critically coupled vortices [10,11],
monopoles [12], and instantons [13]. However, the problem
is more complicated for non-BPS theories: there is usually
not a canonical choice of collective coordinates and so there
are ambiguities in the definition of the configuration space.
This ambiguity means there aremany different ideas for how
to constructCCMs such as the inclusion of shapemodes [14],
mechanization [15], perturbative approaches [16], projecting
instanton solutions [17], pinning [18], and gradient decent
curves [19–21]. However, all these studies concern BPS
models, or the interaction of kinks with antikinks—not kink-
kink dynamics. Constructing collective models for non-BPS
multilink scattering may help one understand how to do this
systematically for soliton-soliton interactions in higher-
dimensional models.
There is also significant debate about soliton binding

energies. Many papers are motivated to solve the “binding
energy problem” in the Skyrme model: that the classical
binding energy of Skyrmions is larger than the binding
energy of nuclei by an order of magnitude [22–24].
However, it has been argued that the classical binding
energy is not a good measure of the quantum binding
energy. Loop corrections [25] and the inclusion of “vibra-
tional modes” [26] greatly affect skyrmionmasses, and have
been argued to solve the binding energy problem without
using a carefully tunedmodel, but these ideas require further
testing. BPS kink models cannot give much intuition about
this problem since their classical binding energies vanish,
and there is no multikink with a binding energy to measure.
There is a clear need to develop non-BPS kink theories

which can serve as toy models for the physically interesting
non-BPS models in higher dimensions. Recently one such
model has been constructed and studied [27], which has also
been studiedwith differentmotivations [28,29]. This is a two-
component theory in which kinks attract at long range but
repel at short range. Thus there can be static, stable multi-
kinks. However, this model only supports up to two kinks.
In this paper, we introduce a kink theory that supports

stable kinks with arbitrary charge N, mimicking higher-
dimensional theories. Our model is a modified version of
sine-Gordon theory.Wewill study the static solutions, create
a collective coordinate model for 2-kink dynamics, and
quantize this using various approximation. Throughout, we
try to answer the questions one would ask about higher-
dimensional theories, focusing on the validity of the collec-
tive coordinate approximation and binding energies. The
broad rangeof topics thatwe cover shows the largenumber of
questions one can ask about this new type of kink model.

II. STABLE STATIC MULTIKINK SOLUTIONS

We begin by briefly reviewing [27], which details the
interaction between kinks. Consider a multicomponent
scalar theory with Lagrangian

L ¼ 1

2
∂μΦa∂

μΦa − VðΦaÞ

¼ 1

2
Φ̇aΦ̇a −

1

2
∂xΦa∂xΦa − VðΦaÞ: ð1Þ

We will assume that the potential has N minima which we
can enumerate. A 1-kink is a static solution of the equations
of motion that joins two adjacent minima of the potential.
Due to the translational symmetry of L, the kink can be
translated. Hence, if we define a base-point configuration
with position X ¼ 0, Φ0ðxÞ, we can define a kink with
position X as ΦXðxÞ ¼ Φ0ðx − XÞ.
Consider a single kink which approaches the vacuum

Φv0 as x → ∞. Near the vacuum, we can Taylor expand

ΦðxÞ ¼ Φv0 þ ϕðxÞ: ð2Þ

The tail ϕaðxÞ satisfies the Euler-Lagrange equation

∂
2
xϕa − ∂a∂bVðΦv0Þϕb ¼ 0: ð3Þ

The solution to this equation is given in terms of the
eigenvalues λn and eigenvectors μn of the Hessian
∂a∂bVðΦv0Þ,

ϕ ¼
X
n

anμne
−

ffiffiffiffi
λn

p
x: ð4Þ

Now consider two well-separated kinks with positions
þX and −X, denoted by ΦþX and Φ−X, respectively.
Suppose that the two kinks relate three adjacent vacua
such that they share one vacuum Φv0 . A superposition of
the kinks is given by

ΦðxÞ ¼ Φ−XðxÞ þΦþXðxÞ −Φv0 : ð5Þ

If X is large, this can be written as

ΦðxÞ ≈Φ−XðxÞ þ ϕþXðxÞ −Φv0 ; x ≪ 0;

ΦðxÞ ≈ΦþXðxÞ þ ϕ−XðxÞ −Φv0 ; x ≫ 0: ð6Þ

One can then evaluate the static energy of the theory to find
the interaction of the two kinks [27]. It is

EinteractionðΦÞ ¼ ð∂xϕ−X
a ϕX

a − ∂xϕ
X
aϕ

−X
a Þjx¼0: ð7Þ

Thus the interaction energy depends only on the tail
configurations at the center-of-mass of the two kinks. This
type of argument was first given for planar skyrmion [30],
and has since been used for three-dimensional [31] and
magnetic [32] skyrmions.
Using (7) one can show that ϕ4, ϕ6, and sine-Gordon

kinks repel, while kinks and antikinks attract. More
generally, in one-component scalar field theories, a kink-
kink will repel while an antikink-kink will attract and
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annihilate. As a result, static 2-kink solutions had not been
considered until recently. The basic idea in [27] was to
construct solutions which act like a kink-kink in one
component and an antikink-kink in another. One compo-
nent provides repulsion and the other attraction. If these are
balanced, a static stable 2-kink can exist.

III. MODIFIED SINE-GORDON THEORY

In [27,29] a modified ϕ4 theory which could support up
to two kinks was constructed. However, most higher-
dimensional soliton theories of interest support an arbitrary
number of kinks. To mimic this feature, we will now
develop a modified sine-Gordon theory. The new feature of
this model compared to other modified sine-Gordon
theories [33–35] is the existence of stable, static multikink
solutions. Their existence relies crucially on the fact that
our model contains more than one field. We will consider
the simplest nontrivial case of a two-component theory.
The theory has a Lagrangian of the form (1). We

searched for a modified form of the sine-Gordon potential
with an infinite number of discrete vacua and a Hessian that
is equal at all vacua. A simple theory that obeys these
requirements is

L̃ ¼ 1

2
∂t̃Φ̃a∂t̃Φ̃a −

1

2
∂x̃Φ̃a∂x̃Φ̃a −

m2

β2
ð1 − cos βΦ̃1Þ

−
μ21m

2

8β2

�
1 −

2βΦ̃2

μ2
− cos

�
βΦ̃1

2

��
2

: ð8Þ

Throughout the text, we have denoted dimensionful units
with a tilde. Here, we have used units where c ¼ 1. The
parameters m and β2 have dimensions of mass and inverse
mass times length, respectively, while μ1 and μ2 are dimen-
sionless. The Lagrangian (8) reduces to sine-Gordon theory
when μ1 ¼ 0. We can now define Φ ¼ βΦ̃, t ¼ mt̃, and
x ¼ mx̃ to factor out many of the theories’ parameters. The
dimensionless Lagrangian L is defined implicitly by

L̃ ¼ m
β2

L≡ m
β2

�
1

2
Φ̇aΦ̇a −

1

2
∂xΦa∂xΦa

− ð1 − cosΦ1Þ −
μ21
8

�
1 −

2Φ2

μ2
− cos

�
Φ1

2

��
2
�
; ð9Þ

revealing that in the new units, the classical equations of
motion are independent of β andm. The classical numerical
results in this paper will be presented for the case where
m=β2 ¼ 1.
The potential VðΦÞ contained in L (9) admits two

countably infinite sets of discrete vacua, given by

ðΦ1;Φ2Þ ¼ ð4nπ; 0Þ and

ðΦ1;Φ2Þ ¼ ð2ð2nþ 1Þπ; μ2Þ; where n∈Z: ð10Þ

Define V as the set of all vacua. The topological classi-
fication of 1D theories is due to the zeroth homotopy group
of the vacuum manifold, π0ðVÞ [[36], Chapter 4]. In our
case, this is simply the set of vacua, isomorphic to Z. Since
the values in V can be ordered by theΦ1 coordinate, we can
unambiguously define a topological charge of a solution as
the difference between its initial and final Φ1 values. We
normalize this value by dividing by 2π. Hence we define an
N-kink as the minimal energy solution which interpolates
between Φ1 ¼ 2πn and Φ1 ¼ 2πðnþ NÞ. Without loss of
generality, we can set n ¼ 0 and we do so for the rest of the
paper, defining the base point for the homotopy group. We
further define the location of the kinks by the preimage of
the point halfway between the boundary values.
First, consider a 1-kink, which interpolates between

ðΦ1;Φ2Þ ¼ ð0; 0Þ and ðΦ1;Φ2Þ ¼ ð2π; μ2Þ. The tail of
the kink decays exponentially at a rate determined by
the Hessian at the vacua (4). The Hessian is equal at all
vacua and is given by

∂
2V

∂Φa∂Φb

����
Φ¼ð2π;mÞ

¼
�
1 0

0 μ21=μ
2
2

�
: ð11Þ

Hence the kink decays as

ðϕ1;ϕ2Þ ∼ ðae−jxj; be−μ1jxj=μ2Þ; ð12Þ

as x tends to �∞.
Now consider the kink-kink interaction where the first

kink interpolates between (0,0) and ð2π; mÞ and has
position −X, while the second kink interpolates between
ð2π; mÞ and ð4π; 0Þ and has position X. The interaction
energy again depends on the Hessian and is given by (7)

Eint ¼ a2e−2X − b2
μ1
μ2

e−2
μ1
μ2
X: ð13Þ

The form of the interaction energy reveals that there are
competing attractive and repulsive forces, depending on the
parameters μ1 and μ2. Hence we can expect a stable 2-kink,
at least in some parameter range. Since the Hessian is equal
at all vacua, the calculation is almost identical if we
consider the interaction between a 2-kink and a 1-kink.
The only difference is in the coefficients a and b. As such,
we expect that if there is a stable 2-kink, there will be a
stable 3-kink, and so on.
To find N-kink solutions, we use numerics. For sim-

plicity, we use a gradient flow algorithm to find the energy
minimizing N-kink. First, consider the 1- and 2-kinks. We
implemented the gradient flow on a grid of 400 points with
lattice spacing 0.126 using Python. We considered the
following as an initial guess for the 2-kink solution:

Φ1 ¼ πð2þ tanhðxþ XÞ þ tanhðx − XÞÞ;
Φ2 ¼ μ2e−x

2

: ð14Þ
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With the parameters μ1 ¼ 2, μ2 ¼ 6.1, the energy of the
1-kink was found to be E1 ¼ 10.24, whereas the 2-kink has
energy E2 ¼ 19.44. Hence the 2-kink is energetically
favored over two 1-kinks. The percentage binding energy
per soliton is

Ebind ¼
2E1 − E2

2E1

× 100% ¼ 5.1%: ð15Þ

One feature of BPS theories is that Ebind vanishes. The fact
ours is nonzero confirms that our theory is non-BPS. The
binding energy depends on the parameters m and μ. We
find this dependence and plot it in Fig. 1. The plot can be
used to choose the parameters to generate a model with the
desired binding energy. Later we will study a variety of
models, including the model with μ1 ¼ 2, μ2 ¼ 4. This is
much closer to BPS with a percentage binding energy per
soliton of only 0.8%.
There are also stable kinks for larger N. The 1-, 2-, 3-, 4-

and 8-charge kinks are displayed in Fig. 2. We see that the
even and odd charge kinks are either odd (with a shift) or
even in Φ2. We plot the fields ΦaðxÞ (top) and also plot
these on the potential landscape (bottom).
There is also an infinite charge kink, equivalent to a

periodic solution on a circle. There are many examples of
solitons on a background where one direction is a circle,
such as calorons [37], planar skyrmions [38], and
monopoles [39]. We can calculate the solution by putting
the model on a circle of length L and using shifted periodic
boundary conditions. These are

Φ1ð0Þ ¼ 0; Φ2
0ð0Þ ¼ 0; ð16Þ

Φ1ðLÞ ¼ 2π; Φ2
0ðLÞ ¼ 0: ð17Þ

We then vary over L to find the minimum energy chain. Our
method is to solve the model repeatedly using the same
lattice spacing, but a different number of points. We then
find the L which minimizes the energy. The energy as a

FIG. 1. The percentage binding energy per kink for the 2-kink
as a function of μ1 and μ2.

FIG. 2. Plots of the 1-, 2-, 3-, 4- and 8-charge kinks for μ1 ¼ 2,
μ2 ¼ 6.1, displayed in blue, red, purple, magenta, and black,
respectively. These are plotted as functions of x (top) and on the
target space (bottom). Light/dark green corresponds to a smaller/
larger potential energy. The N-kink joins a point withΦ1 ¼ 0 to a
point with Φ1 ¼ 2πN.
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function of L, and the minimal energy solution are shown
in Fig. 3. The chain is related to the finite kink solutions.
Note that configuration in Fig. 3 satisfies Φ0

2ð0Þ ¼ 0, like
the even N-kinks. So this chain solution is the large N limit
for even N-kinks. The odd N-kinks satisfy Φ2ð0Þ ¼ μ2=2.
Their large N limit is equal to the chain in Fig. 3 shifted by
a half unit cell. So the infinite chain limit is different for odd
and even N, but since the limit is just the same solution
translated, they have the same energy.
The classical percentage binding energy per kink of an

N-kink is given by the formula

EbindðNÞ ¼ NE1 − EN

NE1

: ð18Þ

This is an important quantity in the Skyrme model, where
the formula gives the classical binding energy of nuclei per
nucleon. We calculate this value for N ¼ 1–20 in our
model, and plot it in Fig. 4. Similar to nuclei, kink binding
energies asymptote to a constant value, in this case 7.8%.
We fit points to a polynomial decay and find that the
classical binding energy per kink goes as 1=N.

IV. COLLECTIVE COORDINATE MODEL

A. Making the model

In this section we construct a one-dimensional collective
coordinate model (CCM) for two kinks, in which we use
the kink positions �X as the modulus. In dimensionful
units, the CCM is described by a Lagrangian of the form

L ¼ 1

2
g̃X̃ X̃ðX̃Þ ˙̃X2 − ŨðX̃Þ; ð19Þ

where the metric g̃X̃ X̃ on the one-dimensional moduli
space is

g̃X̃ X̃ðX̃Þ ¼
Z

∞

−∞

��
∂Φ̃1

∂X̃

�
2

þ
�
∂Φ̃2

∂X̃

�
2
�
dx̃ ð20Þ

and the potential ŨðX̃Þ is

ŨðX̃Þ ¼ ð21Þ
Z

∞

−∞

�
1

2

�
∂Φ̃1

∂x̃

�
2

þ 1

2

�
∂Φ̃2

∂x̃

�
2

þm2

β2
VðβΦ̃Þ

�
dx̃: ð22Þ

As in the previous section, we can switch to new units
x ¼ mx̃; X ¼ mX̃;Φ ¼ βΦ̃ to find the dimensionless
Lagrangian

L ¼ 1

2
gXXðXÞẊ2 −UðXÞ; ð23Þ

where, using (20) and (21),

g̃X̃ X̃ðX̃Þ ¼
m
β2

gXXðXÞ; ŨðX̃Þ ¼ m
β2

UðXÞ: ð24Þ

We’ll consider the dynamics of the dimensionless theory
(23) for the rest of this section.
Let us again consider two 1-kinks, one that interpolates

from (0,0) to ð2π; μ2Þ and another that interpolates from
ð2π; μ2Þ to ð4π; 0Þ. We define the position of these kinks X
and −X as the preimage where the first component takes
value at the midpoint, i.e., we pin the position of the kinks
to X and −X such that

Φ1ð−XÞ ¼ π; Φ1ðXÞ ¼ 3π: ð25Þ

For a given separation 2X between the two kinks, we
obtained the configuration ðΦ1;Φ2Þ that minimizes the
energy (21) using gradient flow. We again implemented the
flow on a grid with 400 points and lattice spacing 0.126 and
used the configuration in (14) as our initial guess. We did
this for 0.5 < X < 13 with X fixed at each x lattice point,
generating around one hundred configurations for the
model. This generates the configuration space, parame-
trized by Φðx; XÞ. We used the central difference method to

FIG. 3. The periodic kink for μ1 ¼ 2, μ2 ¼ 6.1. The energy of
the 1-kink as a function of box size L (top) and a plot of the
optimal shifted-periodic solution (bottom).

FIG. 4. The percentage binding energy per kink, for N ¼ 1–20,
for μ1 ¼ 2 and μ2 ¼ 6.1.
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calculate the derivatives of Φ with respect to both the
kink position X and the spatial coordinate x in (20)
and (21).
Several configurations for different X are plotted in

Fig. 5. The resulting energy of these configurations as a
function of the separation is plotted in Fig. 6. We see that
the energy as a function of the separation has a minimum at
a finite nonzero X, agreeing with the field theory expect-
ation that the 2-kink is energetically favored over two
1-kinks. The energy increases sharply when the kinks are
brought closer together, but only increases slowly as they
are moved further apart. The metric is plotted in Fig. 7 and
has two critical points.

B. Kink dynamics

Our collective coordinate model can be used to simulate
kink-kink dynamics. We will first study the full-field time
evolution of the kinks by solving the equations of motion in
the field theory. We will then go on to see how well these
are modeled by our CCM.

The full-field dynamics is given by the Euler-Lagrange
equation of motion that follows from (1)

Φ̈a ¼
∂
2Φa

∂x2
−

∂V
∂Φa

: ð26Þ

To solve this, we introduce the field velocity Ψ,

Φ̇a ¼ Ψa ð27Þ

Ψ̇a ¼
∂
2Φa

∂x2
−

∂V
∂Φa

: ð28Þ

We solve these numerically using the Leapfrog method. We
update Φ and Ψ as follows:

Φnþ1 ¼ Φn þ Ψndtþ
1

2
bndt2; ð29Þ

Ψnþ1 ¼ Ψn þ
1

2
ðbn þ bnþ1Þdt; ð30Þ

FIG. 5. Energy minimising Φ1 (top) and Φ2 (bottom) for
different values of X, for μ1 ¼ 2 and μ2 ¼ 4.

FIG. 6. Energy as a function of X for μ1 ¼ 2 and μ2 ¼ 4.

FIG. 7. Metric gXX as a function of X for μ1 ¼ 2 and μ2 ¼ 4.
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where

bn ¼
∂
2Φn

∂x2
−
∂Vn

∂Φn
: ð31Þ

From the time evolution of Φ, we obtain the time evolution
of X using (25). The initial velocity field is generated by

Ψ0ðxÞ ¼
∂

∂t
ΦðX − vt; xÞjt¼0 ¼ −v

∂ΦðX; xÞ
∂X

: ð32Þ

In the collective coordinate approximation, dynamics is
dictated by the equation of motion that follows from (23),

Ẍ þ 1

2g
ðð∂XgðXÞÞẊ2 þ 2∂XUðXÞÞ ¼ 0: ð33Þ

To solve this, we introduce v ¼ Ẋ. The equations become

Ẋ ¼ v ð34Þ

v̇ ¼ −
1

2g
ðð∂XgÞv2 þ 2∂XUÞ: ð35Þ

Starting with the initial data, ðX; vÞ ¼ ðX0; v0Þ, we evolve
these equations numerically using the Leapfrog method,
updating X and v as follows:

Xnþ1 ¼ Xn þ vndtþ
1

2
andt2 ð36Þ

vnþ1 ¼ vn þ
1

2
ðan þ anþ1Þdt ð37Þ

where

an ¼ −
1

2g
ðð∂XgðXnÞÞv2n þ 2∂XUðXnÞÞ: ð38Þ

Here the derivatives of the metric gXX and the potential U
with respect to the kink position X are calculated using a
cubic spline.
We now generate XðtÞ, obtained from the CCM as well

as from the full-field theory for different values of initial
velocity. We first consider trajectories where Xð0Þ ¼ 8 and
v ¼ 0.02, 0.2. We interrupt the dynamics when XðtÞ > 8 in
the CCM. The results are plotted in Figs. 8 and 9 for the
model with parameters μ1 ¼ 2 and μ2 ¼ 4. This model is
close to the BPS model, and we obtain a very good
approximation for small velocities, with the approximation
becoming worse as we increase the velocity. This is
expected. As the configuration passes through the mini-
mum of the potential, there is a large energy transfer from
potential to kinetic energy and back again. In the full-field
theory, the 2-kink can radiate, losing energy. Hence the
outgoing kinks have a phase shift and are slower than the

incoming kinks. In the collective coordinate model, the
kink cannot radiate and the outgoing kinks have the same
velocity as the incoming ones.
The approximation appears to break down when we

move away from near-BPS models. In Fig. 10 we consider
the parameters μ1 ¼ 2 and μ2 ¼ 6.1. We display this for a
longer time than the other plots, to better understand the
behavior of the field theory. At large t, the approximation
becomes a lot less accurate. Note that the “meson” mass in
the second field is μ1=μ2 so that as μ2 increases, it costs less
and less energy to excite radiation. Hence radiation
becomes more important as m increases. Here, the two
kinks radiate their kinetic energy away and cannot escape
from the potential well. Again, since the CCM cannot
radiate, it cannot model this behavior. Hence the CCM does
not capture this main qualitative feature of the dynamics.

FIG. 8. XðtÞ for initial velocity v ¼ 0.02 and initial position 8
for μ1 ¼ 2 and μ2 ¼ 4.

FIG. 9. XðtÞ for initial velocity v ¼ 0.2 and initial position 8 for
μ1 ¼ 2 and μ2 ¼ 4.
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However, note that the model does capture the correct
behavior until the 2-kink approaches the bottom of the
potential. Thus the model does seem to capture the
potential and curvature of the configuration space.
Hence it might not be our model that fails, but the geodesic
approximation itself. The approximation should fail when
velocities and radiation are high, so it makes sense that it
fails when the kinks are at the bottom of the potential well,
where their velocity is maximal. Another possibility is that
our CCM model is too simple. Other authors have
considered CCMs with multiple collective coordinates,
one which usually describes an internal shape mode of
the kinks [14,16]. We could extend our model by including
this shape mode for one or each of the kinks, and see if the
approximation becomes significantly better.
The geodesic approximation relies on two assumptions:

that the velocity (and hence energy transfer to radiation) is
small and that the theory is close to BPS. We now probe the
second of these assumptions in more detail. Consider the
scattering of two kinks with initial positions X ¼ 8 and
X¼−8 with velocity v ¼ 0.1, the model parameters μ1 ¼ 2
fixed and μ2 varying. We construct the CCM, simulate the
CCM dynamics and the full-field dynamics for a variety of
μ2. As μ2 increases we move further from a BPS theory.
The difference between CCM and full-field dynamics for
the various models are plotted in Fig. 11. We see that for
μ2 < 5.4 the CCM captures the main features of the model:
although a large error is generated as the model passes near
the bottom of the potential, the outgoing kinks have
approximately constant velocity, and the error remains
approximately constant after the bounce. However, when
μ2 > 5.4 the qualitative behavior changes: this is when the
2-kink gets trapped in the potential well, as seen in Fig. 10.
Overall, we have successfully constructed collective

coordinate models for non-BPS 2-kink dynamics. Using
these we have generated trajectories and compared the

CCM dynamics with full-field dynamics. As the initial
velocity increases, and as the model becomes further from
BPS, the approximation gets worse, as expected. We
believe the biggest problem is that the CCM model cannot
radiate. Radiation is also important for a variety of other
kink models, and authors have begun to incorporate
radiation [40] to CCMs, although it is complicated. Our
results show that radiation becomes more important as we
move further from BPS theories. The results suggest that
accurate CCMs of, e.g., the Skyrme model may be more
difficult to construct than previously thought.

V. QUANTIZATION

In this Section, we will quantize the 1- and 2-kinks using
several different quantization techniques. There are many
ways to approach soliton quantization, and we will proceed
using a semiclassical collective coordinate approach. Here,
we define a manifold of configurations, parametrized by the
coordinates X̃i. We will proceed in dimensionful units,
which clarifies the semiclassical approach. The classical
dynamics are described by

L ¼ 1

2
˙̃Xig̃ijðX̃Þ ˙̃Xj − ŨðX̃Þ; ð39Þ

where g andU are the metric and potential on the manifold.
Applying a canonical quantization, we can then define a
Schrödinger equation on the manifold. In the simplest
approximation it is

−
ℏ2

2g̃X̃ X̃

d2

dX̃2
Ψþ ŨðX̃ÞΨ ¼ EΨ

⇒ −
ℏ2β2m
2gXX

d2

dX2
Ψþ m

β2
UðXÞΨ ¼ EΨ: ð40Þ

FIG. 10. XðtÞ for initial velocity v ¼ 0.01 and initial position 8
for μ1 ¼ 2 and μ2 ¼ 6.1.

FIG. 11. The difference between the full-field calculation
XffðtÞ and the collective coordinate model XCCMðtÞ in the case
Xð0Þ ¼ 8, v ¼ 0.1 for μ1 ¼ 2 and a variety of μ2.
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Solutions to the Schrödinger equation are the quantum
states of our problem.
To make progress using this approach, we will make

three approximations.
First, we assume that paths on the collective coordinate

manifold capture the true field theory dynamics. We tested
this for a specific model in Sec. IV B. We saw that this
approximation improves when the kink velocities are small
and when μ2 is small. The classical small velocity limit will
correspond to a small momentum limit in the quantum
picture.
Second, we take the weak-coupling limit. Practically,

this arises from demanding that the wave function is
localized in a region where the harmonic approximation
can be applied [41]. One can understand the weak-coupling
limit by writing the fields in the collective coordinate
manifold as

Φðx;XÞ ¼ ΦkinkðxÞ þ
X
n

XnϵnðxÞ; ð41Þ

and expanding in XnϵnðxÞ. The fluctuations then satisfy a
linear normal mode equation and can be calculated and
manipulated easily. The normal mode equation is found by
substituting (41) into (8). Neglecting the higher order terms
in XnϵnðxÞ is equivalent to

β ≪ 1; ð42Þ

and the μi of order one.
Third, the canonical quantization relies on a semiclass-

ical approximation ℏ ≪ 1. But note that for the quantum
picture, the relevant object which appears in the Action is

L̃
ℏ
¼ m

β2ℏ
L; ð43Þ

whereL is the dimensionless Lagrangian [42]. Equation (43)
reveals that ℏ only appears with β2. Hence for kink physics,
the semiclassical limit ℏ → 0 is intrinsically linked to the
weak-coupling limit β → 0.
To clarify the approximations, we write the kink energy

in an approximation where the normal modes are treated
harmonically, with frequencies ωi. For more details, see
Chapter 5 of [41]. The units of the harmonic correction can
be read off from (40). The kink energy is

m
β2

�
E1 þ

1

2
ℏβ2

X
i

ωi þOðℏ2β4Þ
�
: ð44Þ

The mass is given by a Taylor expansion in ℏβ2. The
translational zero mode and regularization of the normal
modes require more careful consideration, which we will
consider later. But this formula captures the essential

features of the quantum corrections. We’ll now consider
several quantizations in more detail.
In this section, we will keep dimensionful coordinates to

better keep track of the approximations used. The quantities
calculated in earlier sections, such as E1 and E2, remain
dimensionless.

A. Reduced collective coordinate quantization

First, we will quantize using a small number of collective
coordinates: just one per soliton. The 1-kink then only has
one mode, the translational zero mode. As this is a zero
mode, all configurations have the same energy E1.
Denoting the position as Y, the Schrödinger equation is
given by

−
mℏ2β2

2E1

∂
2
YΨþ m

β2
E1Ψ ¼ EΨ; ð45Þ

with solution equal to a free particle with mass E1,

E ¼ m
β2

E1 þ
β2ℏ2

2E1

P2: ð46Þ

Here, P is the dimensionless momentum of the state. The
ground state has P ¼ 0 and so the quantum energy in this
approximation is equal to the classical energy. This is a zero-
mode quantization, which has been previously been applied
to skyrmions [43], vortices [11], and monopoles [30].
The quantization of the 2-kink is more interesting as

there is one nonzero mode, corresponding to the relative
separation X. A similar quantization has been applied to the
Deuteron [20] and the Lithium-7 nucleus [21] in the
Skyrme model. Like the 1-kink case there is also a
coordinate controlling the position of the center-of-mass,
but this only will give rise to an overall momentum, which
will be zero in the ground state. Hence we ignore this and
work in the center-of-mass frame. As we have developed in
the previous section, the classical Lagrangian of our
collective coordinate model of two kinks takes the form

L̃ ¼ m
β2

�
1

2
gðXÞẊ2 − UðXÞ

�
: ð47Þ

We can apply canonical quantization to find the semi-
classical Hamiltonian

Ĥ ¼ −
β2ℏ2m

2
Δþ m

β2
UðXÞ: ð48Þ

Naively, the kinetic operator is just g−1∂2X, but the metric
makes things more complicated: Δ is actually the Laplace-
Beltrami operator. In one dimension it takes the form
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Δ ¼ 1ffiffiffi
g

p ∂X

�
1ffiffiffi
g

p ∂X

�
¼ 1

g

�
∂
2
X −

∂Xg
2g

∂X

�
: ð49Þ

In the semiclassical approximation, bound states solve
the Schrödinger equation:

−
β2ℏ2m

2
ΔΨþ m

β2
UðXÞΨ ¼ EΨ: ð50Þ

Before solving the equation exactly, we can make an
approximate solution using the harmonic approximation.
Here, we ignore the first derivative term in the Laplace-
Beltrami operator and approximate the potential by a
quadratic. Since the potential has its minimum at a finite
value, X ¼ X0 ≈ 2.1, we must expand around this point,
including the metric g0 ¼ gðX ¼ X0Þ. The Schrödinger
equation becomes

−
β2ℏ2m
2g0

∂
2
XΨþ m

2β2
ω2
XðX − X0Þ2Ψ ¼ EΨ; ð51Þ

where ωX is the first normal mode frequency, which can be
found using the numerically generated potential UðXÞ,
which we found in the previous section. Equation (51) has
the ground state solution

Ψ ∼ exp

�
−
mωXðX − X0Þ2

2ℏ

�
; ð52Þ

with E ¼ 1
2
mℏωX=

ffiffiffiffiffi
g0

p
. In our case, for μ1 ¼ 2, μ2 ¼ 6.1,

the frequency is equal to ωX=
ffiffiffiffiffi
g0

p ¼ 0.2072. Noting that
the quantum energy for the 1-kink is just the classical
energy, we can calculate the quantum binding energy in the
harmonic approximation. We find that

EHarmonic
1 ¼ 10.242

m
β2

ð53Þ

EHarmonic
2 ¼ 19.440

m
β2

þ 0.1036ℏm ð54Þ

⇒ EHarmonic
bind ¼ ð5.1 − 0.51ℏβ2Þ%: ð55Þ

The inclusion of quantum energy increases the energy of
the 2-kink and so decreases the binding energy percentage,
for any value of ℏβ2. Hence quantization is an unbinding
process. Note that we only trust the quantization method
when ℏβ ≪ 1. Hence we have not found a quantum
correction which can change the sign of Ebind, unbinding
the 2-kink.
To solve the full Schrödinger equation (50) beyond the

harmonic approximation we take an initial random guess
Ψ0ðXÞ and evolve it using

Ψ̇ ¼ −ĤΨ; Ψ2 ¼ 1: ð56Þ

The ground state is the late-time solution of (56). In one
dimension, there is always a ground state solution. We
calculate it for ℏ ¼ 1, and it is shown in Fig. 12, alongside
the harmonic solution. Both are concentrated near the
minimum of U. The main difference between wave
functions is that the boundary at the left squeezes the true
wave function, moving it slightly rightwards. Due to this
squeeze, the energy of the anharmonic wave function is
0.1107ℏm, larger than the harmonic approximation. This
affects the binding energy, which is now equal to

⇒ EQuantum anharmonic
bind ¼ ð5.1 − 0.54ℏβ2Þ%: ð57Þ

Hence, for the same ℏβ2, the anharmonicity has decreased
the binding energy of the quantum 2-kink by a small
amount.
We repeat the calculation for the near-BPS case, μ1 ¼ 2,

μ2 ¼ 4. Here the quantum energy is 0.059ℏm in the
harmonic approximation and 0.053ℏm in the anharmonic
case. The anharmonic quantum energy is less. The per-
centage binding energy per kink goes from 0.80% to
ð0.80 − 0.32ℏβ2Þ% for the harmonic approximation [or
ð0.50 − 0.29ℏβ2Þ% in the anharmonic case]. So even
though the quantum correction is smaller, the effect on
the percentage binding energy is much larger.

VI. CONCLUSION AND FURTHER WORK

In this paper we have constructed amodified sine-Gordon
model which supports stable static multikink solutions.
Unlike usual sine-Gordon, the model is not integrable or
BPS and the solutions have a binding energy. This makes
the theory a good toy model for physical systems such as
those found in condensed matter and nuclear theory. We
believe our model is an excellent testing place for ideas in
classical and quantum soliton dynamics. As such, we
studied a variety of problems in the new model.
First, we calculated kink solutions for N ¼ 1–20 and

found that the binding energy per kink asymptotes to a
constant value, similar to what is seen in nuclear matter. We
then constructed a collective coordinate model of 2-kinks
using pinning. This is the first time a potential and metric

FIG. 12. The ground state wave function of the 2-kink in the
collective coordinate approximation for μ1 ¼ 2, μ2 ¼ 6.1, in a
harmonic approximation (green) and the true solution (orange).
We also plot the shifted potential energy (blue).
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have been generated on a soliton configuration space using
this method. In some sense, the method is more general than
that used in recent works [14], as it does not rely on features
of the 1-soliton to generate approximate 2-soliton fields.We
used the model to test the collective coordinate approxima-
tion for soliton dynamics against full-field theory finding
that, as expected, the model works better when the model is
closer to BPS. We also used the collective coordinate model
to generate a quantum 2-kink solution in semiclassical
harmonic and anharmonic approximations.
Overall, we calculated the binding energy three times:

classically, and harmonically and anharmonically in a
collective coordinate approximation. The results of these
calculations are shown in Table I. The fact that the results
are different highlights that the quantum binding energy is
highly dependent on the method used to calculate it. In the
Skyrme model, authors have calculated the binding energy
classically [22], in a harmonic [26,44] and anharmonic [20]
collective coordinate approach. The calculations in higher
dimensions are very difficult, and so our model is an
excellent tool for probing questions about quantum soliton
masses in a simple setting.
There are many obvious generalizations of the work

done here: one could generate collective coordinates for
more than 2-kinks, calculate loop corrections [45], or ask
how the binding energy calculation changes when consid-
ering more kinks. It would be interesting to add “isospin”
coordinates to the model, similar to the complex sine-
Gordon model [33], where solitons have additional internal
symmetries. The quantization of this type of model would

be closer to higher-dimensional models, which often have
internal degrees of freedom. We have modified the normal
sine-Gordon theory so that there are bound multikinks. But
there are various other models that one could modify and
study, depending on their interest.
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