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S. Navarro-Obregón ,6,§ and J. Queiruga 1,2,∥
1Departamento de Matemática Aplicada, Universidad de Salamanca,

Casas del Parque 2, 37008, Salamanca, Spain
2IUFFyM, Universidad de Salamanca, Plaza de la Merced 1, 37008, Salamanca, Spain

3Department of Theoretical Physics, University of the Basque Country UPV/EHU
4EHU Quantum Center, University of the Basque Country, UPV/EHU
5IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain

6Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain

(Received 24 May 2024; accepted 20 August 2024; published 12 September 2024)

The evolution of 1 vortices when their massive bound mode is excited is investigated in detail (both
analytically and numerically) in the Abelian-Higgs model for different ranges of the self-coupling constant.
The dependence of the spectrum of the 1 vortex fluctuation operator on the model parameter is discussed
initially. A perturbative approach is employed to study the radiation emission in both the scalar and the
vector channels. Our findings reveal that the oscillating initial configuration of the 1 vortex radiates at a
frequency twice that of the internal mode. Through energy conservation considerations, we derive the
decay law of the massive mode. Finally, these analytical results are compared with numerical simulations in
field theory.
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I. INTRODUCTION

Among the range of topological solitons, vortices have
emerged as notably significant and versatile solutions. They
find applications in diverse areas of physics, such as
superconductivity [1] or superfluidity [2] in condensed
matter or particle physics models in cosmology [3,4].
The Abelian-Higgs model is the prototypical model

supporting relativistic gauged vortices (see [5,6] and refer-
ences therein). This model, which describes the minimal
coupling between a Uð1Þ gauge field and a charged scalar
field in a phase where the gauge symmetry is broken
spontaneously, has been thoroughly studied over the last
decades, leading to a deeper comprehension of the phenom-
ena associated with this class of topological solitons.
Research has shed light on fundamental aspects of vortices
[3,7,8], their behavior in scattering processes [9–11], or the
application of collective coordinates to reduce the degrees of

freedom of the system [12]. Generalizations of the model
have also been considered in the literature, including
dielectric terms [13–21], or magnetic impurities [22,23].
In recent years, there has been a growing interest in the

investigation of the excitation modes of topological
defects. The spectral structure arising from small fluctua-
tions around Abelian-Higgs vortices has been a topic of
discussion in the last years by several authors. In a seminal
paper by Weinberg [24], it was demonstrated that, in the
Bogomol’nyi-Prasad-Sommerfield (BPS) limit, the vortices
exhibit 2n zero fluctuation modes. The problem of describ-
ing massive bound modes was initially tackled by Arodz
[25]. Subsequently, Goodband and Hindmarsh numerically
studied the spectral structure of a vortex by assuming
different winding numbers [26]. The study of zero modes
and positive bound modes has been further analyzed by
Alonso-Izquierdo et al. in the BPS limit [27,28] employing
a hidden supersymmetric structure to simplify the problem.
Furthermore, this work has led recently to the study of the
spectral problem associated to the second order fluctuation
operator for a configuration where two 1 vortices are located
at an arbitrary distance [29].
These modes may become particularly relevant when

studying the dynamics of vortices and their (3þ 1)-
dimensional extensions, cosmic strings. The excitation
of these solitonic structures may alter the mechanical
properties of the strings, changing their energy and/or their
tension. This modification on the equation of the state of the
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string could lead to important differences in the evolution of
the cosmic string loops and their lifetime. This, in turn,
would also have an impact on the observational predictions
in cosmic string scenarios, in particular to one of the most
promising avenues to detect cosmic strings, the observations
of their gravitational signatures [30]. This suggests that
further investigation into the dynamics of realistic strings
extending beyond the thin wall approximation may be
necessary in some scenarios.
This idea has been recently suggested in [32] as a

possible explanation for the different behavior of the cosmic
string loops in field theory simulations of cosmic string
networks [33] and their Nambu-Goto counterparts in [34].
An initial examination of the dynamics of several loops
from field theory simulations does not appear to indicate
important deviations from the Nambu-Goto equation of
state. In fact, the dynamics [35] of the loops seem to be
accurately described by the Nambu-Goto action except in
regions of high curvature where these deviations are to be
expected. Therefore, the significance of these excitation
modes for the conclusions of field theory simulations is not
presently clear.
In fact, this idea has been recently suggested in [32] as a

possible way to reconcile the numerical results obtained in
field theory simulations of cosmic string networks [33] and
their Nambu-Goto counterparts in [34]. An initial exami-
nation of the dynamics of several loops from field theory
simulations does not appear to indicate important devia-
tions from the Nambu-Goto dynamics [35]. Therefore, the
significance of these excitation modes for the conclusions
of field theory simulations is not presently clear.
However, before we can understand the cosmological

implications of these excited modes on strings one needs to
investigate their most basic properties including their
stability and potential decay rates via radiation emission.
Note that understanding these properties is critical before
extrapolating our results from a necessary limited numeri-
cal simulations to a cosmological context.
In this article wewill thoroughly describe the evolution of

a 1 vortex when its internal mode has been initially excited
for different values of the self-coupling constant. For this
purpose, we will employ a perturbative approach similar to
the one introduced by Manton and Merabet for the study of
kink excitations [36]. This analytical method has also been
successfully employed to examine the evolution of kinks
numerically [37,38] as well as global vortices [39,40] and
wobblers in two component scalar field theories [41,42].
The resulting expressions of this perturbative analysis
enable us to confirm that a 1 vortex radiates through scalar
and gauge fields, with a predominant frequency that is twice
that of the excited internal mode. It is clear that the coupling
between the massive bound mode and the radiation modes
will lead to the subsequent decay of the internal shape mode
amplitude. Employing perturbation theory, we derive a
temporal decay law for this mode that is well approximated

by an inverse square root expression, which is in very good
agreement with our numerical simulations.
The backreaction of excitations of the longitudinal

component of the Uð1Þ gauge field was studied in a
(3þ 1)-dimensional model in [43,44]. Note that these
are physically different modes than the ones studied here.
In fact, they are not present in a (2þ 1)-dimensional vortex
we study in the present paper. Furthermore, the mathemati-
cal approach and our results differ from the ones used in the
aforementioned articles. We leave the discussion of these
other modes for a future publication.
This article is organized as follows: In Sec. II, a brief

overview of the internal mode structure of the Abelian-
Higgs 1-vortex is provided. Section III offers a detailed
perturbative study of the evolution of a 1 vortex whose
internal mode has been initially excited. In Sec. IV, the
validity of these results will be compared with those
obtained from numerical simulations. Finally, Sec. V
summarizes the main findings of this work and outlines
potential future prospects.

II. THE ABELIAN-HIGGS MODEL: VORTEX
SOLUTION AND INTERNAL STRUCTURE

The Abelian-Higgs model describes the coupling
between a Uð1Þ gauge field and a complex scalar field
in 2þ 1 dimensions. The Lagrangian density that governs
the dynamics of this model reads

L̃ ¼ −
1

4
FμνFμν þ 1

2
ðDμΦÞ�DμΦ −

λ̃

8
ðη2 −ΦΦ�Þ2; ð1Þ

where the complex scalar field, ΦðxÞ ¼ Φ1ðxÞ þ iΦ2ðxÞ,
represents a Higgs field and AμðxÞ ¼ ðA0ðxÞ; A1ðxÞ; A2ðxÞÞ
is the vector potential. For later convenience we rescale the
fields and the coordinates as follows:

Φ → ηΦ; Aμ → ηAμ; xμ → 1=ðeηÞxμ: ð2Þ

In terms of the rescaled fields the Lagrangian density
reads

L ¼ e2η4
�
−
1

4
FμνFμν þ 1

2
ðDμΦÞ�DμΦ −

λ

8
ð1 −ΦΦ�Þ2

�
:

ð3Þ

The parameter λ measures the quotient between the
penetration lengths of the scalar and electromagnetic
fields in a superconducting medium as λ ¼ λ̃=e2. In
addition, it can be seen as the quotient between the

masses of the Higgs particle, mH ¼
ffiffiffĩ
λ

p
η, and the vector

meson, mV ¼ eη, with η the vacuum expectation value.
The coupling constant λ determines the strength of
the Higgs potential. In terms of the rescaled field, the
covariant derivative is defined as Dμ ¼ ∂μ − iAμðxÞ, the
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electromagnetic tensor as FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ,
and the Minkowski metric is chosen in the form
gμν ¼ diagf1;−1;−1g. In (3), Φ� stands for the complex
conjugate of Φ. From now on, the temporal gauge A0 ¼ 0
will be imposed. Consequently, the field equations asso-
ciated to (3) will be expressed as follows:

∂0;0Φ ¼ D1D1ΦþD2D2Φþ λ

2
ð1 −ΦΦ�ÞΦ;

∂0;0A1 ¼ ∂2;2A1 − ∂1;2A2 −
i
2
ðΦ�D1Φ −ΦðD1ΦÞ�Þ;

∂0;0A2 ¼ ∂1;1A2 − ∂1;2A1 −
i
2
ðΦ�D2Φ −ΦðD2ΦÞ�Þ: ð4Þ

For a static configuration the energy can be written as

V ¼ 1

2

Z
R2

�
B2 þ ðD1ΦÞ�D1Φþ ðD2ΦÞ�D2Φ

þ λ

4
ð1 −ΦΦ�Þ2

�
dx1dx2; ð5Þ

where B ¼ F12 ¼ ∂1A2 − ∂2A1 is the magnetic field. In
fact, (5) describes the free energy of the Ginzburg-Landau
theory of superconductivity in the nonrelativistic limit. In
this scenario, jΦðxÞj2 represents the electron density of the
physical substrate, while the value of the self-coupling
constant λ distinguishes if the material behaves as a type I
(λ < 1) or a type II (λ > 1) superconductor. The transition
point λ ¼ 1 corresponds to the so-called BPS or critical
value, where the Higgs and gauge field masses are equal.
Vortices are finite energy solutions of the field equations (4).
For this reason, they must satisfy the following asymptotic
conditions on the circle at infinity S1∞,

Φ�ΦjS1∞ ¼ 1; DiΦjS1∞ ¼ 0; BjS1∞ ¼ 0: ð6Þ

By employing a polar coordinates system with x1 ¼ r cos θ
and x2 ¼ r sin θ the conditions (6) suggest that Φ∞ ≔
limr→∞Φ ¼ einθ with n∈Z. This means that the vortices

must asymptotically take values on a unit circle in field
space. As a consequence, these solutions can be classified
by the vorticity or winding number n of the map
Φj∞∶ S1∞ → S1, which by topological considerations must
be a conserved quantity of the system (see [5,12]). On the
other hand, the asymptotic behavior of the vector field A is
also fixed as

ðA1; A2Þ ¼ ð−ie−inθ∂1einθ;−ie−inθ∂2einθÞ; ð7Þ

by the conditions (6). The direct consequence of this
topological argument is that the magnetic flux defined by

Θ ¼
Z
R2

Bdx1dx2 ¼
I
S1∞

ðA1dx1 þ A2dx2Þ ¼ 2πn; ð8Þ

and it is classically quantized in the physical system. In
order to find static circularly symmetric n-vortex solutions,
we use the following ansatz

Φðr;θÞ ¼ fnðrÞeinθ; Arðr;θÞ ¼ 0; Aθðr;θÞ ¼
nβnðrÞ

r
;

ð9Þ

where we have used the relations Ar ¼ A1 cos θ þ A2 sin θ
and Aθ ¼ −A1 sin θ þ A2 cos θ. Indeed, the second relation
in (9) simply corresponds to fixing the radial gauge.
Plugging the ansatz (9) into (4), the following coupled
nonlinear system of ordinary differential equations is
obtained

d2fn
dr2

þ 1

r
dfn
dr

−
n2

r2
ð1 − βnÞ2fn þ

λ

2
ð1 − f2nÞfn ¼ 0;

d2βn
dr2

−
1

r
dβn
dr

þ ð1 − βnÞf2n ¼ 0: ð10Þ

These equations must be complemented with the boundary
conditions fnð0Þ¼ βnð0Þ¼ 0, fnð∞Þ ¼ 1, and βnð∞Þ¼n.

FIG. 1. Scalar (left) and vector (right) component profiles of the 1 vortex for different values of the self-coupling constant λ.
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In Fig. 1 we show the profiles of the scalar and vector
components of the 1-vortex for different values of the
boundary constant λ.
In order to identify the normal modes of the vortex we

need to analyze the second-order small fluctuations operator
H. It has been demonstrated [27,28] that the lowest normal
modes exhibit radial symmetry for vortex configurations
with at least n ≤ 5. Therefore, we will restrict our spectral
analysis to fluctuations of the form ðφðrÞ; aθðrÞÞ, [45]
where φðrÞ and aθðrÞ denote, respectively, the fluctuations
of the complex scalar field Φ and of the angular component
of the vector field Aθ. These perturbations have the same
symmetry as the solutions derived from (10) and satisfy the
radial gauge condition, setting their radial component to
zero, ar ¼ 0. Therefore, the perturbed solution can be
written as

Φðr; θ; tÞ ¼ fnðrÞeinθ þ C0φðrÞeinθeiωnt;

Aθðr; θ; tÞ ¼
nβnðrÞ

r
þ C0aθðrÞeiωnt; ð11Þ

whereC0 is a small real number. Note that these fluctuations
automatically satisfy the so-called background gauge con-
dition [26,27]. If we plugged (11) into (4), then the
equations of motion at linear order in C0 lead to the spectral
problem

H
�

φðrÞ
aθðrÞ

�
¼ ω2

n;j

�
φðrÞ
aθðrÞ

�
; ð12Þ

where the subscript n labels the vorticity of the configu-
ration and j labels the mode. The n-vortex fluctuation
operator H reads

H ¼

0
B@− d2

dr2 −
1
r
d
dr þ

�
3
2
λfnðrÞ2 − λ

2
þ n2

r2 −
n2βnðrÞ

r2 ð2 − βnðrÞÞ
�

− 2nfnðrÞ
r ð1 − βnðrÞÞ

− 2nfnðrÞ
r ð1 − βnðrÞÞ − d2

dr2 −
1
r
d
dr þ

�
fnðrÞ2 þ 1

r2

�
1
CA: ð13Þ

The spectral problem (12) couples the scalar and vector fluctuations. However, for large r the fluctuation operator trivially
decouples

Hj∞ ¼

0
B@− d2

dr2 −
1
r
d
dr þ λ 0

0 − d2

dr2 −
1
r
d
dr þ

�
1þ 1

r2

�
1
CA: ð14Þ

The spectral problem given by the operator (14) is analytically solvable. The (asymptotic) modes read

φðrÞ →r→∞
AφH

ð1Þ
0 ðkϕrÞ þ BφH

ð2Þ
0 ðkϕrÞ ≈

ffiffiffiffiffiffiffiffiffiffi
2

πkϕr

s
ðAφeiðkϕr−

π
4
Þ þ Bφe−iðkϕr−

π
4
ÞÞ; ð15Þ

aθðrÞ →r→∞
AAH

ð1Þ
1 ðkArÞ þ BAH

ð2Þ
1 ðkArÞ ≈

ffiffiffiffiffiffiffiffiffiffi
2

πkAr

s
ðAAeiðkAr−

3π
4
Þ þ BAe−iðkAr−

3π
4
ÞÞ; ð16Þ

where k2ϕ ¼ ω2
n;j − λ, k2A ¼ ω2

n;j − 1, and Hð1Þ
n , Hð2Þ

n are
the Hankel functions of first and second kind, respect-
ively [46,47]. From (14), it is clear that the continuum
spectrum for the vector fluctuations starts at the threshold
valueωA

c ¼ 1while for the scalar component depends on the
coupling constant and starts at ωϕ

c ¼ ffiffiffi
λ

p
. Both of them

coincide at critical coupling (λ ¼ 1) where the self-dual
vortices arise. As a consequence, bound states of (13)
must have eigenvalues ω2

n;j < λ when λ < 1 and ω2
n;j < 1

when λ > 1. Due to the complexity of the spectral problem
(12) the discrete spectrum of (13) must be obtained by
employing numerical methods. The numerical scheme used
in this paper is described in the Appendix. In Fig. 2 we show
the spectrum of the 1-vortex fluctuation operator (13) as a
function of the model parameter λ. We find that there is a
single bound mode which ceases to exist at λ ≈ 1.5.
Finally, in Fig. 3 we show the profiles of the 1-vortex

bound mode for different values of the self-coupling
constant λ.
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III. INTERNAL MODE EVOLUTION:
ANALYTICAL APPROACH

In this section we will determine the decay law for a
circularly symmetry vortex of charge n with a single
internal mode excited. Then, for concreteness, we will
compare our analytical results with field theory for the 1
vortex.
The perturbative approach used to analyze the decay law

of the wobbling amplitude for a kink was originally
introduced in [36], and later extended to study kinks

numerically in [37] as well as global vortices in [39].
Here we employ similar techniques to derive the radiation
emitted by an excited vortex. Then, by energy consider-
ations, we will compute the decay law for the inter-
nal modes.

A. Perturbative approach

We will employ the following circularly symmetric
ansatz

Φðr; θ; tÞ ¼ fnðrÞeinθ þ CðtÞφðrÞeinθ þ ηðr; tÞeinθ; ð17Þ

Aθðr; tÞ ¼
nβnðrÞ

r
þ CðtÞaθðrÞ þ ξðr; tÞ; ð18Þ

where ηðr; tÞ and ξðr; tÞ represent the scalar and vector
radiation field, ðφðrÞ; aθðrÞÞ are the bound mode profiles,
and CðtÞ is their time-dependent amplitude. A straightfor-
ward computation shows that (17) and (18) still verify the
temporal gauge and the background gauge conditions.
To investigate the asymptotic radiation emitted due to the

excitation of the internal mode, we insert the radially
perturbed solution (17) and (18) into the field equations (4).
The massive bound mode satisfies by definition the
equations at first order in CðtÞ. However, the modes couple
at higher order to radiation. Expanding at second order in
CðtÞ we derive the following equation of motion for the
scalar field radiation

η̈ðr; tÞ − η00ðr; tÞ − 1

r
η0ðr; tÞ þ

�
3

2
λfnðrÞ2 −

λ

2
þ n2

r2
−
n2βnðrÞ

r2
ð2 − βnðrÞÞ

�
ηðr; tÞ

−
2nfnðrÞ

r
ð1 − βnðrÞÞξðr; tÞ ¼

2nCðtÞ2φðrÞaθðrÞ
r

ð1 − βðrÞÞ − CðtÞ2fnðrÞaθðrÞ2

−
3

2
λCðtÞ2fnðrÞφðrÞ2 − ðC̈ðtÞ þ ω2

sCðtÞÞφðrÞ: ð19Þ

FIG. 3. Scalar (left) and vector (right) component profiles of the 1-vortex bound mode for different values of the self-coupling
constant λ.

FIG. 2. Spectrum of the 1-vortex fluctuation operator H,
defined in (13), as a function of the model parameter λ. The
discrete eigenvalue corresponds to the blue curve, while the
shaded red area represents the continuous spectrum.
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For the gauge field radiation we get

̈ξðr; tÞ − ξ00ðr; tÞ − 1

r
ξ0ðr; tÞ þ

�
fnðrÞ2 þ

1

r2

�
ξðr; tÞ − 2nfnðrÞ

r
ð1 − βnðrÞÞηðr; tÞ

¼ nCðtÞ2φ2ðrÞ
r

ð1 − βnðrÞÞ − 2CðtÞ2fnðrÞφðrÞaθðrÞ − ðC̈ðtÞ þ ω2
sCðtÞÞaθðrÞ; ð20Þ

where we have used the first order solution for CðtÞ

CðtÞ ¼ C0 cosðωn;jtÞ: ð21Þ

Using the fact that the discrete modes are orthogonal to the
radiation modes we can now project (19) and (20) onto
φðrÞ and aθðrÞ to obtain

C̈ðtÞ þ ω2
n;jCðtÞ þ CðtÞ2γ ¼ 0; ð22Þ

where

γ ¼ 2π

N

Z
∞

0

�
3

2
λfnðrÞφðrÞ3 þ 3fnðrÞφðrÞaθðrÞ2

−
3nφðrÞ2aθðrÞ

r
ð1 − βnðrÞÞ

�
rdr; ð23Þ

andN in (23) is the normalization factor of the shape mode

N ¼ 2π

Z
∞

0

ðφðrÞ2 þ aθðrÞ2Þrdr: ð24Þ

Furthermore, we will assume the following ansatz for the
radiation modes

ηðr; tÞ ¼ ηrðrÞeiωt; ð25Þ

ξðr; tÞ ¼ ξrðrÞeiωt; ð26Þ

which, together with first order solution (21), leads to the
condition ω ¼ 2ωn;j, i.e., the radiation frequency in twice
that of the discrete mode. After substituting (22), (25), and
(26) into (19) and (20) we get the following equations:

− η00rðrÞ −
1

r
η0rðrÞ þ

�
3

2
λfnðrÞ2 −

λ

2
þ n2

r2
− 4ω2

n;j −
n2βnðrÞ

r2
ð2 − βnðrÞÞ

�
ηrðrÞ −

2nfnðrÞ
r

ð1 − βnðrÞÞξrðrÞ

¼ nC2
0φðrÞaθðrÞ

r
ð1 − βnðrÞÞ −

1

2
C2
0fnðrÞaθðrÞ2 −

3

4
λC2

0fnðrÞφðrÞ2 þ
1

2
C2
0γφðrÞ≡ C2

0FϕðrÞ; ð27Þ

and

− ξ00r ðrÞ −
1

r
ξ0rðrÞ þ

�
fnðrÞ2 þ

1

r2
− 4ω2

n;j

�
ξrðrÞ −

2nfnðrÞ
r

ð1 − βnðrÞÞηrðrÞ

¼ nC2
0φ

2ðrÞ
2r

ð1 − βnðrÞÞ − C2
0fnðrÞφðrÞaθðrÞ þ

1

2
C2
0γaθðrÞ≡ C2

0FAðrÞ: ð28Þ

Equations (27) and (28) constitute a coupled system of nonhomogeneous linear ordinary differential equations. It should be
noted, however, that the cross terms exponentially vanish for large r. In order to solve the system we may use an iterative
approach similar to Bohr’s approximation. The procedure works as follows: First, we apply the method of variation of
parameters as if the coupling terms were part of the inhomogeneous terms. Then, a particular solution is given by

ηðmÞ
r ðrÞ ¼ −C2

0z2ϕðrÞ
Z

r

0

�
Fϕðr0Þ −

2nfnðr0Þ
r0

ð1 − βnðr0ÞÞξðm−1Þ
r ðr0Þ

�
z1ϕðr0Þ
Wϕðr0Þ

dr0

− C2
0z1ϕðrÞ

Z
∞

r

�
Fϕðr0Þ −

2nfnðr0Þ
r0

ð1 − βnðr0ÞÞξðm−1Þ
r ðr0Þ

�
z2ϕðr0Þ
Wϕðr0Þ

dr0; ð29Þ
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ξðmÞ
r ðrÞ ¼ −C2

0z2AðrÞ
Z

r

0

�
FAðr0Þ −

2nfnðr0Þ
r0

ð1 − βnðr0ÞÞηðm−1Þ
r ðr0Þ

�
z1Aðr0Þ
WAðr0Þ

dr0

− C2
0z1AðrÞ

Z
∞

r

�
FAðr0Þ −

2nfnðrÞ
r

ð1 − βnðrÞÞηðm−1Þ
r ðr0Þ

�
z2Aðr0Þ
WAðr0Þ

dr0; ð30Þ

where zjϕ and zjA (j ¼ 1, 2), respectively, denote the two
linearly independent homogeneous solutions for the scalar
and vector components η and ξ of (27) and (28), and Fϕ and
FA account for their nonhomogeneous terms as indicated
in (27) and (28). Besides, Wϕ andWA are, respectively, the
Wronskians associated to the homogeneous solutions zjϕ
and zjA, j ¼ 1, 2. The indexm in (29) and (30) indicates the

iteration step, with ηð0Þr ðrÞ ¼ 0 and ξð0Þr ðrÞ ¼ 0. Although
the solutions of the homogeneous system associated to (27)
and (28) cannot be analytically identified, it is possible to
find their asymptotic behaviors (the equations decouple in
this limit as shown in Sec. II). We have that

zϕðrÞ →r→∞
c1J0ðqϕrÞ þ c2Y0ðqϕrÞ; ð31Þ

zAðrÞ →r→∞
d1J1ðqArÞ þ d2Y1ðqArÞ; ð32Þ

where Jn and Yn are the Bessel J and Bessel Y functions,
respectively, and

qϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

n;j − λ
q

; qA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2

n;j − 1
q

: ð33Þ

We choose the asymptotic radiation to be outgoing waves
in the radial direction, then

z1ϕðrÞ →r→∞
c̃1J0ðqϕrÞ; z2ϕðrÞ →r→∞

Hð2Þ
0 ðqϕrÞ; ð34Þ

z1AðrÞ →r→∞
d̃2Y1ðrqAÞ; z2AðrÞ →r→∞

Hð2Þ
1 ðrqAÞ; ð35Þ

where, once again, Hð2Þ
n denote the Hankel function of

second kind. The asymptotic expansion of (29) and (30)
reduces to

ηðmÞ
r ðrÞ ¼ −C2

0

ffiffiffiffiffiffiffiffiffiffi
2

πrqϕ

s
· IðmÞ

ϕ · e−irqϕþiπ
4 ; ð36Þ

ξðmÞ
r ðrÞ ¼ −C2

0

ffiffiffiffiffiffiffiffiffiffi
2

πrqA

s
· IðmÞ

A · e−irqAþ
3iπ
4 ; ð37Þ

where the factors IðmÞ
ϕ and IðmÞ

A are defined by the following
integrals

IðmÞ
ϕ ¼

Z
∞

0

�
Fϕðr0Þ −

2nfnðr0Þ
r0

ð1 − βnðr0ÞÞξðm−1Þ
r ðr0Þ

�

×
z1ϕðr0Þ
Wϕðr0Þ

dr0; ð38Þ

IðmÞ
A ¼

Z
∞

0

�
FAðr0Þ −

2nfnðr0Þ
r0

ð1 − βnðr0ÞÞηðm−1Þ
r ðr0Þ

�

×
z1Aðr0Þ
WAðr0Þ

dr0: ð39Þ

To compute the integrals (38) and (39), it is necessary to
identify numerically the homogeneous solutions z1ϕ and
z1A with the boundary conditions z1ϕð0Þ ¼ z1Að0Þ ¼ 0 and
those given by the asymptotic behavior (34) and (35) (see
Ref. [39]). After some straightforward algebraic manipu-
lations we finally get

ηðmÞðr; tÞ ≈ C2
0 Re

"
CðmÞ
ϕffiffiffi
r

p ei2ωn;jt−irqϕþiπ
4

#

¼ C2
0

CðmÞ
ϕffiffiffi
r

p cos

�
2ωn;jt − rqϕ þ

π

4
þ ζϕ

�
; ð40Þ

ξðmÞðr; tÞ ≈ C2
0 Re

"
CðmÞ
Affiffiffi
r

p ei2ωn;jt−irqAþ3iπ
4

#

¼ C2
0

CðmÞ
Affiffiffi
r

p cos

�
2ωn;jt − rqA þ 3π

4
þ ζA

�
; ð41Þ

where the normalized radiation amplitudes CðmÞ
ϕ and CðmÞ

A

are given by

CðmÞ
ϕ ¼

ffiffiffiffiffiffiffiffi
2

πqϕ

s
jIðmÞ
ϕ j and CðmÞ

A ¼
ffiffiffiffiffiffiffiffi
2

πqA

s
jIðmÞ
A j: ð42Þ

The quantities ζϕ and ζA in (40) and (41) are the phases of
the scalar and vector radiation irrelevant to our purposes.
From Eqs. (40) and (41), it can be observed that the
radiation amplitudes are proportional to the square of the
shape mode amplitude C2

0, consistent with our initial
assumption. The asymptotic radiation profiles formally
resemble the analogous expression for the global vortex
[39]. However, unlike in that case, there are two radiation
channels (scalar and vector) that are sensitive to the
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self-coupling λ. We will discuss this is detail in the
following sections.

B. Internal mode decay law

The asymptotic form of the radiation (40) and (41)
allows us to determine the decay law of the internal mode
excitations. This can be done by comparing the average
energy flux carried away by the radiation with the rate of
change of the energy of the excited vortex. To begin, we
compute the energy flux in the radial direction, represented
by the T0r component of the energy momentum tensor

T0r¼ η̇ðr; tÞ∂rηðr;tÞþ ξ̇ðr;tÞ∂rξðr;tÞþ ξ̇ðr; tÞξðr;tÞ
r

: ð43Þ

The average energy flux over one period is given by

hT0ri ¼ −
2C4

0ωn;j

πr

�
jIðmÞ
ϕ j2 þ jIðmÞ

A j2
�
: ð44Þ

Thus, the power radiated to infinity is

Z
2π

0

hT0rirdθ ¼ −4C4
0ωn;j

�
jIðmÞ
ϕ j2 þ jIðmÞ

A j2
�
: ð45Þ

On the other hand, the energy associated to the vibrating
vortex (excited only by the internal mode) is given by

E ¼ MV þ 1

2
Nω2

n;jC
2
0; ð46Þ

whereMV denotes the rest mass of the gauged vortex andN
is the normalization factor previously defined in (24).
Therefore, the energy associated to the vibrational mode
depends on the squared amplitude C2

0, so while the vibrating
vortex emits radiation, the amplitude must decrease over
time to maintain the energy balance. This implies that

N
2
ωn;j

dC0ðtÞ2
dt

¼ −4C0

�
tÞ4ðjIðmÞ

ϕ j2 þ jIðmÞ
A j2

�
: ð47Þ

The solution of (47) provides the decay law for the internal
mode amplitude

C0ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C−2
0 ð0Þ þ ΓðmÞ

n;j t
q ; ð48Þ

where C0ð0Þ ¼ C0 is the initial shape mode amplitude
(at t ¼ 0) and

ΓðmÞ
n;j ¼

8
�
jIðmÞ
ϕ j2 þ jIðmÞ

A j2
�

Nωn;j
ð49Þ

is the decay rate. The relation (48) is formally identical to
the decay law for the amplitude of a kink [36] or for a global
vortex [39], but here both the scalar and vector radiation
field contribute to the final expression.
Figure 4 displays the evolution of the shape mode

amplitude C0ðtÞ for 1 vortices for the values of λ ¼ 0.7,
λ ¼ 1, and λ ¼ 1.4. To obtain a comprehensive pattern of
the decay of the shape mode amplitude (48) a representa-
tion illustrating the dependence of the decay rate Γ on λ can
be found in Fig. 5. We have taken λ > 0.5 since reducing λ
further would increase the size of the vortex core making
necessary to use a substantially larger simulation box. For
this range of values the decay rate reaches a maximum
for λ close to 1, that is, close to the critical value. This is
related to the finite size of the source. Around the
maximum of the decay rate the vortex size and the masses
of the radiated particles are of the same order. Far from this
point the difference in scales of the size of the object and
the masses of the radiated particles should lead to radiation
suppression [39].

C0(t)

t

C0(0)=0.3
n=1

0 2000 4000 6000 8000 10000
0.15

0.20

0.25

0.30

FIG. 4. Graphical representation for the theoretical decay of
C0 described by Eq. (48) for λ ¼ 0.7 (blue), λ ¼ 1 (purple), and
λ ¼ 1.4 (red).

1,1
(1)

0.6 0.8 1.0 1.2 1.4

0.0010

0.0015

0.0020

0.0025

FIG. 5. Graphical representation of the decay rate Γð1Þ
1;1 as a

function of the coupling constant λ for 1 vortices. The points
depict the analytical results derived from Eq. (49), while the solid
line illustrates a numerical interpolation.
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IV. INTERNAL MODE EVOLUTION:
NUMERICAL APPROACH

In the preceding section, we have employed perturbation
theory to derive the asymptotic behavior of radiation in both
the scalar and vector channels, enabling us to obtain an
analytical expression that determines the decay of the shape
mode amplitude. In this section, we carry out a similar
investigation using numerical methods. The outcomes
obtained through this approach will be compared with
those from the preceding section, allowing us to validate
the accuracy of the previously derived expressions.

A. Numerical setup and radiation
power spectrum analysis

As mentioned in Sec. II, we will restrict our analysis to
circularly symmetric configurations. Therefore, the system
of differential equations to be numerically solved is as
follows:

∂
2Fn

∂t2
−
∂
2Fn

∂r2
−
1

r
∂Fn

∂r
þn2

r2
ð1−BnÞ2Fn−

λ

2
ð1−F2

nÞFn ¼ 0;

ð50Þ

∂
2Bn

∂t2
−
∂
2Bn

∂r2
þ 1

r
∂Bn

∂r
− ð1 − BnÞF2

n ¼ 0; ð51Þ

where Fnðr; tÞ denotes the vortex profile of vorticity n and
Bnðr; tÞ ¼ r

n Aθðr; tÞ denotes the angular component of the
gauge field. To solve this system, a second-order finite
difference scheme in both space and time has been
implemented with Δr ¼ 0.01 and Δt ¼ 0.001. The sim-
ulations were performed up to t ¼ 10000 over the radial
interval ½0; L�, where L ¼ 70. We note that using larger
boxes did not yield substantial differences in our simu-
lation. To prevent radiation reflecting from the boundary
at r ¼ L, Mur absorbing boundary conditions have been

introduced [48]. Additionally, we introduced damping
terms −ϵðrÞ dFn

dt and −ϵðrÞ dBn
dt , respectively, in (50)

and (51), where

ϵðrÞ ¼
8<
:

0; if 0 ≤ r < rcuth
r−rcut
20

i
4
; if rcut < r < L

: ð52Þ

Typical values have been chosen around rcut ¼ 5L=6, but
we have performed several tests at different values of rcut to
confirm the numerical stability of our numerical setup. A
large number of simulations have been carried out to
examine the evolution of a vibrating 1 vortex. Moreover,
the eigenfunctions are assumed normalized with respect to
the norm of L2ðR2Þ ⊕ R2. In all numerical simulations we
have focussed on the n ¼ 1 vortex. The evolution of n
vortices with n > 1 will be explored in future studies, as
they introduce some subtleties that require special analysis.
The first analysis of the data extracted from these

simulations is aimed at studying the frequencies of the
radiation emitted by the 1 vortex at a point far away from
the vortex core both in the scalar and vector channels. The
results found for the model parameters λ ¼ 0.7, λ ¼ 1.0,
and λ ¼ 1.4 are illustrated in Fig. 6. The power spectrum of
the radiation emitted by the gauge vortex in the scalar
channel has been depicted in Fig. 6(a). As anticipated, the
predominant peak occurs at ωðλÞ ¼ 2ωsðλÞ. Additionally,
other peaks arise although comparatively suppressed. For
example, small peaks around 3ωsðλÞ are observed, due to
the coupling between the internal and radiation modes at
higher orders.
The presence of these other peaks is a higher order

effect and therefore is not included in our perturbative
approach based on the dominant second order expansion.
Nevertheless, they might be captured if we expanded up
to the third order. Lastly, there are other minor peaks
denoted by ωϕ

c ¼ ffiffiffi
λ

p
caused by random numerical noise.

FIG. 6. Power spectra of the scalar (a) and vector (b) radiation fields for λ ¼ 0.7 (blue), λ ¼ 1 (purple), and λ ¼ 1.4 (red). The peak
labels indicate the corresponding frequencies in each case, where ωϕ

c ¼ ffiffiffi
λ

p
denotes the scalar threshold frequency and ωA

c ¼ 1
represents the gauge mass threshold frequency. The initial amplitude for the massive bound mode is set to C0 ¼ 0.3.
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Analogously, Fig. 6(b) shows the power spectrum of the
radiation emitted in the vector channel, which exhibits a
similar behavior.
The scheme depicted by the power spectrum in Fig. 6 is

valid in the regime where λ > 0.282 and λ < 1.5, in which
there exists only one discrete mode and its first harmonic
belongs to the doubly degenerate continuous spectrum. A
qualitative change occurs for λ≲ 0.282. In this case, the first
harmonic ωðλÞ ¼ 2ωsðλÞ is higher than the Higgs mass but
lower than the gauge mass (see Fig. 2). Thus, it is expected
that only the scalar channel is available to emit radiation. In
Fig. 7, we display the power spectrum for λ ¼ 0.2,
λ ¼ 0.25, and λ ¼ 0.4. Note that the cases λ ¼ 0.2 and λ ¼
0.25 belong to the regime where only the scalar channel is
available at the lowest order while for the case λ ¼ 0.4 both
channels can radiate. As mentioned in Sec. II we anticipate a
different behavior in the radiation emission for these two
scenarios. As expected, in Fig. 7(b) the peak at twice the
frequency of the corresponding shape mode in the vector
channel for λ ¼ 0.2 and λ ¼ 0.25 is highly suppressed. Note
that in Fig. 7(a), the presence of shape mode oscillations for
the cases λ ¼ 0.2 and λ ¼ 0.25 are noticeable at large
distances (where the power spectrum analysis is consid-
ered). This is because the shape mode for these cases has a
significant width, and the power spectrum in the simulations
captures these frequencies. However, it is interesting to
describe in detail the situation arising in this case. It should
be noted that since the eigenvalue of the discrete mode is
very close to the threshold value of the continuous spectrum
associated to the scalar component and comparatively far
from that of the vector component, the scalar component of
the shape mode will be highly delocalized and will have a
dominant behavior over the vector component. This
explains the fact that only Fig. 7(a) shows frequencies
associated to the discrete mode when λ < 0.282.
In summary, the numerical simulations described in this

section establish that the dominant frequency for the

radiation emitted when a 1 vortex vibrates via its shape
mode is precisely twice the natural frequency of the
shape mode.

B. Decay rate of the internal mode
and radiation emission

In this section, we will analyze the numerical decay of
the shape mode amplitude and compare it with the
analytical expression (48) obtained in Sec. III. The numeri-
cal amplitude of the shape mode at each time t is computed
in our simulations by projecting the difference between the
evolving and the static 1 vortex onto the theoretical shape
mode, as follows:

CðtÞ ≈ 2π

Z
∞

0

�
ðFnðr; tÞ − fnðrÞÞφðrÞ

þ n
r
ðBnðr; tÞ − βnðrÞÞaθðrÞ

�
rdr; ð53Þ

which is justified taking into account the expressions (17)
and (18).
The numerical amplitude of the shape mode as a function

of t exhibits a large number of oscillations during our
simulations. These oscillations are depicted by the blue
curves in Fig. 8 for the values λ ¼ 0.7, λ ¼ 1, and λ ¼ 1.4.
However, due to the ratio between their oscillation periods
and the total simulation time, they appear as a continuous
blue area. On the other hand, the analytical response of the
shape mode amplitudes (48) are represented by the dashed
red curves for the same cases in Fig. 8. This figure shows a
close match between the envelope of the numerical oscil-
lations of the shape mode and the analytical amplitude.
In Fig. 9, the radiation amplitudes in the scalar and vector

channels at rrad ¼ 50 as a function of time t are displayed.
The dashed red lines represent the theoretical evolution of
the radiation profile (54). A brief examination reveals a

FIG. 7. Power spectra of the scalar (a) and vector (b) radiation fields for λ ¼ 0.2 (blue), λ ¼ 0.24 (purple), and λ ¼ 0.4 (red). The peak
labels indicate the corresponding frequencies in each case, where ωϕ

c ¼ ffiffiffi
λ

p
denotes the scalar threshold frequency and ωA

c ¼ 1
represents the gauge mass threshold frequency. The initial amplitude for the massive bound mode is set to C0 ¼ 0.3.
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FIG. 8. Evolution of the numerical shape mode amplitude (blue solid curve) and the analytical decay law (48) (red dashed curve) for
the coupling constants (a) λ ¼ 1.0, (b) λ ¼ 0.7, and (c) λ ¼ 1.4. The shape mode amplitude decays due to the coupling with scattering
modes. All the simulations have been performed for an initial shape mode amplitude C0 ¼ 0.3. The inset shows the first oscillations of
the internal mode amplitude.

FIG. 9. Radiation field at rrad ¼ 50 for different self-coupling constants λ. The upper plots account for the scalar component and the
lower plots the vector component. The simulations have been performed for an initial amplitude C0 ¼ 0.3. The red dashed line represent
our analytical approximation. (a) λ ¼ 0.7, (b) λ ¼ 1.0, and (c) λ ¼ 1.4
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good agreement for the scalar component in all cases. The
slight deviations in the vector channel are related to
numerical precision. In order to compare the radiation
amplitudes given by the formulas (40) and (41) with the
numerical data, we have multiplied the values from field
theory by the factor

ffiffiffiffiffiffiffi
rrad

p
=C2

0 to have a clear comparison
independent of the particular position. Then, we have

compared the resulting amplitudes with CðmÞ
ϕ and CðmÞ

A ,
which are given through the formula (42). Those ampli-
tudes and the corresponding decay rates shown in Fig. 5,
together with the following expressions,

CðmÞ
ϕ ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCðmÞ
ϕ ð0ÞÞ−2 þ ΓðmÞt

q ;

CðmÞ
A ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCðmÞ
A ð0ÞÞ−2 þ ΓðmÞt

q ; ð54Þ

have been used to predict the internal mode decay.

C. The global string limit: Quasibound states

As we mentioned earlier, the bound state solutions of our
coupled system of equations ceases to exist when the
parameter λ > 1.5. The reason for this is clear: the
frequency of the bound state becomes in this case higher
than the continuum for the vector field. This makes it
impossible to have a bound state for the vector component
part of the perturbation in the analog Schrödinger problem.
However, the frequency of the last bound state at around
λ ¼ 1.5 is still below the mass threshold for the scalar
component. This suggests the possibility that the lowest
scattering states for λ > 1.5 would be composed of a wave
function similar to a bound state mode for the scalar part
and a radiative mode for the vector field part. This is indeed
what one can find in the numerical solutions presented
in Fig. 10.

On the other hand, this also suggests that even though
these modes are not truly bound states they may have a
behavior that shares some similarities with them. In par-
ticular, it seems likely that excitations at this large coupling
constants that resemble the scalar part of these modes would
have a long lifetime, comparable to the “bona fide” bound
states described earlier. One should therefore consider these
quasibound modes to be qualitatively in the same family of
solutions as the genuine bound states.
We can have an intuitive understanding of the reason for

the long lifetime of these quasibound modes if one con-
siders the extreme type II regime where λ ≫ 1. In this limit,
the scalar field has a much larger mass than the vector field
and the background vortex configuration resembles a global
vortex core for r < m−1

A . It is therefore reasonable to expect
that the scalar field excitations of the global string could be
well approximated by bound states of the complete system.
We have investigated this idea by initializing our numeri-

cal evolution for a purely global string bound state in our
Abelian-Higgs model with several values λ > 1.5. The
results indicate that indeed the system behaves like a global
string for a long time where the scalar core oscillations
produced massive radiation much in the same way as it was
previously observed in [39]. Furthermore, we also note the
presence of a small amount of massive vector radiation, but
this does not have a big effect on the system. Presumably the
coupling between the oscillating scalar core and the vector
scattering states is low enough to allow for this possibility.

V. CONCLUDING REMARKS

In this paper, we have analyzed in detail the evolution of
a vortex excited by the lowest internal bound mode. This
discrete mode exhibits rotational symmetry, enabling ana-
lytical studies based on perturbation theory. Through this
approach, we have demonstrated that vortices excited by
these shape modes emit radiation with radial symmetry at a
frequency twice that of the shape mode, owing to quadratic
nonlinear terms in the field equations. Additionally, we

r

(r)

0 5 10 15 20 25 30

0.0000

0.0005

0.0010

0.0015

0.0020

r

a (r)

0 10 20 30 40 50 60

0.10

0.05

0.00

0.05

0.10

FIG. 10. Quasibound mode for the gauged vortex with λ ≫ 1. (a) Scalar channel. (b) Vector channel.
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have provided an iterative procedure to analytically identify
the decay of the shape mode amplitude, which follows an
inverse square law, similar to that found in the case of the
kink [36] and the global vortex [39]. We have performed
numerical simulations that show very good agreement with
our analytical predictions.
We have found different regimes depending on the self-

coupling values. For 0.282 ≤ λ ≤ 1.5, the excited vortex is
able to decay by emitting radiation in both vector and scalar
channels. For λ ≤ 0.28, the vortex emits only though the
scalar channel since the corresponding radiation frequency
is below the vector mass threshold. Finally, for λ ≥ 1.5,
there are no “proper” bound modes. However, as we have
argued, if λ is large enough the local vortex resembles a
global vortex at distances r < m−1

A . In this regime, the scalar
component profiles approach the global vortex bound
modes and the excited configuration is able to store energy
for large times.
There are two natural extensions of these results: the

study of the decay of excited vortices with n > 1 and the
decay of excited local strings in 3þ 1 dimensions. In both
cases, the richer spectral structure associated to static
configurations requires a detailed analysis.
In particular, going to 3þ 1 dimensions will allow for a

new kind of bound states that are not present in the vortex
case [25,43,44]. Furthermore, the possible interactions
between these modes and the other low energy excitations
of the string could in principle lead to interesting new
phenomenology. Notably, this may significantly impact

some of the conclusions regarding the decay of the various
modes that so far have been only studied in isolation. This
will most likely involve some analytical and numerical
work so one can compare the conclusions of this paper
together with the results in [43,44] in this more complicated
(3þ 1)-dimensional situation. Finally, understanding the
lifetime of these modes in realistic situations would be
crucial to assess the relevance of these modes in field theory
simulations like the ones described in [32] and evaluate the
relevance of these ideas in a cosmological setting.
Both lines of research are currently under investigation.
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APPENDIX: SPECTRAL STRUCTURE COMPUTATION

The eigensystem (12) has been discretized using the following second order finite difference scheme:

−
φðiþ1Þ
n;j − 2φðiÞ

n;j þ φði−1Þ
n;j

ðΔrÞ2 −
φðiþ1Þ
n;j − φði−1Þ

n;j

2iðΔrÞ2 þ
�
3

2
λfnðiΔrÞ2 −

λ

2
þ n2

i2ðΔrÞ2
�
φðiÞ
n;j

−
n2βnðiΔrÞ
i2ðΔrÞ2 ð2 − βnðiΔrÞÞφðiÞ

n;j −
2nfnðiΔrÞ

iΔr
ð1 − βnðiΔrÞÞaðiÞθ;n;j ¼ ω2

n;jφ
ðiÞ
n;j ðA1Þ

and

−
aðiþ1Þ
θ;n;j − 2aðiÞθ;n;j þ aði−1Þθ;n;j

ðΔrÞ2 −
aðiþ1Þ
θ;n;j − aði−1Þθ;n;j

2iðΔrÞ2 þ
�
fnðiΔrÞ2 þ

1

i2ðΔrÞ2
�
aðiÞθ;n;j

−
2nfnðiΔrÞ

iΔr
ð1 − βnðiΔrÞÞφðiÞ

n;j ¼ ω2
n;ja

ðiÞ
θ;n;j; ðA2Þ

where Δr ¼ L=N and i ¼ 0; 1;…; N, being N the number of points in the mesh. We have denoted by the upper index i the
evaluation of the eigenfunction on ri ¼ iΔr, and by the lower index j and n the jth eigenfunction appearing at vorticity n.
Following [28], we have chosen the boundary conditions
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�
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2
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λ

2
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�
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−
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n;j

−
2nfnðΔrÞ

Δr
ð1 − βnðΔrÞÞað0Þθ;n;j ¼ ω2

n;jφ
ð0Þ
n;j ðA3Þ

and

−
4

3

að1Þθ;n;j − að0Þθ;n;j
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�
fnðΔrÞ2 þ

1

ðΔrÞ2
�
að0Þθ;n;j

−
2nfnðΔrÞ

Δr
ð1 − βnðΔrÞÞφð0Þ

n;j ¼ ω2
n;ja

ð0Þ
θ;n;j ðA4Þ

at the origin, and φðNÞ
n;j ¼ aðNÞ

θ;n;j ¼ 0 at r ¼ L. Finally, the
resulting N × N matrix has been diagonalized using two
different algorithms from the SciPy.sparse.linalg
library in Python and Armadillo in C++.
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and J. Urrestilla, Internal excitations of global vortices,
J. Cosmol. Astropart. Phys. 10 (2021) 047.

[40] J. J. Blanco-Pillado, D. Jiménez-Aguilar, J. M. Queiruga,
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