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We propose a top-down approach to noninvertible symmetries in two-dimensional quantum field
theories and their three-dimensional (3D) associated symmetry topological field theories. We focus on the
gauge theory engineered on D1-branes probing a particular Calabi-Yau 4-fold singularity. We show how to
derive the symmetry topological field theory, a 3D Dijkgraaf-Witten theory, from the IIB supergravity
under dimensional reduction. We also identify branes behind the noninvertible topological lines by
dimensionally reducing their world volume actions. The action of noninvertible lines on charged local
operators is then realized as the Hanany-Witten transition.

DOI: 10.1103/PhysRevD.110.065008

I. INTRODUCTION

Global symmetry is one of the most important concepts in
quantum field theories (QFTs). It provides powerful tools to
investigate QFTs, even those strongly coupled or without
Lagrangian. A modern approach to understanding global
symmetries is through their associated topological symmetry
operators or defects [1]: for a D-dimensional QFT with a
q-form global symmetry whose symmetry group is G, a
topological operator UðMD−q−1Þg is associated with the
group element g and supported on the codimension-q mani-
fold MD−q−1. An operator charged under this q-form sym-
metry is supported on q-dimensional manifold Nq, linking
with theMD−q−1. It carries a representationof thegroupG and
thus transforms accordingly when acted on by a topological
operatorUðMD−q−1Þg. The group multiplication law leads to
the simple fusion rule between symmetry operators as
UðMD−q−1Þg×UðMD−q−1Þh¼UðMD−q−1Þgh. The existence
of the group element g−1 gives rise to the invertibility of
the symmetry operator: UðMD−q−1Þg×UðMD−q−1Þg−1 ≡
UðMD−q−1Þ×U−1ðMD−q−1Þ¼1. Relaxing the group multi-
plication law and considering nontrivial fusion rules for
symmetry operators Ui’s as UiðMD−q−1Þ ×UjðMD−q−1Þ ¼P

k c
k
ijUkðMD−q−1Þ, one ends up with symmetries which are

not grouplike, known as noninvertible symmetries.1

In the context of QFTs engineered from singularities in
string theory, e.g., via geometric engineering or brane probes,
generalized global symmetries admit elegant top-down real-
izations. On the one hand, the charged defects are built by
branes wrapping noncompact cycles of the internal geometry,
extending from the singularity (where the QFT is engineered)
to “infinity” [7–10].On the other hand, itwas recently pointed
out in Refs. [11–13] (see also Refs. [14–18]) that generalized
symmetry operators arise from wrapped branes “at infinity.”2

In particular, in the case of noninvertible symmetries, the
topological field theory (TFT) living on the symmetry
operator, responsible for the nontrivial fusion rules, can be
directly obtained from the topological sector of the brane
action on its world volume via dimensional reduction on the
wrapped cycles at infinity.
Despite many top-down approaches and brane construc-

tions for noninvertible symmetries being introduced in the
literature, to our knowledge, they almost exclusively focus
on QFTs in D > 2 dimensions. To some extent, this is a bit
surprising since noninvertible symmetries are most ubiqui-
tous in two dimensions.3 In this paper, we fill this small gap
by explicitly constructing brane origins for noninvertible
symmetries in two-dimensional (2D) QFTs with string
theory realization.
2D QFT on D1-branes probing singularities. The 2D

QFTs we will focus on are gauge theories engineered on
D1-branes probing the conical singularity of a Calabi-Yau
4-fold (CY4). The IIB string theory background reads*Contact author: xingyangy@vt.edu
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1We refer the reader to Refs. [2–6] for recent reviews.
2In addition to branes, generalized symmetry operators can

also arise from purely geometric configuration. See, e.g., Ref. [19]
and Appendix A in Ref. [14].

3In two dimensions, noninvertible symmetries have a long
history. See, e.g., Refs. [20–27] for a partial list of seminal papers.
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R1;1 × Y; ð1:1Þ

where R1;1 supports the world volume of a stack of N
D1-branes and Y is a local noncompact CY4. In the case
when Y is toric, an infinite class of 2D theories has been
explicitly constructed, using an elegant T-dual IIA inter-
secting brane configuration known as brane brick models
[28–31].4 The resulting 2D QFTs are UðNÞK quiver gauge
theories,5 which can be fully specified by quiver diagrams
(encoding the field content and the gauge interaction) and
superpotentials (encoding the matter interaction).6

To illustrate our idea explicitly, in this paper, we focus on
the 2D gauge theory associated with a specific conical CY4,

ConeðY2;0ðP1 × P1ÞÞ; ð1:2Þ

which is the cone over a smooth 7-manifold known as
Y2;0ðP1 × P1Þ. The 2D gauge theory is constructed in
Ref. [40], and its quiver diagram is shown in Fig. 1. The
7-manifold Y2;0ðP1 × P1Þ falls in an infinite class of
Sasaki-Einstein 7-manifolds denoted as Yp;kðP1 × P1Þ,
which are lens space S3=Zp bundles over P1 × P1 [42].
We leave the systematic treatment of noninvertible and

other global symmetries for general brane brick models in
the forthcoming work [43].
3D symmetry TFT from string theory. We will use the

symmetry TFT framework to build noninvertible sym-
metries for our interested 2D gauge theory. Symmetry
TFT is a (Dþ 1)-dimensional TFT capturing the topo-
logical nature of generalized global symmetries in a
D-dimensional QFT [21,44–56]. It has a physical boundary
and a topological boundary. The local information (local
operators and their correlation functions) of the interested
D-dimensional QFT is realized on the physical boundary,
also known as the relative QFT [52]. On the other hand,
gapped boundary conditions are defined on the topological
boundary, which specifies the global structure of the
D-dimensional QFT.
For QFTs engineered on conical singularities of a

local noncompact internal geometry Y in string theory,
the associated symmetry TFT can be derived from the
topological sector of the dimensional reduction for the
10-dimensional (10D) (11-dimensional for M-theory)
supergravity on the asymptotic boundary ∂Y [57] (see also
Refs. [14,15,19,56,58–60]). Various string theory fluxes
under dimensional reduction give rise to gauge fields in the
symmetry TFT. For our interested case in this paper,
namely, D1-branes probing ConeðYð2;0ÞðP1 × P1ÞÞ, the
dimensional reduction to obtain a three-dimensional (3D)
symmetry TFT is performed in the IIB string theory
background

M3 × Yð2;0ÞðP1 × P1Þ; ð1:3Þ

where M3 ≅ M2 ×Rr≥0 is the 3D manifold for the sym-
metry TFT bulk. The physical boundary corresponds to
r ¼ 0 where D1-branes are localized, while the topological
boundary arises at r ¼ ∞ where boundary conditions of
various IIB fluxes are picked. The detailed computation
will be discussed in Sec. II, where we show the resulting 3D
symmetry TFT is a twisted Z2 × Z2 × Z2 3D Dijkgraaf-
Witten theory

S3 ¼
2π

2

Z
M3

a1δâ1 þ b1δb̂1 þ c1δĉ1 þ a1b1c1. ð1:4Þ

Noninvertible symmetry operators from branes. Recall
that picking a topological boundary condition for the
symmetry TFT corresponds to fixing a global structure
of its associated D-dimensional QFT. This procedure is
called picking a polarization, and the resulting QFTwith a
well-defined global structure is referred to as an absolute
QFT (see, e.g., Refs. [19,52,61,62]). From this bulk
perspective, gauging a symmetry in a QFT to get another
QFT is translated in changing from one polarization to
another.
Global symmetries of the resulting absolute QFT can be

obtained by investigating the behavior of bulk operators

FIG. 1. Quiver diagram for a 2D gauge theory phase associated
with Y2;0ðP1 × P1Þ probed by N D1-branes [40]. Yellow circles
denote UðNÞ gauge groups. Oriented black lines and unoriented
red lines denote bifundamental chiral and Fermi superfields,
respectively.

4See Refs. [32–40] for more details.
5Strictly speaking, there also exist gauge theory phases whose

gauge factors UðNiÞ can have different ranks. These are referred
to as nontoric phases [30], which can be derived by performing
the N ¼ ð0; 2Þ triality [41] from toric phases.

6Brane brick models enjoy N ¼ ð0; 2Þ supersymmetry. How-
ever, at the level of generalized global symmetries we discuss in
this paper, supersymmetry matters little.
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under the topological boundary condition. Operators trivi-
alized when touching the gapped boundary (due to the
possible Dirichlet condition), giving rise to charged defects.
In contrast, those not trivialized are still topological
operators, generating global symmetries for the abso-
lute QFT.
Based on this general idea, one can start with the

symmetry TFT (1.4) and write down gauge-invariant line
operators by purely field-theoretic consideration, much as
in Refs. [63,64]. However, since the Dijkgraaf-Witten
theory (1.4) is derived from string theory, one naturally
asks whether there is a direct top-down approach to
topological line operators. The answer is indeed yes. As
we will discuss in Sec. II, all line operators, whether
invertible or not, have their corresponding brane origin.
Line operators are obtained exactly from the brane world
volume action via dimensional reduction on various cycles
wrapped by branes.
Having obtained line operators in the 3D bulk from

branes, building noninvertible symmetries in 2D gauge
theory associated with Yð2;0ÞðP1 × P1Þ then translates in
writing down polarizations under which the noninvertible
bulk lines are still noninvertible when touching the gapped
boundary. We will show in Sec. III that these polarizations
indeed exist, and the resulting noninvertible symmetry is
the well-known Z2 × Z2 Tambara-Yamagami fusion cat-
egory [65]. For example, the polarization corresponding to
the boundary condition

a1; b̂1; ĉ1Dirichlet; â1; b1; c1 Neumann ð1:5Þ
has the noninvertible fusion rules

N D3 ×N D3 ¼ 1þ ηF1 þ ηD1 þ ηF1ηD1;

ηF1 × ηF1 ¼ ηD1 × ηD1 ¼ 1;

ηF1 ×N D3 ¼ ηD1 ×N D3 ¼ N D3; ð1:6Þ

where N D3 is the noninvertible line from D3-brane, while
ηF1 and ηD1 are invertible Z2 lines from F1- and D1-strings,
respectively.
In addition to polarizations enjoying noninvertible sym-

metries, we also find polarizations where all topological
line operators become invertible symmetry lines. That is to
say, the noninvertible symmetries we construct in this paper
are nonintrinsic [66–68].

II. 3D DIJKGRAAF-WITTEN THEORY AND ITS
LINE OPERATORS FROM IIB

In this section, we present how to obtain the 3D
symmetry TFT and its line operators for 2D gauge
theory associated with ConeðY2;0ðP1 × P1ÞÞ from IIB
string theory via dimensional reduction. In particular, we
find the following top-down approach to the field theory
content: 3D Dijkgraaf-Witten theory is obtained from IIB

supergravity, while line operators in the 3D bulk are derived
from branes world volume actions, via the dimensional
reduction.

A. 3D Dijkgraaf-Witten theory from the IIB
supergravity

To derive the 3D symmetry TFT, we focus on the
topological sector of the reduction for IIB string theory
on the asymptotic boundary of the Calabi-Yau 4-fold,
which in this case is just the base manifold L7 ≡ Y2;0ðP1 ×
P1Þ at infinity. In particular, we treat the various IIB
supergravity fluxes as elements in differential cohomology
uplifts of (see, e.g., Refs. [57,61])

H�ðL7;ZÞ¼fZ;0;Z2⊕Z2;0;Z⊕Z2⊕Z2;Z2;Z2;Zg:
ð2:1Þ

The above cohomology classes for L7 ¼ Y2;0ðP1 × P1Þ can
be found in Ref. [42].
The relevant topological action inherited from the IIB

string theory, roughly speaking, consists of two parts. The
quadratic part comes from the kinetic terms for IIB fluxes,
and the cubic part comes from the 10D Chern-Simons
coupling −

R
C4 ∧ dB2 ∧ dC2.

7 Consider an IIB string
theory background without 7-branes. The topological
action that we start with reads

S11
2π

¼
Z
N4×L7

1

2
F̆6⋆F̆6 − F̆6⋆H̆3⋆Ğ3; ð2:2Þ

which lives in 11-dimensional (11D) spacetime N4 × L7.
The 4-manifold N4 satisfies ∂N4 ¼ M3, an auxiliary bulk
manifold whose boundary is the 3-manifold where the
symmetry TFT lives. Note that all terms are 12 dimensional
since we have uplifted IIB fluxes as differential cohomol-
ogy elements. F̆6 is the differential cohomology element
whose connection part is the IIB self-dual D3-brane 5-form
flux F5. H̆3 and Ğ3 are differential cohomology uplift for
F1- and D1-string flux dB2 and dC2.

8

According to (2.1), we expand differential cohomology
elements as

7The topological action of IIB string theory for symmetry
TFT computation has been investigated in, e.g.,
Refs. [8,19,56,57,69,70]. We also refer the reader to the recent
work [15] for a more systematic discussion.

8The⋆ symbol defines a bilinear product operation onCheeger-
Simons characters H̆k1ðMdÞ × H̆k2ðMdÞ ¼ H̆k1þk2ðMdÞ [71,72].
In particular, when k1 þ k2 ¼ dþ 1, the integral describes a
perfect pairing H̆k1ðMdÞ × H̆dþ1−k1ðMdÞ → R=Z. We refer the
reader to Ref. [73] for a nice review of differential cohomology.
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F̆6 ¼ f̆6⋆1̆þ
X2
α¼1

F̆ðαÞ
4 ⋆ŭ2ðαÞ þ F̆2⋆ŭ4 þ

X2
α¼1

F̆1ðαÞ⋆ŭ
ðαÞ
5

þ Ă4⋆t̆2 þ
X2
i¼1

ĂðiÞ
2 ⋆t̆4ðiÞ;

Ğ3 ¼ N ˘volM3
⋆1̆þ

X2
α¼1

ĞðαÞ
1 ⋆ŭ2ðαÞ þ C̆1⋆t̆2;

H̆3 ¼ h̆3⋆1̆þ
X2
α¼1

H̆ðαÞ
1 ⋆ŭ2ðαÞ þ B̆1⋆t̆2; ð2:3Þ

where the generators for various cohomology classes are
denoted as

1̆ ↔ H0ðL7;ZÞ ¼ Z;

ŭ2ðαÞ; α ¼ 1; 2 ↔ nontorsionalH2ðL7;ZÞ ¼ Z2;

ŭ4 ↔ nontorsionalH4ðL7;ZÞ ¼ Z;

ŭðαÞ5 ; α ¼ 1; 2 ↔ H5ðL7;ZÞ ¼ Z2;

˘vol ↔ H7ðL7;ZÞ ¼ Z;

t̆2 ↔ torsionalH2ðL7;ZÞ ¼ Z2;

t̆4ðiÞ; i ¼ 1; 2 ↔ torsionalH4ðL7;ZÞ ¼ Z2 ⊕ Z2;

t̆6 ↔ H6ðL7;ZÞ ¼ Z2: ð2:4Þ

Fields from torsional parts give rise to finite symmetries,
while those from nontorsional parts correspond to con-
tinuous symmetries. In this work, we only focus on finite
symmetries and their descendent noninvertible sym-
metries,9 so we only turn on the fields as coefficients of
the torsional generators tp, where p ¼ 2; 4; 6.
Substituting the torsional part of (2.3) into the 11D

topological action (2.2), we derive the 3D symmetry TFT
for finite symmetries,

S3
2π

¼
Z
N4

X2
i;j¼1

ΛijĂ
ðiÞ
2 ⋆ĂðjÞ

2 −
X
i

ΔiĂ
ðiÞ
2 ⋆B̆1⋆C̆1

¼
Z
M3

X
i;j

Λija
ðiÞ
1 δaðjÞ1 −

X2
i¼1

Δia
ðiÞ
1 b1c1; ð2:5Þ

where we use respective lower-case letters to express fields
in terms of the ordinary cohomology elements and omit the
“∪” product symbol for simplicity. The coefficients in
the action are given by the linking numbers within the
7-manifold L7,

Λij ≡ 1

2

Z
L7

t̆4ðiÞ⋆t̆4ðjÞ mod 1;

Δi ≡
Z
L7

t̆4ðiÞ⋆t̆2⋆t̆2 mod 1; ð2:6Þ

whose derivation requires expressing p-dimensional tor-
sional generators t̆p in terms of various compact (8 − p)-
cycles in the toric Calabi-Yau 4-fold [58]. The linking
number computation then translates into reading quadruple
intersection numbers between codimension-2 divisors in
the toric varieties.10

It is easy to see the action (2.5) is not complete. Notice
that the quadratic term comes from the noncommutativity
for the boundary profile of the self-dual 5-form; thus, other
noncommutative fluxes should also be captured in the
resulting 3D TFT [8]. This leads to adding quadratic terms
for b1 and c1 from the noncommutativity F1-NS5 and
D1-D5 pairs when wrapping torsional cycles linking to
each other.11 The resulting TFT reads

S3
2π

¼
Z
M3

X
i;j

Λija
ðiÞ
1 δaðjÞ1 þ Ωð−c1δĉ1 þ b1δb̂1Þ

−
X2
i¼1

Δia
ðiÞ
1 b1c1; ð2:7Þ

where ĉ1 and b̂1 are from IIB fluxes Ĝ7 and Ĥ7 (10D
Hodge-dual of G3 and H7) via reduction on torsional
5-cycles γ5 associated to the generator t̆6.

12 Ω denotes the
linking number between the t̆2 and t̆6 generators:

Ω≡
Z
L7

t̆2⋆t̆6 mod 1: ð2:8Þ

Computing the linking number (2.6), (2.8) and redefin-
ing the notation as

að1Þ1 → a1; að2Þ1 → â1; ð2:9Þ

we end up with an elegant result

S3 ¼
2π

2

Z
M3

a1δâ1 þ b1δb̂1 þ c1δĉ1 þ a1b1c1; ð2:10Þ

9For brane interpretation of continuous symmetry operators,
we refer the reader to Ref. [18].

10See Chap. 7 in Ref. [74] for how to compute intersection
numbers in toric varieties.

11We thank Inaki Garcia Etxebarria for valuable discussions on
this point.

12We would like to stress that differential cohomology and flux
noncommutativity is not the only way to read the quadratic terms
in the symmetry TFT. In fact, it is also possible to derive these
terms directly from the supergravity kinetic terms. See
Refs. [60,75] and Appendix B in Ref. [56] for more details.
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which is just a 3D Z2 × Z2 × Z2 Dijkgraaf-Witten theory
with a simple twist a1b1c1.
Each TFT field serves as the background gauge field for

a factor within the defect group [7,19], which now can be
straightforwardly read as

D ¼ ðZa
2 × Zâ

2Þ ⊕ ðZb
2 × Zb̂

2Þ ⊕ ðZc
2 × Zĉ

2Þ: ð2:11Þ
We use × to denote the group factors with nontrivial Dirac
pairing between their defects or, equivalently, those back-
ground gauge fields canonical conjugate to each other under
the TFT quantization. ⊕, on the contrary, means group
factors without any noncommutativity between their fluxes.

B. Line operators from brane world volume actions

Having derived a 3D Dijkgraaf-Witten theory as the
symmetry TFT for finite symmetries in the 2D QFT, the
next natural question is as follows: what is the spectrum of
line operators in this 3D TFT, and how do these operators
translate in (noninvertible) topological defect lines in the
2D QFT? Field theoretically, this question has been
intensively investigated in, e.g., Ref. [64]. In this section,
we will provide a top-down treatment where topological
defect lines, no matter whether invertible or not, enjoy
elegant origins as branes in the IIB string theory.
The first step is to determine the candidate of branes that

are responsible for line operators in the Dijkgraaf-Witten
theory (2.10). Recall finite gauge fields in (2.10) are reduced
from various IIB fluxes, each of which couples to a certain
type of branes. For example, ĉ1 is the expansion field from

the t̆6 reduction of
˘̂G7 (as a differential cohomology element)

on TorH6ðL7;ZÞ, which corresponds to the IIB flux Ĝ7

(electrically) coupled to D5-branes. More precisely, accord-
ing to the universal coefficient theorem TorHn ¼ TorHnþ1,
we have the correspondence between torsional cohomology
generators and torsional cycles

γðiÞn ↔ tnþ1ðiÞ: ð2:12Þ
This translates in the ĉ case as

ĉ ↔ D5s on γ5; ð2:13Þ
where γ5 ∈TorH5ðL7;ZÞ is the torsional 5-cycle dual
to the t̆6 generator. Similarly, one can derive brane
patterns associated with each TFT field. The dimensional
reduction of theD5-brane topological coupling then gives the
corresponding naive magnetic line operator in the 3D TFT:

exp

�
2πi

Z
M6

C6

�
→ exp

�
2πi

Z
M1×γ5

˘̂G7

�

¼ exp

�
πi

Z
M1

ĉ1

�
: ð2:14Þ

However, this invertible line is not the full construction
of the magnetic operator dependent on ĉ because it is not

gauge invariant within our interested Dijkgraaf-Witten
theory (see also, e.g., Ref. [64]). Note that C6 does not
carry the full topological information of the D5-brane but
only the leading term of the Wess-Zumino part of the
D5-brane action. To encode the full topological effect of the
D5-brane on the 3D Dijkgraaf-Witten theory (or equiv-
alently, on the 2D QFT on the physical boundary of the 3D
bulk), we consider the following action:

StopD5 ¼
Z

Df̂4Df2 exp

�
2πi

Z
N2×γ5

f̂4df2 þ Ĝ7

− F5ðB2 − f2Þ −
1

2
G3ðB2 − f2Þ2

�
: ð2:15Þ

This is a topological action on an auxiliary 7D bulk
N2 × γ5, where N2 satisfies ∂N2 ¼ M1, i.e., an auxiliary
2-manifold whose boundary is the topological line support-
ing the operator in the resulting 3D TFT. In this topological
action, f2 is the field strength of the dynamical gauge field
from the F1 open string fluctuation, and f̂4 is its Hodge
dual on the D5-brane world volume. The first term thus
carries the relevant information from the Dirac-Born-Infeld
part of the D-brane action [15]. The other three terms come
from the Wess-Zumino part of the brane action [76], where
the leading term Ĝ7 is the origin for the naive magnetic
operator which we discussed in (2.14). F5 andG3 are fluxes
for the induced lower-dimensional D3- and D1-brane
charges, respectively, while B2 is the regular notation for
the NS-NS field electrically coupled to F1-strings. Note
that the path integral is only performed over f2 and f̂4,
which are dynamical degrees of freedon on the D5-brane
world volume.
To perform the dimensional reduction on the torsional

cycle γ5, as what we did in computing the symmetry TFT,
we promote the topological action in terms of the differ-
ential cohomology elements13

StopD5 →
Z

D ˘̂f5Df̆3 exp

�
2πi

Z
N2×γ5

˘̂f5⋆f̆3 þ ˘̂G8

− F̆5⋆ðH̆3 − f̆3Þ −
1

2
Ğ3⋆ðH̆3 − f̆3Þ2

�
: ð2:16Þ

The expansions of F̆5 and H̆3 are already given in (2.3),14

while the expansion for ˘̂G8;
˘̂f5, and f̆3 can be defined as

13The ðH̆3 − f̆3Þ2 here means an order-5 differential cohomol-
ogy element from the star product between the differential
cohomology element H̆3 − f̆3 and its connection part.

14Note that in (2.3), the F̆6 is the differential cohomology
element via F5 is its connection part, but here F̆5 is the
differential cohomology element itself, regarded as gauge-
invariant field strength.
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˘̂f5 ¼ ϕ̂1⋆t̆4ð1Þ þ ϕ̆0
1⋆t̆4ð2Þ þ � � � ;

f̆3 ¼ ϕ̆1⋆t̆2 þ � � � ; ð2:17Þ

where we only write down terms relevant to the reduction
on the torsional cycle γ5. Again, using the linking number
between various cohomology generators, the resulting one-
dimensional TFT reads

Sγ5D5 ∝
Z

Dϕ̂0Dϕ0 exp

�
πi

Z
M1

ĉ1

�

× exp

�
πi

Z
M1

ϕ̂0δϕ0 þ ϕ0a1 − ϕ0b0c1 þ
1

2
ϕ2
0c1

�
;

ð2:18Þ

where db0 ¼ b1, and we have omitted all other terms
decoupled from the dynamical ϕ̂0 and ϕ0. Taking variation
of ϕ0, we get the condition

δϕ̂0 ¼ a1 þ ϕ0c1 − b0c1; ð2:19Þ

substituting which back to (2.18), we integral over c1 and
end up with the topological line operator

Sγ5D5 ∝ N D5ðM1Þ≡
Z

Dϕ̂0Dϕ0 exp

�
πi

Z
M1

ĉ1

�

× exp

�
πi

Z
M1

ϕ̂0δϕ0 þ ϕ0a1 − ϕ̂0b1

�
:

ð2:20Þ

This is a noninvertible gauge-invariant magnetic line
operator for the 3D Dijkgraaf-Witten theory, matching
the result in Ref. [64].

The fusion rule for this line operator is

N D5×ND5¼
�
1þexp

�
πi
Z
M1

a1

���
1þexp

�
πi
Z
M1

b1

��
:

ð2:21Þ

Further note that e
πi
R
M1

a1 ≡ ηa and e
πi
R
M1

b1 ≡ ηb are Z2

topological lines, where we use η to denote invertible lines
with subindices showing the TFT field dependence. The
right-hand side of the above equation is the condensation
of Z2 × Z2 topological lines on the M1, which can be
regarded as a result of higher gauging [77]. Now, we can
write down the full fusion rule involving noninvertible line
N D5 and invertible Z2 lines ηa and ηb as

N D5 ×N D5 ¼ 1þ ηa þ ηb þ ηaηb;

ηa × ηa ¼ ηb × ηb ¼ 1;

ηa ×N D5 ¼ ηb ×N D5 ¼ N D5; ð2:22Þ

which is exactly the Z2 × Z2 Tambara-Yamagami cat-
egory [65].
Similarly, we can derive other topological line operators

respectively dependent on a1; â1; b1; b̂1, and c1 as we did
for ĉ and its corresponding D5-brane action. We leave the
computation to the interested reader as an exercise and
conclude the results in Table I.
It is easy to see the electric Z2 lines in (2.22) are

identified with the brane origin ηa ¼ ηD3, ηb ¼ ηF1.
Furthermore, the noninvertible lines from D3- and NS5-
branes also obey the Z2 × Z2 Tambara-Yamagami fusion
category, respectively:

N D3 ×N D3 ¼ 1þ ηF1 þ ηD1 þ ηF1ηD1;

ηF1 × ηF1 ¼ ηD1 × ηD1 ¼ 1;

ηF1 ×N D3 ¼ ηD1 ×N D3 ¼ N D3; ð2:23Þ

TABLE I. Line operators in 3D Dijkgraaf-Witten theory (2.10) and their brane origins. The first three brane
configurations give rise to invertible electric lines, while the last three wrapped branes correspond to noninvertible
magnetic lines.

Line operators in 3D TFT Branes configuration

ηD3 ¼ e
πi
R
M1

a1 D3-brane on γð1Þ3

ηF1 ¼ e
πi
R
M1

b1 F1-string on γ1

ηD1 ¼ e
πi
R
M1

c1 D1-string on γ1

N D3 ¼
R
Dϕ̂0Dϕ0e

πi
R
M1

â1e
πi
R
M1

ϕ̂0δϕ0þϕ0b1−ϕ̂0c1 D3-brane wrapping γð2Þ3

N NS5 ¼
R
Dϕ̂0Dϕ0e

πi
R
M1

b̂1e
πi
R
M1

ϕ̂0δϕ0þϕ0c1−ϕ̂0a1 NS5-brane wrapping γ5

N D5 ¼
R
Dϕ̂0Dϕ0e

πi
R
M1

ĉ1e
πi
R
M1

ϕ̂0δϕ0þϕ0a1−ϕ̂0b1 D5-brane wrapping γ5
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and

N NS5 ×N NS5 ¼ 1þ ηF1 þ ηD3 þ ηF1ηD3;

ηF1 × ηF1 ¼ ηD3 × ηD3 ¼ 1;

ηF1 ×N NS5 ¼ ηD3 ×N NS5 ¼ N NS5: ð2:24Þ

III. BRANES BEHIND POLARIZATIONS AND
NONINVERTIBLE SYMMETRIES IN TWO

DIMENSIONS

The 3D symmetry TFT bulk itself does not fully specify
the global symmetry structure of the 2D QFT. At this stage,
the 2D QFT associated with the conical singularity probed
by D1-branes is a relative QFT [19,52,62]. It does not have
a well-defined scalar-valued partition function but carries a
partition vector. The corresponding space for the partition
vector is regarded as the Hilbert space H from the 3D TFT
quantization (see, e.g., Refs. [21,47,52]). Therefore, in this
sense, the 2D QFT is “relative” to the 3D bulk theory.
To get rid of the “relativeness” upon the 3D bulk and thus

obtain a well-defined QFT with a scalar-valued partition
function, we need to pick a polarization for the system. From
the 3DTFTperspective, this translates to introducing a purely
gapped boundary, on which we impose a topological boun-
dary condition. Such a boundary condition can be equiv-
alently presented as a Lagrangian subgroup L ⊂ D of the
defect group D.15 With respect to the partition vector space
under the 3D TFT quantization, the relative QFT and the
gappedboundaryconditioncanbe expressed as twoboundary
states.
Colliding the gapped boundary with the relative QFT

boundary, one obtains a genuine 2D system, known as an
absolute QFT, that enjoys a scalar-valued partition func-
tion. This process can be nicely expressed in terms of the
inner product between boundary states jRi and jP;Bi in
the partition vector space H:

ZP½B� ¼ hRjP;Bi: ð3:1Þ

In this expression, hRj denotes the relative QFT (dual)
partition vector, jP;Bi denotes the boundary state for
polarization P with the flux profile B, and ZP ½B� gives
rise to the well-defined partition function with the presence
of the background B.16

A. “Standard” polarization with only invertible
symmetries

Come back to the 3D Dijkgraaf-Witten theory (2.10) and
its relative 2D QFT associated with Y2;0ðP1 × P1Þ. The
simplest boundary condition one can consider is

a1; b1; c1Dirichlet; â1; b̂1; ĉ1Neumann: ð3:2Þ

This corresponds to the polarization which picks the
Lagrangian subgroup L of the defect group (2.11)

L ¼ Zâ
2 × Zb̂

2 × Zĉ
2: ð3:3Þ

Therefore, the resulting absolute 2D theory has a ðZ2Þ3
global symmetry

G ¼ Za
2 × Zb

2 × Zc
2: ð3:4Þ

Based on their behavior under the gapped boundary
condition (3.2), line operators in the 3D TFT shown in
Table I induce to various local charged operators and
topological defect lines in the 2D absolute theory.
For instance, due to the Dirichlet condition of a1, ηD3

will terminate on the gapped boundary; i.e., it does not
continue to fluctuate along the boundary and thus becomes
a local operator after shrinking the 3D TFT bulk. On the
contrary, N D3 is not fully trivialized on the gapped
boundary due to the Neumann condition of â1. Its line
manifold continues along the gapped boundary and thus
gives rise to a topological defect line. However, it loses its
noninvertible property during this process. To see this,
notice that b1 and c1 are trivialized on the gapped boundary,
leading to

N D3→e
πi
R
M1

â1
Z

Dϕ̂0Dϕ0e
πi
R
M1

ϕ̂0δϕ0 ∝e
πi
R
M1

â1 ; ð3:5Þ

where the path integral over ϕ0 and ϕ̂0 is now
totally decoupled as a overall factor. Therefore, N D3,
under this polarization/absolute QFT, becomes an invertible
Z2 line.
What is the brane configuration behind all this? Recall

that the brane origins of ηD3 and N D3 are D3-branes

wrapping γð1Þ3 and γð2Þ3 , respectively. The nontrivial linking
between these two torsional 3-cycles is responsible for the
canonical conjugation between a1 and â1 in the 3D
Dijkgraaf-Witten theory, thus telling us the local operator
reduced from ηD3 is charged under the Za

2 ⊂ L∨ symmetry
generated by the invertible line reduced from N D3. In
the 10D IIB string theory picture, the gapped boundary for
the 3D TFT is translated into the topological boundary
conditions on the asymptotic boundary Y2;0ðP1 × P1Þ at
infinity. Therefore, we have the following correspondence
between the brane pattern behind operators under (3.4) and

15Mathematically, the partition vector space of a relative QFT is
captured by the Heisenberg groupH1ðM2;DÞ with coefficients in
the defect groupD. Picking a polarization corresponds to picking a
maximally isotropic subspace of the Heisenberg group. We refer
the interested reader to Ref. [19] for a detailed discussion.

16We remark that picking polarizations is not always possible
for a generic relative QFT. Well-known examples of this type
include many 2D chiral CFTs and 6D SCFTs. See, e.g.,
Refs. [19,52] for more details.
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the polarization (3.2):

local operator from ηD3∶ D3-braneswrapping cone ðγð1Þ3 Þ;
invertibleZa

2 line fromN D3∶ D3-braneswrapping γð2Þ3 at infinity: ð3:6Þ

This type of brane pattern falls in the general idea of branes at infinity as generalized symmetry operators introduced in
Refs. [11–13]. The charged local operators and topological defect lines for the global symmetry Zb

2 and Zc
2 can be read

similarly:
local operator from ηF1∶ F1-stringswrapping cone ðγ2Þ;

invertibleZb
2 line fromN NS5∶ NS5-braneswrapping γ5 at infinity;

local operator from ηD1∶ D1-stringswrapping cone ðγ2Þ;
invertibleZc

2 line fromN D5∶ D5-braneswrapping γ5 at infinity: ð3:7Þ

B. Polarizations with noninvertible symmetries

In the standard polarization L ¼ Zâ
2 ⊕ Zb̂

2 ⊕ Zĉ
2,

there is a mixed anomaly for the global symmetry
G ¼ Za

2 × Zb
2 × Zc

2, inherited from the Dijkgraaf-Witten
twist in the 3D symmetry TFT:

π

Z
M3

a1b1c1: ð3:8Þ

According to Ref. [78] (see also Ref. [64]), gauging two of
the three Z2 symmetries, the leftover one will be promoted
to a noninvertible symmetry. Let us take gauging Za

2 × Zb
2

as an example. From the symmetry TFT perspective, this
gauging process translates into changing the original
Dirichlet boundary condition for a1 and b1 fields to
Neumann boundary conditions. Their canonical conjugates
â1 and b̂1 then pick Dirichlet boundary conditions accord-
ingly. The resulting gapped boundary condition reads

â1; b̂1; c1Dirichlet; a1; b1; ĉ1Neumann; ð3:9Þ

which picks a new polarization associated with the
Lagrangian subgroup

L ¼ Za
2 × Zb

2 × Zĉ
2: ð3:10Þ

As we did in the “standard” polarization case, we can
investigate the fate of various line operators in Table I under
the gapped condition (3.9) to investigate their roles in the
resulting 2D absolute QFT. It is easy to see now

ηD1;N D3;N NS5 ð3:11Þ

are terminating on the gapped boundary, thus correspond-
ing to local operators in the 2D QFT, while

ηD3; ηF1;N D5 ð3:12Þ

can continue along the gapped boundary, thus correspond-
ing to the topological defect line. Furthermore, the
Neumann boundary condition for a1, b1, and ĉ1 preserves
the noninvertible property for the N D5 line, so it still reads

TABLE II. A standard polarization with the ðZ2Þ3 invertible symmetry, as well as three polarizations with the
Z2 × Z2 Tambara-Yamagami (TY) categorical symmetry. The concrete torsional cycles wrapped by branes for
various η and N operators can be found in Table I. The charge operators are built by branes terminating at the
asymptotic boundary Y2;0ðP1 × P1Þ, while the symmetry lines are built by branes at infinity along the asymptotic
boundary.

Polarization L Global symmetry Charged operators Symmetry lines

Zâ
2 × Zb̂

2 × Zĉ
2

Za
2 × Zb

2 × Zc
2

ηD3; ηF1; ηD1 N D3;N NS5;N D5

Za
2 × Zb

2 × Zĉ
2 Zâ

2 × Zb̂
2 TY category N D3;N NS5; ηD1 ηD3; ηF1;N D5

Za
2 × Zb̂

2 × Zc
2

Zâ
2 × Zĉ

2 TY category N D3; ηF1;N D5 ηD3; ηD1;N NS5

Zâ
2 × Zb

2 × Zc
2 Zb̂

2 × Zĉ
2 TY category ηD3;N NS5;N D5 ηF1; ηD1;N D3
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N D5 ¼
Z

Dϕ̂0Dϕ0e
πi
R
M1

ĉ1e
πi
R
M1

ϕ̂0δϕ0þϕ0a1−ϕ̂0b1 : ð3:13Þ

Therefore, based on its fusion rule (2.22), we conclude
the global symmetry for the polarization (3.10) is

G ¼ Zâ
2 × Zb̂

2 Tambara-Yamagami categorical symmetry:

ð3:14Þ

The brane pattern for this global symmetry can be built by
wrapping branes in (3.11) terminating at infinity as charged
operators while wrapping branes in (3.12) at infinity as
topological defect lines.
Field theoretically, one would follow the step in Ref. [78]

to compute what would be a noninvertible TFT promote of
the invertible Zc

2 line after gauging with the presence of the
mixed anomaly (3.8). The result will perfectly coincide
with (3.13).17 The punchline of our top-down approach is
that the noninvertible line directly comes from the D5-brane
world volume action, as we computed in Sec. II. Its
(non)invertible property in absolute QFTs before/after
gauging simply results from changing polarizations, which
translates into different brane patterns at infinity.
We remark that the noninvertible symmetry in this

context is known as the nonintrinsic one [66]. This is
because it is related to an invertible symmetry via changing
polarizations.18

We conclude this subsection by presenting three
polarizations that enjoy noninvertible symmetries and

their comparison with the standard polarization
in Table II.

C. Action of noninvertible lines
and the Hanany-Witten transition

One salient property of the noninvertible symmetry
defect is its action on the charged operator (see, e.g.,
Refs. [26,79]). Consider the polarization (3.10) with the
noninvertible line N D5. Moving this line past the local
operator charged under Zâ

2 (respectively, Z
b̂
2) will make the

charged operator nongenuine and attach to the topological
Zâ

2 (respectively,Z
b̂
2) topological line. Namely, it belongs to

the defect Hilbert space of the line it attached [24].
This nontrivial action enjoys an elegant string theory

origin as the Hanany-Witten transition [80]. Note that the
charged operator under Zâ

2 (respectively, Zb̂
2) comes

from the D3-brane wrapping on coneðγð2Þ3 Þ [respectively,
NS5-brane wrapping on cone(γ5)]. When the D5-brane
generating the noninvertibleN D5 passes through the above
D3-brane (respectively, NS5-brane), a F1 string wrapping

γ1 (respectively, D3-brane wrapping γð1Þ3 ) is generated
connecting them. What object is generated by the F1-string

wrapping γ1 (respectively, D3-brane wrapping γð1Þ3 )?
It is exactly the topological defect line ηF1 (respectively,
ηD3) for the Zâ

2 (respectively, Zb̂
2) symmetry (see Tables I

and II). See Fig. 2 for an illustration of how the
Hanany-Witten transition translates into nontrivial
transitions of charged operators in the polarization,
e.g., L ¼ Za

2 × Zb̂
2 × Zc

2.
A similar Hanany-Witten transition origin for the non-

trivial action of noninvertible defect has been observed in
four-dimensional QFTs [11,14]. Still, to our knowledge,

FIG. 2. Bottom: action of noninvertible defect lineN NS5 (in the polarization L ¼ Za
2 × Zb̂

2 × Zc
2) on the local operators charged under

the invertible symmetry Zâ
2 and Zĉ

2. The corresponding topological defect lines are generated under this action. Top: this nontrivial
action enjoys a string theory origin as the Hanany-Witten transition, where the created branes wrapping cycles at infinity perfectly serve
as the topological defect lines.

17We thank Ho Tat Lam for valuable discussions on this point.
18For discussion on intrinsic vs nonintrinsic noninvertible

symmetries from higher-dimensional perspective, we refer the
reader to Refs. [14,67].
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in the context of 2D QFTs, this is the first time the Hanany-
Witten interpretation of this action appears in the literature.
It is, therefore, natural to conjecture that for noninvertible
symmetries with brane origins19 this correspondence holds
for diverse dimensions.20

IV. CONCLUSIONS

Our work suggests various natural directions for future
investigation. Some obvious and interesting directions
include the following:

(i) Aswe pointed out at the beginning of this paper, there
is so far an infinite family of 2D gauge theories
arising from D1-branes probing toric Calabi-Yau 4-
folds. Investigating their symmetry TFTs, noninver-
tible, and other generalized symmetries would be
interesting. A natural expectation is that this infinite
class of 2D gauge theories enjoy noninvertible
symmetries. The argument is as follows. Briefly,
the IIBChern-Simons term in general providesmixed
anomaly terms in the 3D SymTFTunder dimensional
reduction on the Sasaki-Einstein 7-manifold. This
mixed anomaly term encodes three finite symmetries,
generated by D3-, D5- and NS5-branes. Gauging the
symmetries of D5- and NS5-branes, D3-branes then
generate noninvertible symmetries. We will explore
this subject in Ref. [43].

(ii) For a given Calabi-Yau 4-fold, there can be multiple
2D gauge theories associated to it, which are
connected by N ¼ ð0; 2Þ triality [41]. It is natural
to ask how the noninvertible symmetries found in
this work interplay with the triality. As happens for
ordinary global symmetries, we expect the dual
QFTs connected by triality to enjoy the same non-
invertible global symmetries. This can be under-
stood since they share the same asymptotic
boundary geometry in the string theory background.

However, at the level of the quivers, it seems not
clear how noninvertible symmetries are imple-
mented. It would be interesting to investigate how
the quiver mutations (i.e., field-theory trialities) and
noninvertible finite symmetries interplay.21

(iii) There are four fusion categories associated with the
same Z2 × Z2 TY fusion rule, but distinguished by
their associators or F-symbols [65]. Three of those
are given by the representations as RepðD4Þ,
RepðQ8Þ, and RepðH8Þ.22 Identifying which corre-
sponds to the categorical symmetry we derived in
this paper would be interesting. This example may
shed new light on a general question: given a
categorical symmetry with certain fusion rules from
string theory, is there any top-down approach to its
F-symbols or (generalized) Frobenius-Schur indica-
tors? We expect this 2D example to be a nice starting
point to answer this question in diverse dimensions.

(iv) Based on the above direction, it would also be
interesting to investigate anomalies and gauging of
noninvertible symmetries from string theory per-
spectives, following the purely field-theoretic con-
sideration [21,23,82–84].
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