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This paper investigates the coupling of massive fermions to gravity within the context of a non-Abelian
gauge theory, utilizing the effective field theory framework for quantum gravity. Specifically, we calculate
the two-loop beta function of the gauge coupling constant in a non-Abelian gauge theory, employing the
one-graviton exchange approximation. Our findings reveal that gravitational corrections may lead to a
nontrivial UV fixed point in the beta function of the gauge coupling constant, contingent upon the specific
gauge group and the quantity of fermions involved.
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I. INTRODUCTION

One of the most important properties of non-Abelian
gauge theories is the asymptotic freedom. Discovered by
David Gross and Frank Wilczek [1] and independently by
David Politzer [2] in 1973, this phenomenon entails a
decrease in the strength of the gauge coupling constant as
energy scales increase. This attribute assumes critical
significance whenever employing non-Abelian gauge the-
ories for the representation of strong interactions [3].
In spite of the nonrenormalizability inherent in Einstein’s

theory of gravity when quantized for small fluctuations
around a flat metric [4–6], Robinson and Wilczek, in 2005,
employed the effective field theory approach to quantum
gravity [7] to address the issue of how gravity might impact
the asymptotic behavior of gauge theories [8]. They
suggested that gravitational corrections lead to the asymp-
totic freedom of the gauge coupling constants. Due to the
dimensional nature of the gravitational coupling constant
κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p ¼ ffiffiffiffiffiffiffiffi

32π
p

=MP, where G is the Newton’s con-
stant, and MP is the Planck’s mass, this proposition was
grounded in the emergence of the dimensionless combi-
nation κ2E2, where the UV cutoff E was interpreted as an
energy scale, arising from quadratic UV divergent
Feynman diagrams.

However, Pietrykowski later contested this conclusion,
demonstrating its gauge dependence [9]. Subsequently,
numerous studies have been conducted to explore the
application of the renormalization group in quantum
gravity as an effective field theory [10–20]. In particular,
the authors of Ref. [17] determined that under the condition
of preserving all symmetries, in the Yang-Mills theory, the
weak gravity limit does not receive any contributions from
the gravitational sector to the running gauge coupling.
Different types of dimensionless combinations can arise

within Feynman amplitudes, including κ2p2 and κ2m2 when
massive particles are involved in internal loops. The combi-
nation κ2p2 plays a pivotal role in characterizing the
renormalization of high-order operators within the frame-
work of the effective field theory approach, while the κ2m2

combination is pertinent to the renormalization of marginal
operators. Therefore, the presence of massive particles
becomes a crucial factor. Previous studies [13,21,22] have
explored the influence of another dimensionful parameter,
the cosmological constant, which manifests in gravitational
corrections to the gauge coupling beta function through the
dimensionless combination κ2Λ. However, in the present
work, we opt not to address the cosmological constant,
maintaining a flat background metric.
Numerous studies have concluded that gravitational

corrections to the beta function of the gauge coupling
constant are absent at the one-loop order (see, for example,
[11–13,18,20,23]; see also [24]). However, two-loop cor-
rections have been examined in [19], revealing gravita-
tional corrections to the beta function of the electric charge
in quantum electrodynamics (QED) at this order. Despite
these gravitational corrections, the electric charge does not
exhibit asymptotic freedom and lacks a nontrivial fixed
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point. Indeed, these corrections contribute positively to the
beta function, as expressed by the equation

βðeÞ ¼ e3

12π2
þ e5

128π4
þ 5e3m2

24πM2
P
; ð1Þ

wherem is the mass of the fermion (matter) field. However,
since gravity is universally attractive, it is anticipated that in
the non-Abelian case, the gravitational contribution to the
beta function should be also positive. This has the potential
to undermine asymptotic freedom, particularly in proposed
extensions of the Standard Model involving fermions (or
scalars) with masses approaching the order of the Planck
mass.
With this concern in mind, the objective of our study is to

calculate the two-loop beta function of the gauge coupling
constant within the framework of a non-Abelian gauge
theory, considering the one-graviton exchange approxima-
tion. Our findings reveal that the beta function of the gauge
coupling constant exhibits a nontrivial UV fixed point,
proportionally related to the ratio m2=M2

P. In the Standard
Model (SM), this ratio is expected to be associated with the
mass of the top quark, expressed as m2

t =M2
P ∼ 10−34.

However, when contemplating proposals for extensions
of the SM involving fermions with masses approaching the
order of the Planck mass, gravitational contributions may
become more significant.
The structure of this paper is organized as follows: In

Sec. II, we provide an introduction to themodel. Sec. III A is
dedicated to presenting general arguments regarding the
calculation of gravitational corrections to the two-loop beta
function of the gauge coupling constant. The computation of
gravitational corrections to the two-loop gauge field self-
energy is carried out in Sec. III B, facilitating the determi-
nation of the gravitational correction to the two-loop beta
function of the gauge coupling constant in Sec. III C.
Concluding remarks are presented in Sec. IV. Throughout
this study, the minimal subtraction (MS) scheme is
employed to handle divergences, and natural units with
c ¼ ℏ ¼ 1 are used.

II. THE EFT FOR A NON-ABELIAN GAUGE
THEORY WITH FERMIONS COUPLED TO

GRAVITY

We initiate our investigation with the Lagrangian outling
the effective field theory (EFT) for a non-Abelian gauge
theory, incorporating fermions interacting with gravity,

L ¼ ffiffiffiffiffiffi
−g
p X

f

�
2

κ2
R −

1

4
gμρgνσGa

μνGa
ρσ

þ iψ̄fð∇μ − igAa
μtaÞγμψf −mfψ̄fψf

�
; ð2Þ

where the index f ¼ 1; 2;…; Nf spans over the fermion
flavors, and Ga

μν ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν denotes the

non-Abelian field-strength, with ta being the SU(N) gen-
erators and fabc representing the structure constants of the
SUðNÞ group. The Dirac matrices are contracted with the

vierbein (γμ ≡ γαeμα, gμν ¼ eαμe
β
νηαβ, ∇!μψ ¼ ð∂μ þ iωμÞψ ,

ψ̄∇ μ ¼ ð∂μψ̄ − iψ̄ωμÞ, ωμ ¼ 1
4
σαβ½eναð∂μeβν − ∂νeβμÞ þ

1
2
eραeσβð∂σeγρ − ∂ρeγσÞeγμ − ðα ↔ βÞ� is the spin connection

with σαβ ¼ i½γα; γβ�=2). Here we use Greek letters from the
middle and the beginning of the alphabet to denote general
and locally inertial coordinates, respectively.
To conform to the effective field theory framework of

gravity, it becomes imperative to expand gμν around the flat
metric as detailed below,

gμν¼ημνþκhμν ðexactlyÞ; gμν¼ημν−κhμνþ���; ð3Þ

where the spacetime indices (Greek) are raised and lowered
utilizing the flat metric ημν ¼ ðþ;−;−;−Þ. As we are
restricting ourselves to the one-graviton exchange approxi-
mation, the basic parts of the effective Lagrangian L are

L ¼ L0
h þ Lf þ LA; ð4Þ

where

L0
h¼

1

2
∂
ρhμν∂ρhμν−

1

2
∂
μh∂μh−∂

μhμν∂ρhρνþ∂
μhμν∂νh; ð5Þ

with h ¼ hμμ, is the Lagrangian for the gravitational sector
without self-interaction terms,

Lf ¼ L0
f þ gψ̄fγ

μAa
μtaψf

−
1

2
κgðhημν − hμνÞψ̄fγ

μAν
ataψf þ κL1

f þ � � � ; ð6aÞ

L0
f ¼

i
2
ðψ̄fγ

μ
∂μψf − ∂μψ̄fγ

μψfÞ −mfψ̄fψf; ð6bÞ

L1
f ¼

1

2
hL0

f −
i
4
hμνðψ̄fγ

μ
∂
νψf − ∂

νψ̄fγ
μψÞ; ð6cÞ

for the fermion sector, and

LA ¼ L0
A þ κL1

A þ � � � ; ð7aÞ

L0
A ¼ −

1

4
Ga

μνG
μν
a ; ð7bÞ

L1
A ¼

1

2
hτνG

μν
a Ga

μτ þ
1

2
hL0

A; ð7cÞ

for the gauge sector. A detailed expansion of the
Lagrangian given by Eq. (2) is provided in Ref. [25].
We now proceed with the quantization of the model,

following the Faddeev-Popov procedure. This involves
introducing the gauge-fixing and ghost fields for both
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the vector and tensor fields. The gauge-fixing Lagrangian is
expressed as

LGF ¼
1

2ξA
ð∂μAμÞ2 þ

1

2ξh

�
∂μhμν −

1

2
∂
νh

�
2

: ð8Þ

Given that we are operating within the one-graviton
exchange approximation, there is no necessity to explicitly
include the ghosts for the graviton. The gauge ghosts
Lagrangian is given by

Lghost ¼
ffiffiffiffiffiffi
−g
p

gμν∂μc̄að∂νδac þ gfabcAb
νÞcc

¼ ∂
μc̄að∂μδac þ gfabcAb

μÞcc þOðκÞ: ð9Þ

As the gauge ghost turns out to be massless its contribution
in our calculations will be always ‘higher order’ κ2p2 and
therefore innocuous to our results; in what follows they will
be omitted.
To render the model ‘renormalizable’ up to order p2=M2

P
in the momentum expansion, enabling it to absorb all
potential divergences arising in the perturbative expansion
up to order p2=M2

P (where p denotes external momenta), it
becomes necessary to incorporate a Lagrangian comprising
higher derivative terms. The pertinent terms for our
objectives are

LHO ¼ iψ̄f
□

M2
P
ðg̃1=∂ − g̃2mfÞψf −

g̃3
4M2

P
Gμν

a □Ga
μν

þ ig̃4
2M2

P
ψ̄ftaγμ∂νψfG

μν
a þ � � � ; ð10Þ

where g̃i denote dimensionless coupling constants.
From the above expressions, we may obtain the propa-

gators of the model which are the usual ones, given by

SFðpÞ ¼ i
=pþmf

p2 −m2
f

; ð11aÞ

Δμν
abðpÞ ¼

i
p2

�
ημν − ð1 − ξAÞ

pμpν

p2

�
δab; ð11bÞ

ΔabðpÞ ¼
i
p2

δab; ð11cÞ

ΔρσμνðpÞ ¼ i
p2

�
Pρσμν − ð1 − ξhÞ

Qρσμν

p2

�
; ð11dÞ

where SFðpÞ, Δμν
abðpÞ, ΔabðpÞ, and ΔρσμνðpÞ represent the

propagators for fermions, gluons, ghosts, and gravitons,
respectively. The projectors Pρσμν and Qρσμν are given by

Pρσμν¼1

2
ðηρμησνþηρνησμ−ηρσημνÞ;

Qρσμν¼ðηρμpσpνþηρνpσpμþησμpρpνþησνpρpμÞ: ð12Þ
To investigate the renormalization of the model, we

initiate by redefining the fields and parameters in the
Lagrangian (2). For instance, the vector and fermion field
strengths are redefined as Aμ

a → Z1=2
3 Aμ

a and ψf → Z1=2
2f ψf,

where Zi represent the renormalizing functions, structured
as a perturbative series in the number of loops, given by

Zi¼Zð0Þi þZð1Þi þZð2Þi þ���¼1þδi; with Zð0Þi ¼1: ð13Þ

The relationship between the bare (g0) and the renor-
malized (g) gauge coupling constants in terms of the Z
functions can be expressed in four distinct ways,

g ¼ μ−2ϵ
Z2Z

1=2
3

Z1

g0; ð14aÞ

g ¼ μ−2ϵ
Z3=2
3

Z3g
g0; ð14bÞ

g ¼ μ−2ϵ
Z3

Z1=2
4g

g0; ð14cÞ

g ¼ μ−2ϵ
Z2cZ

1=2
3

Z1c
g0; ð14dÞ

where μ represents a mass scale introduced by dimensional
regularization (DR) to regulate the UV divergences in the
Feynman amplitudes, ϵ is associated with the spacetime
dimension D via D ¼ 4 − 2ϵ, Z1 ¼ ð1þ δ1Þ denotes the
gauge coupling constant counterterm, Z3g ¼ ð1þ δ3gÞ
signifies the counterterm that renormalizes the three-point
function of the gluons, Z4g ¼ ð1þ δ4gÞ corresponds to the
counterterm that renormalizes the four-point functions of
the gluons, Z2c ¼ ð1þ δ2cÞ represents the wave function
counterterm for the ghosts, and Z1c ¼ ð1þ δ1cÞ indicates
the counterterm that renormalizes the gluon-ghost vertex.
In conjunction, Eqs. (14) provide relations between the

Green functions that must be satisfied to ensure gauge
invariance, known as the Slavnov-Taylor identities. These
relations, expressed in terms of the renormalizing functions
Z, are summarized as

Z1

Z2

¼ Z3g

Z3

¼ Z1=2
4g

Z1=2
3

¼ Z1c

Z2c
; ð15Þ

which in theMSprocedure can be perturbatively expressed as

δ1 − δ2 ¼ δ3g − δ3 ¼
1

2
ðδ4g − δ3Þ ¼ δ1c − δ2c; ð16Þ

where the counterterms δi are defined in (13).
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In Ref. [26], the authors computed the counterterms at
one-loop order in the presence of gravitational interaction,
verifying the validity of the Slavnov-Taylor identities (As it
is known, the aforementioned relations arise from the gauge
invariance of the theory [27,28]). This implies that the
formulation of a non-Abelian gauge theory (with or without
gravity) results in the equations (14). Hence, we expect that
they will hold true at any order in perturbation theory.

III. GRAVITATIONAL CORRECTIONS TO THE
TWO-LOOP GLUON SELF-ENERGY AND BETA

FUNCTION OF THE GAUGE COUPLING
CONSTANT

A. General argumentation

Let us commence this section by outlining our approach
to compute the gravitational corrections to the two-loop
beta function of the gauge coupling constant. Utilizing
Eq. (14a), we discern that the beta function of the gauge
coupling constant g can be determined via the relation

βðgÞ ¼ lim
ϵ→0

μ
dg
dμ
¼ lim

ϵ→0
μ
d
dμ

�
g0

�
1 − δ1 þ δ2 þ

δ3
2

�
μ−2ϵ

�
:

ð17Þ

Computing the gravitational corrections to the renorm-
alization constants Zð2Þ1 and Zð2Þ2 can be arduous, involving
approximately 100 diagrams. However, this laborious task
can be circumvented by observing that from (16),
δ1 − δ2 ¼ δ1c − δ2c. Consequently,

βðgÞ ¼ lim
ϵ→0

μ
dg
dμ
¼ lim

ϵ→0
μ
d
dμ

�
g0

�
1 − δ1c þ δ2c þ

δ3
2

�
μ−2ϵ

�
:

ð18Þ

The renormalization constants δ1c and δ2c cannot depend
on κ because the corresponding functions of the gauge
ghosts involve only massless particles within the closed
loops, as evidenced by the self-energy process depicted in
Fig. 1. Thus, it is not possible to generate contributions

proportional to κ2m2. The gauge ghost self-energy is
proportional to κ2p4, and the gauge ghost-gluon three-
point function is proportional to κ2p2pμ by similar argu-
ments. Hence, their UV divergences must be absorbed by
the renormalization of high-order operators. Consequently,
if δ1c − δ2c is independent of κ, then δ1 − δ2 must also be
independent of κ. Therefore, the gravitational corrections to
βðgÞ must arise from the renormalization of the gluon self-
energy, i.e., from the computation of δ3.

B. Gravitational corrections
to the two-loop gluon self-energy

In this section, we focus on evaluating the gravitational
corrections to the renormalization of the two-loop gluon
self-energy. As discussed in the previous section, comput-
ing this function will suffice to determine the gravitational
corrections to the two-loop beta function of the gauge
coupling constant. The diagrams contributing to this
process are illustrated in Figs. 2–4.
The diagrams depicted in Fig. 2 represent conventional

diagrams, reflecting scenarios without gravitational
effects. Our calculations are consistent with existing
literature [29]. Figures 3 present gravitational corrections
where no matter loops are involved. The collective con-
tribution of these diagrams is necessarily proportional to
ðp2ημν − pμpνÞκ2p2, indicating their renormalization by
the constant Z̃3 associated with the high-order opera-
tor Gμν

a □Ga
μν.

Figures 4 depict gravitational corrections involving
matter loops. The cumulative effect of these diagrams
may contain terms proportional to ðp2ημν − pμpνÞκ2m2,
suggesting their renormalization by the constant Z3.
Our current task is to compute these corrections.
To conduct this calculation, we constructed the ampli-

tude using a suite of computational packages [30–32].
Although it is established that the full two-loop gluon self-
energy must follow the form,

Πab
μνðpÞ ¼ ðp2ημν − pμpνÞΠðp2Þδab; ð19Þ

FIG. 1. Feynman diagrams illustrating gravitational corrections to the gauge ghost self-energy. Curly, dashed, and pointed lines denote
the gluon, graviton, and gauge ghost propagators, respectively. It is noteworthy that these diagrams do not include matter loops, resulting
in contributions proportional to κ2p4.
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owing to gauge invariance and transversality of the gluon
propagation, this expression is not suitable as a benchmark
during intermediate calculation steps since this property
may not hold for individual diagrams.
Hence, our approachwas to assume that, upon integration

over internal momenta, each diagram i should possess the
more general (Lorentz invariant) formΠi

ab
μνðpÞ ¼ Πiμνδ

ab ¼
ðημνp2AiðpÞ þ pμpνBiðpÞÞδab, from which AiðpÞ and
BiðpÞ can be derived through projections,

Ai ¼
1

ðD − 1Þp2

�
ημν −

pμpν

p2

�
Πiμν;

Bi ¼ −
1

ðD − 1Þp2

�
ημν −D

pμpν

p2

�
Πiμν:

By summing over the diagrams, we arrived at the (antici-
pated) outcome AðpÞ ¼ −BðpÞ, implying that the gluon
polarization tensor adopts the transverse form of Eq. (19).
During these computations, we simplified the scalar two-
loop integrals using the Tarasov algorithm [33], aided by the
computational package TARCER [34] which reduces the
calculation to some basic two-loop integrals which are
available in [35].
Finally, we evaluated the integrals retaining only the UV

divergent part of Πðp2 ¼ 0Þ, since these contributions are
only logarithmically divergent. The detailed file containing
these calculations can be found in the Supplementary
Material [36], and the resulting expression for the UV
divergent part of diagrams in Fig. 4 is given by

−iΠ2ðpÞ ¼ −
5g2κ2M2

1536π4ϵ
þOðp2Þ; ð20Þ

where M2 represents the sum of the squared masses of the
fermions. This term contributes to the gravitational

correction in the renormalization of the Z3 factor and
consequently affects the two-loop correction to the beta
function of g.
Furthermore, we need to calculate the one-loop diagrams

with the insertion of the one-loop counterterms, whose
amplitudes have the same order of g2κ2 as the two-loop
diagrams. These diagrams are depicted in Fig. 5. The
corresponding result has two parts. The first part, propor-
tional to g4, is related to the QCD in the absence of gravity,
and the corresponding result was studied in Ref. [37]. The
second part, the gravitational corrections of order Oðg2κ2Þ,
is in fact proportional to g2κ2p2, corresponding to a
gravitational correction to the higher-order Gμν

a □Ga
μν oper-

ator, in such a way that no gravitational contribution to
Gμν

a Ga
μν comes from the diagrams depicted in Fig. 5.

Hence, the gravitational correction to the renormalizing
factor for the gauge field Z3, at two-loop order, is given by

Z3 ¼ 1þ δ3 ¼ 1 −
5g2κ2M2

1536π4ϵ
þ � � � : ð21Þ

In the next section, we will utilize this result to calculate
the gravitational correction to the beta function of the gauge
coupling constant.

C. Two-loop gauge coupling beta function

With the inclusion of the gravitational corrections to the
renormalization constant Z3, as given in Eq. (21), the
gravitational contribution up to order κ2 is incorporated into
the established result for the beta function of the non-
Abelian gauge coupling constant, which has been docu-
mented in the literature [37] as

βðgÞ ¼ −b0
g3

ð16π2Þ þ b1
g5

ð16π2Þ2 þ bh
g3

ð16π2Þ2 ; ð22Þ

FIG. 2. Feynman diagrams depicting the gluon self-energy. Curly and straight lines symbolize the gluon and fermion propagators,
respectively.
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FIG. 4. Feynman diagrams depicting the gluon self-energy with contributions from matter and graviton propagators. These diagrams
include terms proportional to κ2m2 for ΠðpÞ, in addition to κ2p2.

FIG. 3. Feynman diagrams illustrating the gluon self-energy incorporating gravitational interaction. These diagrams consist of terms
proportional solely to Oðκ2p4Þ.
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where b0 ¼ ð113 C2ðGÞ − 4
3
TðRÞÞ, b1 ¼ ð− 34

3
C2ðGÞ2 þ

20
3
C2ðGÞTðRÞ þ 4C2ðRÞTðRÞÞ, and bh ¼ 5κ2M2

6
, with the

group invariants C2ðRÞ, C2ðGÞ being the quadratic Casimir
operators for the fundamental and adjoint representations of
the gauge group and TðRÞ the trace for the fundamental
representation. For QCD, where the gauge group is
SUð3Þ, the coefficients are determined in the literature
as b0 ¼ ð33 − 2NfÞ=3 and b1 ¼ −2ð153 − 19NfÞ=3.
It is interesting to note that, within the approximation

used here, the gravitational correction to the two-loop beta
function exhibits a similar structure in both the Abelian and
non-Abelian cases. For the Abelian case involving a single
fermion of mass m [19], the gravitational correction to the
two-loop beta function of the electric charge is given by
5κ2m2

3
e3

ð16π2Þ2, while for the non-Abelian case, it is
5κ2M2

6
g3

ð16π2Þ2,

where M2 represents the sum of the squared masses of the
fermions. This structural similarity arises from the univer-
sality of the gravitational interaction, as well as from the
fact that the correction originates from the same set of
Feynman diagrams. The factor of 1

2
is associated with the

trace of the SUðNÞ group generators, tr½tatb� ¼ δab

2
, present

in the gluon self-energy diagrams.
It is convenient to define ρ ¼ g2=4π and express βðρÞ as

βðρÞ ¼ −
ρ2

2π

�
b0 −

b1
4π

ρ −
bh
ð4πÞ2

�

¼ −
ρ2

2π

�
b0 −

b1
4π

ρ −
5

3π

M2

M2
P

�
: ð23Þ

Notice that βðρÞ can exhibit a nontrivial UV fixed
point at

ρ� ¼
4π

b1

�
b0 −

bh
ð4πÞ2

�
¼ 4π

b1

�
b0 −

5

3π

M2

M2
P

�
: ð24Þ

For QCD, characterized by the gauge group SUð3Þ and a
fermion count of Nf ¼ 6, the presence of a nontrivial UV
fixed point ρ� is contingent uponM2 ≥ 17M2

P. Notably,M
2

in QCD approximates the squared mass of the top quark

(Mt ¼ 172.76� 0.3 GeV), which is significantly smaller
than the Planck mass (MP ≈ 1.2 × 1019 GeV), thus pre-
cluding the existence of a nontrivial UV fixed point. If
additional fermions are introduced by incorporating further
quark generations (e.g., Nf ¼ 24), the requirement for the
existence of ρ� becomesM2 ≥ 5.6M2

P. In a very speculative
situation (for example in the Kaluza-Klein models,
[38,39]), if the combined squared masses of the additional
quarks exceed 5.6M2

P, a nontrivial UV fixed point for the
strong coupling could emerge. This scenario could be
applicable to other gauge groups and fermion counts
as well.

IV. FINAL REMARKS

In summary, we have computed the gravitational cor-
rections to the two-loop beta function of the gauge coupling
constant within a non-Abelian gauge theory featuring
fermions, utilizing the one-graviton exchange approxima-
tion. Our analysis demonstrates that the beta function of the
gauge coupling constant experiences a positive gravita-
tional correction at two-loop order, consistent with previous
findings in Einstein-QED model [19]. Furthermore, we
observe that these gravitational corrections have the poten-
tial to generate a nontrivial UV fixed point in the beta
function of the gauge coupling constant, dependent on the
specific gauge group and the number of fermions present.
One important consideration arises from the critique

presented in Ref. [16]. In their study, the authors argue that
the physical evolution of coupling constants should be
derived from S-matrix computations. Their findings sug-
gest that incorporating gravitational effects into the evolu-
tion of couplings may not be universally applicable in
describing physical phenomena. This discrepancy may
stem from operator mixing between marginal and
higher-order (irrelevant) operators in an on shell renorm-
alization process. Indeed, as discussed in Ref. [18], which
examined scattering processes in the Einstein-QED model,
while operator mixing occurs between the λϕ4 operator and
its higher-order counterpart (e.g., ϕ3

□ϕ), the same phe-
nomenon does not affect the gauge coupling constant
renormalization due to its specific kinematical dependence.

FIG. 5. One-loop Feynman diagrams illustrating the gluon self-energy with counterterm insertions. These diagrams are of the same
order as the two-loop diagrams.
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In our case we also found that there is no mixing directly
involving the renormalization of the gauge coupling
constant.
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APPENDIX: THE ONE-LOOP
RENORMALIZATION CONSTANTS

In this Appendix, we list the one-loop renormalization
constants computed in Ref. [26], which are essential for our
investigation. These constants are inserted as counterterm
contributions in the one-loop diagrams depicted in Fig. 5.
The one-loop renormalization constants are as follows:

δ2 ¼
κ2m2

fð29ξh − 37Þ
512π2ϵ

−
C2ðRÞg2ξA
16π2ϵ

; ðA1aÞ

δm2 ¼ κ2m2
fð19ξh − 23Þ
256π2ϵ

−
C2ðRÞg2ðξA þ 3Þ

16π2ϵ
; ðA1bÞ

δ3 ¼ −
g2ð3C2ðGÞξA − 13C2ðGÞ þ 4NfÞ

96π2ϵ
; ðA1cÞ

δ̃3 ¼ −
κ2ð3ξh − 2Þ

96π2ϵ
; ðA1dÞ

δ2c ¼ −
C2ðGÞg2ðξA − 3Þ

64π2ϵ
; ðA1eÞ

δ1c ¼ −
C2ðGÞg2ξA

32π2ϵ
; ðA1fÞ

δ1 ¼
κ2m2

fð29ξh − 37Þ − 8g2ðξAðC2ðGÞ þ 4C2ðRÞÞ þ 3C2ðGÞÞ
512π2ϵ

; ðA1gÞ

δ3g ¼ −
g2ð9C2ðGÞξA − 17C2ðGÞ þ 8NfÞ

192π2ϵ
; ðA1hÞ

δ4g ¼ −
g2ð3C2ðGÞξA − 2C2ðGÞ þ 2NfÞ

48π2ϵ
: ðA1iÞ

As evident from the equations above, the Slavnov-Taylor identities are upheld, as we find

δ1 − δ2 ¼ δ3g − δ3 ¼
1

2
ðδ4g − δ3Þ ¼ δ1c − δ2c ¼ −

C2ðGÞg2ð3þ ξAÞ
64π2ϵ

; ðA2Þ

indicating that gravitational interaction does not compromise gauge symmetry.
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