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The Bell-CHSH (Clauser-Horne-Shimony-Holt) inequality in the vacuum state of a relativistic scalar
quantum field is analyzed. Using Weyl operators built with smeared fields localized in the Rindler wedges,
the Bell-CHSH inequality is expressed in terms of the Lorentz invariant inner products of test functions. A
numerical framework for these inner products is devised. Causality is also explicitly checked by a
numerical evaluation of the Pauli-Jordan function. Violations of the Bell-CHSH inequality are reported for
different values of the particle mass parameter.
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I. INTRODUCTION

Entanglement stands, beyond any doubt, as one of the
most astounding features of quantum mechanics [1], high-
lighting the existence of remarkably strong correlations
between the components of a composite system. Its impor-
tance appears in scales as diverse as that of quantum
computing and black hole physics. The Bell-Clauser-
Horne-Shimony-Holt (Bell-CHSH) inequality [2–5] plays
a prominent role in the investigation of this unique property
of the quantum world. The violation of this inequality at the
quantum level expresses a profound departure from some of
classical physics paradigms, and this has been evidenced by
several experiments [6–14].
Nowadays, there is a significant interest in the inves-

tigation of the Bell-CHSH inequalities in the high-energy
particle physics context [15], enabling to study entangle-
ment at energy scales never explored before. Many
experimental tests of the Bell-CHSH inequality in the
high-energy regime have been proposed in the last
years [16–22]. Quite recently, the first observation of
entanglement in a pair of quarks has been reported, being

the highest-energy observation of entanglement to
date [23].
Quantum field theory (QFT) is the theoretical framework

suitable to handle properties entailing elementary particles
physics. It looks thus natural to unravel the Bell-CHSH
inequality within the realm of QFT to achieve a better
understanding of its features in a setting that merges
quantum mechanics and special relativity.
Since the pioneering works [24–26], the study of QFT

aspects of the Bell-CHSH has received increasing attention,
see [27–33] and references therein for recent accounts.
Facing the Bell-CHSH inequality in QFT forces us to dive
deeper into the complex structure of quantum fields and
their intrinsic relationship with the Minkowski spacetime.
As shown in [24,25], the Bell-CHSH turns out to be already
violated in the vacuum state j0i, when the field operators
are localized in the Rindler wedges.
The study of the Bell-CHSH inequality in QFT is rooted

in the so-called algebraic quantum field theory, making use
of the properties of the von Neumann algebras, Tomita-
Takesaki modular theory and fundamental theorems such
as the Reeh-Schlieder and the Bisognano-Wichmann the-
orems, crucial tools that only recently are being fully
appreciated [34–39].
Notwithstanding the reach of those studies, most

research is centered around its mathematical aspects.
Here we are aiming to bridge the gap between the formal
approach and a more practical perspective. We thus
provide a numerical framework to scrutinize the Bell-
CHSH inequality in the vacuum state of a QFT. More
precisely, we shall consider the case of a massive scalar
field in (1þ 1)-dimensional Minkowski spacetime. Upon
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introducing the Lorentz-invariant inner product through the
Wightman two-point function for the smeared fields, the
Bell-CHSH inequality is stated by employing the unitary
Weyl operators and expressed in terms of the inner products
between Alice’s and Bob’s test functions. Selecting the
supports of Alice’s test functions in the right wedge, we use
the Bisognano-Wichmann modular conjugation j [38,39] to
obtain Bob’s test functions in the left wedge, thus ensuring
causality. Hence, a numerical setup is devised to evaluate
the momentum integrals corresponding to the inner products
between test functions and, at the same time, to check the
vanishing of the Pauli-Jordan function, in order to ensure
that causality is correctly implemented. This enables us to
perform a huge number of random tests to capture violations
of the Bell-CHSH inequality for different values of the mass
parameter.
This paper is organized as follows. Section II contains a

few basic notions about quantum fields andWeyl operators.
In Sec. III we introduce the Bell-CHSH inequality. The
numerical setup as well as the results are presented in
Sec. IV. The conclusion is contained in Sec. V.

II. QUANTUM FIELDS AND WEYL OPERATORS

Let us consider a free massive scalar field theory in
(1þ 1)-dimensional Minkowski space with action

S ¼
Z

d2x
�
1

2
∂μϕ∂

μϕ −
m2

2
ϕ2

�
: ð1Þ

The scalar field ϕ is expanded in terms of creation and
annihilation operators as

ϕðt; xÞ ¼
Z

dk
2π

1

2ωk
ðe−ikμxμak þ eikμx

μ
a†kÞ; ð2Þ

where ωk ¼ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. For the canonical commuta-

tion relations one has

½ak; a†q� ¼ 2π2ωkδðk − qÞ;
½ak; aq� ¼ ½a†k; a†q� ¼ 0: ð3Þ

Quantum fields are operator-valued distributions [35] and
have to be smeared to provide well-defined operators acting
on the Hilbert space. The smeared quantum field is

ϕðhÞ ¼
Z

d2xϕðxÞhðxÞ; ð4Þ

where h is a real smooth test function with compact support,
h∈ C∞0 ðR4Þ. Using the smeared fields, the Lorentz-invariant
inner product is introduced by means of the two-point
smeared Wightman function:

hfjgi ¼ h0jϕðfÞϕðgÞj0i ¼ iΔðf; gÞ þHðf; gÞ; ð5Þ

where Δðf; gÞ and Hðf; gÞ are the smeared versions of the
Pauli-Jordan and Hadamard functions:

Δðf; gÞ ¼
Z

d2xd2yfðxÞΔ̂ðx − yÞgðyÞ; ð6Þ

Hðf; gÞ ¼
Z

d2xd2yfðxÞĤðx − yÞgðyÞ; ð7Þ

with Δ̂ðx − yÞ and Ĥðx − yÞ given by

iΔ̂ðx − yÞ ¼ 1

2

Z
dk
2π

ðe−ikμðx−yÞμ − eþikμðx−yÞμÞ;

Ĥðx − yÞ ¼ 1

2

Z
dk
2π

ðe−ikμðx−yÞμ þ eþikμðx−yÞμÞ: ð8Þ

We can rewrite the above expressions in a more useful way
for our present purposes by moving to momentum space,
namely

hfjgi ¼
Z

dk
2π

1

2ωk
f�ðωk; kÞgðωk; kÞ; ð9Þ

thus rewriting Δ and H as

iΔðf; gÞ ¼ 1

2

Z
dk
2π

1

2ωk
½f�kgk − g�kfk�; ð10Þ

Hðf; gÞ ¼ 1

2

Z
dk
2π

1

2ωk
½f�kgk þ g�kfk�; ð11Þ

where ðfk; gkÞ stands for ðfðωk; kÞ; gðωk; kÞÞ.
The Pauli-Jordan distribution is Lorentz-invariant and

encodes the information of locality and relativistic causal-
ity, being vanishing outside of the light cone. Moreover,
Δ̂ðxÞ and ĤðxÞ are, respectively, odd and even under the
change x → −x. Using the smeared fields, we can write
½ϕðfÞ;ϕðgÞ� ¼ iΔðf; gÞ, allowing us to recast causality in
this setting as having ½ϕðfÞ;ϕðgÞ� ¼ 0when the supports of
f and g are spacelike separated.
Let us introduce the unitary Weyl operators [30],

defined as

Af ¼ eiϕðfÞ: ð12Þ

These operators obey the so-called Weyl algebra:

AfAg ¼ e−
i
2
Δðf;gÞAðfþgÞ: ð13Þ

When the supports of f and g are spacelike separated, the
Pauli-Jordan function vanishes, ensuring that AfAg ¼
AðfþgÞ. Computing the vacuum expectation value of the
Weyl operator, one finds
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h0jAfj0i ¼ h0jA−fj0i ¼ e−
1
2
jjfjj2 ; ð14Þ

where jjfjj2 ¼ hfjfi.

III. THE BELL-CHSH INEQUALITY

We proceed now by stating the Bell-CHSH inequality in
the vacuum state of the scalar field. We shall follow the
procedure outlined in [40], where the Bell-CHSH correlator
has been formulated in terms of unitary operators. To that
purpose one considers an open region O in Minkowski
space and define MðOÞ as the space of smooth test
functions with compact support contained in O. One
introduces its complement M0ðOÞ as the set of test
functions that have a vanishing smeared Pauli-Jordan
function with all test functions inMðOÞ, that is,M0ðOÞ ¼
fg;Δðf; gÞ ¼ 0; ∀ f∈MðOÞg. Therefore, one rephrases
causality as

½ϕðfÞ;ϕðgÞ� ¼ 0; ∀ f∈MðOÞ; and ∀ g∈M0ðOÞ:
ð15Þ

Let us introduce Alice’s operators ðAf; Af0 Þ as the Weyl
operators Af ¼ eiϕðfÞ and Af0 ¼ eiϕðf0Þ built with test
functions f; f0 ∈MðOÞ. We introduce Bob’s operators
ðAg; Ag0 Þ as Ag ¼ eiϕðgÞ and Ag0 ¼ eiϕðg0Þ, built with test
functions g; g0 ∈M0ðOÞ, thus guaranteeing that ½Af; Ag� ¼
½Af; Ag0 � ¼ ½Af0 ; Ag� ¼ ½Af0 ; Ag0 � ¼ 0 since the Pauli-Jordan
function vanishes for these test functions. As such, the
corresponding Weyl operators commute.
Following [40], the Bell-CHSH correlation function in

the vacuum state reads

h0jCj0i ¼ h0jðAf þ Af0 ÞAg þ ðAf − Af0 ÞAg0 j0i: ð16Þ

One speaks of a violation whenever

2 < jh0jCj0ij ≤ 2
ffiffiffi
2

p
: ð17Þ

From Eqs. (13) and (14), it follows

h0jAfAgj0i ¼ h0jAðfþgÞj0i ¼ e−
1
2
jjfþgjj2 : ð18Þ

Therefore, for the Bell-CHSH correlator defined above,
one has

h0jCj0i ¼ e−
1
2
jjfþgjj2 þ e−

1
2
jjf0þgjj2

þ e−
1
2
jjfþg0jj2 − e−

1
2
jjf0þg0jj2 : ð19Þ

To evaluate the norms appearing in Eq. (19), we remind that
from Eq. (5), one has hfjgi ¼ iΔðf; gÞ þHðf; gÞ. Since
f∈M and g∈M0, one finds Δðf; gÞ ¼ 0. Also, for any
test function f, it holds that Δðf; fÞ ¼ 0 as can be seen
from Eq. (10). Therefore

jjf þ gjj2 ¼ Hðf; fÞ þ 2Hðf; gÞ þHðg; gÞ: ð20Þ

Putting together Eqs. (19) and (20), one finds

h0jCj0i ¼ e−
1
2
½Hðf;fÞþ2Hðf;gÞþHðg;gÞ�

þ e−
1
2
½Hðf0;f0Þþ2Hðf0;gÞþHðg;gÞ�

þ e−
1
2
½Hðf;fÞþ2Hðf;g0ÞþHðg0;g0Þ�

− e−
1
2
½Hðf0;f0Þþ2Hðf0;g0ÞþHðg0;g0Þ�: ð21Þ

Expression (21) is the starting point for the numerical
setup which will be outlined in the following. Though,
besides the evaluation of the Hadamard smeared functions
present in Eq. (21), we shall also check the Pauli-Jordan
factors Δðf; gÞ, Δðf0; gÞ, Δðf; g0Þ, Δðf0; g0Þ to ensure that
causality is numerically fulfilled.
Let us conclude this section by underlining that, as

already mentioned, the regionO and its causal complement
O0 will be identified with the right and left Rindler wedges,
namely

WR ¼ fx; x > jtjg; WL ¼ fx;−x > jtjg: ð22Þ

IV. NUMERICAL SETUP

Let us define the following Gaussian functions:

φðt; xÞ ¼ αe−
1
2

ðt−t0Þ2
δt2 e−

1
2

ðx−x0Þ2
δx2 ;

ψðt; xÞ ¼ βe−
1
2

ðτ−τ0Þ2
δτ2 e

−1
2

ðy−y0Þ2
δy2 ; ð23Þ

where α and β are arbitrary real numbers. Notice that
φ and ψ depends on the parameters ft0; δt; x0; δxg and
fτ0; δτ; y0; δyg. These parameters determine the locations
and the widths of the Gaussians in Minkowski space. Their
Fourier transforms are

φðpÞ ¼ α2πδtδxe−
1
2
ðω2

pδt2þp2δx2Þeiωpt0þipx0 ;

ψðpÞ ¼ β2πδτδye−
1
2
ðω2

pδτ
2þp2δy2Þeiωpτ0þipy0 ; ð24Þ

where we will later impose ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

Gaussians are smooth but do not have compact support,
being in principle not appropriate to be used as test
functions. Nevertheless, this issue can be handled with
the help of the Pauli-Jordan function. To illustrate this point,
let ðhR; hLÞ stand for two generic Gaussians located in WR
and in WL, respectively. The first observation relies on the
possibility of shaping ðhR; hLÞ by a convenient choice of the
widths in such a way that they resemble very much
compactly supported functions, meaning that they decay
very fast outside spacetime regions located inWR and WL.
Doing so, one can check if ðhR; hLÞ can be effectively
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considered to be spacelike by looking at the Pauli-Jordan
function ΔðhR; hLÞ and demanding that

ΔðhR; hLÞ ≤ 10−10: ð25Þ

In other words, Gaussian functions for which ΔðhR; hLÞ >
10−10 will be automatically rejected. Only when
ΔðhR; hLÞ ≤ 10−10, they will be employed to probe the
violation of the Bell-CHSH inequality. The numerical
threshold (25) has been established after performing a huge
number of tests, typically half a million tests for each value
of the mass parameter. Observe that the value 10−10 can be,
in practice, considered as vanishing when compared with
the size of the violations reported in Table I.
Let us proceed by specifying how Bob’s Gaussians in

WL are obtained from Alice’s Gaussians in WR. To that
aim we employ the Bisognano-Wichmann [38,39] modular
conjugation j, whose action on the test functions is
defined by

jφðt; xÞ ¼ φð−t;−xÞ; jψðt; xÞ ¼ ψð−t;−xÞ: ð26Þ

Notice that this transformation for φ is equivalent to
changing ðt0; x0Þ → ð−t0;−x0Þ. The same holds for ψ.
Needless to say, the modular conjugation j is nothing but
the CPT operator [38,39]. AGaussian centered at ðt0; x0Þ is
transformed into a Gaussian centered at ð−t0;−x0Þ. Thus, if
φ is located in WR, under the action of j, then it will be
transformed in a Gaussian located in WL.
In the following, we will consider φ and ψ as Alice’s test

functions f, f0. Correspondingly, jφ and jψ are Bob’s test
functions g, g0. We will consider φ and ψ centered in the
upper part of WR, that is, we will take t0; x0; τ0; y0 > 0,
x0 > t0, and y0 > τ0. As such, jφ and jϕ turn out to be
centered in WL. Although their centers are in spacelike
separated regions, because of their widths, a careful check
of the vanishing of the relevant Pauli-Jordan functions will
be performed. This will enable to use Eq. (20).
The steps of the method adopted can be resumed as

follows. We randomly choose points ðt0; x0Þ and ðτ0; y0Þ in
the upper part ofWR, as well as real positive values for α and
β, sampling these parameters in the range (0, 10) using the

Mathematica command “RandomReal.” We also fix the
widths δt ¼ δx ¼ δτ ¼ δy ¼ 0.1 for definiteness. We now
pick up a value for the massm and evaluate all the Hadamard
functions needed for the Bell-CHSH inequality (21). Next,
with the same set of parameters, we test all the relevant
Pauli-Jordan functions in order to check if causality is
fulfilled, according to the threshold (25). All integrals are
estimated numerically using the software Mathematica.1

Then, we check if for this set of parameters a violation of
the Bell-CHSH inequality is found, that is, if jh0jCj0ij > 2.
We repeat then the procedure 5 × 105 times for each mass
value.2

Six different values of the mass have been considered:
m ¼ 1.5; 1; 0.1, 0.01, 0.001, and 0.0001. The maximum
violations achieved for each case are reported in Table I.
One notices that the size of the violation decreases with

the increase of the mass m. This feature corroborates the
observation of [24], according to which, due to the cluster
property of a massive QFT,3 the violation of the Bell-CHSH
is expected to decay exponentially with the spatial sepa-
ration between Alice’s and Bob’s region. We note in fact
that, for large spatial separation L, the Hadamard function
behaves as

Hð0; LÞ ¼
Z

dk
2π

1

2ωk
cosðkLÞ ≈ e−mL: ð27Þ

This equation provides a simple understanding of the fact
that using Weyl operators yields a Bell-CHSH inequality
violation in agreement with the cluster property.

V. CONCLUSIONS

In this work we developed a numerical setup for studying
the Bell-CHSH inequality in the vacuum state of a relativ-
istic scalar massive quantum field theory in (1þ 1)
Minkowski spacetime. We defined a Lorentz-invariant inner
product through the Wightman smeared two-point function
and introduced the Bell-CHSH inequality by means of Weyl
operators. The integrals present in the terms of the inequal-
ity were computed numerically and we devised a random
test in order to search for parameters leading to Bell-CHSH
inequality violations for different values of the particle
mass, see Table I.
Let us end by elaborating on the following topics, all

under current investigation:

TABLE I. Maximum violation achieved for each mass value.
For the corresponding Pauli-Jordan functions, we always have
Δ ≤ 10−10.

m hCi
1.5 2.00148
1 2.00722
0.1 2.06382
0.01 2.10044
0.001 2.12661
0.0001 2.13046

1We mainly used method DoubleExponentialOscillatory, but
we also checked the consistency of the numerical integration by
adopting other methods.

2To give an idea about the computing time on a single laptop,
each mass value required around 15 days to run the tests.

3Meaning that sufficiently distant regions of a quantum field
system become statistically independent.
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(1) As already mentioned, in the case of a relativistic
scalar field, several results have been achieved on the
violation of the Bell-CHSH inequality in the vacuum
state [24,25,30], relying on a set of mathematical
tools such as von Neumann algebras, Tomita-Take-
saki modular theory, and the properties of Weyl
operators. Those results are of a theoretical nature,
aiming at establishing general features of the Bell-
CHSH inequality. From this perspective, the con-
struction of an explicit numerical setup is welcome.
To our knowledge, this is the first fully numerical
attempt to face the Bell-CHSH inequality for a scalar
field, including the handling of the check of cau-
sality through the Pauli-Jordan function. At the
present stage, besides a few technical points, we
do not see major obstacles to generalize the present
framework to the case of a scalar field in 1þ 3
Minkowski spacetime as well as to the case of spinor
fields. A point which deserves a certain care is the
fact that, in 1þ 3 dimensions, the scalar product,
Eq. (9), would read

hfjgi ¼
Z

d3k
ð2πÞ3

1

2ωk
f�ðωk; k⃗Þgðωk; k⃗Þ;

¼
Z

k2 sin θdk dθ dφ
2ð2πÞ3ωk

f�g; ð28Þ

where

f ¼ f
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

; k sin θ cosφ;

k sin θ sinφ; k cos θ
�
; ð29Þ

and similarly for g. The above expression exhibits
the challenges of the 1þ 3 case. Multiple integrals
need to be evaluated numerically, a feature which
might require a number of additional tools. This
issue is under consideration and will be reported as
soon as possible.

(2) As shown in Table I, the size of the violation
decreases with the increase of the mass m. This
result is deeply related to the cluster property, a
general feature of the correlation functions of quan-
tum field theory. Due to its relevance, it is worth to
provide here a more detailed discussion. As far as the
Bell-CHSH inequality is concerned, we can distin-
guish basically two cases. The first one is that faced
in the present work. More precisely, the test functions
f and g refer to two regions, O and O0, located,
respectively, in the right and left Rindler wedges,
ðWR;WLÞ, Eq. (22). Essentially, O and O0 are
identified with the two tiny regions in which f
and g are effectively nonvanishing, Eq. (25). In this
caseO andO0 are not the causal complement of each

other. A spatial separation between them can be
easily visualized. In such a situation, the Bell-CHSH
is expected to display a decay with the increase of
the mass, in agreement with the cluster property,
see [24]. This is exactly what has been detected: a
clear dependence from the mass parameter m. There
is, however, a second situation which requires a fully
different numerical handling. It is the case in which
the two regions O and O0 coincides with the whole
wedges ðWR;WLÞ. This means that the test func-
tions f and g are smooth functions supported in
ðWR;WLÞ, which vanish outside of ðWR;WLÞ. An
example of such a test functions is given, for
instance, by

fðt; xÞ ¼
(
e−

1

x2−t2e−
x2
2 x ≥ jtj

0 elsewhere
; ð30Þ

where the exponential factor e−
x2
2 ensures the needed

decaying behavior at x → ∞. The function f in
expression (30) is smooth and defined in the whole
right wedge WR, which vanishes at the boundary,
i.e., t ¼ �x. Analogously, in the left wedgeWL, one
might consider

gðt; yÞ ¼
(
e
− 1

y2−t2e−
y2

2 −y ≥ jtj
0 elsewhere

: ð31Þ

This situation is different from the previous one.
Here, we are dealing with two regions, ðWR;WLÞ,
which are the causal complement of each other.
Moreover, there is no spatial separation between
them as they touch at the origin, x ¼ t ¼ 0. For
such a spacetime configuration, the theoretical
results [24,25] predict that the violation of the
Bell-CHSH inequality achieves its maximum value,
namely 2

ffiffiffi
2

p
. Unfortunately, the analytic expression

of the Fourier transformation of expressions (30)
and (31) is not available. As a consequence, a new
different numerical setup would be needed. Here,
we limit ourselves to mention that we are trying to
figure out if a possible framework based on con-
figuration space and not on momentum space might
be viable.
From this discussion, the various numerical

aspects and challenges related to the issue of the
cluster property should become more apparent.
In particular, the geometrical configuration faced
in the present work exhibits a clear connection with
the cluster property, as evidentiated by the results of
Table I.
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