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We find a spectral wall in collisions of two vortices in the Abelian Higgs model at the critical coupling.
It occurs if the out-of-phase mode of initially separated vortices is excited.
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I. INTRODUCTION

In nonintegrable field theories, topological solitons
interact in a very complicated manner, whose comprehen-
sive understanding is still a challenge. This issue is
important not only from a conceptual or theoretical point
of view but also is crucial for any realistic application of
solitons. In general, solitons interact in three qualitatively
distinct ways. They can feel a static force from other
solitons which leads to acceleration or deceleration of a
soliton in multisoliton environment. They can also interact
via excitation of internal (vibrational) modes. Finally,
radiation, i.e., excitation of fluctuation modes in the
continuum spectrum may affect their dynamics.
There is a particular class of models, called Bogomolny-

Prasad-Sommerfield (BPS) models [1,2], where dynamics
is simplified due to nonexistence of a static force between
solitons [3]. Then, the simplest dynamics is captured by the
geodesic flow through energetically equivalent static sol-
utions of the corresponding Bogomolny equations. An
example of such a process is a collision of vortices in the
Abelian Higgs model [4,5] or BPS monopoles in the
Georgi-Glashow model [6] both at critical coupling.
Surprisingly, it has recently been found that the geodesic

dynamics is significantly affected if a bound mode, carried
by the vortices, is excited. E.g. in a head-on 2-vortex
scattering the famous single 90° scattering is replaced by a
chaotic (probably fractal) sequence of multibounces if the
lowest mode (in-phase superposition of shape modes of
each of 1-vortex) is excited [7]. As explained in [8]
excitation of this mode introduces an attractive force

between the colliding single vortices. This, together with
the resonant energy transfer mechanism between the kinetic
and vibrational motion, triggers the fractal pattern of the
multibounces, where depending on the number of colli-
sions the vortices are scattered under 90° or 180° angle.
Indeed, precisely as in the kink-antikink collisions in ϕ4

model [9–11], energy initially stored in the kinetic motion
can be temporary transferred into the vibrational mode and
forces the vortices to collide again.
Excitation of the upper mode (out-of-phase superposi-

tion of shape modes of each of the vortices) provides a
repulsive vortex-vortex force and therefore cannot lead to
multibounces. However, due to a level crossing with the
third mode [8], two bounces occur [7].
Here we will show that excitation of the upper mode in

the 2-vortex collisions leads to the existence of another
important surprise in solitonic dynamics, which is the
spectral wall [12]. The spectral wall (SW) phenomenon
is an obstacle (barrier) in dynamics of a topological soliton
due to the transition of a vibrational mode into the
continuum spectrum. If the amplitude of this mode is
sufficiently large the soliton is reflected by the SW while if
it is small enough it can pass through the SW. For a
particular value of the amplitude the soliton forms a long-
living quasi-stationary state at a given spatial point, when
the mode enters the continuum spectrum.
Until now SWs were observed in (1þ 1) dimensional

systems only, see e.g., [13,14]. Here, for the first time, we
find them in higher dimensions.

II. SPECTRAL STRUCTURE AND FORCES

The Abelian Higgs model in (2þ 1) dimensions is
defined by the following Lagrangian

L¼
Z

dx1dx2

�
−
1

4
FμνFμνþ1

2
DμϕDμϕ−

1

8
ðϕ̄ϕ−1Þ2

�
; ð1Þ
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where x1;2 ¼ ðx; yÞ, ϕ is a complex scalar and Aμ is a Uð1Þ
gauge field. The covariant derivative isDμϕ ¼ ð∂μ − iAμÞϕ
and FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ is the field strength ten-
sor. The coupling constants are chosen such that the masses
of the matter and gauge field are equal. In this case, called
critical coupling limit, static BPS vortices obey the
Bogomol’nyi equations [1]

D1ϕ� iD2ϕ ¼ 0; F12 �
1

2
ðϕ̄ϕ − 1Þ ¼ 0: ð2Þ

This implies that they saturate a topological energy bound,
E ¼ πjnj, where n∈Z is the vorticity. This is a topological
charge because it is the winding number associated to the
map ϕ∞∶ S1∞ → S1 from the unit sphere at infinity to the
target space unit sphere.
In the BPS scenario an n-vortex solution can be under-

stood as a collection of n 1-vortices located at arbitrary
positions, zk¼xkþ iyk;i¼1;…;n, which define a moduli
space [15]. They correspond to (multiple) zeros of the
matter field and maximal magnetic field F12. Independently
of the point in the moduli space the energy does not change.
There is no static vortex-vortex force.
Thus, the simplest scattering of the vortices is just a

transition through the energetically equivalent static sol-
utions. It found a refined description as a geodesic flow on
the corresponding moduli space.
In the case of 2-vortex a metric on such a space was

found by Samols [5]. An important result is the 90°
scattering in a head-on collision of two single vortices.
The vortices collide only once and the final state is 90°
rotated with respect to the initial state. For concreteness we
assume that the vortices collide along x-axis. Thus their
positions are z ¼ �d with d∈Rþ. (d∈R− gives identical
configurations). After the collision point, at d2 ¼ 0, they
pass to y-axis. Thus d becomes imaginary. For convenience
we chose d∈ iR−. The distance between them is j2dj.
Although the energy of the n-vortex solution is degen-

erated on the moduli space, the spectral structure, that is,
the structure of linear perturbations, changes. In particular,
for the 2-vortex solution, even the number of the bound
modes varies as we vary the distance between the con-
stituent vortices [16]. For infinitely separated single vor-
tices, d → ∞, there are two degenerate bound modes.
These are the in-phase and out-of-phase superposition of
the radial shape mode of the 1-vortices [17–19]. Their
frequencies are ω2

10 ¼ 0.777476. As d decreases (the
vortices approach each other along the x-axis), the degen-
eracy is lifted and the in-phase (out-of-phase) superposition
gives rise to the lower (upper) mode. The frequency of the
lower (upper) mode monotonously decreases (increases) to
ω2
20 ¼ 0.53859 (ω2

21 ¼ 0.97303) as the separation tends
to 0, see Fig. 1.
Importantly, for jdj < d� the third shape mode exists. For

jdj → d� this mode approaches the mass threshold. As it

becomes significantly wider close to this point, there is a
rather big numerical uncertainty of the actual value of d�.
It was estimated in the range d� ∈ ½1.2; 2.0� [16].
At d ¼ 0, where the vortices are on top of each other, the

frequency of the lower mode takes a minimum value, while
the frequencies of the two upper modes coincide. This
degeneracy is in fact a mode crossing. Indeed, passing
through d ¼ 0 the vortices change their location from x to
y-axis. As shown in [8], this means that as d further
decreases to negative imaginary values, the second mode of
the 2-vortex transits into the third mode. Its frequency all
the time grows.
Decreasing of the frequency of the first mode results in

appearance of an attractive inter-vortex force [8]. Now, the
picture of a scattering is as follows. After the first 90°
collision the energy stored in the kinetic motion can be
transfer into the internal energy of the mode vibrations. It
can happen that the vortices have too little kinetic energy to
overcome the attractive force. Thus they can collide again.
The collisions may repeat several times until they receive
sufficiently enough kinetic energy to escape to infinities.
Such a resonant energy transfer leads to a fractal structure
of multibounce windows. Note that, depending on the fact
whether we have an odd or even number of collisions we
get a 90° or 180° angle scattering.
Analogously, the fact that the frequency of the second

mode always increases, also after the coincidence point,
amounts to the existence of a bit more nontrivial repulsive-
attractive force. If this mode is initially excited the vortices
repeal each other. Thus, for a sufficiently large mode
amplitude a corresponding head-on collision may occur
without passing through the on-top-of each-other configu-
ration. The kinetic energy is simply too small to overcome
the repulsion triggered by the upper mode. Due to that,
there is no bounce and no 90° scattering. For a bigger, fine
tuned amplitude there can be one bounce (the vortices reach
d ¼ 0), but still without 90° scattering. Interestingly, for
even smaller amplitudes we get two-bounce scattering. This
is because the vortices pass the d ¼ 0 point and scatter

FIG. 1. The spectral structure for the 2-vortex solution as a
function of the vortex position parameter d∈Rþ ∪ iR−.
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under the right angle. Now, the second mode changes to the
third one. Hence, its frequency still grows. Therefore the
repulsion changes into the attraction between the vortices
which can win over the kinetic motion. The vortices stop
and move back colliding the second time. As they pass
through d ¼ 0 the modes cross once again. The frequency
drops with the separation and the interaction becomes
repulsive. Thus the vortices separate indefinitely. For
sufficiently small amplitude of the upper mode the kinetic
energy is big enough to win over the initial vortex-vortex
repulsive and later vortex-vortex attraction. It results in the
usual 90° one-bounce scattering.
However, all these scenarios ignore the fact that for

jdj ¼ d�, the third mode enters the continuum. As we have
said this matters even though we initially do not excite the
third mode. After the transition of the collision point d ¼ 0,
the second mode continues as the third mode. Thus, if the
amplitude of the initially excited second mode is small
enough the kinetic energy of the vortices can overcome the
attractive force appearing after the first bounce and the
excited 2-vortex may reach the point where the excited
mode hits the mass threshold.
In (1þ 1) dimensions transition of a mode, hosted on a

soliton, to the continuum spectrum gives rise to the
previously mentioned spectral wall phenomenon.

III. DYNAMICS WITH THE SECOND
MODE EXCITED

In our numerical experiments we scatter two well-
separated single vortices. Initially they are located at
x ¼ �10 (dð0Þ ¼ 10) and boosted toward each other along
x-axis with initial velocity vin. The initial amplitude of the
normalized mode is Að0Þ. Numerical techniques are out-
lined in [7].
In Fig. 2 we present time evolution of jdj (half of

the distance between the vortices) for different values of the
initial amplitude. We find the separation by tracking the
zero’s of the Higgs field ϕ by finding the minima of jϕj2

and fitting a degree 2 polynomial to interpolate the zeros.
The initial velocity is vin ¼ 0.01. The full field theory
dynamics confirms the previous considerations. For a large
initial amplitude, e.g., Að0Þ ≈ 3.8874e − 03 the vortices
never meet. They do meet if Að0Þ decreases. For Að0Þ ¼
1.092e − 03 we find a two bounce solution resulting in
180°-scattering of the incoming vortices.
As the initial amplitude further decreases the vortices can

more and more separate after the first bounce. As
explained, due to the mode crossing, the second mode
becomes the third one. Its frequency tends to the mass
threshold as the distance between the vortices along the
y-axis increases. The spatial point at which the mode enters
the continuum spectrum plays a role of a barrier in the
solitonic dynamics and such a barrier is called spectral
wall. We clearly see such a spectral wall in Fig. 2. The
trajectory of jdj gets flattened as Að0Þ ≈ 1.071e − 03. This
means that for a very long time the vortices almost stop at
with their centers located at y ¼ �jdjsw, where jdjsw ≈ 1.7,
forming a quasistationary state. It should be stressed that
they remain at the same positions for remarkable long time.
Namely, t ≈ 3000 which can be compared with the time-
scale provided by the oscillation period of the excited
mode. If we further reduce the initial amplitude of the mode
than the kinetic energy allows to pass the spectral wall—
exactly as in the case of kinks in (1þ 1) dimensions. Thus,
for smaller Að0Þ, we enter an adiabatic regime where the
standard geodesic motion of the vortices is only weakly
perturbed by the excited mode. Here we encounter the
usual one-bounce with 90° scattering, see trajectory with
Að0Þ ¼ 9.718e − 04.
In Fig. 3 we also plot the time evolution of the frequency

of the second mode. Its behavior very well agrees with the
time evolution of the vortex-vortex separation. To numeri-
cally track the frequency, we calculate the static potential
energy using Simpsons 3=8 rule at each time step Δt.
We hence calculate the angular frequency, ω ¼ π

Ti
, where Ti

denote the periods of the oscillations in the static energy.
As the vortices approach each other the frequency of the

FIG. 2. Dynamics of excited 2-vortex with vin ¼ 0.01. Time
evolution of jdj (half vortex-vortex separation).

FIG. 3. Time evolution of the frequency of the excited higher
mode.
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mode grows. It continues growing after the vortices
make the first bounce where they are on top of each other.
Then they separate under 90° angle and go along y-axis
with the frequency still increasing. At some point the
frequency equals the mass threshold, ω ¼ 1. This point
dω¼1 ≈�1.25, within our numerical accuracy, coincides
with the location of the stationary state, seen in Fig. 4.
In Fig. 4 we show how the frequency of the exited mode

depends on the position d of the vortex. It is worth it to
underline that the relation between the measured frequency
and the vortex-vortex distance perfectly agrees with the
results obtained by solving the linear perturbation prob-
lem, Fig. 1.
We also observed that for higher initial velocities there is

a tendency for the vortices to form the stationary solution
for slightly more negative imaginary d (bigger separation).
This is not a surprising effect. Higher vin requires bigger
amplitude of the mode to form the stationary solution. This
means that corrections from higher order perturbation
theory can matter. For example some couplings between
the modes may be important. This obviously can affect the
position of the spectral wall. Similar effects were observed
in (1þ 1) dimensions [14,20].

IV. CONCLUSIONS

In the current work we have shown that spectral wall,
that is a barrier in solitonic motion due to transition of a
bound mode to the continuum spectrum, exists also in
higher dimensional BPS theories. In particular, we found it
in the head-on collisions of the 2-vortex solution of the
Abelian Higgs model at the critical coupling. It should be
stressed that the appearance of the spectral wall in 2-vortex
dynamics is a very nontrivial fact which combines the
spectral structure (structure of the Hessian operator) with
geometry of the moduli space. Namely, it occurs after the
first collision. Therefore, it relies not only on the existence
of a mode which disappears into the continuum spectrum
but also on the mode crossing, which on the other hand, is

strongly related to a double-covering structure of the
moduli space.
Our finding is important for several reasons.
First of all, it underlines the role of internal modes in

dynamics of higher dimensional solitons. The Abelian
Higgs vortices, in generality, and their collisions in par-
ticularity, have been studied extensively for decades. It is a
prototypical solitonic theory in higher dimensions with
obvious relation to the Standard Model and with many
phenomenological applications, see, e.g., superconductors
or cosmic strings. However, basically all mathematical as
well as numerical results concerned the limit where no
internal modes were excited. We clearly show that exci-
tation of modes may very strongly affects the dynamics,
changing completely its qualitative picture. This has been
known in (1þ 1) dimensions but now it is obvious that it
also applies to physically more relevant higher dimensional
models.
Secondly, the existence of spectral walls in higher

dimensions may be important in some physical applications
of vortices (and other solitons). For example, if extended to
the third dimensions the vortices give rise to cosmic strings.
There are no reasons to expect that they could be produced
in the unexcited state. Of course, ensemble of excited
strings evolves differently from unexcited one [21]. The
number of collisions, crossings and net decay will be
different—especially as the shape mode of the single vortex
decays rather slowly [22]. This may be of some importance
for the gravitational wave background generated by the
cosmic strings [23].
Finally, looking from a wider perspective, it shows that

there is a striking similarity in dynamics of the simplest
topological solitons, that is one-dimensional kinks, and
their higher dimensional counterpart. All the kinks do the
higher dimensional solitons do as well. Thus, (1þ 1)
dimensional solitons may be truly treated as a good
laboratory for studying solitons in higher dimensions.
There are various directions in which our work can be

continued. One may try to identify spectral walls in other
higher dimensional BPS setups. It means, e.g., scattering of
excited BPS vortices in higher topological sectors, n > 2.
One can also consider other BPS theories with planar
solitons, see, e.g., [24–33]. The only condition is that the
BPS vortices support bound modes, which, as flowing over
the moduli space, hit the mass threshold.
We expect that spectral walls will exist in the case of BPS

solitons with a different topology. The most exciting
candidates are of course the BPS monopoles. It is known
that the spherical symmetric BPS monopoles support
infinitely many normal [34] (and quasinormal modes [35]),
see also [36]. This is due to the fact the gauge field remains
massive also in the self-dual limit. Again, some of the
normal modes can hit the mass threshold of the gauge field
as we change the distance between the constituent monop-
oles. This will trigger the spectral wall phenomenon.

FIG. 4. Frequency of the excited higher mode as a function of
the vortex position parameter d∈Rþ ∪ iR−.

A. ALONSO IZQUIERDO et al. PHYS. REV. D 110, 065004 (2024)

065004-4



One can also expect that spectral walls survive even if
we departure a bit from the BPS regime. Thus, it would be
very interesting to repeat our investigation for the non-
critical coupling limit. It is known from (1þ 1) dimensions
that sometimes appearance of a very small intersoliton
force may in fact improve the visibility of the spectral
wall [20]. Therefore spectral walls may exist in exper-
imentally more realistic regime both in type I and type II
superconductors. This especially may concern vortices in
Dirac materials, which experimentally realized in graphene,
which are known to have relativistic dispersion relation, see
Ref. [37] for a review. On the other hand, the existence of
repulsive or attractive static force between the vortices leads
to transmutation of the spectral wall into the thick spectral
wall, where the position of the stationary solution occurs
before the mode enters the continuum. Now, it is due to the
balance between the static intersoliton force and the mode
generated force [20]. Of course, from the mathematical
point of view the situation is less clear than in the BPS case.
Two-vortex state is generically not a static solution and
the notion of the modes should be treated with some
reservation.
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APPENDIX: MOVIES

Here we show movies with time dynamics of the
2-vortices with the previously defined initial conditions.
Black dots are the zeros of the Higgs field. The color
contours are the lines of a constant energy density.

(i) A09718.avi Initial amplitude of the second mode
Að0Þ ¼ 9.718e − 04. We see that the amplitude is
too small, and the vortices scatter as normal, with a
slight change in velocity after scattering.

(ii) A10711.avi Initial amplitude of the second mode
Að0Þ ¼ 1.0711e − 03. We see after the first collision
that the vortices stop at a certain separation for a very
long time, forking a very long living stationary state,
but near the end of the simulation the vortices appear
to begin to escape.

(iii) A10715.avi Initial amplitude of the second mode
Að0Þ ¼ 1.0715e − 03. We clearly see that the vor-
tices, after the first collision, stop at a certain
separation for a very long time forming a very long
living stationary state.

(iv) A10920.avi Initial amplitude of the second mode
Að0Þ ¼ 1.0920e − 03. The amplitude is too high and
the vortices are reflected slightly before the spectral
wall.

(v) A38874.avi Initial amplitude of the second mode
Að0Þ ¼ 3.8874e − 03. The amplitude is too high so
that the long-range forces are dominant, and the
vortices repel before scattering.
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