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All physical observations are made relative to a reference frame, which is a system in its own right.
If the system of interest admits a group symmetry, the reference frame observing it must transform
commensurately under the group to ensure the covariance of the combined system. We point out
that the crossed product is a way to realize quantum reference frames from the bottom-up; adjoining a
quantum reference frame and imposing constraints generates a crossed product algebra. We provide
a top-down specification of crossed product algebras and show that one cannot obtain inequivalent
quantum reference frames using this approach. As a remedy, we define an abstract algebra associated
to the system and symmetry group built out of relational crossed product algebras associated
with different choices of quantum reference frames. We term this object the G-framed algebra, and
show how potentially inequivalent frames are realized within this object. We comment on this algebra’s
analog of the classical Gribov problem in gauge theory, its importance in gravity where we show that it is
relevant for semiclassical de Sitter and potentially beyond the semiclassical limit, and its utility
for understanding the frame dependence of physical notions like observables, density states, and
entropies.
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I. INTRODUCTION

A central problem in physics is understanding systems
with constraints. The paradigmatic example of such a
system is a gauge theory in which constraints are regarded
as encoding redundancies of description relative to local
symmetries. Constraints, whether due to symmetry or
otherwise, imbue a theory with interesting global structures
which complicate the resulting classical and quantum
descriptions. These structures have been the subject of a
great deal of work in historic literature [1–7] often going
under the name of constraint quantization.
One such theory with constraints is gravity with its

diffeomorphism invariance and background independence
[3,8–11]. An important lesson of general relativity is that
only relational data is physical. Any measurement is done
relative to a reference frame, or colloquially an observer.
This observer in general has internal degrees of freedom of
its own, and since it is a part of the universe that it observes,
must also be subordinate to the same physical laws. Thus,

one must treat the observer itself as a quantum system
in the pursuit of obtaining a more coherent synthesis
of the laws of nature. This conviction gives rise to the
idea of a quantum reference frame (QRF), which has
proliferated across different disciplines of physics [12–37].
When the system to be observed admits a symmetry, the
observer must carry a representation of that symmetry in
order to ensure the covariance of the total system.
Constraints between the observer and system arise naturally
from the perspective of QRFs and one may view QRFs as a
way of implementing constraint quantization.
Recently, another way of performing constraint quan-

tization has proven to be interesting and physically
relevant, known as the crossed product [38–43]. The
crossed product of a system’s algebra of observables by
its symmetry group naturally implements the constraints
implied by the symmetry.1 This interpretation is due to a
central result called the commutation theorem [44], which
posits that one can view the construction of a crossed
product algebra as a two-step process: (1) adjoining
degrees of freedom transforming appropriately under
the group and (2) identifying it as the fixed point
subalgebra of the resulting system under the relevantPublished by the American Physical Society under the terms of
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1The analysis in this paper is sufficiently general to apply to
any locally compact group.
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action of group. Our work here begins with the
observation that the crossed product is precisely an
instantiation of the principles of QRFs, with a very
particular choice of quantum reference frame. This is
formulated directly in terms of Page-Wooters reduction
maps [45,46].
A natural question then arises; can one generate different

quantum reference frames for the same system? We answer
this question in the negative and show that while the
gauge-invariant algebra of a system and any valid QRF
gives rise to a crossed product algebra, one cannot obtain
inequivalent reference frames using this approach. In
proving this, we expand on an alternative characterization
of the crossed product that we refer to as the top-down
approach which may be useful for the community [47]. An
intuitive reason for our result is that different reference
frames observe different systems even if they descend from
the same kinematical space. So, to obtain an algebra which
allows for multiple QRFs, one must admit the possibility of
different system algebras before taking the crossed product.
This is known in the literature as quantum subsystem
relativity [32,48–50].
Since one can have many different frames that probe

vastly different parts of the same system, we propose an
algebra generalizing the idea of a crossed product which
retains the possibility of admitting inequivalent choices of
QRF. We term this object the G-framed algebra, and
demonstrate how it may be regarded as an algebraic analog
of a global quotient space. A generic G-framed algebra is
covered by an atlas of local crossed product charts, each
coinciding with the constraint quantized physics of a given
QRF. The different QRFs here do not have to be auxiliary
systems arising from adjoining group degrees of freedom,
and could very well be internal to the system of interest as
long as they transform suitably under the group. The
G-framed algebra allows us to make sense of frame-
dependent notions like observables, density states, mea-
surements, and entropies. Rigorously, theG-framed algebra
can be thought of as an algebraic version of an orbifold
which encodes the global quotient of a manifold by a Lie
group [51]. Each local crossed product chart coincides
morally with the quantization of the local quotient space
described by an orbifold chart, representing the gauge-
invariant physics as described by the corresponding choice
of QRF. The stitching together of different descriptions of
the same fundamental theory is carried out by a nontrivial
quotienting procedure imbuing the G-framed algebra with
global and frame-independent data.
Building upon this point of view, we motivate the need

for a G-framed algebra in generic gauge theories by
appealing to the Gribov problem. In the classical context,
the Gribov problem designates that the constraint surface
in a typical gauge theory will have the structure of an
orbifold [52,53], and thus in our language will induce
multiple distinct QRFs under quantization. We also point

out that there are two levels to the Gribov problem; one in
which the quotient space is actually a manifold in which
case the quotient of the G-framed algebra gets rid of the
extraneous Gribov copies, and another where the quotient
space is a true orbifold in which case the G-framed algebra
will have nontrivial global structure.

A. Outline

The current paper is organized as follows. In Sec. II we
review crossed product algebras with a focus on two main
points: (1) the interpretation of crossed products as fixed
points of kinematical algebras with respect to group auto-
morphisms and (2) the relationship between crossed
product algebras induced from a fixed covariant system
in various covariant representations. At the end of the day,
the top-down approach to the crossed product (Sec. II B)
demonstrates that all crossed product algebras induced
from a common covariant system are isomorphic, and
therefore possess an interpretation as the physical operators
relative to a particular constraint imposed on a kinematical
space. In Sec. III A we prove that, given a fixed QRF
encoded by a covariant system, any internal reference
frame induces a covariant representation. Thus, the rela-
tional crossed products induced by any pair of internal
frames for a fixed QRF are isomorphic. We therefore
hypothesize that QRFs are primarily useful in algebraic
contexts where multiple covariant systems are mutually
present, as exemplified by the tripartite algebra example
(Sec. III B). This leads us to Sec. III C in which we define
the G-framed algebra. A G-framed algebra is a perspective
neutral algebra of gauge invariant operators in which
individual crossed product algebras are interpreted as local
charts encoding the QRF of a particular observer. The
G-framed algebra is an algebraic analog of an orbifold
which is comprised of local quotient spaces and appears
naturally in the classical phase space description of a
constrained system in relation to the Gribov ambiguity.
It is also naturally applied to semiclassical gravity in the
static patch of de Sitter space with multiple observers
(Sec. III D), and to the quantification of frame dependence
for many gauge invariant observables (Sec. III E). We
conclude in Sec. IV with a discussion of various directions
for future work centered around the G-framed algebra as a
tool for encoding the global quantum structure of con-
strained systems, gauge theories, and gravity.

B. Note

During the final stages of writing this paper, [54,55]
appeared which contain some overlap with our work. The
first reference mainly dealt with the crossed product as a
way of generating different frames interpreted as meas-
urement probes for the same system algebra. While QRFs
and measurement theory are deeply intertwined, the
system itself is different for different choices of frames
in our work which marks a drastic difference. The second
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reference is more aligned with our work, however our G-
framed algebra allows for different choices of QRFs that
may not be auxiliary to one fixed system of interest shared
by all frames. We hope to understand the relations
between the G-framed algebra and the approaches of
these references more in the future. Finally, we would like
to mention that Refs. [56–58] were recently brought to our
attention, which contain discussions on the relevance of
the crossed product in the context of cosmology where
clocks are viewed as quantum reference frames.

C. Overview of results

The first part of the current paper reviews the construction
and interpretation of a single crossed product algebra from a
bottom-up and a top-down point of view. From the bottom-
up point of view (which is the most common presentation in
the literature) the construction of a crossed product algebra
begins with the specification of a covariant system
ðM;G; αÞ. Here, M is a von Neumann algebra which we
will refer to as the ‘system’ algebra, G is a locally compact
group, and α∶ G → AutðMÞ is an action of the group G on
M. Given a covariant system ðM;G; αÞ a covariant repre-

sentation is a triple ðK; πðKÞα ; λðKÞÞ, where K is a Hilbert

space, πðKÞα is a faithful representation of the system M and
λðKÞ is a unitary representation of the group G which
implements the automorphism α as an adjoint action within
the larger algebra BðKÞ. The crossed product induced from
the covariant system ðM;G; αÞ in the covariant representa-

tion ðK; πðKÞα ; λðKÞÞ is simply the von Neumann algebra

generated by πðKÞα ðMÞ and λðKÞðGÞ, which we denote by

M⋊ðKÞ
α G. Colloquially, one may think of this algebra as

consisting of the system degrees of freedom M along with
thegenerators of the automorphismα. Since the construction

of M⋊ðKÞ
α G includes taking a weak closure in the topology

induced by the Hilbert space K, it is not immediately clear

whether M⋊ðKÞ
α G is defined independently of the chosen

covariant representation.
The bottom-up point of view also implicates two other

useful ways of interpreting a crossed product. The first
approach follows Haagerup’s presentation in which the
crossed product is induced from an associated C� algebra
consisting of maps from the group G into the system
algebra M [59,60]. This algebra is rendered into a von
Neumann algebra by inducing a Hilbert space representa-
tion from a given covariant representation and taking the

weak closure. From this point of view, elements inM⋊ðKÞ
α G

can be regarded as operators of the form,

ρðKÞðXÞ ¼
Z
G
μðgÞλðKÞðgÞπðKÞα ðXðgÞÞ; ð1Þ

where X∶ G → M and μðgÞ is the left invariant Haar
measure on G. In other words, the crossed product is
merely a generalization of the group algebra in which
scalar coefficients are replaced by coefficients with values
in M. The second approach is, a priori, valid only for the
crossed product algebra induced by a special covariant
representation we term the canonical covariant representa-
tion. Given any faithful representation π∶ M → BðHÞ, the
canonical covariant representation is formed on the Hilbert
space HG ≡ L2ðG;HÞ ≃H ⊗ L2ðGÞ [61]. We denote the
resulting crossed product by M⋊αG and refer to it as the
canonical crossed product. The canonical crossed product
can be realized as a subalgebra of M ⊗ BðL2ðGÞÞ. In fact,
it is the unique invariant subalgebra of M ⊗ BðL2ðGÞÞ
under an automorphism θα∶ G → AutðM ⊗ BðL2ðGÞÞÞ
which naturally combines the automorphism α with the
automorphism on BðL2ðGÞÞ which is induced from the
right regular representation of G.
The latter point of view of the crossed product as an

invariant algebra under a given G-automorphism is largely
the starting point for the relationship between the crossed
product and constraint quantization. Roughly speaking, it
indicates that the crossed product algebraM⋊αG should be
interpreted as an algebraic quotient of the kinematical space
M ⊗ BðL2ðGÞÞ under the group action θα. However, as we
stressed, this point of view on the crossed product is strictly
speaking only valid in the canonical representation. This
motivates further the question of relation the crossed

products M⋊ðKÞ
α G for different choices of covariant repre-

sentation, which brings us to the top-down approach to the
crossed product.
The top-down approach to the crossed product was

pioneered by Landstad in [47]. His motivation was the
following question: given a von Neumann algebra A and a
locally compact group G, what are the necessary and
sufficient conditions for there to exist a covariant system
ðM;G; αÞ such that A is isomorphic to the canonical
crossed product M⋊αG? In Sec. II B we review
Landstad’s classification theorem and use it to provide
an alternative point of specification for a crossed product as
a triple ðA; λ; δÞ, where λ∶ LðGÞ → A is a homomorphism
embedding the group von Neumann algebra inside A and
δ∶ A → A ⊗ LðGÞ is a coaction. This perspective can
largely be interpreted as a generalization of Takesaki’s
duality theorem for crossed products to the case of
arbitrary, non-Abelian locally compact groups [62].
Using Landstad’s theorem, we demonstrate that, for a
fixed covariant system ðM;G; αÞ, all crossed products

M⋊ðKÞ
α G are isomorphic to the canonical crossed product

M⋊αG and thus share in the constrained system interpre-
tation for this algebra described above.
This leads us to Sec. III A in which we outline the

relationship between crossed product algebras, quantum
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reference frames and internal reference frames. We take as
our definition of a quantum reference frame2 a covariant
system ðM;G; αÞ and demonstrate that any G-internal
frame—here defined as a Hilbert space Hr admitting a
unitary representation of the group G along with a
collection of covariantly transforming orientation states
eg—induces a covariant representation thereof. In other
words, each QRF identifies a quotient algebra satisfying a
G-constraint, with compatible internal frames quantifying
specific measurement protocols for identify the orientation
of system degrees of freedom relative to a chosen G-valued
probe. This is formulated directly in terms of Page-Wooters
reduction maps [45,46] which implement the measurement
of a chosen state’s overlap with the orientations eg. Since
any choice of covariant representation realizes an isomor-
phic crossed product algebra, we conclude that the choice
of internal frame has no bearing on the physics of the
constrained system, only the way that it is represented. In
this respect choosing an internal frame may be compared
with gauge fixing; it selects a particular representative of a
gauge orbit, but any choice results in the same gauge
invariant physics.
The above observation implies that a single crossed

product algebra is associated with a solitary QRF. This
QRF can be represented in various ways, but the physics it
describes will always be the same. To bring about a
circumstance in which QRFs become truly significant
we need to consider an algebra which is more complicated
than a single crossed product. We provide an example of
such an algebra through the simple case of a tripartite
system H ¼ H1 ⊗ H2 ⊗ H3 in which each Hi is an
internal frame for a common group G. The physical
operators in this case, by which we mean the operators
that satisfy the G-constraints of the theory, can therefore be
realized by splitting the kinematical spaceH into a ‘system’
Hs and a ‘frame’ Hr. Each such choice realizes a covariant
system ðBðHsÞ; G;AdUðsÞ Þ whose associated crossed prod-
uct algebra, AðsjrÞ, has the interpretation of dressing the
system operators relative to probe states built from oper-
ators in BðHrÞ. In other words, the operators in BðHsÞ are
made physical by conditioning their measurements on the
orientations of Hr. The full gauge invariant subalgebra of
BðHÞ is not contained in any single crossed product
algebra. Rather, we must sew together the various crossed
products AðsjrÞ to obtain a complete accounting, with
certain operators only being observable when conditioning

on a particular chosen reference frame, while others are
covered isomorphically in multiple frames.
Building upon the insights of the tripartite example, in

Sec. III C we introduce the concept of a G-framed algebra.
A G-framed algebra is an involutive Banach algebra A
along with a collection we term a ‘crossed product atlas’. In
analogy with the common use of an atlas in differential
geometric settings, a crossed product atlas is a collection of
local ‘crossed product charts’, each of which is a von
Neumann subalgebra, Ai ⊂ A, isomorphic to a crossed
product specified from the top down with symmetry group
Hi. We require that the group Hi is a quotient of the overall
symmetry group G by a subgroup Gi which will be
interpreted as the isotropy of the chart. The algebra A is
realized as a union over the crossed products contained in a
given atlas up to an equivalence relation that tracks
isomorphism between overlapping subalgebras of pairs
of charts. In other words, A is comprised of a collection
of distinct QRFs along with maps that implement a change
of frame whenever two frames mutually admit operators.
Each QRF identifies the physical, constraint quantized
physics of a particular local observer. Each operator in A
possesses a gauge invariant description, but nevertheless
every operator may not be observable in every reference
frame. In the event thatA can be covered by a single chart it
is isomorphic to a single crossed product. But in the general
case A will require multiple QRFs that are not totally
overlapping, and thus the G-framed algebra can be
regarded as a natural generalization of the crossed product.
Indeed, individual crossed product algebras are regarded as
local quotient spaces embedded inside the larger frame-
independent algebra A. This naturally lends itself to a
discussion of the Gribov ambiguity in the context of gauge
theories [52,53]. The G-framed algebra exhibits a Gribov
problem in the sense that the local crossed products
corresponding to different frames may not be isomorphic,
leading to nonoverlapping charts interpreted as incompat-
ible gauge-fixings of the theory.
We conclude our discussion of the G-framed algebra in

Secs. III D and III E. First, we formulate the semiclassical
algebra of gauge invariant observables in the static patch of
de Sitter space as a G-framed algebra. Although this
example does not take full advantage of the structure of
the G-framed algebra, it provides a good illustration of a
scenario in which having multiple QRFs is natural. This
leads into Sec. III E in which we briefly discuss the theory
of weights, states, and entropy for G-framed algebras. The
global structure of the algebra and the role of crossed
product charts therein makes it clear that typical quantities
are highly frame dependent.

II. CROSSED PRODUCT ALGEBRAS: TWO
APPROACHES

In this section we provide an introduction to crossed
product algebras. We begin in Sec. II A by reviewing the

2The reasoning behind calling the covariant system the QRF is
motivated by the top-down characterization of the crossed
product. Choosing a compatible unitary representation λ of G
implicates a dynamical system tailored for λ, if the underlying
algebra is to be a crossed product. In light of this, our definition of
the QRF is well-motivated despite not being the standard
definition in the community. We note that our definition reduces
to the standard one when the system algebra is fixed.
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construction of crossed products from what we term the
bottom-up point of view. That is, we construct a von
Neumann algebra naturally associated with a von Neumann
covariant system ðM;G; αÞ. We make a careful observation
about the possible dependence of such an algebra on a

choice of covariant representation, ðK; πðKÞα ; λðKÞÞ, paying
special attention to the so-called canonical covariant
representation induced from a faithful representation of
the algebra M. We refer to the crossed product induced by
such a representation as the canonical crossed product. In
summary, we provide three different characterizations of
bottom-up crossed products:
(1) As the von Neumann algebra generated by πðKÞα ðMÞ

and λðKÞðGÞ;
(2) As the weak closure of an involutive Banach algebra

whose elements can be interpreted as maps from the
group G into the von Neumann algebra M;

(3) As the invariant subalgebra under a modified auto-
morphism derived from α.

Strictly speaking the third characterization is unique to the
canonical crossed product.
In Sec. II B we provide an alternative perspective of the

crossed product which we term the top-down point of view.
This point of view is largely inspired by the work of
Landstad [47] which provided a complete classification of
crossed product algebras answering the questions,
(1) Under what circumstance is a given von Neumann

algebra A isomorphic to a canonical crossed product
algebra associated with some covariant system
ðM;G; αÞ?

(2) If A is isomorphic to such a crossed product, can we
construct the associated covariant system?

Using Landstad’s classification theorem we will prove that
all crossed products associated with a fixed covariant
system ðM;G; αÞ, whether generated relative to the canoni-
cal covariant representation or not, are isomorphic to the
canonical crossed product. A consequence of this obser-
vation is that all crossed products share the third charac-
terization above as an invariant subalgebra relative to an
extended G-automorphism. This will be of importance in
Sec. III A when we consider the relationship between
reference frames and crossed product algebras.

A. Bottom-up approach to crossed product algebras

A von Neumann covariant system is a triple ðM;G; αÞ
consisting of a von Neumann algebra M along with a
G-automorphism α∶ G ×M → M. A covariant representa-
tion of the covariant system ðM;G; αÞ is a triple ðK;

πðKÞα ; λðKÞÞ where K is a Hilbert space admitting representa-

tions πðKÞα ∶ M → BðKÞ and λðKÞ∶ G → UðKÞ which are
compatible with the automorphism α in the sense that

πðKÞα ∘ αgðxÞ ¼ AdλðKÞðgÞðπαðxÞÞ: ð2Þ

In other words, the automorphism is implemented unitarily
by λðKÞ. Given any representation π∶ M → BðHÞ we can
construct a canonical covariant representation HG ≡
L2ðG;HÞ ≃H ⊗ L2ðGÞ with

πα∶ M → BðHGÞ; ðπαðxÞðξÞÞðhÞ≡ π ∘ αh−1ðxÞðξðhÞÞ;
λ∶ G → UðHGÞ; ðλðhÞðξÞÞðgÞ≡ ξðh−1gÞ: ð3Þ

Here and henceforth, the canonical covariant representation
is distinguished by the absence of a superscript.
Among theoriginalmotivations behind the crossedproduct

was to associate a von Neumann algebra with a given
covariant system [62]. Given the canonical covariant repre-
sentation, we define the canonical crossed product algebra
M⋊αG as the von Neumann algebra generated by παðxÞ and
λðgÞ in the weak operator topology induced by HG. More
generally, one can construct a crossed product starting with
any covariant representation. Let ðK; πðKÞ; λðKÞÞ be a covar-
iant representation of the covariant system ðM;G; αÞ. Then,
we define the K-crossed product algebra by3

M⋊ðKÞ
α G≡ πðKÞðMÞ∨λðKÞðGÞ: ð4Þ

As it is defined, it is not clear howM⋊ðKÞ
α G andM⋊ðK0Þ

α G are
related for distinct representations K and K0. In Sec. II B we
address this point directly. In Sec. III Awe demonstrate how
standard quantum reference frames can be interpreted as
generating distinct covariant representations given a fixed
covariant system.
There exists an alternative definition of the crossed

product introduced by Haagerup [59,60]. Firstly, let

MG ≡ fX∶ G → MjX is strongly continuous; and has compact supportg: ð5Þ

The setMG can be turned into an involutive Banach algebra
by endowing it with a product and involution as given by4

ðXYÞðgÞ≡
Z
G
μðhÞαhðXðghÞÞYðh−1Þ;

ðX�ÞðgÞ≡ δðg−1Þαg−1ðXðg−1ÞÞ�: ð6Þ

Given any covariant representation ðK; πðKÞα ; λðKÞÞ we can
construct a representation ρðKÞ∶ MG → BðKÞ as given by

3Here, ∨ is the von Neumann algebraic union.
4Here δðgÞ is the module function which tracks the nonright-

invariance of the left-invariant Haar measure μ.
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ρðKÞðXÞ≡
Z
G
μðgÞλðKÞðgÞπðKÞα ðXðgÞÞ: ð7Þ

Haagerup demonstrated that the image algebra ρðKÞðMGÞ is
dense in the von Neumann algebra generated by πðKÞα ðMÞ
and λðKÞðGÞ (in the weak operator topology induced by K).
Thus, in general ρðKÞðMGÞ00 ¼ M⋊ðKÞ

α G.5

Finally, restricting our attention to the canonical crossed
product algebra M⋊αG we can describe yet a third
characterization of the crossed product which is valuable
for understanding its role in implementing constraints.
Firstly, let us note that M⋊αG can be realized as a
subalgebra of M ⊗ BðL2ðGÞÞ [44]. On the space M ⊗
BðL2ðGÞÞ we define an automorphism

θα ≡ α ⊗ Adr∶G → AutðM ⊗ BðL2ðGÞÞÞ; ð8Þ

where here,

r∶ G → UðL2ðGÞÞ; ðrðgÞðξÞÞðhÞ≡ δðgÞ1=2ξðhgÞ ð9Þ

is the regular right action on L2ðGÞ.
Alternatively, we may denote by ρ∶ G → UðHGÞ the

right representation lifted to the Hilbert space HG,

ðρðgÞξÞðhÞ≡ δðgÞ1=2ξðhgÞ: ð10Þ

Similarly, let us also denote by α̃≡ α ⊗ 1∶G → AutðM ⊗
BðL2ðGÞÞÞ the extension of the automorphism α now
acting on M ⊗ BðL2ðGÞÞ. In terms of these definitions
the automorphism (8) can equivalently be written as

θα ¼ α̃ ∘Adρ ¼ α ⊗ Adr: ð11Þ

It can be shown that the crossed product algebra M⋊αG
is the unique invariant subalgebra ofM ⊗ BðL2ðGÞÞ under
the automorphism θα,

M⋊αG ¼ ðM ⊗ BðL2ðGÞÞÞθα

≡ fO∈M ⊗ BðL2ðGÞÞjθαgðOÞ ¼ O; ∀ g∈Gg:
ð12Þ

The invariance of λðgÞ under (8) is trivially obtained
from the commutation of the left and right actions on G.
Thus, to demonstrate that M⋊αG ⊂ ðM ⊗ BðL2ðG; μÞÞÞθα
it remains only to show that θαgðπαðxÞÞ ¼ παðxÞ for every
x∈M, g∈G.

To make this observation, let us first compute explicitly
AdρðhÞðπαðxÞÞ ¼ ρðhÞπαðxÞρðh−1Þ. To do so we will act
with this operator on a generic element ξ∈HG in a
sequence of two steps. Firstly we have

ðπαðxÞρðh−1ÞξÞðgÞ ¼ παðxÞðρðh−1ÞξÞðgÞ
¼ δðhÞ−1=2π ∘ αg−1ðxÞðξðgh−1ÞÞ: ð13Þ

Here we have used (10) and (3). Next we can compute

ðρðhÞπαðxÞρðh−1ÞξÞðgÞ
¼ ρðhÞðπαðxÞρðh−1ÞξÞðgÞ
¼ δðhÞ1=2ðπαðxÞρðh−1ÞξÞðghÞ
¼ δðhÞ1=2δðhÞ−1=2π ∘ αh−1g−1ðxÞðξððghÞh−1ÞÞ
¼ π ∘ αh−1 ∘ αg−1ðxÞðξðgÞÞ: ð14Þ

At the same time, supposing that α is unitarily imple-
mented6 onH via the representation V∶ G → UðHÞwe can
write

α̃gðOÞ≡ AdVg⊗1ðOÞ; O∈M ⊗ BðL2ðGÞÞ: ð16Þ

Acting on παðxÞ∈M⋊αG ⊂ M ⊗ BðL2ðGÞÞ we have

ðα̃hðπαðxÞÞξÞðgÞ ¼ ððVh ⊗ 1ÞπαðxÞðVh−1 ⊗ 1ÞξÞðgÞ
¼ Vhπ ∘ αg−1ðxÞVh−1ðξðgÞÞ
¼ π ∘ αh ∘ αg−1ðxÞðξðgÞÞ: ð17Þ

Here we have used the fact that VhπðxÞVh−1 ¼ π ∘ αhðxÞ.
Comparing (14) with (17) we see that

AdρðhÞðπαðxÞÞ ¼ α̃h−1ðπαðxÞÞ; ð18Þ

which further implies that

α̃h ∘AdρðhÞðπαðxÞÞ ¼ παðxÞ; ð19Þ

as desired.
This completes one half of the proof of the commutation

theorem, namely demonstrating that every element in
M⋊αG is invariant under the automorphism θα. The second
half of the proof is to show that every invariant element of

5Endowing the algebra MG with a compatible ultraweak
topology one can realize the so-called C� crossed product of
M by G [63]. This algebra was originally introduced to study the
space of covariant representations of a given covariant system
ðM;G; αÞ.

6That is

π∘αgðxÞ ¼ VgπðxÞV†
g: ð15Þ

Note that this makes no assumption as to whether VðGÞ ⊂ πðMÞ,
e.g., the automorphism α need not be inner. We will revisit this
point in Sec. II B.
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M ⊗ BðL2ðGÞÞ is of this form. This exercise is less
informative and so we refer to [44] for a proof.7

B. Top-down approach to crossed product algebras

In the previous subsection we have stressed the impor-
tance of crossed product algebras for studying systems with
explicit constraints. Up to this point our perspective has
been ‘bottom up’ in the sense that we have started with an
explicit covariant system ðM;G; αÞ and subsequently
formed the associated crossed product algebra M⋊αG. In
this section we will introduce a ‘top-down’ approach in
which we begin with an arbitrary von Neumann algebra A
and a fixed locally compact group G and determine the
necessary and sufficient conditions under which A is
isomorphic to the crossed product algebra of some covar-
iant system ðM;G; αÞ. In addition, provided A is isomor-
phic to some crossed product, we present a recipe for
identifying a covariant system ðM;G; αÞ for which
A ≃M⋊αG.
To begin, let us highlight some properties of crossed

product algebras which we have not stressed in the previous
subsection. Let ðM;G; αÞ be a covariant system, and
ðHG; πα; λÞ the canonical covariant representation induced
from a faithful representation π∶ M → BðHÞ. Unless
otherwise specified, the following analysis is specialized
to the canonical crossed product algebra. We first make the
following observation: if α is strictly inner, then
M⋊αG ≃M ⊗ LðGÞ.8 Because α is inner, there exists a
homomorphism9 u∶ G → UðMÞ such that αgðxÞ ¼ ugxu�g.
Under this state of affairs we can define a unitary element
U∈UðHGÞ such that

ðUξÞðgÞ≡ πðugÞðξðgÞÞ; ∀ ξ∈HG: ð20Þ

Then the covariant representations πα and λ can be
expressed as

παðxÞ¼U†ðπðxÞ⊗1ÞU; λðgÞ¼U†ðπðugÞ⊗lðgÞÞU:

ð21Þ

The crossed product is given by παðMÞ∨λðGÞ and thus is
unitarily equivalent to the von Neumann algebra generated
by πðxÞ ⊗ 1 and πðugÞ ⊗ lðgÞ.

More generally, so long as α is implemented unitarily on
H we can still write formulas which are reminiscent of (20)
and (21). That is, we suppose that there exists a unitary
representation10 V∶ G → UðHÞ such that

π ∘ αgðxÞ ¼ VgπðxÞV†
g: ð22Þ

Then, we can redefine

ðUξÞðgÞ≡ VgðξðgÞÞ; ð23Þ

and by extension write

παðxÞ¼U†ðπðxÞ⊗1ÞU; λðgÞ¼U†ðVg⊗lðgÞÞU: ð24Þ

The caveat of course is that Vg needn’t be in πðMÞ for each
g and hence Vg ⊗ lðgÞ needn’t be in πðMÞ ⊗ λðGÞ.
One upshot of the previous discussion is that to realize

nonfactorizable crossed product algebras we need to con-
sider outer actions. The second observation, however, is
that we can use the inner automorphism AdλðgÞ to reframe
the analysis of M⋊αG in terms of a tensor product algebra.
In particular, we concentrate our analysis on the Hilbert
space L2ðG;HGÞ ≃ L2ðG × G;HÞ ≃HG ⊗ L2ðGÞ. On this
space we can always define a unitary operator
W ∈UðL2ðG;HGÞÞ by

ðWξÞðg; hÞ ¼ ξðg; ghÞ; ξ∈L2ðG;HGÞ: ð25Þ

The operator W implements a mapping δ∶ M⋊αG →
ðM⋊αGÞ ⊗ LðGÞ given by

δðXÞ≡W†ðX ⊗ 1ÞW: ð26Þ
The map defined in (26) is a normal isomorphism and is
referred to as a coaction on M⋊αG.

11 By analogy to the
previous argument ðM⋊αGÞ ⊗ LðGÞ can be interpreted as
the ‘double’ crossed product ðM⋊αGÞ⋊AdλG.

12

It is instructive to evaluate (26) when acting on the
generators of the crossed product. By a straightforward
computation one can show,

δðπαðxÞÞ ¼ παðxÞ ⊗ 1; δðλðgÞÞ ¼ λðgÞ ⊗ lðgÞ: ð27Þ

In words, the image of M inside the crossed product is
‘invariant’ under the coaction, while the image ofG obtains

7In Appendix A an analogous computation is carried out in the
context of the extended phase space, which (in a local triviali-
zation) may be interpreted as the classical analog of the crossed
product. The computation in (A21) is remarkably similar in form
to the commutation theorem. Essentially, one shows that dressed
observables in the extended phase space are invariant under the
right action of the structure group G because they are acted upon
by compensating actions analogous to α̃ and Adρ.

8Here, LðGÞ is the group von Neumann algebra associated
with G as reviewed in Appendix B.

9Here UðMÞ ⊂ M is the set of unitary elements in M.

10We recall that any automorphism will automatically be
unitarily implemented in a standard representation of a given
von Neumann algebra [61].

11The map δ is called a coaction because it induces a
representation of the predual LðGÞ� on the predual ðM⋊αGÞ�.12In the case that G is an Abelian group the coaction δ is
equivalent to an action by the Pontryagin dual group. The
‘double’ crossed product is then explicitly the double crossed
product ofM first by the group action and then by the dual group
action.
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a new tensor factor corresponding to the regular left action.
In the specific case that M ¼ C so that the crossed product
is merely isomorphic to LðGÞ the coaction defines a map
δG∶ LðGÞ → LðGÞ⊗2 by

δGðlðgÞÞ ¼ lðgÞ ⊗ lðgÞ: ð28Þ

From Eq. (27) we find13

ðδ⊗ iÞ∘δðπαðxÞÞ¼παðxÞ⊗1⊗1¼ði⊗ δGÞ∘δðπαðxÞÞ;
ðδ⊗ iÞ∘δðλðgÞÞ¼ λðgÞ⊗lðgÞ⊗lðgÞ¼ði⊗ δGÞ∘δðλðgÞÞ:

ð29Þ

Since παðMÞ and λðGÞ together generate the full crossed
product algebra we conclude that

ðδ ⊗ iÞ ∘ δ ¼ ði ⊗ δGÞ ∘ δ: ð30Þ

We are now prepared to state Landstad’s classification of
the space of G-crossed product algebras [47]:
Theorem 1. (Landstad’s Classification Theorem) Let A

be a von Neumann algebra and G a locally compact group.
The algebra A is isomorphic to a (regular) crossed product
M⋊αG for some covariant system ðM;G; αÞ if and only if
there exists a continuous homomorphism λ∶ G → A and a
coaction δ∶ A → A ⊗ LðGÞ satisfying

δðλðgÞÞ ¼ λðgÞ ⊗ lðgÞ; ∀ g∈G;

ðδ ⊗ iÞ ∘ δðXÞ ¼ ði ⊗ δGÞ ∘ δðXÞ; ∀ X∈A: ð31Þ

What is more, the covariant system ðM;G; αÞ is determined
uniquely by δ and λ as

M¼fX∈AjδðXÞ¼X⊗1g;
α∶G→AutðMÞ; αgðXÞ¼ λgXλ�g; g∈G;X∈M: ð32Þ

Landstad’s theorem establishes that a crossed product
algebra can be specified uniquely by the triple ðA; δ; λÞ. We
refer to this as the top-down specification of a crossed
product, in contrast to the covariant system ðM;G; αÞ
which we refer to as a bottom-up specification.
Let ðA; λ; δÞ be a crossed product algebra specified from

the top down with associated covariant system ðM;G; αÞ.
As we have reviewed in Appendix B, the algebra LðGÞ
comes equipped with a natural faithful, semi-finite, normal
weight γ called the Plancherel weight. On the algebra
A ⊗ LðGÞ, the Plancherel weight defines a slice map
Pγ∶ A ⊗ LðGÞ → A such that

φ ∘PγðXÞ ¼ φ ⊗ γðXÞ; X ∈A ⊗ LðGÞ;φ∈A�: ð33Þ

In other words, Pγ can be interpreted as a partial trace on
A ⊗ LðGÞ with respect to the Plancherel weight.
Composing the map Pγ with the map δ we obtain a map
Tγ∶Pγ ∘ δ∶A → A. The map Tγ is closely related to
Haagerup’s operator-valued weight introduced in [59]. In
particular, imðTγÞ ¼ M and

TγðxXyÞ ¼ xTγðXÞy; x; y∈M;X∈A: ð34Þ

The map Tγ provides an alternative point of view on the
top-down specification of the crossed product in terms of
the sequence of maps,

LðGÞ⟶λ
A⟶

T
M: ð35Þ

In other words, we may regard the top-down specification
of the crossed product as a triple ðA; λ; TγÞ, where λ is a
homomorphism embedding the group von Neumann alge-
bra into A and Tγ is an operator-valued weight projecting A
into the von Neumann algebra M.
We note in passing that this perspective of the top-down

specification of the crossed product is very evocative of the
relationship between the crossed product and the extended
phase space [42]. The sequence (35) is analogous to that
which defines the Atiyah Lie algebroid associated with the
extended phase space,

ð36Þ

Here, in the case of the Lie algebroid, we have specified a
second sequence in terms of the maps ðσ;ωÞwhich together
encode the data of a principal connection. In Sec. III wewill
specify a lower sequence on the diagram (35) with the
interpretation of specifying a trivial splitting, i.e., the
algebraic analog of a flat connection. In future work we
intend to explore the interpretation of nontrivial splittings
of the sequence (35) in an effort to interpret holonomy and
curvature in the context of crossed product algebras as we
will discuss in Sec. IV C below.
Given Landstad’s theorem we can now revisit the

question posed in Sec. II A about the relationship between
crossed product algebras derived from noncanonical covar-
iant representations. Let ðM;G; αÞ be a fixed covariant

system and ðK; πðKÞα ; λðKÞÞ a covariant representation. The

K-crossed product algebra, M⋊ðKÞ
α G, is the von Neumann

algebra generated by πðKÞα ðMÞ and λðKÞðGÞ. We may now

apply Landstad’s theorem directly to the algebra M⋊ðKÞ
α G.

Clearly this algebra admits a homomorphism

λðKÞ∶ G → M⋊ðKÞ
α G. Moreover, we can construct a coac-

tion δðKÞ∶ M⋊ðKÞ
α G → M⋊ðKÞ

α G ⊗ LðGÞ by specifying its
action on the generators as

13Here i denotes the appropriate identity map relative to the
tensor factor it acts upon.
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δðKÞðπðKÞα ðxÞÞ≡ πðKÞα ðxÞ ⊗ 1;

δðKÞðλðKÞðgÞÞ≡ λðKÞðgÞ ⊗ lðgÞ: ð37Þ

By analogy to (27) it is easy to conclude that this coaction
satisfies the conditions of Landstad’s theorem and thus we
conclude that M⋊αG is isomorphic to some canonical
crossed product. The covariant system associated with this

crossed product is ðπðKÞα ðMÞ; G;AdλðKÞ Þ, however as

πðKÞα ðMÞ is isomorphic to M and λðKÞ implements the

automorphism α on πðKÞα ðMÞ the aforementioned covariant
system is equivalent to ðM;G; αÞ. Thus, we conclude that

M⋊ðKÞ
α G ≃ πðKÞðMÞ⋊Ad

λðKÞ
G ≃M⋊αG: ð38Þ

Equation (38) implies that all K-crossed products asso-
ciated with a given covariant system ðM;G; αÞ are iso-
morphic to the canonical crossed product M⋊αG, and thus
are also isomorphic to each other. In particular, this means
that every K-crossed product shares in the invariant
operator interpretation of the crossed product associated
with the commutation theorem.

III. ALGEBRAIC QUANTUM REFERENCE
FRAMES

In Sec. II we explored several different interpretations for
crossed product algebras. In Sec. II A we raised the
question of whether crossed product algebras generated
from different covariant representations of a common
covariant system are equivalent. Using Landstad’s classi-
fication theorem, we answered this question in the affirma-
tive at the end of Sec. II B. In this section wewill provide an
interpretation for distinct covariant systems as QRFs with
noncanonical covariant representations of a given covariant
system corresponding to an internal frame. From this point
of view, the statement that all K-crossed product algebras
are isomorphic implies that the crossed product algebras
induced from different internal frames are always equiv-
alent, provided these reference frames are appended to
common ‘system’ algebras, i.e., common QRFs. This can
be interpreted as a statement of gauge invariance.
The aforementioned conclusion, that all internal frames

give rise to the same crossed product algebras when
appended to a common QRF, inspires the observation that
the relevance of QRFs can only be fully appreciated in the
context of an algebra which is more sophisticated than a
single crossed product. This observation is substantiated by
the example of a tripartite quantum system in which the set
of physical operators is not covered by a single crossed
product algebra, but rather by a collection of distinct
crossed product algebras along with transition maps iden-
tifying these algebras wherever they intersect. This inspires
the introduction of a new algebraic object we refer to as a
G-framed algebra which one may interpret as a kind of

noncommutative analog of an orbifold14 with fundamental
symmetry groupG. We provide a discussion of the utility of
theG-framed bundle in articulating the Gribov problem in a
fully quantum context in Sec. III C, and in delineating
between frame-dependent and frame-independent quan-
tities in Sec. III E.

A. Crossed products and quantum reference frames

In this subsection we demonstrate that, given a fixed
quantum reference frame, any internal frame can be used to
induce a covariant representation and by extension a
crossed product algebra. By Eq. (38) this crossed product
will be isomorphic to a canonical crossed product and thus
the internal frame may be interpreted as dressing operators
to implement a particular constraint. In this context we can
construct this constraint very explicitly.
In the following, we shall take as our definition of a QRF

as the specification of a fixed covariant system ðM;G; αÞ;
in the following section the reasoning behind this definition
will become clear. Relative to such a choice, we define an
internal frame as follows:
Definition 1. (Internal reference frame) Given a locally

compact group G, a G-internal frame (or simply internal
frame for short) is a Hilbert space Hr which admits a
unitary representation UðrÞ∶ G → UðHrÞ along with a
(potentially overcomplete) basis of orientation states

feðrÞg ∈Hrgg∈G transforming covariantly under UðrÞ,

UðrÞðgÞeðrÞh ¼ eðrÞgh : ð39Þ

Although it is not strictly necessary, we suppose that the

states eðrÞg are delta-function normalized so that

grðeðrÞg ; eðrÞh Þ ¼ δðg; hÞ; ð40Þ

with δðg; hÞ the delta function relative to the left-invariant
Haar measure on G.
Now, suppose that ðM;G; αÞ is a von Neumann covariant

system, that is a QRF, and that M admits a faithful
representation π∶ M → BðHsÞ on a ‘system’ Hilbert space
Hs. Then, we have the following claim:
Theorem 2. (Covariant representation induced by an

internal frame) For any internal frame Hr the Hilbert space
H ≡Hs ⊗ Hr admits a covariant representation of the
covariant system ðM;G; αÞ.
To prove this theorem let us make two observations.

First, by assumption of (over)completeness, the orientation
states define a resolution of the identity,

14Orbifolds are technically quotients of manifolds under a
finite group action, but in this work we consider general locally
compact groups G.
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1Hr
¼

Z
G
μðgÞgrðeðrÞg ; ·ÞeðrÞg : ð41Þ

Thus, any vector Ψ∈H can be decomposed as

Ψ ¼ ð1Hs
⊗ 1Hr

ÞΨ ¼
Z
G
μðgÞgrðeðrÞg ;ΨÞ ⊗ eðrÞg

≡
Z
G
μðgÞfðsjrÞΨ ðgÞ ⊗ eðrÞg : ð42Þ

The mapping R∶ G ×H → Hs which identifies the coef-
ficients of the expansion in (42) is called the Page-Wooters
map [31,45,46,64],

RgðΨÞ ¼ grðeðrÞg ;ΨÞ≡ fðsjrÞΨ ðgÞ; ð43Þ

and can be interpreted as measuring the state Ψ along the

projection induced by eðrÞg . Notice that (42) identifies
elements Ψ∈H with square integrable maps from G into

Hs, fðsjrÞΨ ∈L2ðG;HsÞ. In this respect, the fact that Hr

admits a basis of orientation states labeled by group elements
implies thatH is (at least) a Hilbert subspace of the canonical
covariant representation space H ⊂ L2ðG;HsÞ.
The second observation is that the unitary representation

UðrÞ induces a unitary representation λðrÞ ≡ 1Hs
⊗ UðrÞ∶

G → UðHÞ. Moreover, (39) implies that

λðrÞðhÞΨ ¼
Z
G
μðgÞfðsjrÞΨ ðgÞ ⊗ UðrÞðhÞeðrÞg

¼
Z
G
μðgÞfðsjrÞΨ ðgÞ ⊗ eðrÞhg

¼
Z
G
μðkÞfðsjrÞðh−1kÞ ⊗ eðrÞk : ð44Þ

To move from the second to the third line in (44) we have
used the left invariance of the Haar measure. Thus, we
conclude that the unitary representation λðrÞ acts on H in
precisely the same way as the left regular representation of
L2ðG;HsÞ provided we restrict our attention to the coef-

ficients fðsjrÞΨ .
Having made these observations let us now propose

πðrÞα ∶ M → BðHÞ such that,

πðrÞα ðxÞΨ≡
Z
G
μðgÞπ ∘ αg−1ðxÞðfðsjrÞΨ ðgÞÞ ⊗ eðrÞg : ð45Þ

Of course, πðrÞα is modeled on the canonical representation
(3). It is therefore straightforward to show that

πðrÞα ∘ αgðxÞ ¼ AdλðrÞðgÞðπðrÞα ðxÞÞ: ð46Þ

Thus, we conclude that ðH; πðrÞα ; λðrÞÞ is a covariant repre-
sentation of the covariant system ðM;G; αÞ, completing the
proof of our theorem.

Recalling the general construction under Eq. (3), we can
use the covariant representation ðH; πðrÞα ; λðrÞÞ to construct a
(noncanonical) crossed product,

M⋊ðrÞ
α G≡ πðrÞα ðMÞ∨λðrÞðGÞ: ð47Þ

Although (38) implies that this crossed product is iso-
morphic to the canonical crossed product, we will find it
advantageous to continue to stress the representationHr. In
later discussions, we will interpret an internal frame as a
form of gauge fixing, and so one may interpret the internal
frame label as identifying such a choice.
By an argument completely analogous to Eqs. (8)–(19) it

can be shown that all of the elements of M⋊ðrÞ
α G are

invariant under a modified automorphism induced from α

and eðrÞg . To be precise, first let us define the right

representation UðrÞ∶ G → UðHrÞ by its action on the
orientation states, i.e., such that

UðrÞðgÞeðrÞh ≡ δðhÞ−1=2eðrÞhg−1 : ð48Þ

Then, we can define a right representation ρðrÞ ≡ 1 ⊗
UðrÞ∶G → UðHÞ which acts as

ρðrÞðhÞΨ ¼
Z
G
μðgÞfðsjrÞΨ ðgÞ ⊗ UðrÞðhÞeðrÞg

¼
Z
G
μðgÞδðhÞ−1=2fðsjrÞΨ ðgÞ ⊗ eðrÞ

gh−1

¼
Z
G
μðkÞδðhÞ1=2fðsjrÞΨ ðkhÞ ⊗ eðrÞk : ð49Þ

Here, we have used the fact that μðkhÞ ¼ δðhÞμðkÞ. Thus,
we conclude that the induced right representation ρðrÞ

reproduces (10) when acting on the components fðsjrÞΨ ðgÞ.
Denoting by α̃≡ α ⊗ 1 the extension of the automor-

phism α to the algebra M ⊗ BðHrÞ we may therefore
define an extended automorphism action,

θðrÞ ≡ α̃ ∘AdρðrÞ∶G → AutðM ⊗ BðHrÞÞ: ð50Þ

Then, by the argument laid out between Eqs. (8)–(19) we
conclude that

θðrÞðπðrÞα ðxÞÞ ¼ πðrÞα ðxÞ; θðrÞðλðrÞðgÞÞ ¼ λðrÞðgÞ;
∀ x∈M; g∈G; ð51Þ

which implies that M⋊ðrÞ
α G is contained in the fixed point

subalgebra of M ⊗ BðHrÞ under the extended action θðrÞ.
Thus, we have shown that the relational crossed products

M⋊ðrÞ
α G also retain the constraint based interpretation of the

canonical crossed product.
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At the end of the day, Landstad’s theorem provides a
justification for the aforementioned observations. Any
fixed covariant system ðM;G; αÞ with internal frame Hr
is isomorphic to the canonical crossed product induced by
that covariant system. Nevertheless, as we will now
demonstrate, a single kinematical algebra may possess
many different nonisomorphic covariant systems, i.e.,
many different QRFs, which are only compatible with
select internal frames. The ability to pass from a fixed
covariant system equipped with a chosen internal frame to a
crossed product algebra will therefore provide us with a
rigorous tool for comparing and mapping between the
physics of different QRFs. This is crucial if we want to fill
out the complete algebra of physical observables in a given
system.

B. Systems with multiple reference frames

In the previous subsection we presented an approach to
realizing crossed product algebras directly from given
covariant systems with compatible internal frames. In this
subsection we introduce a natural example in which a given
kinematical system possesses many possible covariant
systems. In this case one has a choice as to how they
wish to divide degrees of freedom into system and probe.
Choosing different QRFs identify different physical oper-
ators. In this respect, the physical operators identified by
any individual QRF may not be sufficient to cover the full
set of physical operators that exist inside of the original
kinematical algebra. To counter this observation, we will
introduce an approach to sewing together multiple QRFs
and their associated crossed product algebras to realize a
larger algebra coinciding with the complete set of physical
operators. In Sec. III C we will formalize this construction.

Let H ¼ H1 ⊗ H2 ⊗ H3 be a tripartite Hilbert space.
Suppose that each Hi is an internal frame for a common
locally compact group G, so that each Hilbert space
possesses an (over)complete basis of orientation states

eðiÞg with compatible left UðiÞ and right UðiÞ actions.
Then, one can implement G as a constraint group for
the overall system H by forming all different distributions
of its kinematical degrees of freedom into internal frame
and system. Each such choice will identify a different QRF.
In particular, for any permutation ðijkÞ∈ S3 one can take
Hr ¼ Hk for any k leaving Hs ¼ Hi ⊗ Hj, or vice versa
Hr ¼ Hi ⊗ Hj leaving Hs ¼ Hk. In other words, the
set of QRFs are indexed by bipartitions of the set
f1; 2; 3g. Let us denote such a bipartition as ðsjrÞ with s
referring to the selection of system degrees of freedom and
r a frame.
The crossed product associated with the partition ðsjrÞ

acts on the Hilbert space HðsjrÞ ¼ Hs ⊗ Hr with
Hs≡ ⊗i∈ s Hi and Hr≡ ⊗i∈ r Hi. A general state in
Ψ∈HðsjrÞ can be written as

Ψ ¼
Z
G
μðgÞfðsjrÞΨ ðgÞ ⊗ eðrÞg ; eðrÞg ≡ ⊗

i∈ r
eðiÞg ; ð52Þ

where fðsjrÞΨ is obtained by acting on Ψ with Page-Wooters

maps derived from the projectors of eðrÞg .15 Acting on HðsjrÞ
we can construct the representations λðsjrÞ∶ G → UðHðsjrÞÞ
and πðsjrÞ∶ BðHsÞ → BðHðsjrÞÞ by direct analogy to (44)
and (45). To be precise,

λðsjrÞðgÞ≡ 1Hs
⊗ UðrÞðgÞ; UðrÞðgÞ≡ ⊗

i∈ r
UðiÞðgÞ;

πðsjrÞðOÞΨ≡
Z
G
μðgÞAdUðsÞðgÞðOÞfðsjrÞΨ ðgÞ ⊗ eðrÞg ; UðsÞðgÞ≡ ⊗

i∈ s
UðiÞðgÞ: ð53Þ

The triple ðHðsjrÞ; πðsjrÞ; λðsjrÞÞ defines a covariant repre-
sentation for the covariant system ½Ms ≡ BðHsÞ;
G; αðsjrÞ ≡ AdUðsÞ �. We emphasize here that the choice of
QRF has also privileged a particular covariant system and
in this respect the crossed products induced by different
QRFs will not be trivially isomorphic. Nevertheless, the
resulting crossed product from any fixed QRF will be
isomorphic to the canonical crossed product of its asso-
ciated covariant system.
Using the covariant representation on HðsjrÞ we define

the relational crossed product as

AðsjrÞ ≡ πðsjrÞðMsÞ∨λðsjrÞðGÞ: ð54Þ

All of the operators in AðsjrÞ are invariant under the

automorphism θðsjrÞ ≡ α̃ðsjrÞ ∘AdρðrÞ , with ρðrÞ the right
representation associated with the frame. Notice that each
algebra AðsjrÞ is contained inside of the original kinematical
algebra BðHÞ. This is because the dressed operators
πðsjrÞðMsÞ are isomorphic to BðHsÞ ⊂ BðHÞ and the group

15We should note that in some examples considered in
the literature [34] the orientation states resolve the identity only
for a subspace Kr ⊂ Hr. In this case one should take
HðsjrÞ ¼ Hs ⊗ Kr. Nevertheless, this does not change the fact
thatHðsjrÞ is a covariant representation space and so the rest of the
analysis goes through unchanged.
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representations λðsjrÞðGÞ come from the group representa-
tions UðiÞðGÞ which are also inner relative to BðHÞ. Thus,
one may interpret each AðsjrÞ as a distinct subalgebra of
physical operators under the constraint group G. Although
the algebras associated with different system/frame divi-
sions are generally distinct they may share some elements.
For example, Að12j3Þ has a system algebra which is
isomorphic to BðH1Þ ⊗ BðH2Þ, but these operators are
also contained in, e.g., Að1j23Þ, Að2j31Þ, Að23j1Þ, and Að31j2Þ.
Nevertheless, it is also clear that Að12j3Þ and Að1j23Þ do
not share all of their elements and are therefore not
isomorphic.
Roughly speaking, the full set of physical operators in

BðHÞ corresponds to the union of each AðsjrÞ modulo the
intersections described above. Schematically, we define
this algebra by16

Aphys ≡ ∪
ðsjrÞ∈P2ð3Þ

AðsjrÞ= ∼ : ð55Þ

The equivalence relation in (55) can be interpreted
as encoding change of frame data relating physical
operators in different reference frames whenever the
resulting relational crossed products share isomorphic
subalgebras. We shall describe these maps in detail
now. We will then use these change of frame maps to

address the problem of endowing the set Aphys with an
algebraic structure.
By Landstad’s construction, each AðsjrÞ fits into a

sequence,

LðGÞ⟶λ
ðs∣rÞ

Aðs∣rÞ⟶
Tðs∣rÞ

Mðs∣rÞ; ð56Þ

where λðsjrÞ is a homomorphism and TðsjrÞ is an operator-
valued weight. We can fill out this sequence by incorpo-
rating maps,

ð57Þ

with πðsjrÞ the dressing map and ϖðsjrÞ is defined by17

ϖðsjrÞ ∘ λðsjrÞðgÞ ¼ g; ϖðsjrÞ ∘ πðsjrÞðxÞ ¼ e: ð58Þ

Now, suppose that two relational crossed products
included in Aphys admit subalgebras which are isomorphic
to each other. In particular, let Uðs1jr1Þ ⊂ Aðs1jr1Þ and
Uðs2jr2Þ ⊂ Aðs2jr2Þ be von Neumann algebras admitting
isomorphisms Λi→j∶ UðsijriÞ → UðsjjrjÞ. Then we can put
together the sequences restricted to these subalgebras to
obtain the following commutative diagram:

ð59Þ

Equation (59) identifies change of frame maps relating
system to system and frame to frame degrees of freedom,

ΛðSÞ
i→j¼TðsjjrjÞ∘Λi→j ∘πðsijriÞ; ΛðRÞ

i→j¼ λðsjjrjÞ∘Λi→j ∘ϖðsijriÞ:

ð60Þ

As we have stressed, the change of frame map Λi→j is
valid only on subalgebras of AðsijriÞ and AðsjjrjÞ which are
isomorphic. To emphasize the physical interpretation of
Aphys and understand its underlying product structure it will

be useful to define extended change of frame maps which
are valid over the full algebras. Let Uij

ðsijriÞ be the maximal

subalgebra of AðsijriÞ ‘intersecting’ with AðsjjrjÞ in the sense
described above. Then, we define the following map
Λext
i→j∶ AðsijriÞ → AðsjjrJÞ,

16Here P2ð3Þ is the set of all bipartitions of f1; 2; 3g.

17As we shall discuss, one can imagine a more general
construction in which the maps of the lower sequence of (57)
are promoted to allow for the possibility that the sequence is not
exactly split. This would be the analog of introducing a nontrivial
group extension or, comparing to the extended phase space,
having nontrivial curvature.
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Λext
i→jðXÞ≡

8<
:

Λi→jðXÞ X∈Uij
ðsijriÞ

1Aðsj jrjÞ
X ∉ Uij

ðsijriÞ:
ð61Þ

The interpretation of (61) is that it implements the isomor-
phism between AðsijriÞ and AðsjjrjÞ on ‘overlaps’ and simply
projects operators from AðsijriÞ which are nonoverlapping
with AðsjjrjÞ to the identity. Physically, this communicates
the fact that if an operator lies completely outside of a given
relational crossed product it is inaccessible to the observer
whose QRF defines that algebra.
We are now prepared to define a product structure on

Aphys. GivenX;Y∈Aphys we first ask whether there exists a
single relational crossed product algebra AðsjrÞ such that
X;Y∈AðsjrÞ. Here we are regarding inclusion up to
isomorphism induced by the change of frame maps (59).
If such an algebra exists, we take the product X ·Y simply
to be the product between these elements regarded as
operators in AðsjrÞ. If such an algebra does not exist we take
the product X ·Y ¼ 1. In the former case we say that the
operators X and Y are mutually observable. In the latter
case, we say that they are not mutually observable. The
product between nonmutually observable operators in Aphys

must be in the algebra C1; this coincides with the fact that
such operators cannot be composed because they only exist
in nonmutually consistent QRFs.
Hopefully throughout this discussion it has become clear

that the object Aphys has the complexion of an algebraic
manifold of some kind. The various crossed product
algebras contained within this overarching algebra play
the role of charts, with the change of frame maps (59)
informing the relationship between charts on mutually
intersecting subsets. In this context we have been forced
to carefully sort out more details than are present in the
manifold case since we have to carry over algebraic data.
Nevertheless, it has become clear that such an object is
necessary to carefully encode all of the physical operators
that are present in a system with numerous different QRFs.
In the next subsection we formalize these observations into
the definition of a novel algebraic object that encodes the
data of all QRFs accessible in a given physical setting with
constraint group G.

C. The G-framed algebra

Building upon the observations of the previous section,
we are now prepared to make our definition of a G-framed
algebraA. To do so we proceed in a series of steps that may
be familiar from the construction of objects like manifolds
and orbifolds [51].
Let A be an involutive Banach algebra. A crossed

product chart for a subalgebra A ⊂ A is a triple
ðÃ; G;ϕÞ with G a locally compact group, Ã a G-crossed
product algebra, and ϕ∶ Ã → A a map that induces an

isomorphism between Ã and A. Given two crossed product
charts Ci ≡ ðÃi; Gi;ϕiÞ, i ¼ 1, 2, an embedding of C1 into
C2 is an algebra inclusion λ∶ Ã1 ↪ Ã2 such that
ϕ1 ¼ ϕ2 ∘ λ. Similarly, we say that the charts C1 and C2

overlap if there exists a chart C12 ¼ ðÃ12; G12;ϕ12Þ which
is embedded within both C1 and C2.
A crossed product atlas for A is a collection of crossed

product charts, A≡ fðÃi; Gi;ϕiÞgi∈ I , that ‘cover’ A and
are locally compatible. By cover we mean that A is
contained in the set union of ϕiðAiÞ,

A ⊂ ∪
i∈ I

ϕiðÃiÞ: ð62Þ

The consideration of local compatibility recognizes that the
union in (62) may overcount the elements inA if the charts
are overlapping. Thus, we require that for any two charts
Ci ¼ ðÃi; Gi;ϕiÞ, i ¼ 1, 2, and any element X∈A which
is contained (algebraically) in both ϕ1ðÃ1Þ and ϕ2ðÃ2Þ, that
there exists a third chart C12ðÃ12; G12;ϕ12Þ for which
(a) X∈ϕ12ðÃ12Þ and (b) C12 is mutually embedded within
both C1 and C2. In other words, C12 is an overlap between
C1 and C2.
Notice that the pair of embeddings λ1∶ C12 ↪ C1 and

λ2∶ C12 ↪ C2 implicitly define an isomorphism Λ1→2∶
λ1ðC12Þ → λ2ðC12Þ. This is the change of frame map. We
say that two charts are equivalent if they can each be
embedded into the other, and denote this equivalence by ∼.
The algebra A is equal to the union over the charts in a
crossed product atlas modulo this equivalence,

A ¼ ∪
i∈ I

ϕiðÃiÞ= ∼ : ð63Þ

An atlasA is called a refinement of an atlas B if every chart
in A admits an embedding of a chart in B. Two atlases are
deemed equivalent if they share a common refinement, and
an atlas is called minimal if it cannot be further refined.
Finally, A is a G atlas if, for each chart C ¼ ðÃ; H;ϕÞ∈A
the group H is a subgroup of G.
We can now introduce the G-framed algebra.
Definition 2. (G-framed algebra) Given a locally com-

pact group G a G-framed algebra is an involutive Banach
algebra A along with an equivalence class of G-atlases.
Notice that a G-framed algebra whose minimal atlas

consists of a single chart is nothing but a crossed product
algebra. In this respect the G-framed algebra is a natural
generalization of the crossed product. Relative to the
discussion in Sec. III B we see that Aphys is a G-framed
algebra in which each crossed product chart gives rise to a
G-crossed product. More generally, the G-framed algebra
can be regarded as the algebraic analog of an orbifold with
individual crossed product charts coinciding with local
trivializations therein. These local trivializations need not
be isomorphic, and may identify different symmetry
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subgroups H ⊂ G or ‘system algebras’ M which should be
interpreted as encoding the physics accessible to a local
observer. In other words, each local chart encodes the QRF
of a particular observer.
It is profitable to think of a G-framed algebra as a global

model for the quotient of a kinematical algebra by the
action of the group G. In Appendix C we provide an
alternative perspective on formulating such a quotient via
Rieffel induction, which has been hypothesized to be a
quantum analog of symplectic reduction. We provide some
speculation on the relationship between Rieffel induction
and the G-framed algebra, but a more rigorous exploration
of this is left for follow-up work.
As motivation for the construction of the G-framed

algebra, let us recall the corresponding classical problem.
What we will see is that the G-framed algebra addresses the
same issues that are familiar from the point of view of the
Gribov ambiguity. Let us be precise about what we mean
here by considering the problem of symplectic reduction in
a classical gauge theory. Recall that the extended phase
space18 Xext is a symplectic manifold with symplectic form
Ω admitting a symplectomorphic action R∶ G × Xext →
Xext by the group G which we deem to be a gauge
redundancy. In a typical gauge theory this redundancy is
encoded via a series of constraints Ci∶ Xext → R, one for
each generator of the Lie algebra of the group G, which are
functions on Xext vanishing on physical phase space
configurations. The constraint surface inside Xext is the
locus of points where all of the constraints are mutually
met. As we will discuss, this constraint surface will be
identified with a quotient space Xext=G which generically
must be described by an orbifold atlas; the classical
counterpart of the crossed product atlas for a G-framed
algebra.
Working in a local region U ⊂ Xext we can introduce a

symplectic potential θ such that Ω ¼ dθ. In [43] it was
demonstrated that there exists a canonical transformation
which puts the symplectic potential into the form,

θ ¼ θ̃ þ θG; ð64Þ

where

θG ¼
X
i

Ciϖ
i ð65Þ

with fCig the constraints and ϖi corresponding Maurer-
Cartan forms, regarded as 1-forms on Xext. This structure
corresponds to the fact that the constraints generate the
gauge symmetries on phase space. θ̃ is a 1-form on the
quotient space U=G involving ‘dressed’ variables which

may be identified with orbits under the actionG; choosing a
particular representative for the form θ̃ corresponds to a
choice of gauge fixing. Implementing the constraints then
reduces θ to θ̃.
A natural question to ask is how large we can make the

region U before the local description (64) breaks down.
Consider the tangent bundle TXext; then we may regard θG
as defining a distribution D ⊂ TXext. This means that θG
pulls back to zero on D. Setting n ¼ dimG, the form
∧n dθG, if nonzero, can be thought of as a volume form on
the normal bundle and this will be true in all of U. If we try
to extend the description (64) beyond U, however, there
may be points at which ∧n dθG ¼ 0. At these points we
conclude that two or more of the constraints have become
linearly dependent. This will occur at points in the phase
space where the group G acts with nontrivial isotropy.
Recall that the isotropy group at a point x∈Xext is given by

Gx ≡ fg∈GjRgðxÞ ¼ xg: ð66Þ

At such a point the description (64) breaks down. Roughly
speaking, there are less constraints being imposed upon the
phase space than would naively be expected, and so the size
of the quotient Xext=G at such a point will be larger than is
implied by the local quotient U=G. Instead, such a point
should fit into a local chart V ⊂ Xext admitting a decom-
position,

θðVÞ ¼ θ̃ðVÞ þ θðVÞHV
; ð67Þ

where θ̃ðVÞ is a one form on the quotient space V=HV with

HV ≡G=GV and θðVÞHV
consists of constraints associated

with the active constraint group HV .
In general, the extended phase space can be covered by a

series of charts defined by pairs ðU;HUÞ where U ⊂ Xext is
an open subset and HU ¼ G=GU is the quotient of the
overall constraint group by the isotropy of the setU. In each
chart the symplectic potential can be brought into the form,

θðUÞ ¼ θ̃ðUÞ þ θðUÞ
HU

; ð68Þ

where θ̃ðUÞ identifies canonical pairs in the local quotient

U=HU, and θðUÞ
HU

collects the active constraints. Strictly
speaking, this implies that the extended phase space has the
structure of a G-bundle over a quotient space Xext=Gwhich
is rigorously described as an orbifold. The collection of
charts ðU;HUÞ define an orbifold atlas, provided they are
constrained by appropriate conditions on overlaps [51]. In
this sense, we see that the extended phase space possesses a
global structure which closely mimics that of the G-framed
algebra. Each local chart describes gauge-fixed physics in
terms of a quotient space U=HU of dressed phase space
fields. Heuristically, one may think of the charts of the

18A brief introduction to the extended phase space can be
found in Appendix A. For a more complete introduction we refer
the reader to [43].
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G-framed algebra as emerging from a canonical quantiza-
tion of these orbifold charts.
The fact that Xext must be covered by multiple charts is a

manifestation of what is usually referred to as the Gribov
ambiguity. However, we should also note that the obser-
vation above goes beyond what is typically regarded as the
Gribov problem. To understand this point, let us consider a
special case in whichG acts freely on Xext, i.e., the isotropy
group Gx ¼ feg for every x∈Xext. In this case the quotient
Xext=G is a manifold, and thus Xext can be regarded as a
principal G-bundle. A different way of understanding this
is that all of the constraints are active in each local chart and
thus, although one requires multiple charts to sew together
Xext, a canonical transformation putting θ into the form (64)
is valid in every chart. In this sense, the canonical
quantizations of each individual chart are all isomorphic,
and at the level of the G-framed algebra these charts are
treated as overlapping [i.e., extra copies are removed in the
quotient (63)]. In other words, the minimal atlas for a G-
framed algebra in this case would have a single chart, and
the algebra would be interpreted as a crossed product. This
is what one typically regards as a resolution to Gribov’s
problem; although one has multiple charts these are merely
gauge copies and so it is sufficient to choose one when
performing a canonical or path integral quantization.
On the other hand, in the more general case whereG acts

with nontrivial isotropy we see that this resolution fails.
Different charts coincide with fundamentally different
physical degrees of freedom and realize nonisomorphic
quantizations. An example of this was given in [65],
relative to the constraint quantization of an N-partite
system in 3D space in which translations and rotations
are treated as gauge symmetries. It is not hard to see that the
constraint group acts with nontrivial isotropy in this case. A
particularly stark example is when all N particles are
located at the origin. All rotations leave this phase space
point invariant, and thus the only active constraints come
from translations. At the end of the day there are six-, five-,
and three-dimensional gauge orbits within the quotient of
the overall phase space by the constraint group. In the G-
framed algebra these distinct orbits would coincide with
nonoverlapping QRFs. In a general gauge theory, the lack
of a single local chart which encodes, at least up to
isomorphism, all of the physical configurations inside
Xext=G necessitates having multiple charts to cover the
full set of gauge invariant operators. Hence, in a typical
gauge theory we expect that a single crossed product
algebra will not be sufficient.

D. A G-framed algebra for de Sitter space

To exemplify the structure of the G-framed algebra in a
physically relevant situation, we turn to the case of semi-
classical quantum gravity in the static patch of de Sitter.
The relation between quantum reference frames and the de
Sitter crossed product algebra has already been remarked in

the literature [54,55]. We show here that the case of a static
patch in de Sitter with multiple observers is described in the
context of a G-framed algebra containing different crossed
product algebras corresponding to the selection of each
observer as a frame for the remaining degrees of freedom.
Suppose we are describing some matter quantum field

theory and propagating gravitons in the static patch, where
the algebras of observables of both fields acts on the Hilbert
space HdS. We must impose the de Sitter isometry group as
gauge constraints. The group gets broken down to the
subgroup preserving the static patch, GP ≃Rt ×Gcompact

where the first group encodes time translations generated
by Hmod and the other group is compact and encodes
rotations. The invariant subalgebra under GP is trivial [40],
and so one fix would be to introduce a feature like an
observer into the static patch to dress to in a gauge-invariant
manner. In fact, we will introduce N such observers each
constituting a good QRF for GP. The “kinematical” Hilbert
space will then be [55]

Hkin ¼ HdS ⊗ H
⊗N

i
i ; ð69Þ

where the second tensor factor is the tensor product of all
the observer Hilbert spaces. The de Sitter constraints will
relate the generators of the isometry transformations on
each factor above. For simplicity, we will focus on the Rt
subgroup of GP, which amounts to saying that we let our
observers carry clocks instead of measurement devices for
the full GP group.
The Hamiltonian constraint will be

Htotal ¼ Hmod þ
XN
i

Hi; ð70Þ

where Hi is the i-th observer Hamiltonian. Choosing this
observer to be the QRF amounts to selecting the system to

be Hs−i ¼ HdS ⊗ H
⊗N

j≠i
j , and forming the noncanonical

relational crossed product as in Eq. (54), which we refer to
as Ai.
One can repeat this procedure for all N observers to

obtain a collection of relational crossed products labelled
by the choice of observer, fAig. Given that each observer
constitutes some representation of the isometry group,
Ai≄Aj generically. However, there are some shared oper-
ators between these local crossed products that must be
identified. Fitting them all together under this relation
yields the G-framed algebra of de Sitter, AdS.
At this point, we should remark that so far this only treats

the frames inA as auxiliary systems adjoined in the process
of taking the crossed product and then further projecting
down to the chosen frame’s unitary representation of G. In
other words, Hs−i for any i has a fixed system HdS shared
by all dynamical systems appearing in the local crossed
products of AdS. While each Ai on its own is manifestly
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frame-dependent, there will exist a subalgebra Af:i common
to all Ai’s, which in this context will be frame-independent.
However, we emphasize that this depends on what we mean
by frame as one could have imagined including in AdS
frames that are built out of the matter quantum field theory
for example, assuming they transform appropriately under
G, thus potentially rendering Af:i trivial. This, however,
does not mean that there does not exist a notion of frame-
independence as we discuss in Secs. III E and IVA.
One way to go beyond existing constructions in the

literature [55] is to modify the previous discussion to
account for multiple observers defining distinct, but par-
tially overlapping static patches within de Sitter space. At
the level of the kinematical Hilbert space in Eq. (69), this
amounts to allowing the de Sitter sector to be labeled by the
choice of observer,

H̃kin ¼ ⊗
N

i
Hi

dS ⊗ Hi: ð71Þ

The fact that the multiple observers encoded in fHi
dS ⊗

Hig define different but overlapping static patches and thus
gravitational and field-theoretic degrees of freedom
amounts to saying that there exists a subalgebra Moverlap

common to all the algebras of observables of each static
patch, BðHi

dSÞ. While this takes further advantage of the
richness of the G-framed algebra, we will return to an even
more general discussion beyond a single semiclassical
background below in Sec. IV B.

E. Relational density states and entropies

What originally sparked interest in the crossed product in
the physics community was Takesaki’s theorem showing
that the crossed product of a Type III1 factor M with its
modular automorphism group is a semifinite von Neumann
algebra M̂ [38,62]. Shortly after, it was realized that the von
Neumann entropy of semiclassical states of the modular
crossed product is equivalent, up to an additive ambiguity,
to the generalized entropy of the underlying subregion
corresponding to the algebra [39,41,66].
Semifiniteness equips the algebra with a semifinite

normal trace τ∶ M̂ → C, which may be used to distinguish
elements of M̂ by whether or not they have finite trace. A
modification of the dual weight theorem was presented in
Ref. [67], the upshot of which allows one to associate a
state ω onM with a density state ρξω ∈ M̂ which depends on
how M sits in M̂ via an embedding ξ.
Here, we remark that such an association is in principle

always possible for a generic inclusion of von Neumann
algebras as long as two conditions hold:
(1) There exists an embedding ξ∶ M → N;
(2) The parent algebra N is semifinite and so admits a

trace τ.

In the context of quantum reference frames and the crossed
product, we may derive the frame-dependence of objects
like density states, entropies, and other calculable quantities
using the above observation. LetA be theG-framed algebra
associated to some system of interest. Selecting a frame i
allows us to localize to a chart Ai ⊂ A, which acts on H ⊗
Hr where H is a representation space of the associated
‘system’ algebra Mi and Hr is a Hilbert space carrying the
relevant action ofG and encoding the ith frame’s degrees of
freedom. Other choices of frames correspond to different
crossed product charts Aj. While it is tempting to assume
that A itself is semifinite and apply the modified dual
weight theorem to the inclusion Ai ⊂ A, it is not clear what
notion of semifiniteness is applicable to A given that it is
generally only a Banach algebra. See Sec. IVA for more
discussion on this.
The alternative route is to consider embeddings ξ of

Mi ≔ Mðλ;δÞ into its associated crossed product Ai, and
assume that this latter algebra is semifinite with trace τi for
some choice of frame i. In that case, given a state ρ on Mi,
one can induce a density state ρξi ∈Ai. This density state is
manifestly frame-dependent; for a different choice of frame
j ≔ ðλ0; δ0Þ, the system algebra itself generically changes to
Mj≄Mi for generic choices of j. If its associated crossed
product is also semifinite with trace τj, the induced density
states of this algebra will house different different infor-
mation aboutAwhen compared to the original. To quantify
this information, one could use the trace to compute
quantum information quantities like the von Neumann
entropy,

SvN;iðρ; ξÞ ¼ −τi½ρξi ln ρξi �; ð72Þ

which is dependent on the choice of frame i in addition to
the usual dependence on the choice of embedding ξ.
It may seem that all physical objects one may consider

are frame-dependent by definition, since a choice of frame i
selects out a different system Mi and associated crossed
product Ai. However, it is important to realize the non-
triviality of the G-framed algebra A is almost entirely
contained in the quotient under change of reference frame
maps. This allows information to seep across different
subalgebras Ai for different i, even if these correspond to
inequivalent frames and descriptions.
Let Ai and Aj correspond to two different local crossed

product subalgebras arising from two different choices of
frames i and j such that they share a nontrivial subalgebra
Oij. Moreover, assume, without loss of generality, that Ai is
semifinite so that there exists a trace τi∶ Ai → C. Given
that Oij is also contained in Aj, then we may at least assign
a trace to some elements of Aj which are contained in the
intersection via τiðajiÞ where aji ∈Oij. In other words, any
Aj sharing operators with a semifinite Ai will be semifinite
itself as long as elements in the overlap have finite trace.

ALI AHMAD, CHEMISSANY, KLINGER, and LEIGH PHYS. REV. D 110, 065003 (2024)

065003-16



Then, observables sensitive to the intersection will encode
information common to both choices of frames and any
other frame sharing operators with either of them. This
scenario arises in our previous example in de Sitter. The
modular crossed product with a clock in the regular
representation of Rt is semifinite and constitutes the
subalgebra Areg < AdS. All Ai’s obtained from some
restriction of the regular representation share operators
with this subalgebra. These charts have the interpretation of
choosing a different clock with a potentially different
Hamiltonian as the frame. The entropy computed at the
level of each chart is relational, and the frame-dependence
is encoded in (1) the entropy of the chosen frame itself and
(2) the relative entropies of the different systems one
obtains by conditioning on the different choice of frame.
In the context of the crossed product entropy being the
same as generalized entropy of the underlying subregion,
each Ai would not necessarily agree on the ‘bulk matter’
entropy part as the choice of frame changes what the system
algebra is. Moreover, the frame itself contributes a term in
the entropy which will differ as the frames may be
described by inequivalent Hilbert spaces. This discussion
is purely semiclassical, and we comment on using the
G-framed algebra as a way to encode information beyond
semiclassical gravity in Sec. IV B.
Given that A will have a complicated global structure

due to the quotient, it will generically be the case that the
intersection across all local crossed product algebras is
trivial. In other words, not all framed algebras will share
some operators. So, one cannot expect frame-independent
information to arise from literal overlaps among all rela-
tional crossed products. However, as in the case of a
Riemannian manifold where all local charts must agree on
curvature invariants, the quotient structure ofA ensures that
some frame-independent information makes its way to the
local crossed product subalgebras. One way to define
frame-independent observables is to demand that they
are invariant under all change of frame maps, but that
might be too strict of a condition. We discuss some
technical challenges in defining frame-independent notions
and semifiniteness at the level of A itself in Sec. IVA.

IV. DISCUSSION

We outline some avenues for future work in the following.

A. Frame-independent objects

In Sec. III E, we mainly discussed the relational aspects
of the information contained in each local crossed product
in the G-framed algebra. Since each such algebra is von
Neumann, the familiar notions of semifiniteness in terms of
existence of a semifinite tracial weight and the dual weight
theorem allows us to make concrete statements about the
frame-dependence or frame-independence of objects in
these algebras. Here, we consider how these notions

may manifest themselves at the level of the G-framed
algebra by considering weights on A itself.
We begin with the simple case where all the frames

appearing in A are equivalent, similar to the apparent
Gribov ambiguity discussed above. In that case, Landstad’s
theorem implies that the G-framed algebra may be globally
expressed as a von Neumann crossed product algebra.
Geometrically, this corresponds to a globally trivial prin-
cipal bundle which is a true manifold. Any observable in
this algebra will necessarily be frame independent, and if
the algebra is semifinite, then all quantities computed using
weights will be frame-independent as well. A natural
generalization of this case would be whenA is not globally
a crossed product but it is still some von Neumann algebra.
In that case, the usual machinery applies. One can consider
a weight ω∶ A → C and its restriction to each local crossed
product ωi∶ Ai → C. Importantly, while ωi may be a
semifinite tracial weight on some of the subalgebras of
A, it is not guaranteed that this holds for all the other
subalgebras and by extension for A itself. This just reflects
the observation made above that there could be frame
choices that are not sufficient for the regulation of the
divergences of their system algebras within the same A.
Moving on to the slightly more complicated case, we

assume that A is only a C� algebra instead. From the
structure theory of C� algebras, we know that A may be
concretely viewed as a subalgebra of bounded operators on
some Hilbert space HA. Since A is built out of von
Neumann algebras Ai each represented on HAi

≃HMi
⊗

Hi where the first factor is a representation Hilbert space for
Mi, the system algebra relative to the choice of frame Hi,
then we expect that ⨁iHAi

⊆ HA. In the case where there
is no overlapping frames, we expect an equality of the two
total Hilbert spaces. When the quotient in A is nontrivial,
then this relates the summands of the direct sum together in
a nontrivial way reflecting the global topology of A. Any
weight on A may be represented as a vector state in its
Gelfand-Naimark-Segal (GNS) representation, but each
such weight will induce a weight on the Ai subalgebras.
In this case, one can view A in a Hilbert space in which the
framed description of the theory relative to the ith frame
arises by ‘tracing’ out the other frames. The induced state
on Ai will generically be mixed even though the original
state on A is pure. This reflects the fact that A houses
everything there is to know about the system in a frame-
independent manner, but choosing a frame generically
amounts to a loss of information and the introduction of
frame-dependent artifacts.
Finally, the most general case is where A is only a

Banach algebra. In this case, Hilbert representations of A
need not exist [68]. This reflects the fact thatA, in the most
general case, is an exotic algebraic object from a physical
perspective. One must then search for its representations in
a bigger class of spaces, namely Banach spaces (cf. [69]). If
A is represented on such a Banach space E, then nothing

QUANTUM REFERENCE FRAMES FROM TOP-DOWN CROSSED … PHYS. REV. D 110, 065003 (2024)

065003-17



prohibits the Hilbert spaces of the local crossed products Ai
from being subspaces of E. If E is strictly Banach, then this
forbids us to define a global inner product that is suitable
for all subalgebras Ai and respects the quotient under
nontrivial overlaps. This suggests that this case has the
interpretation of totally nonoverlapping frames.
Given the above discussion, there are many technical

questions one has to answer before saying anything
concrete and rigorous about physics occurring at the level
of A. However, it seems that the algebraic type of A
influences the interplay between the different frames and
descriptions it houses. We hope to address this more
concretely in the future.

B. Beyond semiclassical gravity?

In the previous subsection, the issue of understanding
how the Hilbert spaces of the local crossed products embed
in the space A is represented on was raised. In the case
where there were some overlapping frames, we argued that
the direct sum of the relational crossed product Hilbert
spaces will have to be adjusted to respect the quotient
structure of A. This suggests that there are nontrivial state
overlaps and operator correlations across different charts of
the G-framed algebra, which would have been trivial in the
case of a direct sum Hilbert space.
Here, we raise the possibility that the G-framed algebra,

specifically its quotient structure, is a way to encode
information about nontrivial quantum gravitational over-
laps between distinct semiclassical backgrounds. One way
to think about semiclassical quantum gravity from a
canonical perspective is that the total Hilbert space is

Hs:c
total ¼ ⨁

i
Hi; ð73Þ

where Hi is the Hilbert space of matter and propagating
gravitons in the ith semiclassical background gi.

19 This
heuristic picture will only be true assuming one can safely
ignore overlaps hgijgji, which is accomplished for example
by taking the GN → 0 limit. This resembles the case of
nonoverlapping charts in the G-framed algebra. When the
frames overlap, we lose the direct sum and it is subsumed
by a nonfactorizable Hilbert space.
This is to be contrasted with the de Sitter example that

we have provided in Sec. III D. In that case, as we stressed,
there is a fixed kinematical algebra of observables Moverlap
shared by all the different frames, namely the de Sitter
algebra of matter and propagating gravitons in the overlap
of static patches defined by the observers. This is the
statement that we have fixed the semiclassical background
and are simply toggling between different observers when
we traverse A. We believe that the G-framed algebra is

flexible enough to accommodate such a description of
gravity where the quotient structure is instead informed by
the overlaps between geometries that are obtainable from
the gravitational path integral. In that case, traversing A
would not only switch between different observers but also
different semiclassical backgrounds.

C. Curvature and projectivity

The present work has been largely concerned with the
consequences of nontrivial global topology relative to the
operator algebras we use to describe gauge theories. TheG-
framed algebra is an immediate manifestation of this, with
the appearance of incommensurate charts indicating an
obstruction to the existence of a single global QRF in which
all physical observables are present. With this being said,
we have been largely agnostic to the origin and quantifi-
cation of this obstruction. Building upon the sharp analogy
between crossed product algebras and principal bundles it
seems plausible that such obstructions could be described
through an algebraic analog of curvature or holonomy.
A natural place where ‘curvature’ could present itself is

in the sequence

LðGÞ⟶λ
A⟶

T
M ð74Þ

which appears in the top-down specification of a crossed
product algebra. In Sec. III B we have introduced a splitting
of (74) featuring the maps πðsjrÞ andϖðsjrÞ which encode the
dressing of system degrees of freedom relative to a chosen
QRF and the projection of operators in the crossed product
into the group von Neumann algebra. In this note we have
assumed, as is typical, that the map πðsjrÞ is a homomor-
phism which preserves the system algebra under dressing.
Comparing the sequence (74) to the short exact sequence
which defines an Atiyah Lie algebroid,

ð75Þ

the map πðsjrÞ can be interpreted as playing the role of a
horizontal lift relative to the principal G-bundle associated
with the algebroid A. In general, a horizontal lift is not
expected to be a homomorphism of Lie brackets, and its
failure in being one encodes the curvature of a horizontal
distribution within the algebroid.
Stated more plainly, the choice of horizontal lifting

coincides with a choice of connection, and the connection
encodes important data about the global topology of the
algebroid. From this point of view, one may think of the
dressing map πðsjrÞ as encoding an algebraic analog of a
connection, in which case obstructions to this map being a
homomorphism would encode important details about the
topology of the algebra. In the G-framed algebra this data
should be respected across charts which indicates that the

19This point of view was recently explored in the context of de
Sitter [11].
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algebraic connection and its associated curvature could
encode interesting global, and potentially frame indepen-
dent information—not unlike characteristic classes.
An alternative point of view on the splitting of the

sequence (74) arises from the interpretation of the crossed
product as a generalization of a group extension. Most
physicists are familiar with this concept through the idea of
a central extension. Given a group G a central extension,
GC, is described by a short exact sequence

Uð1Þ ⟶ GC ⟶ G: ð76Þ

The set of projective representations of G are in one to one
correspondence with splittings of the sequence (76), which
are maps σ∶ G → GC. The failure of the map σ to be a
homomorphism is encoded in the presence of a nontrivial
two-cocycle C∶ G ×G → Uð1Þ such that

σðgÞσðhÞ ¼ Cðg; hÞσðghÞ: ð77Þ

The map C can be regarded as a cohomology class in a
complex referred to as the Hochschild cohomology [70–72].
Each unique group cohomology class encodes a distinct
projective represenation. From this perspective, nontrivial
splittings of the sequence (74) can be interpreted as encoding
generalized representations of the system algebra as it is
embedding in the crossed product. In other words, nontrivial
dressings of the system to the associated QRF. Previous
work [73–75] has explored a similar point of view relative to
the sequence

M ⟶ A ⟶ LðGÞ; ð78Þ

in which case they have termed the central algebra a twisted
crossed product. This algebra is realized by following the
same steps as onewould to obtain a standard crossed product,
only relaxing the map λðKÞ in the covariant representation

ðK; πðKÞα ; λðKÞÞ from a representation to a projective repre-
sentation. In future work we intend to investigate how these
and other related twistings can be used to classify G-framed
algebras according to their topological invariants, and the
relationship between these invariants and the frame indepen-
dent quantities described above.
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APPENDIX A: THE EXTENDED PHASE SPACE

In this Appendix we consider the symplectic geometry
associated with a gauge theory in terms of the extended
phase space. Following the analysis of [42], one may regard
the following as a classical analog of a crossed product.
Along the way, we will see how the extended phase space
provides a natural geometric setting for the relational
formalism (in its classical form), which has also been
discussed in [76–79].
Let ðX;ωÞ be a symplectic manifold, and denote byMpq

X
its associated Poisson algebra. That is, Mpq

X consists of
functions f∶ X → R along with a bracket induced by the
symplectic form ω in the following way. To each function
f∈Mpq

X we can associate a vector field Vf ∈TX solving

df þ iVf
ω ¼ 0: ðA1Þ

The integral curves generated by Vf are referred to as the
Hamiltonian flow induced by f, and Vf is called a
Hamiltonian vector field. The Poisson bracket is given by

ff; hgMpq
X
≡ −iVf

iVh
ω: ðA2Þ

Using (A1) we can rewrite (A2) as

ff; hgMpq
X
¼ iVf

dh ¼ LVf
h. ðA3Þ

In other words, the Poisson bracket of f and h is nothing
but the Lie derivative of h along the Hamiltonian flow
induced by f.
For our purposes we will be interested in the case that the

symplectic manifold ðX;ωÞ admits a G action
a∶ G × X → X. We say that this action is symplectomor-
phic if it preserves the symplectic form as

a�gω ¼ ω; ∀ g∈G: ðA4Þ
A symplectomorphic action induces a homomorphism of
the Poisson algebra via pullback. That is, f ↦ a�gf. Using
(A4) we can write20

iðag−1 Þ�Vf
ω ¼ a�gðiVf

ωÞ: ðA7Þ

20Here we have used the fact that for an invertible map
ϕ∶ X → X,

ϕ�ðiϕ�VωÞ ¼ iVϕ�ω; ðA5Þ

which further implies

iϕ�Vω ¼ ðϕ−1Þ�ðiVϕ�ωÞ: ðA6Þ
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From which we conclude that

0 ¼ a�gðdf þ iVf
ωÞ ¼ da�gf þ iðag−1 Þ�Vf

ω: ðA8Þ

In other words, under the mapping f ↦ a�gf the associated
Hamiltonian vector field is mapped as Vf ↦ ðag−1Þ�Vf.
Thus, we have

fa�gf; a�ghgMpq
X
¼ −iVa�gf

iVa�gh
ω ¼ a�gð−iVf

iVh
ωÞ

¼ a�gðff; hgMpq
X
Þ: ðA9Þ

The triple ðMpq
X ;G; a�Þ should be thought of as the

symplectic analog of a covariant system ðM;G; αÞ as
introduced in Sec. II A.
We will hereafter work under the assumption that the

action a is symplectomorphic. Thus, for each g∈G the map
ag∶ X → X is a symplectomorphism. These maps are
infinitesimally generated by the integral curves of vector
fields ξμ ∈TX where μ∈ g is a Lie algebra element

integrating to the desired group element. More rigorously,

ξμ ≡ ðaexpðtμÞÞ�
d
dt

; ðA10Þ

where exp ∶ g → G is the standard exponential map. As ag
is a symplectomorphism for each g∈G it is immediately
clear that ξμ will be a symplectic vector field for each μ∈ g,

Lξμω ¼ 0: ðA11Þ

However, it is not in general true that each ξμ is Hamiltonian

in the sense that they generate the Hamiltonian flow of an
element of the Poisson algebra. In other words, although the
group G acts on Mpq

X it is not immediately clear that the
group G can be regarded as in Mpq

X .
In previous work we have introduced an approach to

augmenting the symplectic geometry ðX;ωÞ such that the
action a can always be promoted to a Hamiltonian (and
moreover equivariant) action on the resulting ‘extended
phase space’ [67]. That is, given a covariant system
ðMpq

X ;G; a�Þ there exists an extended Poisson algebra
Mpq

Xext
for which the group G may be regarded as inner.

Of course, this is evocative of the crossed product con-
struction discussed in the main text. The extended phase
space is formally realized as a principal bundle Xext → X
with structure group G.21 The structure maps of the

principal bundle are given as

π∶ Xext → X; ðg; xÞ ↦ agðxÞ; R∶ G × Xext → Xext;

Rhðg; xÞ ¼ ðgh; ah−1ðxÞÞ: ðA12Þ

These maps are compatible in the sense that
π ∘Rh ¼ π; ∀ h∈G.
In Eq. (A12), we have tacitly presented Xext in a locally

trivialized form. For the purposes of the present note it will
be sufficient to treat the extended phase space in a local
trivialization whereupon it is of the form of a product space
Xext ≃ X ×G. In other words, the effect of extending the
phase space may simply be interpreted as attaching to the
unextended system a series of probes valued in the groupG.
As we shall see, the inclusion of these extended degrees of
freedom realize a relational frame, or, in other words, an
‘observer’. With this being said, understanding the physical
interpretation of nontrivial topology in Xext will be an
important part of future work in this subject. We discuss
this point in Sec. IV.
For a more technical construction of the extended phase

space we refer the reader to [42,67].22 In this note, it will be
sufficient to restrict our attention to the resulting Poisson
algebra Mpq

Xext
. Briefly, moving to the extended phase space

involves two important promotions; first the symplectic
potential23 θ∈Ω1ðXÞ is promoted to the extended sym-
plectic potential θext ∈Ω1ðXextÞ and secondly the infini-
tesimal generators of the group action are promoted from
ξμ ∈TX to ξextμ ∈TXext. In fact the promotion of ξμ ↦ ξextμ

is induced by the promotion of the action a∶ G × X → X to
the right action R∶ G × Xext → Xext. In this way, we can
read off the extended symmetry generating vector fields as

ξextμ ¼ −ξμ ⊕ μ; ðA13Þ

where here μ is regarded as a vector field on G via the
identification g ≃ TeG.
Thus, it remains only to specify the extended symplectic

potential which is fixed by demanding that24

L̂ξextμ
θext ¼ 0; ðA14Þ

and that the symplectic potential agrees with θ when
contracted with vector fields on the base X. An immediate
corollary of (A14) is that the map

21Strictly speaking this is a simplified case in which the action
of G is assumed to be free. More generally, as has been discussed
in Sec. III C, the extended phase space Xext should be regarded as
a G-bundle over a quotient Xext=G which has the structure of an
orbifold. In this case the local charts of the extended phase space
are nonisomorphic, corresponding to distinct crossed product
charts in the G-framed algebra.

22In those notes we stress the role of the Atiyah Lie algebroid
[80,81] in naturally formulating the extended phase space, as opp-
osed to symplectic manifold oriented approach used here.

23E.g., the one form θ∈Ω1ðXÞ for which ω ¼ dθ. Strictly
speaking ω is only locally exact, but we are only working in a
local trivialization so this is sufficient.

24Hereafter, we use hats to distinguish geometric operators on
Xext from those on X.
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Φ∶ g → Mpq
Xext

; μ ↦ îξextμ
θext ðA15Þ

defines a Hamiltonian function whose Hamiltonian flow is
generated by ξextμ for each μ∈ g. In fact, it moreover implies

that the set of functions Φμ form a representation of the Lie

algebra embedded inside the Poisson algebra,

fΦμ;ΦνgMpq
Xext

¼ Φ½μ;ν�g : ðA16Þ

The second consideration implies that the Poisson algebra
Mpq

X can be regarded as a subalgebra of Mpq
Xext

by naive
inclusion, that is, functions f; h∶ X → R are treated as
functions on Xext and their Poisson algebra is preserved,

ff; hgMpq
Xext

¼ ff; hgMpq
X
: ðA17Þ

When combined, these two conditions imply that the
functions Φμ implement a (infinitesimal) representation

of the action a� via the Poisson bracket,

fΦμ; fgMpq
Xext

¼ −Lξμf: ðA18Þ

Together Eqs. (A16), (A17), and (A18) indicate that the
full Poisson algebra Mpq

Xext
is roughly of the form

Mpq
X ⊕ C�ðGÞ, where here C�ðGÞ is the group algebra

associated with G. We can now confront the question of
implementing constraints from the perspective of the
extended phase space. An element F∈Mpq

Xext
is G invariant

if it is invariant under the action of the pullback
R�∶ G ×Mpq

Xext
→ Mpq

Xext
. Of course, if R�

gF ¼ F for each
g∈G it will also be true that

fΦμ;FgMpq
Xext

¼ L̂ξextμ
F ¼ 0; ∀ μ∈ g: ðA19Þ

Thus, in terms of the extended action R we can realize a
condition for invariance in terms of the Poisson commu-
tation of the element F with all of the Hamiltonian
functions generating the constraints.
A natural set of invariant observables is obtained by

‘dressing’ ordinary observables f∈Mpq
X . Let

πa∶ Mpq
X → Mpq

Xext
; ðπaðfÞÞðg; xÞ≡ f ∘ agðxÞ: ðA20Þ

Then, it is straightforward to see that R�
hπaðfÞ ¼ πaðfÞ

since G now acts on πaðfÞ in two compensating ways,

ðR�
hπaðfÞÞðg; xÞ ¼ ðπaðfÞÞðgh; ah−1ðxÞÞ ¼ f ∘ aghðah−1ðxÞÞ

¼ ðπaðfÞÞðg; xÞ: ðA21Þ

Thus, the set πaðMpq
X Þ ⊂ Mpq

Xext
is in fact an invariant

subalgebra under the action R with

fΦμ; πaðfÞgMpq
Xext

¼ 0; ∀ f∈Mpq
X ; μ∈ g: ðA22Þ

The observations made in (A20)–(A22) may be interested
as the classical analog of the commutation theorem dis-
cussion in Sec. II A.
In comparison to dressing (A20), there is an alternative

but closely related approach to implementing the con-
straints which comes in the form of gauge fixing. Instead of
mapping f into an orbit of observables, we can choose a
single representative of its orbit and map every member to
that representative. In [43] it has been shown how gauge
fixing can be understood in terms of a map TF∶ Mpq

Xext
→

Mpq
X formulated as a Faddeev-Popov integral. The map TF

is defined in terms of a gauge noninvariant function,
F∶ X → g, whose kernel intersects each G-orbit exactly
once. That is

∀ x∈X ∃ !g∈G such that F ∘ agðxÞ ¼ 0: ðA23Þ

We denote the unique solution to (A23) for a given x∈X by
zF ðxÞ∈G, that is F ∘ azF ðxÞðxÞ ¼ 0. Let aGðxÞ≡
fagðxÞ∈Xjg∈Gg denote the gauge orbit of x∈X.
Notice that,

azF ðx1Þðx1Þ ¼ azF ðx2Þðx2Þ; ∀ x1; x2 ∈ aGðxÞ: ðA24Þ

That is the assignment x ↦ azF ðxÞðxÞ≡ ½x�F defines a
unique representative of each gauge orbit. Then, we can
define the integral25

ðTF ðFÞÞðxÞ≡
Z
G
μðgÞδðF ∘ agðxÞÞFðg; xÞ ¼ FðzF ðxÞ; xÞ:

ðA25Þ

In particular, we see that

ðTF ðπaðfÞÞÞðxÞ ¼ f ∘ azF ðxÞðxÞ ¼ fð½x�F Þ ðA26Þ

depends only on the representative of the gauge orbit.
Observables as obtained from (A26) are immediately
G-invariant,

R�
gðTF ðπaðfÞÞÞðxÞ¼a�gðTF ðπaðfÞÞÞðxÞ

¼f∘azF ∘agðxÞðagðxÞÞ¼fð½x�F Þ; ðA27Þ

where we have used (A24) with x1 ¼ x and x2 ¼ agðxÞ.
The gauge fixing approach (A26) may be understood in

terms of conditionalization in the relational formalism.
Indeed,

25Here, δðF∘agðxÞÞ is a normalized delta function. To cor-
rectly obtain the normalization, one must construct a Faddeev-
Popov determinant.
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TF−μðπaðfÞÞ ¼ Ff;F ðμÞ; ðA28Þ

where here Ff;F ðμÞ is the ‘gauge invariant extension of
gauge-fixed quantity’ as defined in [31]. Here, we have
taken a slightly modified gauge fixing functional in which
F is not set equal to zero, but rather is fixed to a constant
value μ∈ g.26 In words (A28) is the observable defined by
f∈Mpq

X conditional on F − μ ¼ 0, or simply the observ-
able obtained from f when F ¼ μ. In the case where there
is a single constraint,F can be regarded as a clock function,
and μ ∼ τ as the internal time read by this clock. Then,
(A28) defines the gauge invariant observable obtained from
f when the clock reads internal time τ.
An important observation in (A28) is that it leaves

behind a residual freedom in terms of the choice of gauge
fixing functional; altering this choice will change the
representative of each gauge orbit. Working with gauge
fixing functionals of the form F − μ we can absorb this
freedom into the right to change μ. Thus, Ff;F ðμÞ should be
regarded as a g-parametrized family of gauge invariant
observables. Allowing Ff;F ðμÞ to ‘flow’ defines the rela-
tional evolution of f with respect to the ‘observer’ defined
by F.
In Table I we have provided an overview of the

correspondence between the extended phase space and
the relational formalism in the classical context.27

APPENDIX B: GROUP VON NEUMANN
ALGEBRA

In this Appendix we review the construction of the group
von Neumann algebra. Let G be a locally compact group
and denote by l∶ G → L2ðGÞ the left regular representa-
tion of G on L2ðGÞ. The group von Neumann algebra is the
von Neumann algebra obtained by closing the

aforementioned representation in the weak operator top-
ology induced by L2ðGÞ: LðGÞ≡ lðGÞ00. Alternatively, the
group von Neumann algebra can be obtained as follows.
Let C0ðGÞ denote the space of continuous and compactly
supported functions on G. C0ðGÞ can be turned into an
involutive Banach algebra by introducing the following
product and involution:

η⋆ζðgÞ≡
Z
G
μðhÞηðh−1gÞζðhÞ; η�ðgÞ ¼ δðg−1Þηðg−1Þ;

η; ζ∈C0ðGÞ: ðB1Þ

The algebra C0ðGÞ possesses a �-representation on L2ðGÞ,
c∶ C0ðGÞ → BðL2ðGÞÞ,

cðηÞðfÞðgÞ ¼
Z
G
μðhÞηðh−1gÞfðhÞ: ðB2Þ

The group von Neumann algebra may then equivalently be
realized as the closure LðGÞ ¼ cðC0ðGÞÞ00. From the latter
point of view, we automatically obtain a faithful, semifinite,
normal weight on LðGÞ in terms of the inner product on
L2ðGÞ,

γ∶ LðGÞ → C; γðη�⋆ζÞ ¼ gL2ðGÞðη; ζÞ

¼
Z
G
μðhÞηðhÞζðhÞ ¼ η�⋆ζðeÞ: ðB3Þ

The weight defined in (B3) is called the Plancherel weight
of the group G.

APPENDIX C: COMPARISON BETWEEN G-
FRAMED ALGEBRA AND RIEFFEL INDUCTION

In Sec. III C we introduced the G-framed algebra and
argued that it should be regarded as an algebraic analog for
the global quotient of a manifold with a locally compact
group. The appearance of multiple quantum reference
frames within the G-framed algebra is subsequently inter-
preted as a manifestation of the nontrivial topology
of the resulting quotient, which generically may only be
covered by a series of local charts. In this section we review
Rieffel induction [82] and discuss Landsman’s interpreta-
tion [83] of Rieffel induction as a quantum version of

TABLE I. Dictionary relation classical symplectic analysis of extended phase space and the classical relational
formalism.

Extended phase space Relational formalism

Xext ∼ X ×G, Kinematical phase space Pkin ∼ Psys × Pclock, Kinematical phase space
Φμ ∈Mpq

Xext
, Constraint Hamiltonians C ¼ Hsys þHclock, Constraint Hamiltonian

ðπaðfÞÞðg; xÞ≡ f∘agðxÞ, Dressed observable Clock (Observer) Neutral observables
TF−μðπaðfÞÞ, Gauge-fixed observable Ff;F ðμÞ, Relational observable
F , Gauge-fixing functional Clock=observer

26This is the generalization of the relational formalism when
there is more than one constraint. In the Trinity paper, for
example, μ ¼ τ is a ‘time’ variable.

27Notice that the constraint Hamiltonians,Φμ, do not necessary
split as the sum of two terms in the extended phase space.
Nevertheless, the vector field generating the extended G action,
R∶ G × Xext → Xext has the form (A13) which is more reminis-
cent of C ¼ Hsys þHclock.
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Marsden-Weinstein reduction [84]. Marsden-Weinstein is
an approach to implementing quotients of symplectic
manifolds by symmetry groups. Thus, one should expect
the quantum analog of this procedure to realize an algebraic
quotient of a similar complexion to the G-framed algebra.
As we shall see, this is the case and the resulting algebraic
object possesses a similar ‘framed’ description with iso-
morphism implemented by concept of imprimitivity.

1. Rieffel induction

Let A and B be a pair of C� algebras. A B-rigged space
is a Banach space X admitting a right representation
rB∶ B → BðXÞ along with a B-valued inner product
GB∶ X × X → B compatible with the B-representation in
the sense that,

GBðx1; rBðbÞx2Þ ¼ GBðx1; x2Þb; ∀ x1; x2 ∈X; b∈B:

ðC1Þ

Morally, a B-rigged space is a cousin of a Hilbert space in
which elements in the C� algebra B are treated as ‘scalars’.
If GBðx; xÞ ¼ 0 ⇔ x ¼ 0 we say that GB is definite.
The set of bounded operators on X viewed as a B-rigged

space consists of linear maps O∶ X → X satisfying the
following conditions:
(1) There exists a constant k > 0 such that28

GBðOðxÞ;OðxÞÞ≤k2GBðx;xÞ; for all x∈X; ðC2Þ

(2) There exists a map O†∶ X → X satisfying (1) above
and for which

GBðOðx1Þ; x2Þ¼GBðx1;O†ðx2ÞÞ; ∀ x1;x2∈X;

ðC3Þ

(3) As a map O commutes with the right action rB.
We shall denote the set of bounded operators on X relative
to the B-rigging GB as BBðXÞ. In the event that GB is
definite, the adjoint O† is uniquely defined. Moreover,
every operator satisfying (1) and (2) above will automati-
cally satisfy (3). This follows from a simple computation,

GBðx1;O∘rBðbÞx2Þ¼GBðx1;Ox2Þb¼GBðx1;rBðbÞ∘Ox2Þ;
ðC4Þ

or in other words,

GBðx1;ðO∘rBðbÞ−rBðbÞ∘OÞx2Þ¼0; ∀ x1;x2∈X;b∈B:

ðC5Þ

If GB is definite, this implies that ½O; rBðbÞ�x ¼ 0 for each
x∈X which can only be true if ½O; rBðbÞ� ¼ 0 as a map.
If we can construct a homomorphism lA∶ A → BBðXÞ,

then we say that X is a B-rigged A-module. A B-rigged
A-module can be used to induce a functor mapping between
the categories of Hilbert space representations for the
algebras A and B. In general we denote the category of
Hilbert space representations of a C� algebra A by ModðAÞ.
At the object level, this functor takes as input a Hilbert
space representation of B and outputs a Hilbert space
representation of A. Explicitly, this functor is constructed as
follows.
Let πB∶ B → BðVÞ be a Hilbert space representation of

B. Then, we can define the relative tensor product space,

X ⊗B V ≡ X ⊗ V=∼; ðC6Þ

by quotienting the Banach space tensor product X ⊗ V by
the equivalence relation,

x⊗πBðbÞv∼rBðbÞx⊗v; ∀ x∈X;b∈B;v∈V: ðC7Þ

This equivalence relation continues the theme that one
should regard the elements of B as scalars which, in (C7),
are allowed to move through the tensor product. To
promote X ⊗B V to a Hilbert space we need to close it
with respect to a preinner product. This is where the rigging
GB comes into play. Let g∶ V × V → C be the inner
product on V, then

gGB
ðx1 ⊗ v1; x2 ⊗ v2Þ≡ gðv1;lA ∘GBðx1; x2Þv2Þ ðC8Þ

is a preinner product on X ⊗B V. Closing X ⊗B V with
respect to the bilinear (C8) we obtain the Hilbert space
X ⊗B;GB

V. The representation lA of X induces a repre-
sentation πA∶ A → BðX ⊗B;GB

VÞ which acts as

πAðaÞðx ⊗ vÞ≡ lAðaÞx ⊗ v: ðC9Þ

We define the Rieffel induction functor generated by the B-
rigged A-module X by

FX∶ ModðAÞ → ModðBÞ; ðC10Þ

with FXðVÞ≡ X ⊗B;GB
V.

A standard example of Rieffel induction arises in the
special case where B ⊂ A is a C� subalgebra. In this case,
any operator valued weight T∶ A → B automatically ren-
ders A a B-rigged A-module. Firstly, the operator valued
weight can be interpreted as a B-valued bilinear on A,

GT∶ A × A → B; GTða1; a2Þ ¼ Tða�1a2Þ: ðC11Þ

The algebra b realizes a right representation on A via
composition on the right, and the bimodule property of the28Here inequality is in the sense appropriate to the algebra B.
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operator valued weight ensures that

GTða1; a2bÞ ¼ Tða�1a2bÞ ¼ Tða�1a2Þb ¼ GTða1; a2Þb;
ðC12Þ

which implies that GT is a B-valued inner product.
Similarly, A admits a representation acting on itself by
left composition. Thus A is a B-rigged A-module. Given a
Hilbert space representation V for the subalgebra B, the
Rieffel induction functor FTðVÞ≡ A ⊗B;GT

V can be
interpreted as a generalization of the GNS construction
to operator valued weights. In particular, if A is a unital C�
algebra and B ¼ C1 an operator valued weight reduces to
an ordinary weight on A, φ. Taking V ¼ C as the
representation of B, the relative tensor product A ⊗C C ≃
A and the closure of this space is taken with respect to the
preinner product,

gφða1; a2Þ ¼ φða�1a2Þ: ðC13Þ

This is precisely the preinner product of the GNS Hilbert
space of A with respect to the weight φ.

2. Imprimitivity

Given a pair of C� algebras A and B an A − B imprimi-
tivity bimodule is a 5-tuple X ≡ ðX;lA; rB; GA;GBÞ
with lA∶ A → BðXÞ a left representation, rB∶ B → BðXÞ
a right representation, GA∶ X × X → A an A-valued inner
product andGB∶ X × X → B aB-valued inner product. The
representations and the inner products are compatible in the
sense that

GAðx1;lAðaÞx2Þ ¼ aGAðx1; x2Þ;
GBðx1; rBðbÞx2Þ ¼ GBðx1; x2Þb; ðC14Þ

and

lA ∘GAðx1; x2Þx3 ¼ rB ∘GBðx2; x3Þx1: ðC15Þ

Notice that, as part of the definition ofX it indicates thatX is
a B-rigged A-module. Thus, it may be used to induce
representations of B to representations of A. We denote
the Rieffel induction functor in this case by FX.
As we shall now demonstrate, an A − B imprimitivity

bimodule gives rise to a pair of adjointly related Rieffel
induction functors. First, for a representation π∶ A → BðXÞ
we define the adjoint representation π̄∶ A → BðXÞ such
that π̄ðaÞx≡ πða�Þx. Similarly, given a bilinear GA∶ X ×
X → A we define the adjoint ḠA∶ X × X → A by
ḠAðx1; x2Þ≡GAðx; yÞ� ¼ GAðy; xÞ. It is not hard to show
that, if lA is a left representation and GA is an A-valued
inner product compatible with lA, the lA is a right
representation compatible with the inner product ḠA.
Thus, the A − B imprimitivity bimodule X has a natural

adjoint X̄ ≡ ðX; r̄B;lA; ḠB; ḠAÞ which is a B − A bimod-
ule. The adjoint imprimitivity bimodule X̄ realizes the
space X as an A-rigged B-module. Thus, it may be used to
induce representations of A to representations of B. We
denote the Rieffel induction functor in this case by FX̄.
Rieffel’s inversion theorem [82] tells us that the functors

FX and FX̄ are inverses of each other. That is, for any
Hilbert space representation V of B, FX̄ ∘FX ðVÞ ≃ V. In
this sense, the existence of an A − B imprimitivity bimod-
ule implies an equivalence of the categories ModðAÞ and
ModðBÞ. This is called strong Morita equivalence.29 The
concept of strong Morita equivalence is crucial as it allows
us to formulate an imprimitivity theorem identifying which
representations of a given C� algebra A can be regarded as
having been induced from representations of the C�
algebra B.
Let B be a C� algebra, and ðX; rB;GBÞ a B-rigged space.

The key ingredient in the imprimitivity theory is the
imprimitivity algebra of a B-rigged space. As we shall
see, the imprimitivity algebra indexes all of the
possible representations which can be induced by a given
B-rigged space. To each pair x1; x2 ∈X we assign a map
Tx1;x2∶ X → X given by

Tx1;x2ðx3Þ≡ rBðx2; x3Þx1: ðC16Þ

The operator Tx1;x2 is the analog, in a B-rigged space, of the
outer product of two vectors in a Hilbert space. The
imprimitivity algebra of X is defined as

EX ≡ fTx1;x2 jx1; x2 ∈Xg: ðC17Þ

It is natural to regard the map

GEX
∶ X × X → EðXÞ; ðx1; x2Þ ↦ Tx1;x2 ðC18Þ

as an EX valued inner product on X. Letting lEX
∶ EX →

BðXÞ denote the representation of EX on X, it is straight-
forward to see that

GEX
ðlEX

ðeÞx1; x2Þ ¼ eGEX
ðx1; x2Þ; ðC19Þ

and by (C16)

lEX
∘GEX

ðx1; x2Þx3 ¼ rBðx2; x3Þx1: ðC20Þ

Thus, the collection ðX;lEX
; rB; GEX

; GBÞ is a EX − B
imprimitivity bimodule. By strong Morita equivalence,
one may regard EX as encoding all of the possible
representations which can be induced from B via X.

29We should note, the existence of an A − B imprimitivity
bimodule is a sufficient but not necessary condition for strong
Morita equivalence between A and B.
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This leads us to the imprimitivity theorem: Let A and B
be C� algebras, and suppose that X is a B-rigged A-module
with representations rB and lA, respectively. Let us denote
by EX the imprimitivity algebra of X, and by lEX

the
representation of EX on X. Finally, let πA∶ A → BðWÞ be a
representation of A on a Hilbert space W. There exists a
Hilbert space representations V of B such that FXðVÞ ≃W
if and only if W can be made into a Hilbert space
representation of EX such that

lAðaÞðlEX
ðeÞxÞ ¼ lEX

ðaeÞx; ∀ a∈A; e∈EX; x∈X:

ðC21Þ

Here, ae is the product of a and e mutually regarded as
elements in BBðXÞ.30

3. Rieffel induction as a quotienting

It has been argued that Rieffel induction should
be interpreted as an algebraic analog of symplectic reduc-
tion [83]. Let H be a locally compact group and LðHÞ its
associated group von Neumann algebra. In particular, the
space of bounded operators on a LðHÞ-rigged space X with
a definite LðHÞ valued inner product is the analog of the
classical constraint surface. Recall that bounded operators
BLðHÞðXÞ are adjointable, bounded linear maps O∶ X → X
and automatically commute with the right representation of
H on X. Specifying any Hilbert space representation of
LðHÞ, or equivalently any unitary representation of H, we
can induce representations lA∶ A → BLðHÞðXÞ to Hilbert
space representations commuting with constraints encoded
by the representation rLðHÞ∶ LðHÞ → BðXÞ. In other

words, BLðHÞðXÞmay be interpreted as playing the role of a
H-framed algebra with its various subalgebras coinciding
with crossed product charts.
It is straightforward to construct LðHÞ-rigged spaces.

Suppose that X is a Hilbert space with inner product gX, H
is a locally compact group, and X admits a unitary
representation U∶ H → UðXÞ. Then, we have a natural
rigging,

GLðHÞ∶ X × X → LðHÞ; GLðHÞ
x1;x2 ðhÞ

≡ δðhÞ1=2gKðx1; UðhÞx2Þ: ðC22Þ

A generic element in LðGÞ can be regarded as a compactly
supported map ψ∶ G → C and acts on X via the (right)
representation,

rLðHÞðψÞ ¼
Z
H
μðhÞψðhÞUðh−1Þ: ðC23Þ

It is not hard to show that

GLðHÞ
x1;rLðHÞðψÞx2ðhÞ ¼ ðGLðHÞ

x1;x2 ⋆ψÞðhÞ; ðC24Þ

where ⋆ is the convolutional product in LðHÞ.
It is tempting to interpret the algebra BLðHÞðXÞ associ-

ated with a LðHÞ-rigged space X as encoding a QRF,
viewed here as a quotient algebra relative to a specified
action of H. The set of algebras A with representations that
may be induced from X, as identified from the imprimi-
tivity theorem via EX, could then coincide with local charts
refined by (i.e., contained within) BLðHÞðXÞ. In this way, it
seems reasonable to expect that a G-framed algebra may be
constructed as the union of algebras BLðHÞðXÞ for various
choices of X.
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