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We study the linearized gravity theory in the Newman-Unti gauge in the near horizon region of the
de Sitter spacetime. The linearized Einstein equation involves the cosmological constant. The near horizon
symmetry consists of near horizon supertranslation and near horizon superrotation. We compute the near
horizon supertranslation charge and find the proper near horizon falloff conditions that uncover a soft
graviton theorem from the Ward identity of the near horizon supertranslation.
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I. INTRODUCTION

Black holes are recently shown to carry soft hairs [1],
which reveals a much richer structure than previously
supposed. The new degrees of freedom are labeled by
the near horizon symmetries [2–32]. Black hole horizons
can be considered as an inner boundary of the spacetime
that share many common features as the null infinity, see,
e.g., investigations in [33,34]. At null infinity, a triangle
equivalence was proven [35], which connects asymptotic
symmetry, memory effect, and soft theorem. Inspired by the
null infinity triangle relation, the black hole memory effect
was subsequently proposed [26,36–38] and it is closely
related to the near horizon symmetry. Another branch
following the triangle relation is the soft theorems relevant
to near horizon symmetry that have been investigated for
the Schwarzschild black hole [39–41]. Nevertheless, hori-
zons are not exclusive to black holes. The expanding
Universe leads to a cosmological horizon. A cosmological
horizon is locally very similar to the black hole horizon in
the sense that they are both codimensional: one null
hypersurface that cut spacetime into two parts. They can
be considered as the casual boundary of local observer and
the physically relevant investigations normally reside at
only one side of the horizons. Soft theorems of gauge
theory in de Sitter (dS) spacetime are obtained from the
near horizon symmetry [42]. The computations in [42] are
somewhat similar to the Schwarzschild case [39,40], while
the physical motivation and consequence are very different.

The cosmological horizon is the outer boundary of the
inside observer. Because the dS cosmological universe is
expanding so fast, there are events that will never be seen
by an observer inside. Considering the fact that we do
live in an expanding Universe, the near cosmological
horizon analysis can be intuitively understood as the real
world asymptotic analysis near null infinity. Technically,
there is well-defined flat limit from the cosmological
solution [43–45]. The cosmological horizon becomes the
null infinity as the cosmological constant tends to zero.
Correspondingly, the near horizon soft theorems derived in
dS spacetime should recover the flat spacetime soft theorem
in the flat limit. This is different from the black hole case.
For instance, one can recover the Minkowski spacetime
when the mass parameter of the Schwarzschild black hole
is zero. But the horizon of the black hole just disappears in
this limit. The aim of the present work is to extend the
previous study [42] in dS spacetime to linearized gravity.
For the linearization of Einstein theory about dS space-

time, the linearized equations of motion involve the
cosmological constant (see, e.g., in [46–50]) to incorporate
with gauge invariance reduced from the diffeomorphism
invariance of the Einstein theory. The effect of the
cosmological constant is well understood in both the
asymptotic and near horizon analysis. But the relevance
to a soft theorem has only been considered as a parameter in
the metric of the background spacetime [42]. Since the
cosmological constant modifies the equations of motion, it
is very questionable that if the nice structure revealed
in [41] or [42] can be derived for linearized gravity in dS
spacetime. The potential effect of the cosmological con-
stant in the equations of motion is the main extension of this
work to previous studies [41,42].
In this work, we apply the Newman-Unti (NU)

gauge [51] for the linearized gravity theory in dS space-
time. In the near cosmological horizon region, we impose
traceless falloff conditions. We compute the near horizon
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symmetry, which consists of near horizon supertranslation
and near horizon superrotation. The near horizon solution
space is specified and the supertranslation charge is
derived. We find that there is an interesting reduction of
the near horizon solution space that is invariant under
supertranslation and leads to a natural split of the super-
translation charge into soft and hard parts. We found such a
configuration for the Schwarzschild black hole case in a
previous work [41] and considered that as a coincidence.
Now such configuration also arises for the dS spacetime.
This may suggest that there is a common structure in the
near horizon region that is subject to a soft theorem. A soft
graviton theorem in coordinate space is derived from the
Ward identity of the near horizon supertranslation in the
reduced solution space. After transforming the soft graviton
theorem into the momentum space, there is a natural flat
limit and it recovers the flat space soft graviton theorem.
This paper is organized as follows. In the next section,

we present the linearized Einstein equation in dS space-
time, compute the near horizon symmetry, and present
solution space of the linearized theory. We specify a
reduction of the solution space where the supertranslation
charge can split into a soft piece and a hard piece. In
Sec. III, a soft graviton theorem is derived from the Ward
identity of the near horizon supertranslation charge. The
soft theorem has a desired flat limit in the momentum
space. The last section is devoted to conclusion and
discussion. There is one Appendix that presents the details
of the modification of the stress tensor that coupled to the
gravity theory.

II. NEAR HORIZON SYMMETRIES
AND CHARGES

In this section, we will study the linearized Einstein
theory in the dS spacetime. The NU gauge [51] (see
also [52,53]) will be adapted into the linearized theory.
We will perform the standard near horizon analysis. The
near horizon symmetry, solution space, and surface charge
will be computed.

A. Near horizon form of the dS spacetime
in NU gauge

We start from the static patch in dS spacetime, which is
part of the full dS spacetime as shown in Fig. 1. In static
coordinates ðt; r; z; z̄Þ, the line element of the dS space-
time is

ds2 ¼ −FðrÞdt2 þ FðrÞ−1dr2 þ 2ΩðrÞ2γzz̄dzdz̄; ð1Þ

FðrÞ¼ 2r
l
−
r2

l2
; Ω¼l− r; γzz̄¼

2

ð1þ zz̄Þ2 ; ð2Þ

where l is the dS radius and it is related to the cosmological
constant by Λ ¼ 3

l2. Note that we have set the cosmological

horizon at r ¼ 0. By introducing the retarded time
coordinate u ¼ t − 1

2
l logð r

2l−rÞ, the line element can be
written as

ds2 ¼ ḡμνdxμdxν

¼ −FðrÞdu2 − 2drduþ 2ΩðrÞ2γzz̄dzdz̄; ð3Þ

which covers only the H− part of the horizon. A similar
analysis could be performed for Hþ simply by a time
reverse transformation of dS spacetime near the bifurcation
sphere B. In the rest of this paper, we just focus on the
H− part.

B. Linearization in dS spacetime

We linearize Einstein theory in dS spacetime (3). The
metric expands as gμν ¼ ḡμν þ κhμν. The inverse metric is
gμν ¼ ḡμν − κhμν þOðκ2Þ, where the indices are now
raised by ḡμν. Up to the first correction order OðκÞ, the
connection is given by

Γα
μν ¼ Γ̄α

μν þ
κ

2
ḡαβð∇μhνβ þ∇νhμβ −∇βhμνÞ: ð4Þ

We define

Cα
μν ¼ ḡαβð∇μhνβ þ∇νhμβ −∇βhμνÞ; ð5Þ

which is very useful for the computation of the curvature
tensor,

FIG. 1. Penrose diagram of de Sitter spacetime.
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Rμνα
β ¼ ∂νΓ

β
μα − ∂μΓ

β
να þ Γτ

μαΓ
β
ντ − Γτ

ναΓ
β
μτ;

¼ R̄μνα
β þ κ

2
ð∇νC

β
μα −∇μC

β
ναÞ þOðκ2Þ; ð6Þ

¼ R̄μνα
β þ κ

2
∇νð∇μh

β
α þ∇αh

β
μ −∇βhμαÞ

−
κ

2
∇μð∇νh

β
α þ∇αh

β
ν −∇βhναÞ þOðκ2Þ: ð7Þ

The Ricci tensor is defined from the curvature tensor as

Rμα ¼ Rμνα
ν

¼ R̄μα þ
κ

2
∇νð∇μhνα þ∇αhνμ −∇νhμαÞ

−
κ

2
∇μ∇αhνν þOðκ2Þ: ð8Þ

Finally, the Ricci scalar is obtained as

R ¼ gμαRμα

¼ R̄ − κhμαR̄μα þ
κ

2
∇νð∇μhνμ þ∇μhνμ −∇νhμμÞ

−
κ

2
∇μ∇μhνν þOðκ2Þ: ð9Þ

We consider the Einstein equation with a cosmological
constant Λ ¼ 3

l2,

Rμν −
1

2
gμνRþ 3

l2
gμν ¼ Tμν; ð10Þ

where we use the natural unit 8πGN ¼ 1. At the linearized
order OðκÞ, the Einstein equation is reduced to1

Eμν ≡ 1

2
½∇τ∇μhτν þ∇τ∇νhτμ −∇2hμν −∇μ∇νh�

−
1

2
ḡμνð∇α∇βhαβ −∇2hÞ − 3

l2
hμν þ

3

2l2
ḡμνh

¼ Tμν; ð11Þ

where we apply the relations from the Einstein equation of
the dS spacetime

R̄μν ¼
3

l2
ḡμν; R̄ ¼ 12

l2
; ð12Þ

and h ¼ ḡμνhμν. The linearized equation (11) is invariant
under the gauge transformation

hμν → hμν þ∇μξν þ∇νξμ: ð13Þ

To verify the gauge invariance, the following relations of
the dS spacetime are applied,

ð∇μ∇ν −∇ν∇μÞξα ¼ R̄μνα
βξβ;

R̄μναβ ¼
1

l2
ðḡμαḡνβ − ḡμβḡναÞ: ð14Þ

C. Near horizon symmetries in NU gauge

We will work in the adapted NU gauge for linearized
theory [53] where the following conditions are imposed,

hrr ¼ hrz ¼ hrz̄ ¼ hru ¼ 0;

Trr ¼ Trz ¼ Trz̄ ¼ Tru ¼ 0: ð15Þ

The radial components of the stress tensor Trμ are set to
zero to adapt to the gauge conditions of the perturbative
metric, which can be done by introducing an auxiliary
conserved symmetric two tensor [41] as is detailed in the
Appendix.
The residual gauge transformation that preserves the

conditions (15) is generated by

ξu ¼ Zðu; z; z̄Þ þ r∂ufðu; z; z̄Þ − FðrÞfðu; z; z̄Þ; ð16Þ

ξr ¼ −fðu; z; z̄Þ; ð17Þ

ξA ¼ Ω2YAðu; z; z̄Þ þ ΩDAfðu; z; z̄Þ; ð18Þ

whereDA is the covariant derivative with respect to the unit
sphere ds2 ¼ γABdxAdxB ¼ 4

ð1þzz̄Þ2 dzdz̄. The capital latin

indices are raised or lowered by the spherical metric γAB

and γAB.
We impose the following near horizon falloff conditions:

hzz̄ ¼ Oðr2Þ: ð19Þ

The absence of the leading order in hzz̄ is to specify a
traceless propagating mode. We impose a stronger traceless
condition from a near horizon symmetry perspective. The
falloff conditions both fix the independent symmetry
parameter Z, which generates a translation along r, and
select a u-independent near horizon supertranslation,

Z ¼ −
1

2
DADAfðu; z; z̄Þ − l

2
DAYA;

fðu; z; z̄Þ ¼ Tðz; z̄Þ þ 1

2

Z
duDAYA: ð20Þ

Now, T characterizes the near horizon supertranslation and
YA is the near horizon superrotation. In vector form, it is
given by

ξu ¼ f; ð21Þ
1The expression of the linearized Einstein equation seems

different from [48]. But they are indeed the same.
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ξr ¼ 1

2
DADAf þ 1

2
ΩDAYA; ð22Þ

ξA ¼ YA þ 1

Ω
DAf: ð23Þ

D. Near horizon solution space

The organizations of Einstein equation in the Bondi
gauge [54,55] and NU gauge for the case with a cosmo-
logical constant [44,45] are well known, which greatly
simplifies the derivation of a solution space. Such con-
figurations are inherited by linearized theory. Suppose that
the metric components are given in series expansion near
the horizon as

hAB ¼ NAB þ
X
i¼1

NðiÞ
ABr

i; ð24Þ

huA ¼ UA þ ΞArþ
X
i¼2

UðiÞ
A ri; ð25Þ

huu ¼ V þ Θrþ
X
i¼2

VðiÞri: ð26Þ

The first class of equations of motion is the radial part that
completely determines the r dependence of the trace of hAB,
huA, and huu up to integration constants. In particular,
Err ¼ 0 leads to

∂
2
r

�
hzz̄
l − r

�
¼ 0: ð27Þ

The near horizon conditions hzz̄ ¼ Oðr2Þ yield hzz̄ ¼ 0.

Then, ErA ¼ 0 fix all the coefficients UðiÞ
A for i ≥ 2. The

two leading orders in guA are integration constants. Since
the near horizon charges only involve the integration
constants, we will not list the expressions for the higher
orders. Next, Eur ¼ 0 determines the coefficients VðiÞ for
i ≥ 2, and

Θ ¼ 1

l
V þ 1

2l3
DADBNAB þ 1

l2
DAUA −

1

2l
DAΞA; ð28Þ

where the leading order V is an integration constant.
The second class of equations of motion is the standard

equation that includes Ezz ¼ Tzz and Ez̄ z̄ ¼ Tz̄ z̄. They

determine the time evolution of the traceless part of NðiÞ
AB

for i ≥ 1. The leading order NAB is completely free, which
we refer to as a news tensor in the near horizon analysis.
Once the first two classes of equations of motion are
satisfied, the equation Ezz̄ ¼ Tzz̄ is fulfilled automatically.
The other three equations are supplementary. The Bianchi
identity at the linearized order guarantees that the supple-
mentary equations are satisfied except for their leading

orders, which yield the time evolution of the integration
constants,

l2
∂uΞA þ 2l∂uUA − 2UA − l2DAΘ

þDBDAUB −DBDBUA þ ∂uDBNAB ¼ 2l2TuA ð29Þ

and

l2
∂uV þDAUA −

l
2
DADAV þ l∂uDAUA ¼ l3Tuu: ð30Þ

It is important to point out that UA is also free. We will
show that this extra freedom is very important for deriving a
soft graviton theorem from the near horizon symmetry.

E. Near horizon supertranslation charge

For the (linearized) Einstein gravity, the surface
charge associated to the near horizon symmetry is defined
as [56,57]

Qξ ¼
Z
B

ffiffiffiffiffiffi
−g

p �
hλ½u∇λξ

r� − ξλ∇½uhr�λ −
1

2
h∇½uξr�

þ ξ½u∇λhr�λ − ξ½u∇r�h
�
dzdz̄; ð31Þ

where we choose the bifurcation two-sphere B to evaluate
the charge. In this work, we are mainly interested in the soft
theorem associated to the near horizon supertranslation.
Inserting the near horizon solution and the near horizon
supertranslation, one can obtain

QT ¼
Z
B
γzz̄Tl

�
V −

1

2
DAΞA

�
: ð32Þ

The supertranslation charge can be evaluated on the whole
horizon applying the relations in (29) and (30),

QT ¼
1

2l

Z
H−

γzz̄T∂uðDADBNABÞd2zdu

þl
Z
H−

γzz̄TðlT0
uu−DAT0

uAÞd2zdu

þ
Z
H−

γzz̄TDA

�
1

2
DAV−

l
2
DAΘ−

2

l
UA

�
d2zdu: ð33Þ

The first line of this charge expression has the desired forms
as a soft part of the charge [58,59] for computing a soft
theorem. The second line is in the form of a hard piece. We
will turn off the third line by hand using the extra freedom
from UA following the treatment in [41], for which we set

1

2
DAV −

l
2
DAΘ −

2

l
UA ¼ 0: ð34Þ

The transformation laws of the supertranslation of the
solutions

PUJIAN MAO and BOCHEN ZHOU PHYS. REV. D 110, 065002 (2024)

065002-4



δTUA ¼ −
1

2
DADBDBT; ð35Þ

δTΞA ¼ −
2

l
DAT; ð36Þ

δTV ¼ −
1

l
DBDBT; ð37Þ

δTΘ ¼ 1

l2
DBDBT; ð38Þ

δTNAB ¼ 2l
�
DADBT −

1

2
γABD2T

�
ð39Þ

guarantee that the extra condition in (34) is preserved by a
supertranslation transformation.
The combination on the left-hand side of (34) was first

noticed in [41] for deriving a soft graviton theorem from the
near horizon analysis in Schwarzschild spacetime. We
believe this can be a universal structure in the near horizon
analysis. The parameters V and Θ in (34) represent a
nonpropagating degree of freedom from the curvature of
the spacetime. At null infinity, they do not contribute to the
horizon charge. There is a natural split of the propagating
degree of freedom and the nonpropagating degree of free-
dom. But in the near horizon region, the degrees of freedom
are mixed. Luckily, there is the extra degree of freedom from
UA that could cancel those terms. The remarkable thing is
that the special choice of UA is supertranslation invariant.
Note that, in the null infinity case, one integration constant is
turned off by trivial diffeomorphism [54,55,60] in the metric
component guA that corresponds to the special configuration
in (34) in the near horizon case.
Finally, we split the near horizon supertranslation charge

into

QT ¼ QS þQH; ð40Þ
where

QS ¼ 1

2l

Z
H−

γzz̄T∂uðDADBNABÞd2zdu; ð41Þ

QH ¼ l
Z
H−

γzz̄TðlT0
uu −DAT0

uAÞd2zdu ð42Þ

are the soft and hard charges, respectively. In the null infinity
analysis [58,59], it is normally assumed that the long-range
magnetic mass aspect vanishes. Adapted to the near horizon
case, this assumption is equivalent to imposing2

½DzDzNz̄ z̄ −Dz̄Dz̄Nzz�H−
�
¼ 0: ð43Þ

Then we can rewrite the soft charge as

QS ¼ −
1

l

Z
H−

∂z̄T∂u

�
∂z̄Nzz

γzz̄

�
d2zdu: ð44Þ

For the hard part of the charge, it consists only the
contribution from the stress tensor of the coupled matter
fields. We have introduced an auxiliary field to modify the
stress tensor that is equivalent in order to change the way of
coupling the matter fields to gravity. As was shown in [41],
the soft theorem derived from the Ward identity of the near
horizon supertranslation charge will be dependent on the
way of the matter fields couplings. The choice in [41] is
subject to a similar expression of the soft factor as the null
infinity case. Here, we will follow the same treatment to
further use the freedom in the auxiliary fields to turn off
T0
uA. The details of the modification are presented in the

Appendix. Then, the hard charge becomes

QH ¼ l2

Z
H−

γzz̄TT0
uud2zdu: ð45Þ

III. NEAR HORIZON SOFT
GRAVITON THEOREM

In this section, we will demonstrate that the soft charge
creates a low-energy soft graviton in near horizon states,
and the action of the hard charge in those states leads to a
soft factor, which mimics the scenario in flat spacetime at
null infinity.

A. Graviton modes in dS spacetime

The mode expansion of the perturbative fields is the
crucial ingredient for deriving a soft theorem from asymp-
totic symmetry, see, e.g., [35,59]. It is very convenient to
write down the mode expansion of the free field operator
in the isotropic coordinates ðt; x1; x2; x3Þ in curved
spacetime [39–42]. The line element of the dS spacetime
in the isotropic coordinates is

ds2 ¼ −
�
l2 − ρ2

l2 þ ρ2

�
2

dt2 þ
�

2l2

l2 þ ρ2

�
2

dx⃗ · dx⃗; ð46Þ

where ρ is related to the radial coordinate by

r ¼ l
ðl − ρÞ2
l2 þ ρ2

: ð47Þ

The isotropic coordinates are connected to retarded coor-
dinates ðu; r; z; z̄Þ by

2Actually, it is not clear to us if this condition at the horizon is
relevant to the magnetic mass aspect, because the near horizon
charges are better appreciated from a thermodynamic perspective
than the usual mass and angular momentum perspectives [26,27].
The condition in (43) is a direct translation from its null infinity
counterpart. Of course, there is freedom to impose this condition
in the near horizon case, i.e., it preserves the near horizon
supertranslation.
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t ¼ uþ 1

2
l log

�
r

2l − r

�
; x1 ¼ ρ

zþ z̄
zz̄þ 1

;

x2 ¼ ρ
z − z̄

iðzz̄þ 1Þ ; x3 ¼ ρ
1 − zz̄
zz̄þ 1

: ð48Þ

In dS spacetime, ∂

∂t is a timelike Killing vector that
defines a positive energy of a particle as ω ¼ −p0. One can
write the dispersion relation for massless particles in the
isotropic coordinates as

−
�
ρ2 þ l2

ρ2 − l2

�
2

ω2 þ
�
l2 þ ρ2

2l2

�
2

jp⃗j2 ¼ 0: ð49Þ

Using the covariant measure of one-particle phase space

Z
dωd3p⃗
ð2πÞ3 δðpμpμÞθðωÞ ¼

�
l2 − ρ2

l2 þ ρ2

�
2
Z

d3p⃗
ð2πÞ32ω ; ð50Þ

a free massless scalar field ϕðxÞ can be written in mode
expansion as

ϕðxμÞ ¼
�
l2 − ρ2

l2 þ ρ2

�
2
Z

d3p⃗
ð2πÞ32ω ½aðp⃗Þeip·x þ aðp⃗Þ†e−ip·x�:

ð51Þ

The extra factor ðl2−ρ2l2þρ2
Þ2 is precisely from the dispersion

relation. Here we consider only the correction from the
dispersion relation of the null momentum, a full mode
expansion of scalar field in dS spacetime can be performed
perturbatively, see, e.g., in [61]. The mode expansion can
be extended to a free graviton field simply by inserting the
polarization tensor,

hμν ¼
�
l2 − ρ2

l2 þ ρ2

�
2X
α¼�

Z
d3p
ð2πÞ3

1

2ω
½ϵα�μνaαðp⃗Þeip⃗·x⃗

þ ϵαμνa
†
αðp⃗Þe−ip⃗·x⃗�; ð52Þ

where ϵαμν is a product of the pair polarization vectors
ϵαμν ¼ ϵαμϵ

α
ν .

One can parametrize the null momentum as

pμ ¼
ω

1þ zz̄
2l2

ρ2 − l2

�
l2 − ρ2

2l2
ð1þ zz̄Þ; ðzþ z̄Þ;

− iðz − z̄Þ; ð1 − zz̄Þ
�
; ð53Þ

and similarly the polarization vectors as

ϵþμ ¼ 1ffiffiffi
2

p l2 þ ρ2

2l2

�
2l2

ρ2 − l2
z̄; 1;−i;−z̄

�
; ð54Þ

ϵ−μ ¼ 1ffiffiffi
2

p l2 þ ρ2

2l2

�
2l2

ρ2 − l2
z; 1; i;−z

�
; ð55Þ

which satisfies

ϵαμϵβ�μ ¼ δαβ; pμϵ
αμ ¼ 0; ϵαr ¼ 0: ð56Þ

Projecting the polarization vectors to the sphere, we obtain

ϵþz̄ ¼ 2
ffiffiffi
2

p
l2ρ

ð1þ zz̄Þðl2þρ2Þ ; ϵ−z ¼
2

ffiffiffi
2

p
l2ρ

ð1þ zz̄Þðl2þρ2Þ : ð57Þ

Eventually, the near horizon field is related to the plane
wave modes by

Nzz ¼
4γzz̄
π2

l8ðRþ lÞ
½l2 þ ðRþ lÞ2�4

Z
dω

�
r

2l − r

�
−ilω=2

× sin

�
2l2ðRþ lÞω
RðRþ 2lÞ

�
e−iωuaþðωx̂Þ þ c:c:; ð58Þ

where R ¼ ρ − l and R ¼ 0 at the horizon. The integration
of the three momentum p⃗ in the mode expansion in dS
spacetime can be found in [42]. Literally, the near horizon
field is obtained from the near horizon limit R → 0 of the
mode expansion, which is however singular. One can
introduce a near horizon regularization R → Rþ iR to
deal with the divergence [39–42]. Nevertheless, we will
keep the radial parameter for a moment and take the near
horizon limit R → 0 at the last step. This is the reason we
introduce a new radial parameter R instead of simply using
the previous radial parameter r.

B. Soft graviton theorem in coordinate space

A soft graviton theorem can be derived from the Ward
identity of supertranslation,

houtj½QT;S�jini ¼ 0 ⇒ QSjini ¼ −QHjini; ð59Þ

in the flat spacetime case [35,59]. In the present analysis,
we have omitted the out part on Hþ, which can be easily
restored from the CPT invariance. We choose T ¼ 1

z−w for
the supertranslation parameter, and thus

∂z̄Tðz; z̄Þ ¼ 2πδ2ðz − wÞ: ð60Þ

With this choice, the soft charge (44) is reduced to

QS ¼ −
4π2i
l

lim
ω→0þ

�
ω
∂z̄Ñzz

γzz̄

�
; ð61Þ
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where Ñzz is defined by a Fourier relation

Nzz ¼
Z þ∞

−∞
dueiωuÑzz; ð62Þ

which implies that

Z
∞

−∞
du ∂uNzzðuÞ ¼ 2πilim

ω→0
½ωÑzzðωÞ�: ð63Þ

Inserting the mode expansion (58), one can obtain

QS ¼ −i
l2

R
∂z̄γzz̄
γzz̄

lim
ω→0þ

½ω2aþ þ ω2a†−�: ð64Þ

Hence, the soft charge QS acts on the in state as

QSjini ¼ −i
l2

R
∂z̄γzz̄
γzz̄

lim
ω→0þ

ω2a†−jini: ð65Þ

The soft charge creates a low-energy soft graviton in the
near horizon region.
For a massless scalar field coupled case as described in

the Appendix, one has the commutation relation [42]

½∂uϕ̄ðu;z; z̄Þ;ϕðg;z; z̄Þ� ¼−
i

l2γzz̄
δðu−gÞδ2ðz−wÞ; ð66Þ

which yields the action of the hard charge as

½QH;ϕ� ¼ −iT∂uϕ: ð67Þ

The above relation and the special choice of the super-
translation parameter T ¼ 1

z−w determine the action of the
hard charge QH on the in state as

QHjini ¼
Xn
k¼1

Ek

ðz − zkÞ
jini: ð68Þ

Finally, we can obtain a soft graviton theorem in coordinate
space by inserting (65) and (68) into the Ward identity (59),

∂z̄½γzz̄ lim
ω→0þ

a†−jini� ¼ lim
ω→0þ

�
π

i
R
l2ω

γzz̄
Xn
k¼1

Ek

ωðz − zkÞ
jini

�
:

ð69Þ

C. Soft graviton theorem in momentum space

In this subsection, we will use the null parametrization in
(53) to rewrite the soft theorem in momentum space. For
each hard particle, their momenta can be parametrized as

qinkμ ¼
Ein
k

1þ zink z̄
in
k

2l2

ρ2 − l2

�
l2 − ρ2

2l2
ð1þ zink z̄

in
k Þ; ðzink þ z̄ink Þ;

− iðzink − z̄ink Þ; ð1 − zink z̄
in
k Þ
�
: ð70Þ

One can easily verify that

∂z̄

�
γzz̄

Xn
k¼1

½qk · ϵþðpÞ�2
p · qk

�

¼ −γzz̄
Xn
k¼1

Ek

ωðz − zkÞ
�
1þ z̄kðz − zkÞ

1þ zkz̄k

�
;

¼ −γzz̄
Xn
k¼1

Ek

ωðz − zkÞ
; ð71Þ

where we have used the conversation of a combination of
two components of the total momentum,

Xn
k¼1

Ekz̄k
1þ zkz̄k

∝
Xn
k¼1

ðqk1 − iqk2Þ ¼ 0: ð72Þ

Applying the relation (71), we arrive at a soft graviton
theorem in the momentum space as

lim
ω→0þ

houtjaþS − Sa†−jini

¼ lim
ω→0þ

i
πR
ωl2

�Xm
l¼1

ðqoutl · ϵÞ2
p · qoutl

−
Xn
k¼1

ðqink · ϵÞ2
p · qink

�
houtjSjini;

ð73Þ

where the derivative ∂z̄ was dropped from both sides. One
can see that the soft factor on the right-hand side of (73)
contains the flat spacetime soft factor and a prefactor i πR

ωl2.
A flat limit can be taken by setting πiR

ωl2 ¼ 1. Physically, this
limit can be understood as the fact that the soft limit and the
flat limit of the cosmological constant Λ are at the same
order tending to zero. Note that iR is from the near horizon
regularization. The orders of the near horizon limit and the
flat limit for the parameter R ¼ ρ − l do not commute. The
present work is based on the near horizon analysis. So we
first take the near horizon limit. However this will some-
how prevent the flat limit since the flat limit means the
cosmological horizon vanishes. Thus, the horizon regulari-
zation R → R − iR also ensures a flat limit for the soft
theorem in the momentum space. Now the regularization
involves a minus sign as ρ ≤ l. Then, the flat limit
condition becomes Λ ¼ ω

πR.

IV. CONCLUSION AND DISCUSSION

In this paper, we study the linearized gravity theory in the
near horizon region of the dS spacetime. The near horizon
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symmetry, near horizon solution space, and near horizon
supertranslation charge are obtained. A soft graviton
theorem in dS spacetime is derived from the Ward identity
of the near horizon supertranslation. The soft theorem has a
similar structure as the flat spacetime soft theorem, which
relies on a fine-tuning structure of the near horizon falloff
conditions. The remarkable feature of this fine-tuning
structure resides in its supertranslation invariance. The soft
theorem in dS spacetime has a well-defined flat limit, which
recovers a flat spacetime soft theorem.
To close this paper, we would like to comment on some

subtleties and future directions. In the near horizon analysis
of the black hole case, the soft limit should involve also the
mass parameter of the black hole rather than simply
comparing the soft and hard external particles [62,63].
Here, our derivation simply involves the soft and hard
external particles. We think this is a less subtle issue in dS
spacetime. The reasoning is that one can consider a
perturbative expansion in the inverse of the curvature
length scale 1

l [61]. The leading contribution should be
the flat spacetime result. This is achieved from the flat limit
of the soft theorem in momentum space (73). It is mean-
ingful to point out that our derivation is from the near
horizon analysis in dS spacetime. The final result is indeed
the leading term of the dS spacetime as it should be. In
some sense, we have not considered the 1

l corrections from
near horizon analysis, which is definitely an interesting
direction for future investigation. In particular, holography
provides a powerful alternative approach to investigate the
soft modes and flat limit in the spacetime with a cosmo-
logical constant [64]. For other future directions, the
obvious one is to consider the full interacting Einstein
gravity theory as the generic near horizon symmetry has
already been derived in [26]. While the relevant inves-
tigations are mainly dealing with soft limit of massless
particles, in Einstein theory, general covariance prevents a
local definition of energy. Hence, soft limit is a very subtle
point.3 Nevertheless, one can extend the present study to
include self-interaction between (near horizon) gravitons.
The stress tensor will include self-interaction terms that are
somewhat similar to the case of Yang-Mills theory [40,42].
Technically, we expect the near horizon symmetry and
charge analysis would be just a special case of [26], i.e., the
null boundary should be fixed as the dS horizon. There are
also some other interesting future directions such as the
subleading soft theorem in the low-energy expansion, i.e.,
the dS analog of the investigations in [53,65–68]. A more
challenging point is the dual interpretation from the point of
view of celestial holography [69,70]. In particular, there are

some recent studies on the deformations of the soft
theorem [71–73], which may also be extended to the case
of soft theorem in curved spacetime.

ACKNOWLEDGMENTS

The authors thank Geoffrey Compère for useful corre-
spondence on the linearized Einstein equation. The authors
would like to thankKai-Yu Zhang for useful discussions and
collaborations in relevant research topics. This work is
supported in part by the National Natural Science
Foundation of China (NSFC) under Grants No. 11935009
and No. 11905156.

APPENDIX: MODIFICATION
OF THE STRESS TENSOR

As was shown in [41], one can modify the stress tensor
by adding a divergence-free symmetric rank two tensor. We
will modify the stress tensor to satisfy the gauge condition
in (15). In this work, we will limit ourselves to a massless
complex scalar field that is originally minimally coupled to
gravity. Thus, the stress tensor is

T̃μν ≡ 1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LMÞ

δgμν

¼ 1

2
ð∂μΦ∂νΦ̄þ ∂νΦ∂μΦ̄Þ − 1

2
gμν∇ρΦ∇ρΦ̄; ðA1Þ

where LM ¼ ∇μΦ∇μΦ̄. We assume that the scalar fields
are given in the form of near horizon expansions as

Φ ¼ ϕþ
X∞
n¼1

rnΦðnÞ; Φ̄ ¼ ϕ̄þ
X∞
n¼1

rnΦ̄ðnÞ: ðA2Þ

We construct a modified stress tensor by Tμν ¼ T̃μν −ϒμν,
where Tμν satisfies the gauge conditions in (15) and ϒμν is
an arbitrary tensor. Then we will use the divergence-free
conditions ∇μϒμν ¼ 0 to fix it. From ∇μϒμr ¼ 0, one
obtains

γABϒAB ¼ Ω3
∂uT̃rr − ΩDAT̃rA þ Ω3

∂rT̃ur − 2Ω2T̃ur

þ 2FΩ2T̃rr −Ω3F∂rT̃rr − 3
Ω4

l2
T̃rr; ðA3Þ

where we have used the relation ϒrμ ¼ T̃rμ to fulfill the
gauge conditions for Tμν. Thus the trace part of ϒμν is
completely fixed by T̃μν.
The transverse equations ∇μϒμA ¼ 0 yield

∂rϒuA ¼ F∂rT̃rA − ∂uT̃rA þ 2

Ω
ϒuA þ

�
2Ω
l2

−
2F
Ω

�
T̃rA

þ 1

Ω2
DBϒAB: ðA4Þ

3The situation at infinity is very different. One normally
defines the in or out states for massless interaction at the null
infinity. Since any asymptotically flat spacetime has the same
structure of null infinity, it is reasonable to consider the energy
with respect to Minkowski spacetime as the energy of the
massless particle near null infinity.
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Suppose that ϒuA is given by the series

ϒuA ¼ ϒ0
uA þ

X∞
n¼1

rnϒðnÞ
uA : ðA5Þ

All the order ϒðnÞ
uA for n ≥ 1 is fixed from the above

equation. While the leading order ϒ0
uA is free as an

integration constant. We continue with the u component
of the divergence-free conditions, which gives

∂rϒuu ¼ F∂rT̃ru − ∂uT̃ru þ
�
2

l2
Ω −

2

Ω
F

�
T̃ru

þ 1

Ω2
DAϒuA þ

2

Ω
ϒuu: ðA6Þ

This equation controls ϒuu up to an integration constant
ϒ0

uu at the leading order in the near horizon expansion.
Finally, we find that the traceless part of ϒAB and the
leading order of ϒuu, ϒuA of the auxiliary tensor are free as
initial data and the rest ingredients are fixed by the gauge
conditions. The uu; uA components of the modified stress
tensor at the leading orders are

T0
uu ¼ ∂uϕ∂uϕ̄ −ϒ0

uu; ðA7Þ

T0
uA ¼ 1

2
ð∂uϕ∂Aϕ̄þ ∂Aϕ∂uϕ̄Þ −ϒ0

uA: ðA8Þ
The hard part of the near horizon supertranslation charge
(42) is indeed sensitive to the modification of the stress
tensor. In this work, we follow the previous choice in [41]
to set ϒ0

uu ¼ 0 and T0
uA ¼ 0.
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[20] D. Grumiller, A. Pérez, M. M. Sheikh-Jabbari, R. Troncoso,
and C. Zwikel, Spacetime structure near generic horizons
and soft hair, Phys. Rev. Lett. 124, 041601 (2020).

[21] H. Adami, D. Grumiller, S. Sadeghian, M. M. Sheikh-
Jabbari, and C. Zwikel, T-Witts from the horizon, J. High
Energy Phys. 04 (2020) 128.

[22] D. Grumiller, M.M. Sheikh-Jabbari, and C. Zwikel, Hori-
zons 2020, Int. J. Mod. Phys. D 29, 2043006 (2020).

[23] L. Donnay, G. Giribet, and J. Oliva, Horizon symmetries
and hairy black holes in AdS, J. High Energy Phys. 09
(2020) 120.

[24] H. Adami, M.M. Sheikh-Jabbari, V. Taghiloo, H.
Yavartanoo, and C. Zwikel, Symmetries at null boundaries:
Two and three dimensional gravity cases, J. High Energy
Phys. 10 (2020) 107.

[25] H. Adami, M.M. Sheikh-Jabbari, V. Taghiloo, H.
Yavartanoo, and C. Zwikel, Chiral massive news: Null

LINEARIZED GRAVITY AND SOFT GRAVITON THEOREM IN … PHYS. REV. D 110, 065002 (2024)

065002-9

https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.091101
https://doi.org/10.1007/JHEP06(2016)088
https://doi.org/10.1007/JHEP06(2016)088
https://doi.org/10.1103/PhysRevD.93.101503
https://doi.org/10.1016/j.physletb.2016.07.022
https://doi.org/10.1088/1361-6382/aa59da
https://doi.org/10.1088/1361-6382/aa59da
https://doi.org/10.1016/j.nuclphysb.2016.11.011
https://doi.org/10.1016/j.nuclphysb.2016.11.011
https://doi.org/10.1103/PhysRevD.96.084032
https://doi.org/10.1007/JHEP10(2016)119
https://doi.org/10.1007/JHEP10(2016)119
https://doi.org/10.1007/JHEP09(2016)100
https://doi.org/10.1007/JHEP09(2016)100
https://doi.org/10.1140/epjc/s10052-016-4548-0
https://doi.org/10.1140/epjc/s10052-016-4548-0
https://doi.org/10.1103/PhysRevD.95.044007
https://doi.org/10.1007/JHEP09(2016)163
https://doi.org/10.1007/JHEP09(2016)163
https://doi.org/10.1007/JHEP05(2017)161
https://doi.org/10.1103/PhysRevD.95.106005
https://doi.org/10.1103/PhysRevD.95.104053
https://doi.org/10.1103/PhysRevD.95.104053
https://doi.org/10.1007/JHEP02(2017)052
https://doi.org/10.1007/JHEP02(2017)052
https://doi.org/10.1103/PhysRevD.96.104025
https://doi.org/10.21468/SciPostPhys.8.1.010
https://doi.org/10.1103/PhysRevLett.124.041601
https://doi.org/10.1007/JHEP04(2020)128
https://doi.org/10.1007/JHEP04(2020)128
https://doi.org/10.1142/S0218271820430063
https://doi.org/10.1007/JHEP09(2020)120
https://doi.org/10.1007/JHEP09(2020)120
https://doi.org/10.1007/JHEP10(2020)107
https://doi.org/10.1007/JHEP10(2020)107


boundary symmetries in topologically massive gravity,
J. High Energy Phys. 05 (2021) 261.

[26] H. Adami, D. Grumiller, M.M. Sheikh-Jabbari, V. Taghiloo,
H. Yavartanoo, and C. Zwikel, Null boundary phase space:
Slicings, news & memory, J. High Energy Phys. 11 (2021)
155.

[27] H. Adami, M. M. Sheikh-Jabbari, V. Taghiloo, and H.
Yavartanoo, Null surface thermodynamics, Phys. Rev. D
105, 066004 (2022).

[28] H.-S. Liu and P. Mao, Near horizon gravitational charges,
J. High Energy Phys. 05 (2022) 123.

[29] H. Adami, P. Mao, M. M. Sheikh-Jabbari, V. Taghiloo, and
H. Yavartanoo, Symmetries at causal boundaries in 2D and
3D gravity, J. High Energy Phys. 05 (2022) 189.

[30] V. Taghiloo, Null surface thermodynamics in topologically
massive gravity, Eur. Phys. J. C 83, 182 (2023).

[31] P. Mao and W. Zhao, Null boundary gravitational charges
from local Lorentz symmetries, Phys. Rev. D 107, 044004
(2023).

[32] A. Aggarwal and N. Gaddam, All symmetries of near-
horizon scattering, arXiv:2309.05775.

[33] A. Ashtekar and S. Speziale, Horizons and null infinity: A
fugue in four voices, Phys. Rev. D 109, L061501 (2024).

[34] A. Ashtekar and S. Speziale, Null infinity as a weakly
isolated horizon, arXiv:2402.17977.

[35] A. Strominger, Lectures on the Infrared Structure of Gravity
and Gauge Theory (Princeton University Press, Princeton,
2018).

[36] L. Donnay, G. Giribet, H. A. González, and A. Puhm, Black
hole memory effect, Phys. Rev. D 98, 124016 (2018).

[37] A. A. Rahman and R. M. Wald, Black hole memory, Phys.
Rev. D 101, 124010 (2020).

[38] S. Bhattacharjee, S. Kumar, and A. Bhattacharyya, Dis-
placement memory effect near the horizon of black holes,
J. High Energy Phys. 03 (2021) 134.

[39] P. Cheng and P. Mao, Soft theorems in curved spacetime,
Phys. Rev. D 106, L081702 (2022).

[40] P. Cheng and P. Mao, Soft gluon theorems in curved
spacetime, Phys. Rev. D 107, 065010 (2023).

[41] P. Mao, K.-Y. Zhang, and B. Zhou, Near horizon linearized
gravity and soft theorem, Phys. Rev. D 109, 065022
(2024).

[42] P. Mao and K.-Y. Zhang, Soft theorems in de Sitter
spacetime, J. High Energy Phys. 01 (2024) 044.

[43] G. Barnich, A. Gomberoff, and H. A. Gonzalez, The flat
limit of three dimensional asymptotically anti-de Sitter
spacetimes, Phys. Rev. D 86, 024020 (2012).

[44] G. Compère, A. Fiorucci, and R. Ruzziconi, The Λ − BMS4
group of dS4 and new boundary conditions for AdS4,
Classical Quantum Gravity 36, 195017 (2019); Classical
Quantum Gravity 38, 229501(E) (2021).

[45] G. Compère, A. Fiorucci, and R. Ruzziconi, The Λ − BMS4
charge algebra, J. High Energy Phys. 10 (2020) 205.

[46] H. J. de Vega, J. Ramirez, and N. G. Sanchez, Generation of
gravitational waves by generic sources in de Sitter space-
time, Phys. Rev. D 60, 044007 (1999).

[47] A. Ashtekar, B. Bonga, and A. Kesavan, Asymptotics with a
positive cosmological constant. II. Linear fields on de Sitter
spacetime, Phys. Rev. D 92, 044011 (2015).

[48] G. Date and S. J. Hoque, Gravitational waves from compact
sources in a de Sitter background, Phys. Rev. D 94, 064039
(2016).

[49] Y.-Z. Chu, Gravitational wave memory in dS4þ2n and 4D
cosmology, Classical Quantum Gravity 34, 035009 (2017).

[50] G. Compère, S. J. Hoque, and E. c. Kutluk, Quadrupolar
radiation in de Sitter: Displacement memory and Bondi
metric, Classical Quantum Gravity 41, 155006 (2024).

[51] E. T. Newman and T. W. J. Unti, Behavior of asymptotically
flat empty spaces, J. Math. Phys. (N.Y.) 3, 891 (1962).

[52] G. Barnich and P.-H. Lambert, A note on the Newman-Unti
group and the BMS charge algebra in terms of Newman-
Penrose coefficients, Adv. Theor. Math. Phys. 2012, 197385
(2012).

[53] E. Conde and P. Mao, BMS supertranslations and not so soft
gravitons, J. High Energy Phys. 05 (2017) 060.

[54] H. Bondi, M. G. J. van der Burg, and A.W. K. Metzner,
Gravitational waves in general relativity. 7. Waves from
axisymmetric isolated systems, Proc. R. Soc. A 269, 21
(1962).

[55] R. K. Sachs, Gravitational waves in general relativity. 8.
Waves in asymptotically flat space-times, Proc. R. Soc. A
270, 103 (1962).

[56] V. Iyer and R. M. Wald, Some properties of Noether charge
and a proposal for dynamical black hole entropy, Phys. Rev.
D 50, 846 (1994).

[57] G. Barnich and F. Brandt, Covariant theory of asymptotic
symmetries, conservation laws and central charges, Nucl.
Phys. B633, 3 (2002).

[58] A. Strominger, On BMS invariance of gravitational scatter-
ing, J. High Energy Phys. 07 (2014) 152.

[59] T. He, V. Lysov, P. Mitra, and A. Strominger, BMS super-
translations and Weinberg’s soft graviton theorem, J. High
Energy Phys. 05 (2015) 151.

[60] G. Barnich and C. Troessaert, Aspects of the BMS/CFT
correspondence, J. High Energy Phys. 05 (2010) 062.

[61] S. Bhatkar and D. Jain, Perturbative soft photon theorems in
de Sitter spacetime, J. High Energy Phys. 10 (2023) 055.

[62] N. Gaddam and N. Groenenboom, Soft graviton exchange
and the information paradox, Phys. Rev. D 109, 026007
(2024).

[63] N. Gaddam, N. Groenenboom, and G. ’t Hooft, Quantum
gravity on the black hole horizon, J. High Energy Phys. 01
(2022) 023.

[64] S. Duary, AdS correction to the Faddeev-Kulish state:
Migrating from the flat peninsula, J. High Energy Phys.
05 (2023) 079.

[65] V. Lysov, S. Pasterski, and A. Strominger, Low’s subleading
soft theorem as a symmetry of QED, Phys. Rev. Lett. 113,
111601 (2014).

[66] M. Campiglia and A. Laddha, Asymptotic symmetries and
subleading soft graviton theorem, Phys. Rev. D 90, 124028
(2014).

[67] M. Campiglia and A. Laddha, Sub-subleading soft grav-
itons: New symmetries of quantum gravity?, Phys. Lett. B
764, 218 (2017).

[68] M. Campiglia and A. Laddha, Sub-subleading soft gravitons
and large diffeomorphisms, J. High Energy Phys. 01 (2017)
036.

PUJIAN MAO and BOCHEN ZHOU PHYS. REV. D 110, 065002 (2024)

065002-10

https://doi.org/10.1007/JHEP05(2021)261
https://doi.org/10.1007/JHEP11(2021)155
https://doi.org/10.1007/JHEP11(2021)155
https://doi.org/10.1103/PhysRevD.105.066004
https://doi.org/10.1103/PhysRevD.105.066004
https://doi.org/10.1007/JHEP05(2022)123
https://doi.org/10.1007/JHEP05(2022)189
https://doi.org/10.1140/epjc/s10052-023-11309-0
https://doi.org/10.1103/PhysRevD.107.044004
https://doi.org/10.1103/PhysRevD.107.044004
https://arXiv.org/abs/2309.05775
https://doi.org/10.1103/PhysRevD.109.L061501
https://arXiv.org/abs/2402.17977
https://doi.org/10.1103/PhysRevD.98.124016
https://doi.org/10.1103/PhysRevD.101.124010
https://doi.org/10.1103/PhysRevD.101.124010
https://doi.org/10.1007/JHEP03(2021)134
https://doi.org/10.1103/PhysRevD.106.L081702
https://doi.org/10.1103/PhysRevD.107.065010
https://doi.org/10.1103/PhysRevD.109.065022
https://doi.org/10.1103/PhysRevD.109.065022
https://doi.org/10.1007/JHEP01(2024)044
https://doi.org/10.1103/PhysRevD.86.024020
https://doi.org/10.1088/1361-6382/ab3d4b
https://doi.org/10.1088/1361-6382/ac2c1a
https://doi.org/10.1088/1361-6382/ac2c1a
https://doi.org/10.1007/JHEP10(2020)205
https://doi.org/10.1103/PhysRevD.60.044007
https://doi.org/10.1103/PhysRevD.92.044011
https://doi.org/10.1103/PhysRevD.94.064039
https://doi.org/10.1103/PhysRevD.94.064039
https://doi.org/10.1088/1361-6382/34/3/035009
https://doi.org/10.1088/1361-6382/ad5826
https://doi.org/10.1063/1.1724303
https://doi.org/10.1155/2012/197385
https://doi.org/10.1155/2012/197385
https://doi.org/10.1007/JHEP05(2017)060
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1016/S0550-3213(02)00251-1
https://doi.org/10.1016/S0550-3213(02)00251-1
https://doi.org/10.1007/JHEP07(2014)152
https://doi.org/10.1007/JHEP05(2015)151
https://doi.org/10.1007/JHEP05(2015)151
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1007/JHEP10(2023)055
https://doi.org/10.1103/PhysRevD.109.026007
https://doi.org/10.1103/PhysRevD.109.026007
https://doi.org/10.1007/JHEP01(2022)023
https://doi.org/10.1007/JHEP01(2022)023
https://doi.org/10.1007/JHEP05(2023)079
https://doi.org/10.1007/JHEP05(2023)079
https://doi.org/10.1103/PhysRevLett.113.111601
https://doi.org/10.1103/PhysRevLett.113.111601
https://doi.org/10.1103/PhysRevD.90.124028
https://doi.org/10.1103/PhysRevD.90.124028
https://doi.org/10.1016/j.physletb.2016.11.046
https://doi.org/10.1016/j.physletb.2016.11.046
https://doi.org/10.1007/JHEP01(2017)036
https://doi.org/10.1007/JHEP01(2017)036


[69] S. Pasterski, S.-H. Shao, and A. Strominger, Flat space
amplitudes and conformal symmetry of the celestial sphere,
Phys. Rev. D 96, 065026 (2017).

[70] S. Pasterski, A chapter on celestial holography, arXiv:
2310.04932.

[71] S. He, P. Mao, and X.-C. Mao, TT̄ deformed soft theorem,
Phys. Rev. D 107, L101901 (2023).

[72] S. He, P. Mao, and X.-C. Mao, Loop corrections versus
marginal deformation in celestial holography, arXiv:
2307.02743.

[73] S. He and X.-C. Mao, Irrelevant and marginal deformed
BMS field theories, J. High Energy Phys. 04 (2024)
138.

LINEARIZED GRAVITY AND SOFT GRAVITON THEOREM IN … PHYS. REV. D 110, 065002 (2024)

065002-11

https://doi.org/10.1103/PhysRevD.96.065026
https://arXiv.org/abs/2310.04932
https://arXiv.org/abs/2310.04932
https://doi.org/10.1103/PhysRevD.107.L101901
https://arXiv.org/abs/2307.02743
https://arXiv.org/abs/2307.02743
https://doi.org/10.1007/JHEP04(2024)138
https://doi.org/10.1007/JHEP04(2024)138

