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We propose relativistic Luttinger fermions as a new ingredient for the construction of fundamental
quantum field theories. We construct the corresponding Clifford algebra and the spin metric for relativistic
invariance of the action using the spin-base invariant formalism. The corresponding minimal spinor has
32 complex components, matching with the degrees of freedom of a standard-model generation including a
right-handed neutrino. The resulting fermion fields exhibit a canonical scaling different from Dirac
fermions and thus support the construction of novel relativistic and perturbatively renormalizable,
interacting quantum field theories. In particular, new asymptotically free self-interacting field theories
can be constructed, representing first examples of high-energy complete quantum field theories based on
pure matter degrees of freedom. Gauge theories with relativistic Luttinger fermions exhibit a strong
paramagnetic dominance, requiring large non-Abelian gauge groups to maintain asymptotic freedom. We
comment on the possibility to use Luttinger fermions for particle physics model building and the expected
naturalness properties of such models.
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I. INTRODUCTION

One of the remarkable features of quantum field theories
is given by the interconnection of fields as representations
of the Lorentz group [1,2], their powercounting dimen-
sionality and the renormalizability of interacting field
theories in d ¼ 3þ 1-dimensional spacetime [3–5]. These
interconnections are particularly obvious in the standard
model containing spin 0; 1

2
; 1 fields and accommodating

all possible renormalizable interactions allowed by the
symmetries.
In addition to the experimental searches for further

degrees of freedom, theoretical studies of consistent quan-
tum field theories have paved the way for new concepts,
e.g., with a consistent quantization of interacting spin 3

2

particles requiring supersymmetry.
In the present paper, we explore the possibility to

construct relativistic versions of Luttinger fermions and

perform first perturbative studies of corresponding inter-
acting quantum field theories. This type of fermions has
been discovered by Luttinger while searching for the most
general form of a nonrelativistic Hamiltonian of a semi-
conductor excitation in a magnetic field [6]. In recent solid-
state research, these nonrelativistic degrees of freedom find
extensive application in spin-orbit coupled materials with
quadratic band touching/crossing points (e.g., inverted
band gap semiconductors, pyrochlore iridates) [7–9];
such systems can give rise to interesting quantum critical
phenomena [10–19]. Also gauged versions have been
studied recently in the context of quantum spin liquids [20].
While the generalization of the underlying algebra to the

relativistic case is, in principle, straightforward, we find
that the construction of a fully relativistic action requires a
reducible representation in terms of the related Dirac
algebra with interesting consequences for the construction
of interacting quantum field theories. From the viewpoint
of the propagator pole structure, the theories exhibit typical
features of a higher-derivative theory [21–24], whereas the
ultraviolet (UV) properties of loop integrals resembles that
of standard scalar field theories with the decisive difference
that self-interacting theories can be asymptotically free.

II. RELATIVISTIC LUTTINGER FERMIONS

We propose the kinetic action for a relativistic theory
with Luttinger fermions in d dimensional spacetime to be
of the form
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S ¼
Z

ddx½ψ̄Gμνði∂μÞði∂νÞψ �; ð1Þ

where ψ denotes the Grassmann-valued spinor, ψ̄ its
conjugate to be constructed, and Gμν is a dγ × dγ dimen-
sional matrix for each fixed pair of Lorentz indices
μ; ν ¼ 0;…; ðd − 1Þ. In order to remove the Lorentz-
reducible part proportional to a trivial Klein-Gordon
operator, the Luttinger matrices Gμν are Lorentz traceless,
Gμ

μ ¼ gμνGμν ¼ 0. Also, they are Lorentz symmetric
Gμν ¼ Gνμ as is obvious from Eq. (1), satisfying the
anticommuting algebra

fGμν;Gκλg¼−
2

d−1
gμνgκλþ

d
d−1

ðgμκgνλþgμλgνκÞ; ð2Þ

generalizing the Abrikosov algebra for the spatial
Euclidean [11,25] to the Lorentzian case. The tensor
structure of the right-hand side is fixed by Lorentz and
index symmetries. The prefactors follow from the Lorentz
tracelessness of Gμν and from the requirement that the
Luttinger operator should square to the square of the Klein-
Gordon operator,

Gμνði∂μÞði∂νÞGκλði∂κÞði∂λÞ ¼ ð∂2Þ2: ð3Þ

With Gμν being symmetric in μ, ν and traceless, we need at
least de ¼ 1

2
dðdþ 1Þ − 1 linearly independent elements to

span the algebra (2). Since Eq. (2) defines a Clifford algebra,
the dimension dγ must at least be that of the irreducible
representation dγ;irr ¼ 2bde=2c. Naively, this suggests that we
need a dγ;irr ¼ 16 dimensional representation for the
required de ¼ 9 elements Gμν in d ¼ 4 spacetime dimen-
sions. Using a metric g ¼ diagðþ;−;−;…Þ, the G0i can be
chosen anti-hermitean with respect to their spin indices
while all other Gik and G00 are hermitean. In d ¼ 4
spacetime dimensions, we can use a corresponding dγ
dimensional Euclidean Dirac algebra fγA; γBg ¼ 2δAB with
A;B∈ 1;…; 9 to construct an explicit representation of the
Gμν as linear combinations of the γA (see Appendix A for an
in-depth discussion of the relativistic Abrikosov algebra and
its representation). So far, the construction is analogous to
Luttinger fermion applications in condensedmatter physics,
replacing the spatial Euclidean metric by the Minkowski
metric, cf. [11].
For the relativistic action, we also need the definition of

the conjugate spinor ψ̄. A unitary time evolution requires a
real action which suggests to write ψ̄ ¼ ψ†h, where h
denotes the spin metric. For its construction, we note that
the Abrikosov algebra (2) is invariant under Lorentz
transformations with respect to the Lorentz indices
as well as invariant under SL(dγ;C) spin-base transforma-
tions [26–29]

Gμν → SGμνS−1; S ∈SLðdγ;CÞ: ð4Þ

The action is spin-base invariant with ψ → Sψ , provided
that the spin metric transforms as h → ðS†Þ−1hS−1. The
condition that ψ̄ψ should form a real scalar (mass term)
implies h† ¼ h. The kinetic term (1) is real if

fh;G0ig ¼ 0; ½h; Gij� ¼ 0; ½h;Gμ μ� ¼ 0; ð5Þ

where underscored indices are not summed over. Now, the
important point is that no solution for h, satisfying
Eq. (5) exists in the irreducible representation dγ;irr ¼ 16

for d ¼ 4. The construction of a relativistic theory of
Luttinger fermions thus requires the use of a reducible
representation of the corresponding Euclidean Dirac
Clifford algebra, e.g., dγ ¼ 32 as the minimal possibility
in d ¼ 4 dimensional spacetime. For instance, for a

representation with G0i ¼ i
ffiffi
2
3

q
γA¼i, a suitable spin metric

is given by h ¼ γ1γ2γ3γ10. (Another linearly independent
solution is given by replacing γ10 by γ11.)
In summary, the action (1) defines a free theory of

massless propagating relativistic Luttinger fermions. These
fermions have dγ ¼ 32 complex components that obey the
classical equation of motion Gμν∂

μ
∂
νψ ¼ 0. Because of

Eq. (3), each component satisfies the Klein-Gordon equa-
tion. The theory is SLðdγ;CÞ spin-base invariant.

III. SELF-INTERACTING QUANTUM
LUTTINGER FIELDS

Because of the kinetic term being quadratic in the
derivatives, the canonical mass dimension of the fermions
is ½ψ � ¼ 1 in d ¼ 4 analogous to a scalar field. Therefore,
quartic self-interactions are perturbatively renormalizable.
With 1024 independent bilinears (compared to 16 for Dirac
fermions), there are plenty of opportunities for model
building. Here, we concentrate on a few selected channels,
in the Euclidean domain, starting with the Luttinger variant
of the Gross-Neveu model [30] in d ¼ 4. In contradistinc-
tion to Dirac fermions, the Gross-Neveu channel generates
also a tensor channel such that a Fierz-complete basis of
local interactions is given by

S¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψþλ0

2
ðψ̄ψÞ2þλt

2
ðψ̄GμνψÞ2

�
: ð6Þ

As a first step towards the quantum analysis of this field
theory, we compute the one-loop β functions, yielding

∂tλ0 ¼ −
1

ð12πÞ2 ð540λ
2
0 − 528λ0λtÞ; ð7Þ

∂tλt ¼ −
1

ð12πÞ2 ð−992λ
2
t þ 28λ0λt − 3λ20Þ: ð8Þ
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Details of the calculation are provided in Appendix B. For
the pure Gross-Neveu case, λt ¼ 0, the scalar coupling λ0
has a negative β function (7) exhibiting asymptotic freedom.
This is in agreement with naive expectations, as the standard
Gross-Neveu model is asymptotically free in its critical
dimension. For Dirac fermions, the critical dimension is
dcr ¼ 2; but for Luttinger fermions, we have dcr ¼ 4. In
comparison to a scalarϕ4 theorywhich is not asymptotically
free, we deal here with diagrams of the same topology, but
the fermion loop comes with another minus sign.
However, the tensor channel is generated by the scalar

channel, cf. Eq. (8). Therefore, the analysis should be
performed in the ðλ0; λtÞ plane. The phase diagram reveals
that the Gaussian fixed point is UV attractive in a large
region with λ0 > 0 and λt sufficiently negative, see Fig. 1.
Defining the angle α ¼ arctan λt

λ0
, the model is asymptoti-

cally free for −90° ≤ α ≲ 0° with the scalar coupling
dominating for α > −45.8°. To our knowledge, this is
the first example of an asymptotically free, UV complete,
pure fermionic matter theory.
As a second example, we consider a fermionic model

with a continuous chiral/axial symmetry. Analogously to
the Dirac case, we need an algebra element that anticom-
mutes with all Gμν as well as with h. For the present case,
this element is given by γ10, and it is straightforward to
check that ψ → eiϑγ10ψ , ψ̄ → ψ̄eiϑγ10 is a U(1) “axial”
symmetry of the kinetic action. A self-interacting model
with this symmetry is given by the analogue of the Nambu–
Jona-Lasinio (NJL) model [31],

S ¼
Z

d4x

�
−ψ̄Gμν∂

μ
∂
νψ þ λ

2

�ðψ̄ψÞ2 − ðψ̄γ10ψÞ2
��
: ð9Þ

The one-loop β function for the NJL coupling yields for
dγ ¼ 32, cf. Appendix B,

∂tλ ¼ −
4Nf

π2
λ2: ð10Þ

Again, we observe that the coupling is asymptotically free.
Here, we have neglected further vector/axial-vector chan-
nels that are generated by the NJL coupling. This is
justified in the limit of large fermion flavor number Nf
where the channels decouple.
In summary, self-interacting quantum field theories with

Luttinger fermions give rise to asymptotically free RG
trajectories emanating from the Gaussian fixed point thus
representing UV complete theories. Diagrammatically, this
is similar to Dirac fermionic models in their critical
dimension. For Luttinger fermions, we have dcr ¼ 4
guaranteeing perturbative renormalizability. Conversely,
the theories become strongly interacting towards the infra-
red (IR) such that phenomena such as dynamical symmetry
breaking and mass generation can be expected. The
exploration of the long-range phase structure of the present
and similar models will be an interesting field of future
research.

IV. CONNECTION TO DIRAC FERMIONS

Counting the degrees of freedom, a 32-component
Luttinger spinor contains eight 4-component Dirac spinors.
Noteworthily, this covers the number of spinor degrees of
freedom in one standard-model family: up and down
quarks with 3 colors each, an electron and a neutrino
(including a possible right-handed component). This raises
the question as to whether a UV-completion of the standard
model in terms of a model with Luttinger-fermionic matter
can be constructed.
For this, a minimum requirement is that the spin-base

symmetry SLð32;CÞ needs to be broken down to the Dirac
spin-base symmetry SLð4;CÞ (possibly times some
residual Dirac flavor symmetry). The Gross-Neveu- or
NJL-type models presumably preserve spin-base symmetry
also across possible strong-coupling transitions. Therefore,
an explicit symmetry breaking mechanism appears more
attractive—also in order to avoid a potentially large number
of Goldstone bosons.
Explicit breaking terms could be formulated on the level

of RG marginal four-fermion interactions. However, such
marginal terms then induce also an RG relevant term which
is given by the Dirac kinetic term ∼ζD

R
x ψ̄PDði=∂Þψ , where

PDði=∂Þ is a suitable Abrikosov algebra element linear in the
Dirac operator i=∂ projecting the Luttinger components onto
Dirac components. The prefactor ζD is a coupling of mass
dimension one. Powercounting suggests that the UV
remains still dominated by the RG behavior of relativistic
Luttinger theory, whereas the fermion propagators become
Dirac-like at momenta below ζD. Such a transition from

FIG. 1. Phase diagram of the Gross-Neveu-like model with
relativistic Luttinger fermions in d ¼ 4 for Nf ¼ 1 and dγ ¼ 32
with arrows indicating the flow towards the UV. In region I, The
model is asymptotically free in both the scalar coupling λ0 as well
as the tensor channel λt, approaching the Gaussian fixed point F
logarithmically.
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Luttinger to Dirac fermions has been studied in the
nonrelativistic case in [16] for Bernal-stacked bilayer
honeycomb lattices such as bilayer graphene; for a scalar
analogue, see [32].
The explicit Dirac term also comes with another advan-

tage: While we have studied theories of massless Luttinger
fermions so far, a massive generalization of the free field
equation reads

ð−Gμν∂
μ
∂
ν −m2Þψ ¼ 0: ð11Þ

Transition to momentum space and using Eq. (3)
yields 0 ¼ ðp4 −m4ÞψðpÞ ¼ ðp2 −m2Þðp2 þm2ÞψðpÞ.
This illustrates that each component of the Luttinger spinor
satisfies the classical field equation of a higher-derivative
theory [21–24,33]. This observation also suggests that the
massive theory features tachyonic solutions with a negative
spectral weight in addition to conventional massive modes.
These are consequences of Ostrogradsky’s theorem imply-
ing that Hamiltonians of higher-derivative theories are
unbounded from below [34]. Whereas this appears to
point to instabilities (or nonunitarity) at the quantum level,
such theories are nevertheless discussed intensely in the
literature in a variety of contexts both on the classical and
the quantum level. Concrete proposals for a consistent
treatment on the quantum level have been suggested
[22,24,35–45]. Interestingly, explicit proofs exist for
classical example systems that their motion remains stable
for all initial conditions, despite interactions with the
seemingly unstable modes [46,47].
Even if instabilities from negative-energy modes persist

for the present class of models in a detailed quantum
analysis, they can still be discussed from the perspective of
effective field theory (EFT), as long as the rate of instability
is small enough to satisfy all relevant phenomenological
bounds. For instance, a fairly universal bound arises from
gravity-mediated vacuum decay (into photons and nega-
tive-energy modes) which would contribute to the astro-
physical diffuse photon background [48,49]. In fact,
cosmology and its puzzles involving dark energy and dark
matter have been a fruitful field for the application of field
theories with negative energy modes [50]. A quantum
treatment of such theories in an EFT framework bears the
possibility of ameliorating tensions in current cosmological
data [51,52], or provides mechanisms to produce dark-
matter candidates accessible to direct detection [49,52].
Whether or not theories with Luttinger fermions can be
useful in this context is a subject for future research.
For the purpose of this work, we emphasize that we have

paid careful attention to possible problems arising from the
in-principle unboundedness of the Hamiltonian, see
Appendixes B and C, but found no impact on the quantities
under study. In this context, we note that an explicit Dirac
kinetic term has the potential to decouple the tachyonic
poles from the real momentum axis, as the Dirac equation

admits only classical solutions with p2 ¼ m2. We thus
consider an explicit Dirac kinetic term as a useful ingre-
dient for future model building as well as for an inves-
tigation of the implications of Ostrogradsky’s theorem.

V. GAUGE THEORIES WITH LUTTINGER
FERMIONS

Luttinger fermions can straightforwardly be coupled to
gauge fields by minimal coupling. For instance, the action
for quantum electrodynamics (QED) with Luttinger fer-
mions reads

S ¼
Z
x

�
−
1

4
FμνFμν − ψ̄GμνDμDνψ −m2ψ̄ψ

�
; ð12Þ

where Dμ ¼ ∂
μ − ieAμ. We have included here also a mass

term. As we are ultimately interested in the one-loop β
function in a mass-independent scheme, the tachyonic
modes mentioned in the previous section are of no
relevance for the present study.
A convenient way to compute the one-loop β function of

the running gauge coupling proceeds via the one-loop
effective action upon integrating out the fermions:

Γ1l½A� ¼ −i ln detð−GμνDμDν −m2Þ

¼ −
i
2
ln det½−ðGμνDμDνÞ2 þm4Þ�; ð13Þ

where in the last step we have used γ10-hermiticity of the
kinetic term, γ10GμνDμDνγ10 ¼ −GμνDμDν. An interesting
and relevant structure arising from the minimally coupled
kinetic term is given by the spin-field coupling, reading
∼ ie

2
½Gμν; Gκλ�FνλfDμ; Dκg þOð∂FÞ, see Appendix C for

details. This is the analogue of the Pauli term ∼ − e
2
σμνFμν

for Dirac spinors, leading to an enhancement of “para-
magnetic” contributions.
Expanding the determinant in powers of the field

strength, the leading order term ∼FμνFμν contains the
information about the renormalization of the photon wave
function; this computation is presented in Appendix. C.
Within the background field formalism, the wave-function
renormalization is connected to the renormalization of the
coupling [53,54], yielding the β function

∂te2 ¼
4 · 19
9π2

e4 ¼ 4

9π2
ð22jpara − 3jdiaÞe4: ð14Þ

In the last expression, we have decomposed the result into a
“diamagnetic” contribution from the Klein-Gordon oper-
ator contained in Eq. (13) and a “paramagnetic” contribu-
tion arising from the remaining terms including the spin-
field coupling. Obviously, we observe paramagnetic domi-
nance, i.e. the paramagnetic contributions dominate the
final result and are also responsible for the sign of the β
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function, as is known for many theories including non-
Abelian gauge theories and even gravity [55].
Due to this strong paramagnetic dominance, the β

function is positive. As in ordinary QED, the theory is thus
not asymptotically free, and the vicinity of the Gaussian
fixed point does not support RG trajectories that are UV
complete and yield an interacting theory in the long-range
limit. As for the standard model, a different mechanism is
needed to establish high-energy completeness.
Let us finally turn to non-Abelian gauge theories,

generalizing the action (12) to a non-Abelian SU(Nc)
gauge group with Nc colors. Since the Yang-Mills sector
remains unmodified, the resulting one-loop β function for
the coupling g of QCD with Nf relativistic Luttinger quarks
can immediately be written down,

∂tg2 ¼ −
1

3π2

�
11

8
Nc −

2 · 19
3

Nf

�
g4: ð15Þ

As is the standard case, asymptotic freedom of QCD can
get lost for a large number of fermionic degrees of freedom
relative to the number of colors. Due to the strong para-
magnetic dominance of the Luttinger fermions, the critical
color number below which asymptotic freedom is lost is
comparatively large:

Nc;cr ¼
304

33
Nf ≃ 9.21Nf : ð16Þ

Hence, for Nf ¼ 1 Luttinger flavors, QCD is asymptoti-
cally free for SU(Nc ≥ 10).
An inclusion of all fermionic matter of the standard

model (including right-handed neutrinos) would require
Nf ¼ 3, since a standard-model generation fits into a single
Luttinger flavor, i.e., the number of generations equals the
number of flavors. Correspondingly, asymptotically free
grand unified models based on a simple Lie group can be
constructed for all SU(Nc ≥ 28), provided all obstructions
can be met [56–59]. In principle, it is conceivable that this
gauge group can be broken dynamically by suitable
fermionic condensates that are seeded by four-fermion
interactions instead of explicit independent Higgs fields.
While this would be similar in spirit to models of top-quark
condensation [60–63], the essential difference is that the
four fermion interactions are RG marginal and perturba-
tively renormalizable—and potentially asymptotically free.

VI. CONCLUSIONS

We have constructed relativistic versions of Luttinger
fermions in analogy to effective low-energy degrees of
freedom of nonrelativistic solid-state systems. We propose
to use these relativistic versions as fundamental degrees of
freedom of interacting quantum field theories which can
straightforwardly be constructed using perturbative quan-
tization. Owing to their powercounting properties, models

with quartic self-interactions of relativistic Luttinger fer-
mions can be asymptotically free in d ¼ 4 dimensional
spacetime and thus have a chance to exist as fundamental
quantum field theories on all scales. We provided pertur-
bative evidence for this for the analogues of Gross-Neveu
and NJL models. Since d ¼ 4 is the RG critical dimension
for our new models, the perturbative RG running of the
couplings is logarithmic and a correspondingly large degree
of UV insensitivity is obtained. Conversely, these models
become strongly interacting in the long-range limit and
their phase structure presumably characterized by dimen-
sional transmutation and condensate formation deserves to
be explored in detail.
A crucial ingredient for the construction of these

relativistic models is given by the spin metric which
requires a dγ ¼ 32 dimensional representation of the
Abrikosov algebra. It is fascinating to see that one flavor
of Luttinger fermions can thus host a whole standard-model
generation. A corresponding perturbative study of gauge
theories with Luttinger fermion matter reveals that com-
paratively large gauge groups are needed in order to
preserve asymptotic freedom.
A suitable combination of gauge and fermionic self-

interactions holds the promise to remain asymptotically
free and high-energy complete while entailing condensate
formation and thus dynamical (gauge) symmetry breaking
at low-energies. Such theories would be technically natural
[64–68] and thus of great interest to model building. In
addition, however, the transition to low energies requires a
breaking of the Luttinger spinors and the corresponding
spin-base symmetry down to Dirac spinors. For this, we
suggest an explicit breaking through a Dirac kinetic term
which is RG relevant and comes with a dimensionful
coupling. Though the scale setting of the latter is not
technically natural, the associated sensitivity to a high-
energy scale is only powercounting linear as opposed to
quadratic in the standard model.
For a minimal technically natural extension of the

standard model, it appears worthwhile to aim at the con-
struction of a separate Luttinger fermion sector designed
such that it forms a bilinear fermion condensate at low
energies with the quantum numbers of the standard model
Higgs field. In this case, the electroweak scale would be set
by the scale of dimensional transmutation of the Luttinger
fermion self-interaction which features the desired logarith-
mic sensitivity to the UV physics. Because of the strong
paramagnetic dominance such a model would inevitably
exert a strong influence on the (still logarithmic) running of
the electroweak gauge sector possibly at the expense of no
asymptotic freedom. A conclusive analysis requires to study
the RG interplay of the gauge sector with the renormalizable
fermionic self-interactions, cf. [69].
To conclude, the new kind of relativistic fermion degrees

of freedom pave the way to unprecedented explorations of
new particle physics models in four spacetime dimensions.
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APPENDIX A: RELATIVISTIC
ABRIKOSOV ALGEBRA

For the construction of the relativistic kinetic action in
Eq. (1), we use the anticommuting Clifford algebra of
elements Gμν acting on the Luttinger fermions as it has first
been written down for the nonrelativistic case by Abrikosov
[25]. For fGμν; Gκλg ∼ 1 to transform as a tensor under
Lorentz transformations, the right-hand side must be
formed from Lorentz covariant tensors. In absence of
any further structure, we have the metric gμν and the
Levi-Civita symbol ϵμνκλ at our disposal. The latter is
excluded by the symmetry requirement Gμν ¼ Gνμ follow-
ing from the kinetic action. This leaves us with the ansatz,

fGμν; Gκλg ¼ ðagμνgκλ þ bðgμκgνλ þ gμλgνκÞÞ1; ðA1Þ

with constants a, b to be determined. The metric factors
have been arranged such that the symmetries of the
anticommutator and of Gμν are already implemented.
The identity 1 in spinor space refers to the dγ × dγ matrix
structure of the Gμν.
The constants a, b are determined by the requirements

that the Luttinger operator should square to the square of
the D’Alembertian,

Gμνði∂μÞði∂νÞGκλði∂κÞði∂λÞ ¼ ð∂2Þ2 ⇒ aþ 2b ¼ 2; ðA2Þ

and that the Gμν shall be traceless in order to remove the
reducible Klein-Gordon part from the kinetic action,

0 ¼ fGμν; Gκ
κg ¼ gκλfGμν; Gκλg ⇒ daþ 2b ¼ 0; ðA3Þ

where d is the spacetime dimension. Solving these equa-
tions leads to Eq. (2). By construction, this Abrikosov
algebra is invariant under Lorentz transformations,

Gμν → GκλΛκ
μΛλ

ν; Λ∈SOð1; d − 1Þ ðA4Þ

as well as under spin-base transformations (4) which
correspond to the similarity transformations of the Gμν

matrices. [In principle, we can perform GL(dγ;C) trans-
formations; however, the U(1) phase and a rescaling ∈Rþ

does not change the Gμν which is why we consider only
SL(dγ;C) [29,70].] For a given matrix Gμν, both trans-
formations change the form of that matrix. However, since
all representations are connected by similarity transforma-
tions [71], there exists a spin-base transformation SLor for
each Lorentz transformation Λμ

ν , such that the spin-base
transformation undoes the Lorentz transformation,

Gμν → SLorGκλΛκ
μΛλ

νS−1
Lor ≡Gμν: ðA5Þ

Clearly, the set of all SLor forms an SO(1,d − 1) subgroup
of SL(dγ;C). For an accurate discussion of the global
aspects and depending on d, a restriction to the identity
component may be necessary; e.g. in d ¼ 4, the identity
component of SO(1,3) has a universal cover that is
isomorphic to SLð2;CÞ, and therefore it is useful to think
of SLor as an SLð2;CÞ subgroup embedded into SLð32;CÞ,
cf. below. The details of this embedding also quantify how
the Luttinger spinor can be decomposed into SLð2;CÞ
Weyl spinors as irreducible representations of the Lorentz
group. The corresponding transformations of the spinors
ψ → SLorψ can be viewed as the “Lorentz transformations
of Luttinger spinors.” This corresponds to the conventional
picture, where fields transform under Lorentz transforma-
tions, but the Gμν (or γμ in the Dirac case) remain fixed.
At this point, we should emphasize the difference

between spin-base invariance and typical global sym-
metries such as the axial U(1) symmetry discussed for
the NJL model in the main text. The latter is a typical
“Noether” symmetry that acts on the fields and goes along
with a corresponding Noether current and charge. By
contrast, the spin-base symmetry also acts on the Gμν

which carries the spin structure but is not considered as a
field in standard QFT. However, the Gμν can be understood
as fields GμνðxÞ in the case of gravitational interactions,
where also the RHS of the Abrikosov algebra contains the
metric gμν as the gravitational field variable. In such a
scenario, the spin-base symmetry becomes a gauge theory
rather than a global Noether symmetry [28,29].
For the metric convention g ¼ diagð1;−1;−1;…Þ, the

squares of the Gμν can be determined from Eq. (2),

G2
0i¼−

1

2

d
d−1

; G2
ij≠i¼

1

2

d
d−1

; G2
μμ¼1: ðA6Þ

Associating hermiticity properties to Gμν, this implies that
G0i has to be chosen anti-hermitean and all others hermi-
tean. Spanning the Gμν matrices by a Euclidean Clifford
algebra,

Gμν ¼ aAμνγA; fγA; γBg ¼ 2δAB; ðA7Þ

with hermitean dγ × dγ matrices γA, the coefficients aA0i can
be chosen imaginary, and all others real. With Gμν ¼ Gνμ
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we need de ¼ 1
2
dðdþ 1Þ − 1 linearly independent anti-

commuting elements to span the space of Gμν matrices.
For illustration, let us give an explicit representation of

the Gμν matrices for d ¼ 3þ 1 dimensional spacetime in
terms of de ¼ 9 Dirac matrices:

G0i ¼ i

ffiffiffi
2

3

r
γA¼i; i ¼ 1; 2; 3;

G12 ¼
ffiffiffi
2

3

r
γ4; G23 ¼

ffiffiffi
2

3

r
γ5; G31 ¼

ffiffiffi
2

3

r
γ6;

G00 ¼ γ7; G11 ¼
1

3
γ7 þ

2
ffiffiffi
2

p

3
γ8;

G22 ¼
1

3
γ7 −

ffiffiffi
2

p

3
γ8 þ

ffiffiffi
2

3

r
γ9;

G33 ¼
1

3
γ7 −

ffiffiffi
2

p

3
γ8 −

ffiffiffi
2

3

r
γ9: ðA8Þ

This representation can be viewed as an appropriate Wick
rotation of the one constructed for d ¼ 4 Euclidean
dimensions in [11].
So far, it seems that the relativistic Abrikosov algebra

could be constructed from the irreducible representation of
the Euclidean Dirac algebra containing de ¼ 9 elements

which would be the dγ;irr ¼ 2b
de
2
c ¼ 16 dimensional repre-

sentation. However, a real action with a unitary time
evolution requires the definition of the conjugate spinor
ψ̄ ¼ ψ†h, involving a spin metric h. In the Euclidean,
h ¼ 1 can be chosen, as all G matrices are hermitean. This
is not a solution for the relativistic case, since the require-
ment of the action to be real implies the conditions of
Eq. (5), fh;G0ig ¼ 0, ½h;Gij� ¼ 0, ½h;Gμ μ� ¼ 0, where we

have used that h ¼ h† following from ψ̄ψ being a real
scalar. The nonrelativistic choice h ¼ 1 is obviously in
contradiction with fh;G0ig ¼ 0.
Let us for the moment assume that we work in the

irreducible representation dγ;irr ¼ 16. Using the represen-
tation Eq. (A8) as an example, the latter anticommutator
can only be fulfilled, if h is a (linear superposition of a)
product of an odd number of the remaining matrices γ4;…;9

as this exhausts all possible elements of the algebra. Then,
the resulting h commutes only with Gij and Gμ μ, if it

contains the elements γA that Gij and Gμ μ are composed

from. This implies that hmust be a product of all remaining
γA, e.g., γ4γ5γ6γ7γ8γ9. However, this is a product of an even
number of γA matrices in contradiction with the assumption
made before. This proves that there exists no spin metric in
the dγ;irr ¼ 16 dimensional representation of the γA matri-
ces and thus no relativistic theory.
The solution as presented in the main text is to use

a reducible representation with the smallest one being
dγ ¼ 32 for d ¼ 4. Note that the attribute “reducible” refers

to being able to satisfy the Abrikosov algebra. If we read
the algebra together with the conditions for the spin metric
of Eq. (5), then the dγ ¼ 32 dimensional representation
cannot be further reduced to a lower dimensional repre-
sentation without violating one of the requirements. Still,
the reducibility in the aforementioned sense has a conse-
quence: as the dγ ¼ 32 dimensional representation goes
along with two further anticommuting elements γ10 and γ11,
there are two linearly independent choices for a spin metric,

h ¼ γ1γ2γ3γ10; or h̃ ¼ γ1γ2γ3γ11; ðA9Þ

satisfying all requirements of Eq. (5). Any linear combi-
nation h0 ¼ αhþ βh̃ with α2 þ β2 ¼ 1 and α; β∈R could
equally well serve as spin metric. At this point, the most
important aspect is that a spin metric exists, rendering the
action relativistically invariant, nonzero, and real.
The reducibility (in the above mentioned sense) of the

representation goes along with another advantage. There
exists another element that anticommutes with all G
matrices as well as with the spin metric. For our choice
for the spin metric h, this element corresponds to γ10 (for
the choice h̃, it would be γ11). Using this element, we can
define axial transformations,

ψ → eiϑγ10ψ ; ψ̄ → ψ̄eiϑγ10 ; ðA10Þ

which leave the kinetic term invariant. Incidentally, a mass
term of the form

Sm ¼
Z

d4xm2ψ̄ψ ðA11Þ

would break this symmetry. The situation is therefore rather
similar to the Dirac case with respect to both the existence
of an axial symmetry in addition to the standard vector
symmetry of phase rotations for the kinetic term, as well as
the breaking of the axial symmetry by a mass term. This
suggests that a Luttinger fermion can be decomposed into
“chiral” components using the projectors

PR=L ¼ 1

2
ð1� γ10Þ; ψR=L ¼ PR=Lψ : ðA12Þ

The kinetic term then decomposes into separate kinetic
terms for the chiral components, whereas the mass term
couples these components. This is analogous to the
decomposition of Dirac fermions into Weyl components.
We leave an analogous exploration of the existence of
Majorana-Luttinger fermions or representations in terms of
real Clifford algebras [72] for future study.
For the construction of possible interaction terms for the

Luttinger fermions, it is useful to classify all linearly
independent fermion bilinears of the form ψ̄Γψ with Γ
being a Clifford algebra element. The fact that ψ is a
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32-component spinor (together with reality requirements
for the action) suggests that there might be 32 × 32 ¼ 1024
bilinears. They can explicitly be listed using the Euclidean
Dirac algebra. For this, we first note that γ11 ¼

Q
10
A¼1 γA.

The complete set of Clifford algebra elements can thus be
written as

Γ ¼ f1; γ1; γ2;…; γ10; γ1γ2;…; γ9γ10; γ1γ2γ3;…; γ11g;
ðA13Þ

listed in the form of an increasing length of the γ products.
Counting this number of products, yields

number of Γ ¼
X10
k¼0

�
10

k

�
¼ 1024; ðA14Þ

in agreement with the preceding expectation. It remains an
interesting task to determine how these bilinears can be
conveniently grouped into Lorentz tensors.

APPENDIX B: SELF-INTERACTING QUANTUM
LUTTINGER FIELDS

We have performed the computation of the one-loop β
functions for the purely fermionic theories using the
functional RG, since the computational tools for such
systems are fairly developed [73–75], and generalize
straightforwardly to nonperturbative approximation
schemes [76–83] to be explored in the future. We employ
the Wetterich equation [84] for a scale-dependent effective
action Γk,

∂tΓk ¼
1

2
STr

�
∂tRkðΓð2Þ

k þ RkÞ−1
�
; ðB1Þ

where Rk denotes a regulator function (specified below) in
the Euclidean implementing a decoupling of low-momen-
tum modes in the IR; its derivative ∂tRk establishes a
Wilsonian momentum-shell integration, see [74,85–87] for
reviews for the present setting. The supertrace STr includes
a minus sign for all Grassmann-valued field components
such as the Luttinger fermions considered here. For our
purpose, it is useful to split the Hessian of the action into a
field-independent kinetic part and a field-dependent part

carrying all interactions, Γð2Þ þ Rk ¼ P þ F withP ¼ Γð2Þ
kin

and F ¼ Γð2Þ
int . As a one-loop exact ansatz, we use, for

instance, for the Gross-Neveu-type model of (6)

Γk¼
Z
x

�
−Zψ̄Gμν∂

μ
∂
νψþ λ̄0

2
ðψ̄ψÞ2þ λ̄t

2
ðψ̄GμνψÞ2

�
; ðB2Þ

where we have introduced a wave function renormalization
Z which—together with the bare couplings—is considered
as scale dependent. The RG flows of these quantities can be

extracted upon an expansion of the Wetterich equation in
powers of F . The linear term contains the flow of the wave
function which we parametrize in terms of the anomalous
dimension of the fermion fields,

η ¼ −∂t lnZ: ðB3Þ

In fact to one-loop order, we find η ¼ 0 which is consistent
with the perturbative argument, that the only contributing
tadpole diagram does not give rise to a nontrivial momen-
tum dependence. For generality, we still keep the η
dependence explicit, in order to illustrate how higher-loop
resummation effects would affect our results. The one-loop
flow of the couplings is contained in the terms of order
∼F 2. Introducing the renormalized (dimensionless) cou-
plings

λ0;t ¼
kd−4

Z2
λ̄0;t; ðB4Þ

we obtain the RG flows

∂tλ0;t ¼ ðd − 4þ 2ηÞλ0;t − 4vdl
ðdÞ
2 ð0; ηÞf0;tðNf ; d; λ0; λtÞ;

ðB5Þ

where we have kept the spacetime dimension general and
used the abbreviation v−1d ¼ 2dþ1πd=2Γðd=2Þ, such that

v4 ¼ 1=ð32π2Þ. The threshold function lðdÞ2 parametrizes
the regularized loop-momentum integral also containing
the information about the specifics of the regulator. In
addition to the scaling terms linear in the couplings, the
fluctuation-induced terms are defined in terms of the
functions

f0 ¼ ðNfdγ − 2Þλ20 −
2d

d − 1
ðde þ 2Þλ0λt;

ft ¼ −
d

ðd − 1Þde
ððde − 2ÞNfdγ þ 2ðd2e − de þ 2ÞÞλ2t

þ
�
2 −

4

de

�
λ0λt −

4

dðdþ 2Þ λ
2
0; ðB6Þ

where we have used the abbreviation de ¼
1
2
ðdþ 2Þðd − 1Þ. Note that both channels decouple in

the large-Nf limit.
In general, the form of the threshold function depends on

the chosen regulator Rk, manifesting the regularization
scheme. For d ¼ 4, we can prove that the one-loop result is
universal and independent of the scheme, as it should be. In
order to arrive at an explicit expression, we choose a
regulator that preserves spin-base invariance, RkðpÞ ¼
Gμνpμpνrðp2=k2Þ, where r denotes a regulator shape
function specifying the decoupling of IR modes. In fact,
in the loop integrals, the shape function occurs in the
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combination ½p2ð1þ rÞ� as can be expected from power-
counting. The resulting loop structure can therefore be
mapped onto that of bosonic threshold functions. In fact,
the threshold functions ldnðω; ηÞ are well tabulated in the
literature [74], and the one in our equation above agrees
with those. Using the common partially linear regulator
shape function rðyÞ ¼ ðy−1 − 1Þθð1 − yÞ [88], we arrive at
the standard result

lðdÞ2 ð0; ηÞ ¼ 4

d

�
1 −

η

dþ 2

�
; ðB7Þ

which in d ¼ 4 and at one-loop with η ¼ 0 boils down to

lðd¼4Þ
2 ð0; 0Þ ¼ 1. Specializing to Nf ¼ 1, dγ ¼ 32 and
d ¼ 4, the flows of the couplings yield the expressions
given in the main text.
For the NJL-type model, the computation is performed

analogously. Also in this case, the NJL coupling generates
tensor-type couplings at subleading order in Nf which we
ignore in our discussion. The flow equation for the NJL
coupling can be brought into the form of Eq. (B5) with a
corresponding function fðNf ; d; λÞ ¼ dγNf such that the
flow equation for d ¼ 4 with η ¼ 0 reads

∂tλ ¼ −
dγNf

8π2
λ2 ðB8Þ

in agreement with the special case for dγ ¼ 32 given in the
main text.

APPENDIX C: GAUGE THEORIES FOR
LUTTINGER FERMIONS

Let us recall the action (12) for quantum electrodynamics
with Luttinger fermions

S ¼
Z

d4x

�
−
1

4
FμνFμν − ψ̄GμνDμDνψ −m2ψ̄ψ

�
: ðC1Þ

The one-loop β function can be derived via the effective
action, integrating out the fermions in an electromagnetic
background field [53]. Apart from a normalization given
below, the one-loop correction to the action is given by the
fermion determinant arising from the integration over
Grassmann-valued fields obeying Fermi-Dirac statistics:

Γ1l½A� ¼ −i ln det½−GμνDμDν −m2�

¼ −
i
2
ln det½−GμνDμDνGκλDκDλ þm4�; ðC2Þ

where we used the properties γ210 ¼ 1 and fGμν; γ10g ¼ 0,
in order to arrive at the squared differential operator—
similar to γ5 hermiticity in standard QED [53].
We can decompose the product GμνDμDνGκλDκDλ into

symmetric and antisymmetric parts,

GμνDμDνGκλDκDλ

¼
�
1

2
fGμν; Gκλg þ

1

2
½Gμν; Gκλ�

�
DμDνDκDλ: ðC3Þ

Let us study the two pieces separately, starting with the
antisymmetric part,

½Gμν; Gκλ�DμDνDκDλ ¼ 1

2
½Gμν; Gκλ�½DμDν; DκDλ�; ðC4Þ

since Gμν ¼ Gνμ. The commutator between covariant
derivatives yields

½DμDν; DκDλ� ¼ −ieðFνλDμDκ þ FνκDμDλ

þ FμλDκDν þ FμκDλDνÞ: ðC5Þ

Here we have used the relation ½Dμ; Dν� ¼ −ieFμν and
confined ourselves to a constant electromagnetic field,
Fμν ¼ const, such that DκFμν ¼ FμνDκ.
Since the product ½Gμν; Gκλ�Fνλ is symmetric under the

exchange μ ↔ κ, Eq. (C4) becomes

½Gμν; Gκλ�DμDνDκDλ ¼ −ie½Gμν; Gκλ�FνλfDμ; Dκg: ðC6Þ

The symmetric part of Eq. (C3) can be rewritten using the
Abrikosov algebra (2); with the same assumptions, we
obtain

fGμν;GκλgDμDνDκDλ¼2ðD2Þ2þ 3de2

2ðd−1ÞFκλFκλ; ðC7Þ

where we work in general spacetime dimensions d for
generality, but will later specialize to d ¼ 4. Inserting
Eqs. (C6) and (C7) into Eq. (C3), the one-loop effective
action (C2) becomes

Γ1l½A� ¼ −
i
2
ln det

�
−ðD2Þ2 − 3e2d

4ðd − 1ÞFκλFκλ

þ ie
2
½Gμν; Gκλ�FνλfDμ; Dκg þm4

�
: ðC8Þ

In order to keep track of potential issues arising from the
tachyonic mass poles or their negative residues, we work in
Minkowski space, paying careful attention to contour
rotations in the complex momentum plane. First, we use
the Schwinger proper time formula for the logarithm,

ln
M
N

¼ −lim
δ→0

Z
∞þiδ

0

dt
t
ðeiMt − eiNtÞ; ðC9Þ

such that Eq. (C8) can be written as
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Γ1l½A� ¼
i
2
lim
δ→0

Z
∞þiδ

0

dt
t
Tr
	
eit½−ðD

2Þ2− 3e2d
4ðd−1ÞFκλFκλþie

2
½Gμν;Gκλ�FνλfDμ;Dκgþm4� − eit½−ð∂2Þ2þm4�
: ðC10Þ

Here we have used ln detðMÞ ¼ Tr lnðMÞ and subtracted
the free-field case in order to fix the normalization
mentioned above. Since we aim at computing the β
function, it suffices to compute Γ1l to order F2. For this,
we define

A≡ −itðD2Þ2;
B≡ −

et
2
½Gμν; Gκλ�FνλfDμ; Dκg; ðC11Þ

and employ the Baker–Campbell–Hausdorff formula for
the expansion. We find

eAþB ¼ eAeBe−
1
2
½A;B�⟶

Tr
eA
�
1þ 1

2
B2

�
þOðF3Þ; ðC12Þ

since ½A;B�2 ∼OðF4Þ, B½A; B� ∼OðF3Þ, and the traces of
the terms ∼B and ½A;B� vanish. This reduces our expres-
sion for the one-loop effective action to

Γ1l½A� ¼
i
2
lim
δ→0

Z
∞þiδ

0

dt
t
eit½−

3e2d
4ðd−1ÞFκλFκλþm4�Tr

�
e−itðD2Þ2

�
1þ 1

2

�
−et
2

½Gμν; Gκλ�FνλfDμ; Dκg
�

2
��

−
i
2
lim
δ→0

Z
∞þiδ

0

dt
t
Trfeit½−ð∂2Þ2þm4�g þOðF4Þ: ðC13Þ

The functional trace runs over coordinate/momentum space as well as spinor space, Tr ¼ TrxTrG. Only the term ∼B2 in
Eq. (C12) is nontrivial in spinor space, yielding

TrGB2 ¼ e2t2

4
FνλfDμ; DκgFβδfDα; DγgTrGf½Gμν; Gκλ�½Gαβ; Gγδ�g

¼ e2t2

4

8dγ
ðd − 1Þ2 ½2dð2 − dÞFνλFνκDλDκD2 − d2FνλFνλðD2Þ2�; ðC14Þ

where we have again kept terms only up to order ∼F2, used F ¼ const, and dγ denotes the dimension of the Abrikosov
algebra. Plugging these results into Eq. (C13), we get to order F2:

Γ1l½A� ¼
idγ
2

lim
δ→0

Z
∞þiδ

0

dt
t
eitm

4

�
1 − i

3e2td
4ðd − 1ÞFκλFκλ

�
Trx

�
e−itðD2Þ2

×

�
1þ e2t2

ðd − 1Þ2 ½2dð2 − dÞFνλFνκ∂λ∂
κ
∂
2 − d2FνλFνλð∂2Þ2�

��
þOðF4Þ

−
idγ
2

lim
δ→0

Z
∞þiδ

0

dt
t
Trxfeit½−ð∂2Þ2þm4�g: ðC15Þ

In order to use heat-kernel methods, we rewrite the factor e−itðD2Þ2 in terms of a Fresnel integral. For this, we use the
Gaussian integral:

ffiffiffi
α

π

r Z þ∞

−∞
dμ e−αμ

2−2αβμ ¼ eαβ
2

; ðC16Þ

and implicitly rotate the contour by identifying α≡ −i and β2 ≡ ðD2Þ2t, resulting in

e−itðD2Þ2 ¼
ffiffiffiffiffi
−i
π

r Z þ∞

−∞
dμ eiμ

2

e2i
ffiffi
t

p
D2μ: ðC17Þ

The details of the contour rotation imply the convention
ffiffiffiffiffi
−i

p ¼ e−i
π
4. We are then left with the following integrals:
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Γ1l½A� ¼
idγ
2

lim
δ→0

Z
∞þiδ

0

dt
t
eitm

4

ffiffiffiffiffi
−i
π

r Z þ∞

−∞
dμ eiμ

2

Trx½e2i
ffiffi
t

p
D2μ − e2i

ffiffi
t

p
∂
2μ�

þ idγ
2

lim
δ→0

Z
∞þiδ

0

dt
t
eitm

4

Trx

�
e−itð∂2Þ2

�
e2t2

ðd − 1Þ2 ½2dð2 − dÞFνλFνκ∂λ∂
κ
∂
2 − d2FνλFνλð∂2Þ2�

−it
3e2d

4ðd − 1ÞFκλFκλ

��
þOðF4Þ: ðC18Þ

Here, we use the heat kernel of the scalar Laplacian in a
constant magnetic background field B [54],

TrxeiλD
2 ¼ −

iΩ
ð4πÞ2

1

λ2
λeB

sin λeB

¼ −
iΩ

ð4πÞ2
1

λ2

�
1þ λ2e2B2

6
þOðB4Þ

�
; ðC19Þ

where Ω denotes the spacetime volume, and the factor of i
arises from rotating the trace in momentum space into the
Euclidean domain, dp0 ¼ idp4. The free-field subtraction
cancels precisely the constant term in Eq. (C20). The
remaining operators to be traced are all diagonal in
momentum space and can be done straightforwardly. For
instance, in terms of the magnetic background, the results
read in our conventions

Trxðe−itð∂2Þ2FνλFνκð∂2Þ2Þ¼ iΩ2B2

Z
ddp
ð2πÞde

−ip4tp4;

Trxðe−itð∂2Þ2FνλFνκ∂λ∂
κ
∂
2Þ¼ iΩ

Z
ddp
ð2πÞde

−ip4tpλpκp2FνλFνκ

¼ iΩ
d
2B2

Z
ddp
ð2πÞde

−ip4tp4;

ðC20Þ

where the momentum integrals are understood to run over
Euclideanized momenta. Because of the t contour having a
small positive imaginary part, the remaining integral

converges, yielding, e.g.,
R d4p

ð2πÞ4 e
−ip4tp4 ¼ − 1

32π2t2 in

d ¼ 4.
Collecting the contributions of all terms, we arrive at

Γ1l½A�¼−
19

18π2
dγ
32

Ωe2B2lim
δ→0

Z
∞þiδ

i
Λ4

dt
t
eitm

4

¼ 19

18π2
dγ
32

Ωe2B2

�
γþ ln

�
m4

Λ4

�
þO

�
m4

Λ4

��
; ðC21Þ

to leading order OðB2Þ in the field strength. By combining
this result with the bare Maxwell Lagrangian using
Γ1l ¼ ΩL1l for a homogeneous field, we get for the

relativistic Luttinger case dγ ¼ 32

Leff ¼ LM þ L1l

¼ −
1

2
B2 þ 19

18π2
e2B2

�
γ þ ln

�
m4

Λ4

��
: ðC22Þ

Defining the wave function renormalization

Z−1 ¼ 1 −
19

9π2
e2
�
γ þ ln

�
μ4

Λ4

��
; ðC23Þ

where μ is the RG scale, we introduce the renormalized
field and coupling

B2
R ¼ Z−1B2; e2R ¼ Ze2: ðC24Þ

The one-loop β function is then given by

βe2 ≡ μ
∂

∂μ
e2RðμÞ ¼

∂

∂μ
Ze2 ¼ 4 · 19

9π2
e4R: ðC25Þ

By keeping track of which contribution arises from the
Laplacian and which from the endomorphisms or the spin-
field coupling terms, we can decompose the factor 19 into
dia- and paramagnetic contributions as is given in Eq. (14)
in the main text.
The generalization to the non-Abelian case is evident.

We define the QCD action with one relativistic Luttinger
quark by

S ¼
Z
x

�
−
1

4
Fa
μνFaμν − ψ̄ iGμνðDμÞijðDνÞjkψk −m2ψ̄ iψ i

�
;

ðC26Þ

where i; j ¼ 1;…; Nc labels fundamental and a ¼
1;…; N2

c − 1 adjoint color indices. A generalization to
arbitrary flavor numbers Nf is straightforward. The covar-
iant derivative is now given byDμ

ij ¼ ∂
μ − igτaijA

μ;a, with τa

being the generators of SUðNcÞ, TrcðτaτbÞ ¼ 1
2
δab.

The computation of the quark contribution to the QCD β
function can be mapped to that of the QED case, by using a
pseudo-Abelian background field Aa

μ ¼ naÃμ, where Ãμ is
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an Abelian vector potential and na is a constant unit vector
in color space (nana ¼ 1). The covariant derivative then
reduces to Dμ

ij ¼ ∂
μ − igðτanaÞijÃμ, which implies that the

background is covariantly constant, ½Dκ; Fνλ� ¼ 0. The
computation of the quark determinant proceeds in complete
analogy to the QED case supplemented by the trace over
color space. To leading order ∼F2, this trace reduces to
trcððτanaÞijðτbnbÞjkÞ ¼ 1

2
δabnanb ¼ 1

2
, leading to a modifi-

cation of the quark contribution to the QCD β function by a
factor of 1

2
compared with QED,

βg2 jquark−loop ≡ μ
∂

∂μ
g2RðμÞ ¼

2 · 19
9π2

g4R; ðC27Þ

for a single quark flavor. A different flavor number is
accounted for by a factor of Nf . Together with the gluon
(and ghost) loops, the final result for the QCD β function
with relativistic Luttinger quarks is given in Eq. (15) in the
main text.
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