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The universality of free fall, fundamental to metric theories of gravity, asserts the equality between
inertial and gravitational mass, implying that all particles experience equal gravitational fall regardless of
their mass. While it is widely accepted for all particles and photons, its applicability to neutrinos, due to
their minimal interactions, remains uncertain. Neutrinos, though predicted to be massless, exhibit flavor-
changing behavior and have nonzero mass, making it crucial to determine if they adhere to the principle.
This paper introduces evidence from supernova 1987a observations suggesting that the time difference
between correlated photons and neutrinos supports the universality of free fall for neutrinos with an
accuracy of 2.7 part of a thousand.
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I. INTRODUCTION

The fundamental principle underpinning any metric
theory of gravity, such as general relativity (GR), is the
equality between inertial mass (mI) and gravitational mass
(mG) of a particle—known as the universality of free
fall [1]. This principle asserts that all particles experience
equal gravitational fall, irrespective of their mass, a concept
originally inferred from Galileo’s experimental observa-
tions [2] and later demonstrated by Newton in his pendu-
lum experiment [3], showcasing equality to within one
part in a thousand. Numerous subsequent experiments,
including the Eötvös experiment, have validated this equal-
ity to higher precision, reaching approximately one part
in 20,000,000 [4]. Modern experiments have achieved a
precision of around 10−15 confirming the uniqueness of
free fall [5].
According to the weak equivalence principle (WEP),

any metric theory, including GR, posits that a photon or a
neutrino experiences the same gravitational field as a
particle with nonzero mass at a given space-time point
due to a gravitating object. The universality of free fall in a
sense is integral to the WEP. The WEP encompasses
broader principles, such as the requirement for a particle

adhering to it to possess equal gravitational and inertial
mass, as well as experiencing the same gravitational
curvature (induced by a gravitating object) regardless of
its energy. While gravitational red-shift experiments indi-
rectly support the uniqueness of free fall for photons, no
observational analysis has definitively established whether
neutrinos, characterized as “ghost particles” due to their
minimal interactions with matter, also adhere to the same
gravitational field perception. Neutrinos, with their peculiar
flavor-changing behavior and minimal interactions, defy
the standard model’s zero-mass prediction by exhibiting
neutrino oscillations and having a mass upper bound of less
than an electron volt (eV) [6]. Consequently, determining
whether the uniqueness of free fall holds for neutrinos
becomes a crucial question.
This paper aims to present, for the first time, evidence

indicating that the time difference in the arrival of corre-
lated photons and neutrinos (of varying energies) from
supernova 1987A supports the uniqueness of free fall for
neutrinos. It is noteworthy that the reported test of the weak
equivalence principle in terms of the curvature effect
(through the parametrized post-Newtonian parameter γ)
[7,8], based on the mentioned supernova 1987A observa-
tions, assumed the uniqueness of free fall for photons
and neutrinos without providing any specific reasons.
Later on, several researchers have employed the observed
arrival time difference between different types of neutral
particles/photons/gravitational wave, or photons with
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varying energies which are emitting simultaneously from
astrophysical sources to constrain Einstein’s equivalence
principle in terms of the parameter γ [9–18]. The forth-
coming demonstration illustrates that the gravitational
curvature effect is considerably smaller than the impact
of the uniqueness of free fall.

II. THE HOST GALAXY OF SN1987A
AND ITS DISTANCE

The SN1987A resides within the Large Magellanic
Cloud (LMC), the principal satellite of our galaxy.
Various studies have attempted to gauge the distance to
the LMC [19] (and references therein). However, these
estimates rely on the calibration of other distance indica-
tors, rendering them indirect and merely statistical in
nature. The distinct circumstellar ring encircling SN
1987A has enabled a direct measurement of the distance
using a geometric method [20,21]. By observing the radial
velocity of SN1987A relative to the LMC’s center, the
distance to the barycenter of the LMC can be determined.
Panagia utilized the angular size of SN 1987A’s circum-
stellar rings in Hubble Space Telescope images and the
absolute sizes derived from light curves of narrow UV
emission lines to estimate a distance of 51.4� 1.2 kpc to
SN 1987A and 51.7� 1.3 kpc to the LMC barycenter [21].
Recently, Pietrzyński et al. [22] employed interferometry-
based surface brightness color relation to obtain a distance
of 49.59� 0.63 kpc to the LMCwith an accuracy of 1%. In
this study, we adopt this measured distance along with the
knowledge that SN1987A is 0.3 kpc closer to the Earth than
the LMC barycenter.
Estimating the mass of a galaxy is a challenging task.

The situation is particularly intricate for the LMC. Its mass
has been inferred from the dynamics of star clusters [23]
and rotation curve measurements [24]. However, recent
wide-field studies have revealed significant debris along
the LMC’s periphery, suggesting a potentially larger mass.
Various indicators suggest that the LMC’s mass exceeds
1011M⊙ (M⊙ denotes solar mass). For instance, a mass
greater than 1011M⊙ is necessary for the gravitational
bonding of the LMC and the Small Magellanic Cloud
(SMC). Recent investigations have demonstrated that
stellar streams offer a novel, independent means of assess-
ing the mass distribution. The gravitational field of the
LMC is likely to influence some of the Milky Way’s stellar
streams. Based on the dynamics of stars in the Orphan
stream, recent measurements estimate the mass of the LMC
(MLMC) as 1.38 × 1011M⊙, and that of the Milky Way
within 50 kpc as MMW ¼ 3.8 × 1011M⊙ [25].

III. THE TRAVEL TIME OF NEUTRINOS
FROM SN1987A

As discussed above, the mass of the LMC cannot be
ignored in comparison to that of the Milky Way within

50 kpc. Furthermore, SN1987A is positioned near the
barycenter of the LMC, indicating that the gravitational
influence of the LMC on particles/photons during their
journey from SN1987A to Earth cannot be disregarded.
Thus, we treat this as a two-body system and employ the
parametric post-Newtonian (PPN) formalism [26].
The PPN metric in Scharzschild coordinates is given by

ds2 ¼ −BðrÞc2dt2 þ AðrÞdr2 þ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and c the usual speed of
light. In the present case

BðrÞ ¼ 1 −
2αGMMW

c2r
þ 2αGMLMC

c2ðrLMC − rÞ þ � � � ð2Þ

and

AðrÞ ¼ 1þ 2γGMMW

c2r
−

2γGMLMC

c2ðrLMC − rÞ þ � � � ; ð3Þ

where α and γ are PPN parameters and rLMC is the distance
of the LMC barycenter. A celestial object’s mass is
generally measured by studying the acceleration parameter
of a test particle. In the process, α is absorbed in GM by
setting it as 1 [27]. The uniqueness of free fall, as observed
in different experiments to a high accuracy, justifies the
choice α ¼ 1 to a high accuracy for all particles excluding
neutrinos. The gravitational redshift measurements give
restrictions on αγ (the subscript γ refers to photons).
Analysis of the Vessot-Levine rocket experiment (Gravity
Probe-A) [28] restricts αγ to jαγ − 1j ≤ 1.4 × 10−4.
Recently, using the atomic clock data from two satellites of
Galileo satellites, jαγ − 1j is constrained to the 2.0 × 10−5

level at 1σ [29,30]. The corresponding PPN parameter for
neutrons, αν, is not known experimentally so far. In all
previous efforts of testing the weak equivalence principle
for neutrinos using the observed time difference in the
arrival of correlated photons and neutrinos from astro-
physical sources, αν was taken as 1, and a restriction of
γν − γγ was imposed [7,8,13]. The geodesic equations for
the motion of a test particle in equatorial plane, for the
space time metric given by Eq. (1), leads to the following
relation

AðrÞ
BðrÞ2

�
dr
dt

�
2

þ J2

r2
−

c2

BðrÞ ¼ −ηc2; ð4Þ

where J and η correspond to the constants associated with
the motion. J is related to the specific angular momentum
of the particle, defined as J ≡ r2 dϕ

dt =BðrÞ, ϕ is the
azimuthal angle. On the other hand, η (≡ dτ

dt =BðrÞ) relates
to the specific energy of the particle. For particle with
nonzero rest mass m, η > 0; whereas for particle with zero

BHADRA, SARKAR, IZMAILOV, and NANDI PHYS. REV. D 110, 064046 (2024)

064046-2



rest mass, η ¼ 0. At the distance of closest approach ro,
dr
dt

must vanish, i.e., dr
dt jr¼ro ¼ 0. This gives

J2 ¼ c2
�
−ηþ 1

BðroÞ
�
r2o: ð5Þ

The time required by a particle to traverse a distance
from r to ro in the gravitational field described by Eq. (1) is
obtained from Eq. (4) using Eq. (5), which is given by

Δtðr; roÞ ¼
1

c

Z
r

ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðr; ηÞ

p
dr; ð6Þ

where

Pðr; ηÞ ¼ AðrÞ=BðrÞ�
1 − ηBðrÞ þ ro2

r2
�
ηBðrÞ − BðrÞ

BðroÞ
	
 : ð7Þ

In the trajectory of photons/neutrinos from SN 1987A to
us, the closest approach (ro) can be taken as the distance of
the Earth (rE) from the Galactic Center [7]. Accordingly,
η ¼ m2c4

ϵ2BðrEÞ, m and ϵ are the mass and energy of the particle.

One thus gets from Eq. (7) that the coordinate time required
by the particle traveling from the SN 1987A to the Earth is
given by

ΔtðrSN; rEÞ ¼
1

c
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2SN − r2E

q
þ Δto

i
; ð8Þ

where

Δto ¼
ðαþ γ − ð2αþ γÞηÞμMW

1 − η
ln

rSN þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2SN − r2E

p
rE

þ αμMW

1 − η

�
rSN − rE
rSN þ rE

�
1=2

þ ðαþ γ − ð2αþ γÞηÞμLMC

1 − η
ln

rSN þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2SN − r2E

p
rE

−
αμLMCr2E

ð1 − ηÞðr2LMC − r2EÞ
�
rSN − rE
rSN þ rE

�
1=2

−
ðαþ γ − ð2αþ γÞηÞμLMC

1 − η

rLMCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2LMC − r2E

p ln

"
rLMCrSN − r2E
rEðrLMC − rSNÞ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2LMC − r2E

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2SN − r2E

p
ðrLMC − rSNÞrE

#

þ αμLMC

1 − η

rLMCr2E
ðr2LMC − r2EÞ3=2

ln

"� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2LMC − r2E

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2SN − r2E

p
þ rLMCrSN − r2E

	ðrLMC − rEÞ
ðrLMC − rSNÞðrLMCrSN − r2EÞ

#
; ð9Þ

where rSN , rE, and rLMC are, respectively, the radial
coordinate distances of the SN 1987A, the Earth, and
the barycenter of LMC from the center of the Milky Way,
and μi ¼ MiG=c2, the subscript i refers to Milky Way
(MW), LMC. The above expressions show that an extra
time [the second term of the right-hand side of Eq. (8)] is
required by a particle for traversing along a trajectory in a
massive object’s gravitational field over the required time
for the travel between the same two points in Minkowski
spacetime. This extra time is the well-known Shapiro time
delay. However, the gravitational field of the LMC acts
on the opposite direction to that of the Milky Way and
consequently the net time delay is reduced. The above
expressions have been used in the literature (with α ¼ 1 and
neglecting the gravitational field of the LMC) to test the
weak equivalence principle from the difference in arrival
times of photons and neutrinos from SN 1987A [7,8,31]
that imposed restrictions on γγ − γν. Note that [7,8] addi-
tionally imposed η ¼ 0 for netrinos, i.e., they treated
neutrino as massless.
The difference in proper time between transmission

and reception of the signal to be measured by the observer
at rE is

Δτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
BðrEÞ

p
ΔtðrSN; rEÞ: ð10Þ

Since the observer is at higher gravitational field com-
pared to that in the major part of the trajectory, there will be
a net negative time delay (time advancement) [32–34] in
this case. The difference in time of travel between photons
[is obtained by putting η ¼ 0 in Eqs. (8), (9)] and neutrinos
for the journey from the SN 1987 to the Earth is

Δτν − Δτγ ≈ −ðαν − αγÞ
�
μSN
rE

−
μLMC

rLMC − rE

�
D
c

− coðΔtoν − ΔtoγÞ; ð11Þ

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2SN − r2E

p
is the distance of the SN 1987A

from the Earth. co ≃ 1 − ðμSNrE − μLMC
rLMC−rE

Þ, Δtoν, and Δtoγ are,
respectively, the expressions given by Eq. (9) for neutrinos
with mass m and energy ϵ and for photons (where η ¼ 0).
An intriguing point is that the above time difference in the
leading order does not depend on the mass of the neutrinos
(particles). For SN1987A emission, the above equation
leads to
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Δτν − Δτγ ≈ ½−7.93ðαν − αγÞ þ 1.2ðγν − γγÞ� × 106 s:

ð12Þ

The time difference of emission between neutrinos and
correlated photons is not known properly. The neutrinos are
expected to emit in the first few seconds of the collapse.
The electromagnetic bursts may occur after the shock
waves in the core collapse reach the stellar surface, which
may take a couple of hours of the collapse. The difference
in optical brightening of the source from the first detection
of neutrino burst from SN1987A at the Kamioka and IMB
(Irvine-Michigan-Brookhaven) detectors was less than
three hours [35–37]. So a conservative assumption is that
the difference in propagation time of photons and neutrinos
is within six hours as taken in previous studies in different
contexts [7,38]. Assuming that the γν is close to 1, the
above equations along with the restrictions on αγ by red-
shift measurements imply jαν − 1.000j ≤ 2.7 × 10−3. If no
a priori restriction is applied on γν, then it is not possible to
impose an individual constraint on αν. In that case, Eq. (12)
gives jðαν − 1.000Þ − 0.15ðγν − 1.000Þj ≤ 2.7 × 10−3. It
was further found that the dispersion in arrival times
for neutrinos and antineutrinos from the SN1987A with

energies between roughly 7.5 and 40 MeV was less than
10 s, which implies αν − αν̄ ≤ 1.48 × 10−6.

IV. CONCLUSION

We conclude that the observed difference of arrival times
of neutrinos (and antineutrinos) and gamma rays from
SN1987A constitutes the first direct test of uniqueness of
free fall with neutrinos. The principle is validated with an
accuracy of 2.7 part of a thousand. In this current analysis,
we confine our focus solely to a local astrophysical source
(SN1987A), due to certain concerns regarding the appli-
cation of standard time delay calculations on cosmological
scales [39]. Additionally, considering the gravitational
influence of the host galaxy of sources appears to be
crucial. We intend to undertake a comprehensive exami-
nation of these aspects in the near future.
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