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To fully unlock the scientific potential of upcoming gravitational wave (GW) interferometers, numerical
relativity (NR) simulation accuracy will need to be greatly enhanced. We present three infrastructure-
agnostic improvements to the moving-puncture approach for binary black hole (BBH) simulations, aimed
at greatly reducing constraint violation and improving GW predictions. Although these improvements were
developed within the highly efficient NR code Blackholes@Home, we demonstrate their effectiveness in the
widely adopted Einstein TOOLKIT/Carpet adaptive mesh refinement framework. Our improvements include a
modified Kreiss-Oliger dissipation prescription, a Hamiltonian constraint damping adjustment to the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) equations, and an extra term to the 1þ log lapse evolution
equation that slows the development of the sharp lapse feature, which dominates numerical errors in BBH
simulations. With minimal increase in computational cost, these improvements greatly reduce GW noise,
enabling the extraction of high-order GW modes previously obscured by numerical noise. They also
improve convergence properties near and inside the convergent regime, reduce Hamiltonian (momentum)
constraint violations in the strong-field region by roughly 2 (3) orders of magnitude, and in the GW-
extraction zone by 5 (2) orders of magnitude. To promote community adoption, we have open-sourced the
improved Einstein TOOLKIT thorn BaikalVacuum used in this work. Although our focus is on BBH evolutions
and the BSSN formulation, these improvements may also benefit compact binary simulations involving
matter and other formulations, a focus for future investigations.
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I. INTRODUCTION

Numerical relativity (NR) simulations of compact binary
mergers play a crucial role in gravitational wave (GW) data
analysis, enabling reliable estimation of physical parame-
ters from the late-inspiral, merger, and postmerger phases
of GW signals. To date, detector noise in GWobservations
has generally surpassed the numerical errors intrinsic to NR
simulations and GW approximants derived from them, so
GW parameter estimation errors have generally been
dominated by noise in the GW signal. However, improved
sensitivities offered by current and forthcoming GW
detectors threaten to change this dynamic. Third-generation
(3G) detectors will necessitate a roughly tenfold improve-
ment in NR simulation accuracy [1,2]. Therefore, enhanc-
ing the accuracy of NR codes is vital for unlocking the full
scientific potential of GW astronomy moving forward.
Improved accuracy can be achieved through various

means. One widely adopted approach involves building
next-generationNRcodes uponmore scalable infrastructures.

Increased scalability enables simulations to be performed at
higher resolutions and with greater physical realism. While
running simulations at higher resolutions generally reduces
numerical errors, it does not directly address one of the
primary sources of error in existing NR codes: noise
associated with the selection of numerical grids.
Cartesian adaptive mesh refinement (AMR) grids, the

most popular gridding approach in NR, span the many
decades in physical scales intrinsic to compact binaries with
nested Cartesian grid patches. The highest resolution patches
are placed where the spacetime fields are sharpest: at the
compact objects themselves. These patches are embedded in
increasingly coarser patches, extending to the outer boun-
dary. Cartesian AMR grids are both numerically convenient
and highly scalable with modern AMR algorithms.
When it comes to solving Einstein’s equations in NR, the

moving-puncture approach [3,4] is the most popular
method. This approach generally combines the BSSN
[5,6], CCZ4 [7], or Z4c [8] 3þ 1 decompositions of
Einstein’s equations with the moving-puncture gauge con-
ditions [3,4,9], enabling the evolution of black holes (BHs)
that traverse the numerical grid without the need to excise*Contact author: zetienne@uidaho.edu
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their interiors. However, mixing the moving-puncture
technique with Cartesian AMR grids results in significant
numerical noise that negatively impacts the accuracy of
compact binary simulations.
As shown in Fig. 1, during the initial phase of a moving-

puncture binary black hole (BBH) evolution, the lapse
rapidly settles to new values in the strong-field region,
releasing a sharp, superluminal gauge wave packet that
radiates outward from the BHs (top panel) at a speed offfiffiffi
2

p
c—the characteristic speed of the 1þ log lapse [10] and

the only superluminal characteristic speed [11]. Given our
standard choice of initial (“precollapsed”) lapse, in the
weak field the lapse tends to a value of 1 − α ∝ r−1, both
before and after the wave packet passes. Thus away from
the wave packet, the rð1 − αÞ plotted in Fig. 1 tends to
constant values in the weak field.
As the sharp lapse wave packet travels outward from the

strong-field region, it crosses multiple AMR refinement
boundaries. At each boundary, the numerical resolution
drops discontinuously by a factor of two [12]. This crossing
partially reflects the wave and generates substantial numeri-
cal noise in its wake.
Although this is a gauge wave, errors in its evolution

directly contaminate the evolution of physical quantities,
particularly the extrinsic curvature, which depends on

second-order derivatives of the lapse. As Einstein’s equa-
tions are highly nonlinear, errors in the lapse’s evolution
contaminate all physical quantities, including the Einstein
constraints. The right panel of Fig. 1 illustrates the roughly
seven-decade jump in the Hamiltonian constraint violation
H from its initial values following the passage of this wave.
Elevated levels of H violation persist near refinement
boundaries, evident as square shapes in the color map.
Meanwhile, in the strong-field region,H violation acts as

an effective energy density, directly influencing the dynam-
ics of the compact binary and, thus, one of the core outputs
of the NR simulation: the GW prediction. Regarding GW
predictions, noise appears as spurious high-frequency
oscillations in the outgoing-radiation Weyl scalar ψ4. ψ4

is decomposed into spin-weight s ¼ −2 spherical harmon-
ics and integrated twice in time to compute the GW strain.
While the noise is evident in the (l ¼ m ¼ 2) dominant
mode of ψ4, it completely obscures modes with l > 4.
Such high-order modes may be detectable by next-
generation GWobservatories, even in near-symmetric bina-
ries [13]. Thus minimizing this noise is crucial for precise
BBH waveform predictions for upcoming GW detectors.
We emphasize that this discussion has been limited to

Cartesian AMR grids not set to refine at the sharp gauge
features, as this approach is widely used in the field.

FIG. 1. Development of sharp moving-puncture lapse feature and its aftermath. Top left: rð1 − αÞ color map on the orbital plane, for
r > 25M; data for r ≤ 25M were excised (represented by a black dot). Bottom left: rð1 − αÞ data along the x axis, for x > 25M. Top
right: H constraint violation, plotted as log10 jHj on the orbital plane. The dashed orange curve corresponds to the data in the top-left
plot, and the blue solid curve corresponds to the data at t ¼ 15.1M later. The black arrow denotes the propagation distance and direction
of a wave propagating outward at

ffiffiffi
2

p
c, from t=M ¼ 52.1 to t=M ¼ 67.2. Bottom right: log10 jHj along the x axis at t ¼ 67.2M, for

x > 25M.
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Improved refinement algorithms or grid structures may
result in significantly less constraint violation and GW
noise than what is reported here.
This paper introduces improvements to the moving-

puncture approach, aimed at curtailing the development
of sharp features in the lapse and mitigating their impact.
Our first two improvements focus on decreasing the
strength of low-pass filters near punctures—where sharp
fields are desirable—and increasing the strength far away.
The first improvement multiplies the strength parameter

of Kreiss-Oliger (KO) dissipation by e−4ϕ, where ϕ is the
standard BSSN conformal factor, and increases its strength
from typical values by 2 to 5 times.
The second improvement modifies a powerful but not

widely used low-pass parabolic filter, which adds a term
proportional to H to the right-hand side of the ϕ evolution
equation. In the same vein as [14], we set the strength of the
filter based on the maximum value allowed by the Courant-
Friedrichs-Lewy (CFL) condition, according to the local
numerical grid spacing. This enables us to increase its
strength by more than an order of magnitude on coarser
numerical grids in the region far from the punctures.
Our third improvement adds a term to the 1þ log lapse

evolution equation that slows the evolution of α in the area
immediately outside the BH horizon. This arrests the
formation of the sharp lapse wave packet, both reducing
its magnitude and greatly smoothing it.
Modifying the moving-puncture approach in Cartesian-

AMR BBH evolutions to mitigate the impact of the sharp
lapse feature is not a new idea; [10] introduced several
techniques to this end, achieving about a 40% reduction in
GW noise (in ψ4) and about 1.3 orders of magnitude
reduction in jHj violations outside the horizons. While
these improvements were effective, their recipes depend on
careful tuning to the specific grid structure.
While we adopt the BSSN formalism (like [10]) and

employ a constraint damping term, the moving-puncture
approach is also widely used within the CCZ4 and Z4c
formalisms, which contain constraint damping terms. [15]
performed evolutions of puncture BBHs in the Z4c for-
malism, reporting 1–2 orders of magnitude reductions in
Hamiltonian constraint violation outside the punctures, and
GW phase and amplitude errors up to a factor of two
smaller as compared to the standard BSSNmoving-puncture
approach.
By contrast, the three improvements presented in this

work, when combined, reduce Hamiltonian (momentum)
constraint violations in the strong-field region by about
2 (3) orders of magnitude and in the GWextraction zone by
5 (2) orders of magnitude. Further, constraint violation
convergence is generally improved, implying that these
gaps widen with increased resolution. Coordinate eccen-
tricity is slightly decreased, and numerical noise in the
dominant l ¼ m ¼ 2 mode of ψ4 is reduced by an average
factor of 4.3 across resolutions. Fidelity of higher-order

modes is greatly improved, enabling the l ¼ m ¼ 6 mode,
previously obscured by noise, to become visible.
Although our focus is primarily on the impact of these

improvements on BBH evolutions with the BSSN formal-
ism, we expect that they will also be beneficial in other
compact binary evolutions and formalisms that use the
moving-puncture technique. Determining whether our
improved techniques significantly improve the fidelity of
binary neutron star (BNS) simulations will be a focus of an
upcoming paper. In addition, formulations like Z4c have
proven quite effective in reducing constraint violations in
BNS simulations [15]. Comparing BNS evolutions per-
formed with our improved BSSN moving-puncture
approach to Z4 techniques widely used across the com-
munity will also be a focus of future work.
The rest of the paper is structured as follows. Section II

introduces the basic equations, including the BSSN evo-
lution, moving-puncture gauge, and constraint equations.
Building on this, Sec. III presents prescriptions for all three
of our improved techniques. Next, Sec. IV describes our
algorithmic approach for simulating the BBH mergers
presented in this work. Results from these simulations,
discussed in Sec. V, demonstrate the impacts of our
improved techniques. Finally, we conclude and describe
avenues for future work in Sec. VI.

II. BASIC EQUATIONS

We adopt G ¼ c ¼ 1 units, and set our mass scale
M ¼ 1 to be the sum of the individual puncture masses
reported by our initial data solver TwoPunctures. In these units
the total ADMmass is 0.989946. Further we adopt standard
Einstein summation rules on repeated indices, and the
convention that Greek and Latin indices represent four- and
three-dimensional quantities, respectively.

A. BSSN evolution equations

In this paper, we investigate the numerical evolutions of
BBHs using the covariant “Lagrangian” BSSN formulation
in vacuum, as presented in [16]. This formulation has been
adapted for spherical coordinate reference metrics by [17]
and for more general reference metrics by [18].
Starting with the ADM line element,

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

γij, βi, and α denote the spatial 3-metric, shift vector, and
lapse, respectively.
We then define the conformal metric γ̄ij as

γ̄ij ¼
�
γ̄

γ

�1
3

γij ¼ e−4ϕγij; ð2Þ

where ϕ represents the conformal factor. Instead of
evolving ϕ, we follow previous works (e.g., [19,20]) and
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evolve W ¼ e−2ϕ, as W exhibits greater smoothness near
punctureBHs, resulting in reduced truncation errors (also see
discussion in [3]). To this end, derivatives of the conformal
factor ϕ appearing in the BSSN evolution equations are
calculated with respect to the evolved variable W via
∂μW ¼ −2e−2ϕ∂μϕ ⇒ ∂μϕ ¼ −∂μW=ð2WÞ, and so forth
for second derivatives.
We also introduce a reference metric γ̂ij, defined by

γ̄ij ¼ γ̂ij þ εij: ð3Þ

In this work, the reference metric corresponds to the
Cartesian metric γ̂ij ¼ δij, which remains constant in both
space and time. Thus, all derivatives of the conformal
metric γ̄ij are evaluated directly with respect to εij, since
∂μγ̄ij ¼ ∂μεij. Although analytically equivalent, computing
finite-difference derivatives of diagonal metric components
with respect to εij instead of γ̄ij ¼ 1þ εij results in reduced
roundoff error in the weak-field region.
Building on these definitions, we adopt the following

time-evolution equations, replacing all occurrences of ϕ and
its derivatives with equivalent expressions in terms of W:

∂tεij ¼ Lβεij þ
2

3
γ̄ijðαĀk

k − D̄kβ
kÞ − 2αĀij; ð4Þ

∂tĀij ¼ LβĀij −
2

3
ĀijD̄kβ

k − 2αĀikĀk
j þ αĀijK

þ e−4ϕf−2αD̄iD̄jϕþ 4αD̄iϕD̄jϕ

þ4D̄ðiαD̄jÞϕ − D̄iD̄jαþ αR̄ijgTF; ð5Þ

∂tϕ ¼ Lβϕþ 1

6
ðD̄kβ

k − αKÞ; ð6Þ

∂tK¼LβKþ1

3
αK2þαĀijĀij−e−4ϕðD̄iD̄iαþ2D̄iαD̄iϕÞ;

ð7Þ

∂tΛ̄i ¼ LβΛ̄i þ γ̄jkD̂jD̂kβ
i þ 2

3
ΔiD̄jβ

j

þ 1

3
D̄iD̄jβ

j − 2Āijð∂jα − 6∂jϕÞ

þ 2ĀjkΔi
jk −

4

3
αγ̄ij∂jK; ð8Þ

where the TF superscript indicates the trace-free part, andLβ

denotes the Lie derivative along the shift vector βi. The
covariant derivatives with respect to the reference metric γ̂ij
and the barred spatial 3-metric γ̄ij are represented by D̂j and
D̄j, respectively. The tensorΔi

jk is formed from the difference
between the barred and hatted Christoffel symbols:

Δi
jk ¼ Γ̄i

jk − Γ̂i
jk;

where Δi is defined Δi ≡ γ̄jkΔi
jk. The conformal, trace-free

extrinsic curvature, Āij, is given by

Āij ¼ e−4ϕ
�
Kij −

1

3
γijK

�
;

where K represents the trace of the extrinsic curvature Kij.

B. Moving-puncture gauge evolution equations

To close the system of time-evolution equations, we
choose the moving-puncture gauge conditions [3,4,9],
which include the 1þ log slicing condition for the lapse
and the Γ-driving (here, Λ takes the place of Γ) condition
for the shift:

∂tα ¼ βj∂jα − 2αK; ð9Þ
∂tβ

i ¼ βj∂jβ
i þ Bi; ð10Þ

∂tBi ¼ βj∂jBi þ 3

4
ð∂tΛ̄i þ βj∂jΛ̄iÞ − ηβi; ð11Þ

where the Γ-driving shift damping parameter is set in this
paper to η ¼ 1=M.
Variations in moving-puncture gauge conditions, such as

a first-order implementation of the shift condition, do exist.
Although we did not explore these alternatives in our study,
we direct the reader to van Meter et al. [11] for a
comprehensive analysis of different implementations.
Our choice of gauge conditions was primarily motivated
by their finding that incorporating advection terms into the
lapse and shift conditions leads to well-behaved character-
istic speeds.

C. BSSN constraint equations

Analytically (as opposed to numerically), the BSSN
Hamiltonian constraint H ¼ 0, so any expression for H
can be multiplied by an arbitrary prefactor and still remain
perfectly valid. As such, two expressions for the BSSN
Hamiltonian constraint H are commonly found in the
literature, differing only in their prefactors.
In this work, we adopt H with a negative prefactor in

front of D̄2ϕ, its principal part. To differentiate our
definition of H from other choices, we will refer to it as
H− when necessary:

H−¼
2

3
K2− ĀijĀijþe−4ϕðR̄−8D̄iϕD̄iϕ−8D̄2ϕÞ¼H¼0:

ð12Þ
The second convention (e.g., [21]) multiplies both sides

by −e5ϕ=8. This results in a sign flip on H, and thus the
prefactor on D̄2ϕ becomes positive. We therefore refer to
this form as Hþ:

Hþ ¼ −
e5ϕ

8
H−: ð13Þ
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Although the two expressions Hþ ¼ H− ¼ 0 are equiv-
alent, it is important to distinguish between them. As we
will soon see, the specific implementation of Hamiltonian
constraint damping (Sec. III B) will depend on the choice of
this prefactor.
Regarding the physical implications of constraint viola-

tion, if we write H− in its general form with the matter
source term included,

Hm
− ¼ H− − 16πρ ¼ 0; ð14Þ

then we may conclude that, in vacuum evolutions, positive
Hamiltonian constraint violations H− behave as a positive
effective energy density ρeff, and negative violations as a
negative ρeff :

H− ¼ 16πρeff : ð15Þ

As for the momentum constraint, we adopt the following
form:

Mi ¼ e−4ϕ
�
D̂jĀijþ2ĀkðiΔjÞ

jkþ6Āij
∂jϕ−

2

3
γ̄ij∂jK

�
¼ 0;

ð16Þ

and define the scalar M2 ¼ γ̄ijMiMj, which we use for
diagnostics in this work.
As Hamiltonian and momentum constraint violations are

defined at each of the ≳107 points in our computational
domain, for convenience we will often compute them as a
volume-averaged L2 norm:

kHk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V H

2d3xR
V d

3x

s
; ð17Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kM2k

q
¼

ffiffiffi
4

p R
Vðγ̄ijMiMjÞ2d3xR

V d
3x

; ð18Þ

where the volume V will generally exclude small spheres
around the BHs and be tailored to either a strong-field or
weak-field region.

III. IMPROVED TECHNIQUES

We present three techniques that lower numerical errors
in moving-puncture simulations, with minimal additional
computational cost. These include curvature-adjusted
Kreiss-Oliger (CAKO) dissipation, coarse-grid-adjusted
Hamiltonian constraint damping (CAHD), and the slow-
start lapse (SSL) technique.
These improvements are meant to be both easy to

implement and agnostic to numerical grid structures. To
this end, while we demonstrate their effectiveness in the
widely used Einstein TOOLKIT [22,23] Carpet [24,25] AMR

infrastructure, the new techniques were originally devised
and tuned during the development of a new, super-efficient
NR code called Blackholes@Home.
Illustrated in Fig. 2, Blackholes@Home adopts a unique

multipatch grid structure that combines grids in spherical-
like and Cartesian-like coordinates. Einstein’s equations are
solved in the corresponding spherical-like and Cartesian-
like bases, leveraging recent developments in covariant
BSSN [16], BSSN with a reference metric [17,18], and NR
code generation with NRPy [18,26].
With these new grid structures, Blackholes@Home performs

full, 3þ 1 NR BBH evolutions using about 3 GB of RAM
or less, enabling its use on consumer-grade desktop
computers. As such, it aims to generate the largest-ever
full-NR BBH GW catalog through an upcoming volunteer-
computing project of the same name.
Owing to Blackholes@Home’s high efficiency, the improve-

ments presented here were tuned over approximately 10
simulations of a single BBH scenario, and the tuned values
were proven similarly effective across more than 100
different BBH scenarios simulated with Blackholes@Home.
These scenarios spanned mass ratios from q ¼ 1 to q ¼ 6
and included arbitrarily directed spin vectors with dimen-
sionless magnitudes up to 0.5.
Building on the success of these Blackholes@Home -tuned

improvements, this work focuses on evaluating their perfor-
mance on Cartesian AMR grids. To this end, we implement
the improvements within our BaikalVacuum Einstein TOOLKIT

thorn, and release the improved version of BaikalVacuum used
in this paper’s open source [27]. This updated version of
BaikalVacuum and its sister (nonvacuumBSSN) code Baikal will
be incorporated into a future Einstein TOOLKIT release.
We next describe each improvement in detail.

FIG. 2. Schematic of BBH inspiral numerical meshes in
Blackholes@Home, the code used to develop and tune the improve-
ments presented here.
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A. Curvature-adjusted Kreiss-Oliger dissipation

Kreiss-Oliger dissipation [28], a widely adopted low-
pass filter in numerical relativity, reduces numerical noise.
In Cartesian coordinates, the addition of the nth-order KO
dissipation operator (where n is odd) to the right-hand side
of each evolution equation is formulated as

Dn
KOf⃗ ¼ ϵKO

ð−1Þðnþ3Þ=2

2nþ1
ðΔxiÞn∂ðnþ1Þ

i f⃗; ð19Þ

where f⃗ denotes the vector of evolved functions on a
numerical grid, ϵKO is the dimensionless KO strength

factor, and ∂
ðnþ1Þ
i represents the (nþ 1)st partial derivative

in the xi direction. This derivative is generally implemented
by a centered finite-difference operator with the smallest
possible stencil. For example, first-order KO dissipation
includes the second derivative, which is represented by the
standard 3-point stencil: ∂2xf ¼ ðfi−1 − 2fi þ fiþ1Þ=ðΔxÞ2.
The ðΔxiÞn prefactor ensures that the operator converges to
zero in the continuum limit; KO dissipation is purely a
numerical filter acting to damp high-frequency oscillations.
When solving a partial differential equation (PDE) with a

dominant finite-difference truncation error of jth order (j
even), the n ¼ jþ 1-order KO dissipation operator is most
often chosen, with the KO operator stencil comprising jþ 3
grid points. In this study, we use j ¼ 8, and apply ninth-order
KO dissipation to the central point on an 11-point stencil.
Larger KO strength factors ϵKO lead to stronger filtering;

however, ϵKO is CFL limited to values of approximately
one or less when typical CFL factors and numerical
integration schemes are chosen for evolving Einstein’s
equations in the moving-puncture formalism [29]. This
said, so long as the CFL-limited value is not exceeded, ϵKO
need not be the same for all evolved grid functions.
In [30], we found that setting ϵKO;gauge ¼ 0.9 for the

gauge quantities and ϵKO;other ¼ 0.3 for the other spacetime
quantities enhances stability when evolving boosted and
unboosted near-extremal-spin (a=M ¼ 0.99) BHs. Several
years later, in [10], we refined this approach in the context
of a mildly spinning BBH evolution. Building on the idea
that the sharp fields inside and around puncture BHs are
natural and should not be smoothed, we made ϵKO;gauge a
function of time and the distance from the center-of-mass r,
such that it increased gradually over time from 0.3 to 0.98
in the weak-field region. Additionally, we adjusted ϵKO;gauge
to drop to zero at punctures by multiplying by the
conformal factor W raised to some fractional power.
While this refinement was quite effective in the context of

the BBH evolution presented in that paper, ϵKO;gaugeðt; r;WÞ
would need to be modified and potentially retuned for BBH
scenarios at different initial separations and potentially
different AMR grid structures.
Here we introduce a much simpler adjustment to ϵKO:

curvature-adjusted KO dissipation. It multiplies the KO
dissipation strength by the conformal factor W ¼ e−2ϕ,

which ensures the KO strength is nearly zero near punc-
tures, tending to ϵKO;CA in the weak field:

ϵKOðWÞ ¼ WϵKO;CA: ð20Þ

Similar to our past work, we set ϵKO;CA to 0.99 (near the
CFL-limited maximum) for gauge quantities and to 0.3
for all other BSSN evolved variables. But unlike our past
work, this prescription has been validated using both
Blackholes@Home grid structures across more than 100 unique
scenarios across BBH parameter space, and (as shown in
this work) AMR grid structures within the Einstein TOOLKIT in
the context of a GW150914-like BBH system at multiple
numerical resolutions.

B. Coarse-grid-adjusted H damping (CAHD)

In 2002, [31] found that analytically, the following
modification to the right-hand side (RHS) of the conformal
factor evolution equation causes one constraint violating
mode to exponentially damp:

∂tϕ ¼ ∂tϕorig þ κϕHαH−; ð21Þ

where κϕH ≤ 0 for stability.
As H ¼ 0 in the continuum limit, this modification

drops to zero with increasing resolution. Further, for unit
consistency κϕH must have units of mass M (i.e., the same
as units of time and space in G ¼ c ¼ 1 units).
When analyzing the principal part of the adjusted ∂tϕ

equation in the weak-field limit, we find

∂tϕ ¼ H−;pp ¼ −8κϕH∂i∂iϕ; ð22Þ

which is a parabolic PDE. If this parabolic equation is
solved explicitly with a 3D Laplacian [10,32] in flat space,
then at a numerical grid point with Δs ¼ minðΔxiÞ across
all three spatial dimensions i, the CFL-constrained time
step Δt is given by

−8κϕH
Δt

ðΔsÞ2 ≤
1

6
⇒ Δt ≤

ðΔsÞ2
−48κϕH

: ð23Þ

The ðΔsÞ2 on the right-hand side is undesirable. For
instance, suppose a simulation is performed at the maxi-
mum stable κϕH at a given resolutionΔs and corresponding
CFL-limited Δt ∝ Δs. If a higher resolution (smaller Δs) is
found necessary for a convergence study, κϕH would need
to be adjusted downward in order for the CFL condition to
be satisfied. This would result in an inconsistency in the
strength parameter across different resolutions, potentially
invalidating the convergence study.
To address this, [21] included the simulation time step in

the prefactor:

∂tϕ ¼ ∂tϕorig þ KΔtHþ; ð24Þ
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where K is dimensionless and K ≥ 0 for stability.
Numerically, the term Δt ∝ Δs decreases the strength of
the parabolic operator in direct proportion to the CFL limit,
making this modification stable at all choices of grid
resolution provided it is stable at a given choice of K.
From an analytical perspective, both the Δt prefactor
and H drop to zero in the continuum limit. Choosing
K ¼ 0.02–0.06, they showed that this damping term
reduced constraint violations by almost an order of mag-
nitude in the context of BNS simulations.
More recently, [32] explored the effect of three different

coefficient prescriptions in the context of BNS evolutions.
These include Eq. (24) with K set to a constant across all
AMR grids, Eq. (24) with K decreased on coarser grids
according to Δsmin=Δsn (where Δsn is the Δs on the nth
refinement level), and the third method,

∂tϕ ¼ ∂tϕorig þ cHHþ; ð25Þ

where cH is set to a fixed dimensionful constant (inde-
pendent of Δt). They found the third approach preferable
because it improved the convergence properties of the
postmerger phase. Additionally, they attributed the decreas-
ing effectiveness of the [21] approach at higher resolutions
to its relatively poor convergence behavior. As discussed,
setting the coefficient on the parabolic operator to a fixed
value results in instability if the evolution is repeated with
sufficiently high resolution, so this approach is best applied
when the highest resolution can be known a priori.
Our improvement to the approach inverts the second

prescription of [32]. Instead of decreasing the strengthK on
coarser grids, we increase the strength according to the
maximum allowed time step on the refinement level,
similar to the approach of [14] for accelerating hyperbolic
relaxation waves across a curvilinear numerical grid.
Specifically, we adjust Eq. (24) as follows:

∂tϕ ¼ ∂tϕorig − CΔtn
�
CFL0

Δsn
Δtn

�
H−; ð26Þ

where the n subscript refers to the local value of a given
quantity on grid n, and CFL0 is the CFL factor on
numerical grid n ¼ 0, which contains the smallest time
step. We find C ¼ 0.15 results in stable evolutions across
BBH parameter space explored by Blackholes@Home, includ-
ing nonzero spins and mass ratios from q ¼ 1 to q ¼ 6, and
we generally set CFL0 to 90% of its highest possible value
as a safety margin.
On the finest AMR level (n ¼ 0), the bracketed term

reduces to 1. This approach maximally benefits standard
(2∶1 refined) AMR grids with a global time step
Δtn ¼ Δt0 ¼ Δt, as it exponentially increases the damping
strength with n; in this limit the bracketed term reduces to
2n. For the Δtn used in this work (Sec. IV), the bracketed

term increases the damping strength by a factor of 25 ¼ 32
on the coarsest grid.

C. Slow-start lapse

Our third and final improvement focuses on rapid
changes in the lapse near puncture BHs at the start of a
spacetime evolution. As illustrated in Fig. 1, these changes
send a sharp pulse outward at

ffiffiffi
2

p
c. To minimize the

early dynamics, the initial lapse α0 is typically set to a
“precollapsed” value of α0 ¼ W0, whereW0 ¼ e−2ϕ0 is the
conformal factor W at t ¼ 0.
Our slow-start lapse technique modifies the 1þ log lapse

evolution condition Eq. (9) as follows:

∂tα ¼ ∂tαorig −W½he−t2=ð2σ2Þ�ðα −WÞ: ð27Þ

SSL consists of three terms multiplied together. First,
−ðα −WÞ exponentially damps α to the (evolved) con-
formal factor W. By convention, at t ¼ 0, α is set to W,
rendering this term exactly zero at t ¼ 0. Second, the
Gaussian prefactor in square brackets sets the inverse
damping timescale, such that the damping timescale is
short and effective early in the evolution but grows to a very
large and inert value later on. Third, to ensure that the
wormhole-to-trumpet [33] transition inside the horizon is
not affected, the damping strength is multiplied by an
overall prefactor of W, which drops to zero at the puncture
and smoothly increases away from the puncture.
In short, the SSL modification acts to quench rapid

deviations of α from the quantity to which it is initially set,
W, just outside the horizon, arresting the development of
the sharp lapse feature in this region.
After many experiments across ∼100 unique scenarios in

BBH parameter space with Blackholes@Home, we find that a
Gaussian height of h ¼ 3

5
M and a standard deviation of

σ ¼ 20.0M are particularly effective in mitigating the initial
lapse pulse. With these choices, SSL damps on a timescale
of et

2=ð2σ2Þ=h ¼ 5
3
M at t ¼ 0, ∼102M at t ¼ 57M, ∼105M

at t ¼ 94M, and ∼1016M at t ¼ 170M. In this way, SSL
impacts only the formation of the sharp lapse feature and is
rendered completely ineffective shortly thereafter.

IV. ALGORITHMIC APPROACH

We present reproductions of the GW150914 gallery
example [34] from the Einstein TOOLKIT [22,23], incorporating
the aforementioned improvements in a systematic manner.
This gallery example is notable, as it is perhaps the most
comprehensively documented BBH NR simulation avail-
able; all NR codes, results, and plotting scripts required to
reproduce the original simulation are openly accessible on
Zenodo [34].
The physical parameters of the simulation are inspired by

the first-ever directly detectedGWevent,GW150914 [35]. In
particular, it uses the best-fit parameters forGW150914 [36]:
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amass ratio of q ¼ 36
29
, with dimensionless spin parameters of

χ⃗M ¼ fχxM; χyM; χzMg ¼ f0; 0; 0.31g for the more massive
BH and χ⃗m ¼ fχxm; χym; χzmg ¼ f0; 0;−0.46g for the less
massive one. The initial separation is set to 10M, which
places the BHs approximately 5 orbits before common-
horizon formation.
As in the gallery example, we use the Einstein TOOLKIT

[22,23] and its Carpet [24,25] AMR infrastructure to perform
these simulations. The numerical parameters for the evo-
lution are largely the same: eighth-order finite differencing,
fifth-order prolongation in space, second-order prolonga-
tion in time, RK4 time stepping. The TwoPunctures thorn is
used to construct initial data [37], AHFinderDirect [38] for
apparent-horizon diagnostics, QuasiLocalMeasures [39] for
isolated horizon diagnostics, and the Kranc-generated [40]
WeylScal4 for ψ4 extraction. However, there are some notable
differences.
First, instead of the ML_BSSN [40–42] thorn, the NRPy-

generated [18] BaikalVacuum thorn, modified as needed with
the improved techniques, is used for the spacetime evolu-
tion. BaikalVacuum and its sister code Baikal are BSSN
evolution codes in the Einstein TOOLKIT: BaikalVacuum solves
the BSSN equations without stress-energy source terms,
and Baikal includes these source terms. The latter was used
in [43] and [44] for the evolving the spacetime fields in
BNS simulations.
Second, the TwoPunctures grid resolution was increased

from its default values of NA × NB × Nϕ ¼ 30 × 30 × 16
to 48 × 48 × 20, as the default values result in initial data
constraint violations dominating the early evolution. Also,
the initial lapse was chosen to be W ¼ e−2ϕ, instead of the
“|TwoPunctures-averaged|” value, which
sets the lapse to αðrÞ ¼ 1

2

P
2
i¼1ð1 −mi=ð2riÞÞ for

each puncture i of massmi at distance r from ri. The former
approach has the advantage of exhibiting the same asymp-
totic behavior at large radius and late times: α∞ ¼ 1 −M=r
for total mass M. Meanwhile, the latter approach tends to
1 −M=ð2rÞ in the weak field. While TwoPunctures has an
option to set the initial lapse to any power of ψ ¼ eϕ, it
chooses a value of ψ that does not include the correction
term u [Eq. (30) in [37]]. To set the initial value of the lapse
to the evolved quantityW, as needed for SSL, we modified
TwoPunctures to include this option. Our modified version
may be found in this GitHub repository [27].
Third, the Llama [45] cubed-spheres grid in the gravita-

tional wave zone was replaced with box-in-box Cartesian
adaptive mesh refinement grids of comparable or higher
resolution. In addition, we choose a default resolution of all
AMR grids 50% higher, so that, for example, the resolution
at the punctures is M=42 instead of the gallery example
value of M=28. As we will find in Sec. V, even M=42 lies
slightly outside the convergent regime for modeling this
physical scenario. For completeness, our AMR grid hier-
archy comprises 11 levels of overlapping grid cubes,
centered on and comoving with each puncture, with a

standard factor-of-2 refinement across adjacent AMR
levels (i.e., there are 10 levels of refinement built upon
the coarsest level). The AMR grid cubes have half-
sidelengths of f2

3
M;4

3
M;8

3
M;16

3
M;64

3
M;128

3
M;…;4096

3
Mg.

As our default choice we choose grid resolutions of
fM
42
;M
21
; M
10.5;…;24.38Mg with CFL factors of 1

640
f288; 288;

144; 72; 36; 18; 9; 9; 9; 9; 9g, respectively.
Finally, the imposed symmetry across the z axis was

removed as BaikalVacuum does not currently support
symmetries.

V. RESULTS

To investigate the individual and combined effectiveness
of the improvements introduced in this work, we conducted
five simulations based on the GW150914-inspired scenario
detailed inSec. IVat thedefault resolution. These simulations
are denoted as Control, CAKO, CAHD, SSL, and All3.
Control serves as the no-improvement baseline, while
the CAKO, CAHD, and SSL each integrate a single
enhancement: curvature-adjusted Kreiss-Oliger,H-damping,
and slow-start lapse, respectively. All3 combines all three
enhancements. For convergence analyses, we executed the
Control and All3 simulations at resolutions 1.25x, 1.5x,
and 1.71x higher than the default resolution (1.0x) [46].

A. Effect of improvements on trajectories
and lapse evolution

As the three improvements modify the evolution equa-
tions in the finite-resolution limit, as well as the 1þ log
lapse condition, it is reasonable to be concerned that All3
may influence the trajectories of the BHs, especially at
lower resolutions, possibly inducing unwanted eccentricity.
To investigate this, in Fig. 3 a cubic polynomial P3ðtÞ is
fit to dMðtÞ—the distance of the more massive BH from
the center of mass (the origin)—over the first three orbits
(0 ≤ t ≤ 600M).
dMðtÞ and P3ðtÞ − 0.1 are plotted in the top panels of

each plot. Comparing the top and bottom plots, the P3ðtÞ
fits—and thus the trajectories—appear to converge with
increased resolution. In addition, the sharp nonconvergent
oscillation in Control at t ≈ 20M is eliminated in All3.
Comparing the effects of the individual improvements, we
find that the SSL enhancement is responsible for the
removal of this sharp feature. As SSL most significantly
impacts the early gauge evolution, this is not surprising.
Regarding possible eccentricity enhancement in All3,

the residual dMðtÞ − P3ðtÞ (bottom panels of Fig. 3) shows
the opposite is the case: at both default and highest
resolutions, the coordinate eccentricity over the first three
orbits is slightly lowered in All3 as compared to Control.
That is to say, the amplitude of the residual oscillation is
reduced in All3 as compared to Control. Further analysis
reveals that All3 reduces the average absolute value of the
residual by 33% at low resolution, from 0.0088 in Control
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to 0.0059 in All3, and by 25% at the highest resolution,
from 0.0059 to 0.0044. We stress that this is a measure of
the smoothness of dMðtÞ, not eccentricity.
We next turn our attention to further analyzing the effects

of SSL. As discussed in Sec. III C, SSL slows the deviation
of the lapse away from α ¼ W outside the horizon at early
times. Given that we adopt the standard “precollapsed”
lapse choice α ¼ W at t ¼ 0, SSL has no impact on the
evolution at t ¼ 0.
Figure 4 illustrates how the evolution of the lapse

deviates from the conformal factor shortly after the sim-
ulation begins, comparing α −W in Control to SSL at times
t=M ¼ 1.37, 5.49, and 10.97. For comparison, the first
orbital period completes at t ≈ 222M.
The more massive puncture is initially situated at

x ¼ 4.46, moving off the x axis shortly after the evolution
begins. Thus the top panel shows the evolution very close to
the puncture, and lower panels depict slices at larger

distances from the puncture and at later times. The
conformal factor along the axis smooths significantly away
from the puncture, so the oscillations in α −W at t ≥
5.49M are primarily due to the lapse. While the effects of
SSL are barely noticeable at t ¼ 1.37M, they become quite
apparent starting at t ¼ 5.49M; SSL causes the oscillations
in the lapse to be greatly reduced in amplitude, both at
t ≈ 5.49M and t ≈ 10.97.
The sharp lapse feature propagates outward and induces

a great deal of constraint violation in its wake, as discussed
in Sec. I. Figure 5 shows how each improvement impacts
the sharp lapse feature evolution in the wave zone. As in
Fig. 1, rð1 − αÞ is plotted, which should tend to a constant
value in the limit r → ∞.
At t ¼ 175.5M, the wavefront in Control, CAHD, and

CAKO has propagated to roughly x ¼ 250M, consistent
with a wave propagating from near the origin at t ¼ 0 at a
speed of

ffiffiffi
2

p
c. Notice this feature partially reflects off of the

x ¼ 170:6̄M AMR grid boundary, due to undersampling
across this factor-of-two drop in resolution. Meanwhile, the
delayed evolution of the lapse away from W early in the
SSL and All3 evolution acts to delay the wavefront by
approximately t ¼ 26M; these wavefronts at t ¼ 201.6M
overlap those of runs without SSL at t ¼ 175.5M.
As the CAHD and Control results are indistinguishable,

we conclude that CAHD has no significant impact on the
evolution of the lapse itself. On the other hand, CAKO acts
as a strong low-pass filter in this weak-field region,
significantly damping oscillations in the sharp lapse feature
and its reflections over the standard KO prescription
adopted in Control and CAHD.
Most notably, the SSL modification to the 1þ log lapse

condition significantly smooths the outgoing lapse pulse,
resulting in virtually no reflection across the x ¼ 170:6̄M

FIG. 4. Effects of SSL on early lapse evolution: α −W at
various times during the early evolution along the x axis, in the
vicinity of the more massive BH, comparing Control (blue solid)
with SSL (orange dashed).

FIG. 3. Trajectory comparison: Control vs All3. Top panels,
upper curves: distance from the origin of the more massive BH
dM, comparing Control (blue solid) and All3 (orange dashed)
over the first three orbits. Top panels, lower curves: least-squares
cubic polynomial fit P3ðtÞ to All3 (red dotted) and Control (green
dotted), minus 0.1 to improve visibility. Bottom panels: differ-
ence between data and cubic polynomial fit.
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grid boundary. While this grid boundary generates minimal
noise in SSL and All3 (which perfectly overlap in this plot),
partial reflection is observed in SSL and All3 when the
wavefront crosses the x ¼ 341:3̄M grid boundary. After
partially reflecting, All3 exhibits less noise than SSL due to
the enhanced KO dissipation implemented in CAKO.

B. Strong-field region: Effect of improvements
on constraint violations

As discussed in [10] and illustrated in Fig. 1, the
outward-propagating sharp lapse pulse fills the computa-
tional domain with significant constraint violations in its
wake. The top plot in Fig. 6 compares how our improve-
ments, both individually and collectively, reduce the
volume-averaged L2 norm of the Hamiltonian constraint
violation jjHjj in the strong-field region.
CAHD has the most significant influence on kHk,

reducing it by between 2–3 orders of magnitude after
t ¼ 10M. This is consistent with its intended effect of
causing one Hamiltonian constraint violating mode to
exponentially damp. Further, All3 reduces kHk in the
strong field by an additional 0.2–1.2 orders of magnitude.
The spike in constraint violation observed at t ≈ 930M is
coincident with common horizon formation. While the
same spike is only observed in CAHD and All3, the
Hamiltonian constraint violation in these cases never
exceeds Control, CAKO, or SSL.

Meanwhile, as shown in the bottom plot of Fig. 6, at
most times SSL greatly reduces momentum constraint
violation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kM2k

p
in the strong field at early times,

decreasing it by between 0–3.5 orders of magnitude.
After the merger, CAKO proves to be most effective at
reducing momentum constraint violation. Once more, the
cumulative impact of all improvements (All3) surpasses
that of any individual improvement.
Next we analyze the convergence behavior of the

constraint violations. Assuming we are in the convergent
regime (i.e., the region where truncation, and not roundoff
or undersampling error dominates), we would expect the
constraints to converge to zero between second and eighth
order in our mixed-order scheme; second order corresponds

FIG. 6. Effect of improvements: Constraint violation in strong-
field region: Volume-averaged L2 norm of kHk (top plot) andffiffiffiffiffiffiffiffiffiffiffiffiffi

kM2k
p

(bottom plot) inside spherical region of radius 20M,
centered at the origin (center of mass), excluding two spheres of
radius 1M centered at each BH. Results from five runs are
compared: Control (thick solid blue), CAKO (dash-dotted or-
ange), CAHD (dashed green), SSL (dotted red), and All3 (thin
solid purple). Volume excludes spheres of radius r ¼ 1M
centered at each BH.

FIG. 5. Impact of improvements on the sharp lapse feature:
rð1 − αÞ is plotted at t=M ¼ 175.5 along the x axis for Control
(thin solid), CAHD (thin dotted; overlaps Control), and CAKO
(thin dashed), and at t=M ¼ 201.6 for SSL (thick solid) and All3
(thick dotted; overlaps SSL). Dashed vertical lines demarcate
AMR boundaries along the x axis at x ¼ 85:3̄, 170:6̄, and 341:3̄.
The transmitted and reflected wave pulse propagation directions
in Control, CAHD, and CAKO across the 170:6̄ AMR grid
boundary are denoted by the horizontal arrows.

ZACHARIAH B. ETIENNE PHYS. REV. D 110, 064045 (2024)

064045-10



to the order at which data are interpolated (prolongated) in
time at AMR grid boundaries, and eighth order corresponds
to the finite-differencing order for spatial derivatives.
Witnessing inconsistent convergence order in such a com-
plex system typically implies that some physical length
scale is not being properly resolved (undersampling error).
Given that constraint violations converge to zero in the

continuum limit, in the truncation-error-dominated regime,
we should find that the constraint violation Ci at resolution
Δxi and convergence order n should approximately obey
the equation

Ci ¼ AðΔxiÞn; ð28Þ

where A is related to the nþ 1th derivative of the term in Ci
that dominates the truncation error. So long as Ci is known
at least two resolutions, both n and A can be computed.
Figure 7 plots the base-10 logarithm L2 norms of

Hamiltonian (kHk) and momentum (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kM2k

p
) constraint

violations in the strong-field region, through merger and
ringdown, up to t ¼ 1000M. After this, the key payload
from the simulation—the GW signal—has largely propa-
gated away and no longer depends on data in this region.
Data from Control and All3 at the default (1.0x) resolution,
as well as 1.5x and 1.71x higher resolutions are shifted on
this logarithmic scale such that the difference with the
corresponding 1.25x case is minimized; from this differ-
ence an implied convergence order n can be immediately
computed using Eq. (28):

n ¼ log10 Ci − log10 C1.25x

log10Δxi − log10Δx1.25x
: ð29Þ

The top plot of Fig. 7 indicates that through most of the
evolution, Hamiltonian constraint violation in All3 remains
about 100 times lower than Control at 1.25x resolution.
More strikingly, the implied convergence orders at higher
resolutions are consistently higher in All3 (4.6–6.4) com-
pared to Control (3.5–4.2), indicating that this gap only
widens at higher resolutions.
All3 is even more effective at reducing momentum

constraint violations in the strong field (bottom plot of
Fig. 7), dropping them by about 3–4 orders of magnitude as
compared to Control at 1.25x resolution. Unlike the
implied convergence order from Hamiltonian constraint
violations, the momentum constraint convergence order is
nearly doubled at higher resolutions in All3 (5.9–7.1)
compared to Control (3.0–3.2), reflecting that at higher
resolutions, the 3–4 decade gap between Control and All3
also widens. Finally, 1–2 orders-of-magnitude bumps inffiffiffiffiffiffiffiffiffiffiffiffiffi
kM2k

p
appear periodically as reflections from distant

AMR boundaries enter this region. These reflections
strongly impact All3’s convergence around t=M ¼ 200
and 400, but not at other times.

Analyzing implied convergence orders in Fig. 7, two
results stand out: All3’s Hamiltonian constraint violation
exhibits n ¼ 9.6 (1.0x vs 1.25x) and Control’s momentum
constraint violation exhibits n ¼ 1.6 (1.0x vs 1.25x). These
implied convergence orders lie outside the expected range
for our mixed-order scheme of n ¼ 2 to n ¼ 8, indicating
that our chosen default resolution may be outside the
convergent regime.
Unusual implied convergence orders warrant further

investigation. In Fig. 8, we examine Hamiltonian constraint
violation in the region where the binary orbits, along the
x axis at various times when the BHs are close to the y axis.
Control is characterized by sharp, wavelike features about

FIG. 7. Convergence of constraint violation in strong-field
region: Convergence to zero of volume-averaged L2 norms of
Hamiltonian (top plot) and momentum (bottom plot) with
increased resolution in a spherical region of radius 20M, centered
at the origin (center of mass), excluding two spheres of radius 1M
centered at each BH. Control and All3 results are compared. The
lowest resolution, as well as 1.5x and 1.71x higher resolution
results have been shifted up or down to maximally overlap the
1.25x higher resolution results. Shifts and implied convergence
orders (n) are reported in the legend for each case.

IMPROVED MOVING-PUNCTURE TECHNIQUES FOR COMPACT … PHYS. REV. D 110, 064045 (2024)

064045-11



H ¼ 0, while All3 exhibits a purely negative (at the lowest
resolution) or mostly positive (at higher resolutions)
systematic bias, albeit with constraint violation amplitudes
roughly 1=100th that of Control (consistent with Fig. 7).
For scale, All3 data would appear nearly indistinguishable
from the horizontal dashed lines marking H ¼ 0 in the
top plot.
While the amplitude of constraint violation indeed drops

with increased resolution in both Control and All3, there is
a clear zero crossing in All3 when comparing lowest and
1.25x higher resolution cases, consistent with the lowest
resolution not yet being in the convergent regime. Further,
the 1.25x resolution does not exhibit a clear bias in All3,

possibly implying that it lies very close to the boundary
between the convergent and nonconvergent regimes.
As indicated by Eq. (15) and surrounding discussion, H

violations act as an effective energy density ρeff ; thus, the
consistent ρeff < 0 in 1.0x All3 implies that Hamiltonian
constraint violation acts to continually push the BHs away
from one another. If this were the dominant error, we would
expect a delayed merger. Following the same reasoning, the
consistent ρeff > 0 in 1.5x and 1.71x resolutions of All3
imply an early merger, and the 1.25x resolution somewhere
in between. As will be discussed in our analysis of the
extracted waveforms (Sec. V C), this is exactly what we
observe. Such a clean analysis is impossible in Control due
to the extremely high level of noise, and implies that clean
waveform convergence in Control might depend on near-
exact cancellation of H waves.
We conclude that examining H in the binary region

serves some use in identifying whether BBH evolutions are
in the convergent regime, at least in the All3 cases.
Regarding Control we found a low implied convergence
order of jjM2jj when comparing 1.0x and 1.25x resolu-
tions. Further analysis of the irreducible mass (Fig. 9) of the
less massive, faster-spinning BH lends additional insight.
Figure 9 shows that, after the early settling of Mirr, the

irreducible mass remains constant to within a couple of
parts in 105 across all cases. Comparing 1.0x with 1.25x
and 1.5x resolutions, Control exhibits a negative implied
convergence order beyond t ≈ 150M, providing further
evidence that the 1.0x resolution data in the strong field
are not in the convergent regime. Measuring n directly for
Control is quite challenging due to numerical noise, though
given the stochastic behavior observed in H near the

FIG. 8. Hamiltonian constraint violation in the binary region
during inspiral: Convergence of H (thin solid curves) in Control
with increased resolution (top plot) and All3 (bottom plot) along
the positive x axis at times when the BHs are very close to the y
axis, starting at approximately 0.75 orbits: t=M ≈ 168, 272, 371,
464, 549, 628, 701, 765, and 828. A thick, gray, dashed line
denotes y ¼ 0. Note that both plots zoom out the top panel to
better fit the data. The BHs are initially placed at x ¼ 4.46 and
x ¼ 5.54, and the origin is the center of mass. Merger occurs at
roughly t=M ¼ 930.

FIG. 9. Convergence behavior of Mirr , for smaller, faster-
spinning BH: Comparison of irreducible mass for Control (top
panel) and All3 (bottom panel) cases at all four resolutions.
Thicker lines imply coarser resolution. Data beyond t ¼ 800M
are removed, as this is close to the time of common horizon
formation; merger occurs at t ≈ 910M.
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punctures (Fig. 8), this is unsurprising. That said, compar-
ing 1.25x, 1.5x, and 1.71x resolution data yields an implied
convergence order of roughly n ¼ 1 at t ¼ 400M, but the
1.25x and 1.5x data completely overlap at t ≈ 600M
(implying n ¼ 0). Similar convergence behavior was
observed in this quantity in [10].
Meanwhile, All3 exhibits far less noise and cleaner

convergence in this diagnostic, with an implied conver-
gence order of n ≈ 4.7 in the range 200 < t=M < 600when
analyzing the 1.0x, 1.25x, and 1.5x data, and n ≈ 2.0 when
analyzing the 1.25x, 1.5x, and 1.71x data. Although the
All3 data have implied convergence orders consistent with
the range expected from our mixed-order scheme
(2 ≤ n ≤ 8), Fig. 8 has established that constraint violations
in this region in the 1.0x All3 simulation are not in the
convergent regime.

C. Weak-field region

While numerical noise in Control significantly
influences the constraints and Mirr in the strong field, it
is most prominent in the weak field region where GW
content—typically the core payload of BBH simulations—
is extracted. As our improvements act to mitigate this noise,
they are particularly effective in the weak-field region.
Figure 10 demonstrates that throughout much of the
inspiral (t≲ 1000M), Hamiltonian constraint violations
in the GW extraction region (the “wave zone”) are reduced
by roughly 4 to 6 orders of magnitude in All3, largely a
consequence of SSL. This contrasts with the strong-field
region (Fig. 6), where 2–3 orders of magnitude reductions
are observed. Meanwhile, during the inspiral, All3 reduces
momentum constraint violations by between 2–3 orders of
magnitude, similar to the strong-field region.
At the merger, a spike in Hamiltonian and momentum

constraint violations propagates from the strong-field region
into the wave zone. In Control, this spike is observed only in
momentum constraint violations, likely because noise levels
in this region are far higher. Postmerger, Hamiltonian
constraint violation reductions in All3 equilibrate to values
roughly 3–4 orders of magnitude below Control, with near-
equal contributions from SSL and CAHD.
Careful analysis of momentum constraint violations in

this region after merger shows that CAHD and SSL overlap
Control, making CAKO the dominant contributor to
reducing momentum constraint violations. While All3
always falls below Control, they are quite comparable as
constraint violations associated with common horizon
formation propagate outward. Later, the gap between
Control and All3 slowly widens to about 1 order of
magnitude by the end of the simulation.
Turning now to constraint convergence behavior in the

wave zone at higher resolutions, Fig. 11 plots the constraint
violation at all four resolutions, using the 1.25x resolution
as the basis of comparison. In Control, neither Hamiltonian
nor momentum constraint violations converge to zero in the

expected range of 2 ≤ n ≤ 8, while, remarkably, All3
exhibits implied convergence orders of 3.5–3.8 in the
Hamiltonian constraint violation. However, All3 falls out-
side the expected convergence-order range in momentum
constraint violation, and in fact is slightly anticonvergent.
While this is rather troubling for both Control and All3,
upon closer analysis, we find that the level of violation in
All3 remains lower than Control at all resolutions, just as in
Fig. 7. We also find that if the integral is extended to the
outer boundary as in [10], we find a consistent result: both
Control and All3 exhibit convergence orders in the
expected range 2 ≤ n ≤ 8, implying convergent behavior
outside of the wave zone.
Considering the GWs themselves, while GW detectors

measure variation in GW strain, NR simulations typically
compute the Weyl scalar ψ4. As ψ4 is the second time

FIG. 10. Effect of improvements: Constraint violation in
gravitational wave zone: Volume-averaged L2 norm of kHk
(left) and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kM2k

p
(right) within a thick spherical shell of

20 ≤ r=M ≤ 500, centered at the origin (center of mass). Results
from five runs are compared: Control (thick solid blue), CAKO
(dash-dotted orange), CAHD (dashed green), SSL (dotted red),
and All3 (thin solid purple).
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derivative of the strain in the weak-field limit—dependent
on second spatial derivatives of the metric—it amplifies
intrinsic numerical noise and thus provides an excellent
noise diagnostic.
Figure 12 illustrates our procedure for quantifying noise

in the dominant, l ¼ m ¼ 2, spin-weight s ¼ −2 mode of
ψ4. In the top panel, we plot the amplitude of this mode
extracted from the simulation at a radius Rext ¼ 100M, for
both Control and All3 at 1.25x higher resolution than the
lowest resolution. The vertical dashed lines denote
the region where a quartic polynomial was fit through
the amplitude data. The middle panel plots the absolute
difference between the data and the quartic polynomial fit
(i.e., the “noise”), and the bottom panel the noise integrated

over time. Averaged over the time interval of the fit, our
combined improvements reduce numerical noise in the l ¼
m ¼ 2 mode of ψ4 by a factor of 4.0 at 1.25x resolution.
Applying the same technique to other resolutions, we find
noise reduction factors of 6.0 (1.0x), 4.3 (1.25x), and 3.1
(1.71x). This underscores the fact that this noise converges
away extremely slowly at higher resolutions.
Such significant noise reductions in the dominant ψ4

mode are quite important, as GWs are usually the core
payload of NR BBH simulations. Looking ahead, the
improved sensitivities of current and future GW observa-
tories will require significantly improved accuracy of NR
GW predictions [1,2], including higher-order modes. In
anticipation of this, Fig. 13 shows All3’s impact on
reducing noise in subdominant, even l ¼ m modes at
the highest (1.71x) resolution. The noise at l ¼ m ¼ 4 is
greater in both All3 and Control than at l ¼ m ¼ 2, yet
noise is still significantly reduced in All3. Turning to the
l ¼ m ¼ 6 subdominant mode, we find a truly exciting
result. This mode is completely obscured by noise through
the entire inspiral in Control, yet is mostly visible in All3,
enabling the strain prediction to be extracted.
Still, there are limits to All3’s effectiveness: the l ¼

m ¼ 8 mode cannot be extracted from either All3 or
Control. This underscores the need for further research
into improved techniques and numerical grid structures
such as those that Llama or Blackholes@Home provide.
We next turn our attention to the convergence behavior

of ψ4, splitting our analysis into the phase and amplitude
of the dominant l ¼ m ¼ 2 mode. The phase in Control
(top two panels of Fig. 14) is too noisy to measure n
until a retarded time of about 780M, when monotonic

FIG. 11. Convergence of constraint violation in gravitational
wave zone: Convergence to zero of volume-averaged L2 norms of
Hamiltonian (top plot) and momentum (bottom plot) with
increased resolution in a thick spherical shell of inner radius
20M and outer radius 500M, centered at the origin (center of
mass). Lowest resolution as well as 1.5x and 1.71x higher
resolution results have been shifted up or down to maximally
overlap the 1.25x higher resolution results. Shifts and implied
convergence orders (n) are reported for each case.

FIG. 12. GW noise analysis: dominant mode. Top: amplitude of
dominant (l ¼ m ¼ 2) spin-weight s ¼ −2 mode of ψ4 versus
retarded time. Vertical dashed lines: region where a quartic
polynomial is fit to amplitude data. Middle: absolute difference
between data and fit. Bottom: cumulative absolute difference
between data and fit.
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convergence behavior starts to emerge. However, although
the implied convergence order of 2.3 between 1.0x, 1.25x,
and 1.5x resolutions falls within the expected range of
2 ≤ n ≤ 8, when comparing differences in 1.25x, 1.5x, and
1.71x resolutions, n is roughly 12 before merger and 23
after merger, reflecting serious problems with convergence.
We attribute this unusual behavior to the high-amplitude,
stochastic oscillations in H between the BHs illustrated in
Fig. 8. As discussed in Sec. II C, these oscillations equate to
spurious positive and negative effective energy densities,
which, when they do not cancel, will impose an effective
attraction or repulsion between the BHs, respectively. We
fear that noncancellations may directly impact the GW
phase in potentially unpredictable ways.
Returning to Fig. 8, H is roughly 100x lower between

the BHs in All3 as compared to Control. In spite of this, the
persistent negative effective energy density at 1.0x reso-
lution likely causes a significantly delayed merger in All3
(middle panel, Fig. 14). While this may seem troubling for
All3, it is even more troubling for Control, as it implies that
the stochastic behavior in H between the BHs would need
to cancel to better than one part in 100 over the inspiral in
order to exhibit similar or lower phase errors. Given the
small number of waves observed in the binary region, such
cancellation cannot be guaranteed, and is likely the cause of
the inconsistent convergence in Control.
Considering All3 at 1.25x and higher resolutions, Fig. 8

indicates that All3 exhibits slight negative oscillation about
H ¼ 0 in 1.25x, but a consistently positive bias at 1.5x
and 1.71x. Given inconsistent convergence observed in
Control due to oscillations, as well as the clear negative bias
ofH in 1.0x All3 results, caution is clearly warranted when
considering All3 1.25x ψ4 phase results. The fourth panel

from the top of Fig. 14 indicates that while the difference
between 1.25x and 1.5x phase results is smaller in All3 than
Control (second panel from the top), the difference flips
sign close to merger, as compared to all other resolution
pairs (All3 or Control).
This likely implies that 1.25x resolution in All3 and

Control are slightly outside the convergent regime. While
this analysis of H in the binary region (Fig. 8) to explain
nonconvergent behavior has been useful, it remains to be
seen whether it will be predictive of convergence in other
BBH scenarios.
Next, we assess whether Control and All3 waveforms

converge to the same result. To this end, in the bottom panel
of Fig. 14, we fix the resolution and simply plot the phase
differences between Control and All3. Notice that phase
differences between Control and All3 drop to tiny fractions
of a radian with increasing resolution, indeed consistent
with them converging to the same result.
For completeness, we present the same analysis for the

rescaled amplitude of the extracted GW signal: Rextjψ4j, for
the dominant mode in Fig. 15. Perhaps unsurprisingly, the
conclusions drawn from our phase analysis hold for the
amplitude as well, though the significantly delayed merger
in the 1.0x resolution All3 case is much more evident when
considering the amplitude.

FIG. 13. Subdominant modes: Amplitude of spin-weight s ¼
−2 subdominant even l ¼ m modes of ψ4 up to 8, versus
retarded time, at highest resolution. Top: l ¼ m ¼ 4 mode;
middle: l ¼ m ¼ 6 mode; bottom: l ¼ m ¼ 8 mode.

FIG. 14. GW phase convergence analysis: l ¼ m ¼ 2. Top:
accumulated phase jϕj of dominant (l ¼ m ¼ 2) mode of ψ4 at
all four resolutions in Control. Second from top: accumulated
phase difference across neighboring resolutions in Control. Third
from top: same as top, but for All3. Fourth from top: same as
second panel, but for All3. Bottom: accumulated phase difference
between Control and All3 at the three highest resolutions. All
data were extracted from the simulation at extraction radius
Rext ¼ 100M.
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We conclude that improvements do not appear to
negatively impact the dominant mode of the GW predic-
tion; both amplitude and phase appear to converge to the
same values as Control. That said, 1.25x resolution All3
amplitude and phase results are much closer to the con-
verged solution than in 1.25x Control, implying smaller
errors at resolutions bordering the nonconvergent regime.
Perhaps most importantly, we find that All3’s enormous
reduction in Hamiltonian constraint noise in the binary
region and the associated purely positive or negative biases,
may enable us to predict for other BBH scenarios whether
the actual merger time should be earlier or later than the
given resolution. If so, Hamiltonian constraint information
in the binary region, combined with All3, may be used to
improve GW predictions from moving-puncture BBH
merger simulations in the future.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced three improvements to the moving-
puncture technique, aimed at improving the accuracy of
BBH evolutions. Our results show that the proposed
improvements effectively reduce numerical errors and
noise in different parts of the computational domain, from
the strong-field area near the black holes to the weak-field
region where GW predictions are extracted.
When combining all three improvements (All3), perfor-

mance is significantly better than any single enhancement,
cuttingdownHamiltonian (momentum) constraint violations
in the strong-field area by roughly 2 (3) orders of magnitude

and in the GWextraction zone by 5 (2) orders of magnitude.
Further, the convergence of constraint violations improves
near and inside the convergent regime, suggesting that these
improvements become even more pronounced at higher
resolutions.
The improvements also slightly reduce coordinate eccen-

tricity and lower numerical noise in the dominantl ¼ m ¼ 2
mode of ψ4 by an average factor of 4.3 across different
resolutions. Additionally, the fidelity of higher-order modes
increases significantly, making the l ¼ m ¼ 6mode, which
was previously hidden by noise, detectable. This is particu-
larly encouraging given the demands of next-generation
GW observatories.
Looking forward, we plan to explore the impacts of these

improvements on BNS simulations and compare their
efficacy to Z4-based formalisms. However, there are
limitations to the wider applicability of these improve-
ments: As the development of CAHD was built upon
characteristic analysis of BSSN, it is unlikely to be useful in
Z4-based formalisms, which exhibit a different character-
istic structure and include damping terms already. Further,
the initial gauge pulse is likely significantly less in BNS
evolutions,meaning that SSLmay not be particularly helpful
in this case.
Moving beyond Cartesian AMR-based grids, it will be

interesting to learn the impacts of these improvements on
mixed AMR/cubed-spheres grid structures like Llama [45],
as they may act to eliminate reflections and have already
proven quite effective in Blackholes@Home. Meanwhile, work
will continue to improve upon the moving-puncture tech-
nique further, with particular emphasis on addressing
spikes in constraint violation associated with merger.
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