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We address the question of how to build a class of fðRÞ extensions of general relativity which are
compatible with solar system experiments, without making any preliminary assumption on the properties of
f. The aim is reached by perturbatively solving the modified Einstein equations around a Schwarzschild
background and retrieving a posteriori the corresponding fðRÞ. This turns out to be nonanalytical in R ¼ 0

and should be intended as the leading correction to the Einstein-Hilbert action in the low curvature limit.
The parameters characterizing the fðRÞ class are then set by constraining the corrections to four different
local tests with the observations. The result is a class of fðRÞ theories built up from a purely bottom-up
approach and compatible with the local tests. At a more general level, this result can help constraining exact
fðRÞ models working in cosmology, since it provides the correct local limit. Further developments and
possible extensions of the approach to cosmology are also discussed.
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I. INTRODUCTION

It is curious and quite disturbing that the dark sector of
the currently accepted cosmological model (the Λ-CDM
model) be the key to explain the dynamics of the universe
and of galaxies and, at the same time, one of the greatest
mysteries of contemporary physics. The dark sector encom-
passes two components of the energy density in the
universe: cold dark matter (DM) and dark energy (DE).
DM is a pressureless perfect fluid constituting almost

85% of the matter content in the universe [1]. The first piece
of evidence of DM effects came in 1933 with the work of
Zwicky et al. [2], who realized a large discrepancy between
the mass to light ratio of the virialized COMA cluster and
the mass to light ratios of the individual, visible galaxies
within the cluster. After four decades, the spectroscopic
observations of the Andromeda Galaxy performed by
Rubin and Ford [3,4] definitely opened the possibility that
halos of nonluminous matter could surround the disk
galaxies. The observations showed a profile of the rotation
velocities extending flat well beyond the visible edge of the
disk, thus enforcing the idea of a DM halo. Since then, DM
has been invoked to explain a plethora of different
phenomena, from the weak lensing of the Bullet Cluster
[5] to the cosmological structure formation [1]. See [6] for
an overview on the main probes and [7] for an historical
introduction. The main theoretical proposals as DM con-
stituents include extensions of the Standard Model of

particle physics [8] and primordial black holes [9]. See
also [10] for a review on the detection methods.
On the other hand, the conceptual roots of DE can be

traced back to soon after the birth of general relativity (GR)
when in 1917 [11] (pp. 177–188) Einstein introduced the
cosmological constant (CC) Λ in its field equations. At the
cosmic scales a positive CC has the same effect as a perfect
fluid with negative pressure, allowing a static universe with
nonzero energy density to be a solution of the Einstein
equations (EE). Although the possibility of a static universe
was definitely discarded by the observations of Hubble
[12], showing that the universe is actually expanding, the
CC contribution continued to “rear its ugly head”1 for
decades. This was because of the (possibly gravitating)
vacuum fluctuations of the quantum fields, which take
exactly the CC form given a Lorentz invariant vacuum2

[14]. Meanwhile, the development of inflationary models in
the 1980s [15] also strengthened the importance of fluids
with negative pressure. But the true revolution only
happened toward the end of the century. Between 1998
and 1999, the members of the Supernova Cosmology
Project [16] and the High-Z Supernova Search Team
[17] analyzed the luminosity-redshift relation of a number
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1This citation is taken from Gamow’s autobiography [13].
2The first intuition in this direction came in 1968 from

Zel’dovich, whose primary focus was to disprove the necessity
of a vanishing zero point energy of the quantum fields and thus
paved the way to a new field of activity in theoretical physics. In
his words “The genie has been let out of the bottle, and it is no
longer easy to force it back in” [14].
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of Type Ia supernovae and discovered that the expansion
of the universe is accelerating.3 Their best fit within
the Λ-CDM model set the contribution of the CC to
jρΛj ≃ 10−47 GeV4, amounting to about 70% of the total
energy density in the universe. This, of course, boosted
renewed interest in the long-standing problem of a sat-
isfactory theoretical explanation for the value of the CC but
could not, and to date it still cannot, be settled within the
particle physics framework. The reason is that, on the one
hand, the “bare” CC appearing in the EE should cancel the
regularized vacuum energy contribution from the matter
fields with an insane degree of accuracy4 [20] (fine-tuning
problem), and on the other hand, the phase transitions of the
fundamental interactions which supposedly took place in
the early universe dramatically change the classical con-
tributions from the minima of the interaction potentials [19]
(classical problem of phase transitions). Because of these
problems, alternative DE models which do not foresee the
CC have been developed in the past 20 years; see [21,22]
for a complete compendium. Also, in July 2023 the
European Space Agency has successfully launched the
Euclid satellite with the primary aim of detecting new
signatures of DE [23].
Understanding the nature of DM and of DE is no doubt

the greatest open problem in cosmology. Evidently, the
conceptual element shared by DM and DE is a certain use
of GR to describe their gravitational interaction: in the
Newtonian limit in the case of the galaxies and constrained
by the cosmological principle in the case of the whole
universe. One could argue that such restrictions on the use
of GR are simply too strong and that, in fact, Einstein’s
theory could have some more to say if a more exact use
were made [24–27]. Another possibility which is worthy of
consideration is that Einstein’s theory may just fail to fully
reproduce the dynamics of the gravitational field at those
scales. If this were true, then a proper extension of GR
could solve or, at least, alleviate the problem. We adopt this
point of view from now on.
After the birth of GR it was soon clear that the

geometrical approach to the description of the gravitational
interaction could lead in principle to theories different and
even more general than GR. Whether geometry is an
essential feature of gravity was a matter of debate and
remains an important, conceptual issue today, even if much
less discussed. On this point we should mention that,
although Einstein himself in 1919 considered the possibil-
ity of modifying the theory in order to get trace free field
equations5 [11] (pp. 189–198) (see also [28] for a brief

review), he remained critical about the possibility of
“geometrizing gravity” in an ontological sense [29]. The
principle of equivalence, a physical principle, and its
unification with the gravitational interaction being, in fact,
the chief motors of its research [29].
This being said, a remarkable step in the direction of a

geometric extension of GR occurred in 1961 when, in the
attempt to incorporate Mach’s principle [30], Brans and
Dicke introduced a scalar field as an additional mediator of
the gravitational interaction, thus giving birth to the first
scalar-tensor theory [31]. Thirteen years later, Hordenski
in his doctoral thesis built the most general second-order
scalar-tensor theory in four dimensions [32]; see also [33].
At that time ’t Hooft and Veltman were proving the
renormalizability of GR at one loop, finding corrections
quadratic in the Ricci tensor and the scalar curvature to the
Einstein-Hilbert action [34]. The same type of curvature
corrections were encountered three years later by Davies
et al. who computed the one loop renormalized stress-
energy tensor of a scalar field in a flat Friedmann universe
[35]. Using this result, in 1980 Starobinsky realized that a
de Sitter era of accelerated expansion (or inflation) could
solve the effective EE in the primordial universe [36], when
the one loop quantum corrections to the matter fields
become relevant but the curvature is still too small to
consider quantum effects of pure gravity. Therefore, when
toward the end of the century the discovery of the
accelerated expansion took place, a certain interest devel-
oped for higher derivative modified gravity models, with
the perspective that nonlinear terms in the curvature could
hide a natural explanation for the late times inflation. A
minimal but quite general approach in this direction is to
correct the usual Einstein-Hilbert action by an unspecified,
nonlinear function f of the scalar curvature R.6 This is the
so-called fðRÞ gravity and will be the theoretical frame-
work of this work.
Complete and up to date accounts on fðRÞ gravity can

be found in [38–42] and references therein; see also [43]
for an historical introduction to the main motivations.
Hence, we will not linger on the technical aspects. Here
we just want to emphasize that fðRÞ gravity, as every
extended theory of GR, must face two orders of problems.
The first comes from the fact that GR is extremely well
tested at the solar system scales [44–46]. This means that
local tests as the gravitational redshift, the deflection of
light by the Sun, the precession of closed orbits or the
Shapiro delay can impose strong constraints on the
possible class of f functions and make it natural (even
if not mandatory) to ask that fðRÞ reduce to GR within the
error bars at those scales. For this reason, conceptual
tools such as the parametrized post-Newtonian (PPN)

3From that moment onward, the cosmic fluid responsible for
the acceleration was dubbed dark energy; see [18] for a historical
introduction.

4This seems to happen whatever regularization procedure
is employed [19].

5Interestingly, Einstein’s primary focus was to stabilize the
atomic structure of the electrons inside the atoms.

6The first appearance is due to Buchdahl [37], who was indeed
motivated by the shortcomings of the big bang model and the
quantum-gravitational corrections to the Einstein-Hilbert action.
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expansion and the weak field expansion are terribly
helpful in the study of fðRÞ gravity [38,47–49]. As for
the first, it should be mentioned that, under the crucial
assumption that f be analytical around the background
value of R, two scenarios may happen [38]. Either the
effective range of the scalar degree of freedom introduced
by fðRÞ is larger than the solar system scales, in which
case the theory predicts the value 1

2
for the PPN parameter

γ and thus violates a severe experimental constraint [50],
or the effective range is smaller than the solar system
scales, in which case the fðRÞ effects are hidden from the
local tests and there is agreement with GR. Clearly, the
problem in this case is that fðRÞ would have no effects at
the cosmological scales either, a reason why an adaptive
range mechanism is usually introduced (the chameleon
mechanism [38]).
The second order of problems arises at the cosmologi-

cal scales (we disregard the DM problem for the moment),
since not only should the nonlinear terms in fðRÞ naturally
contribute to the late times inflation but also the theory
should provide a radiation dominated epoch, followed by
a matter dominated one [1]. The cosmological viability of
fðRÞ models has been extensively discussed in [51–56].
See also [57–59] for discussions on the cosmological
bounds on fðRÞ gravity together with the solar sys-
tem tests.
In this paper we address the first challenge of fðRÞ, that

is, building a class of functions which is fully compatible
with the local tests. This is not a new task in the literature
[38]; however, general results are typically derived
assuming fðRÞ is analytical [60,61] while particular
models are studied starting off with a given form of f
as a function of R [62,63]. Here we take a different route:
without making any preliminary assumption on the form
of f, we study the modified EE outside a spherical source;
we perturbatively solve them by asking for (i) full agree-
ment with GR in the weak field limit and (ii) minimal
regularity of the potentials and the derivative of f as
functions of the coordinates; and we retrieve a posteriori
the corresponding form of fðRÞ.
More specifically, in Sec. II we derive the modified EE

for a general fðRÞ in the metric formalism. In Sec. III we
specialize the equations to a static, spherically symmetric
line element. For compatibility with GR we impose that the
potentials reduce to the Schwarzschild ones far from the
source. Moreover, to carry on explicit computations we ask
that the corrections to the potentials be expandable in a
Laurent series around the origin of the Schwarzschild
coordinates. With these conditions we are able to pertur-
batively solve the modified EE, find the leading correction
to the Schwarzschild line element, and retrieve a posteriori
the fðRÞ. This turns out to be nonanalytical in R ¼ 0 and
should be intended as the leading correction to the Einstein-
Hilbert action in the low curvature limit, in the surround-
ings of a spherical source. The resulting fðRÞ depends on

two parameters: a universal coupling c1 and an integer
number n, which essentially determines the order of the
correction. After a brief discussion on the PPN parameters
of the theory in Sec. V, we devote Sec. VI to show how the
parameters c1 and n can be fixed by the local tests. We
compute the leading corrections to the gravitational redshift
of sunlight, to the bending of light from a distant star by the
Sun, to the precession of a closed orbit, and to the Shapiro
delay. In particular, we use measurements of the sunlight
gravitational redshift [64] to infer numerical bounds on c1
at varying n. In the final Sec. VII we briefly look at
cosmology. We argue that, although the fðRÞ found in this
paper cannot directly be applied in that context, the same
point of view and methodology can be employed to
approach the problem. The results of this work would
then serve as a consistency condition when local scales are
reached.

II. EINSTEIN EQUATIONS IN f ðRÞ GRAVITY

To fix the notation in this section we derive the modified
EE for fðRÞ gravity. We consider the action S ¼ SG þ Sm,
where

SG ¼ 1

2k

Z
M

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ ð1Þ

is the gravitational action and Sm is the action of the matter
fields. In SG, k ¼ 8πG in natural units ðℏ ¼ c ¼ 1Þ, the
integration is extended over the spacetime manifoldM and
g is the determinant of the metric tensor, whose signature
is mostly plus.7 The function fðRÞ is an arbitrary (and
possibly nonlinear) function of the scalar curvature R. In
particular, we do not preliminarily require f to be analytical
anywhere. Notice that for fðRÞ≡ R the usual Einstein-
Hilbert action is recovered.
We work in the metric formalism; hence SG ¼ SG½g�

and the field equations for gravity are obtained by varying S
with respect to the metric. Variation of the matter action
gives the energy-momentum tensor of the matter fields

δgSm ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμνδgμν: ð2Þ

The variation of SG hides a subtlety, and we review it here.
We get

δgSG ¼ 1

2k

Z
M

d4x
ffiffiffiffiffiffi
−g

p
δgμν

�
1

2
gμνfðRÞ−ϕRμν

�

−
1

2k

Z
M

d4x
ffiffiffiffiffiffi
−g

p
ϕðgρσgμν− gρμgσνÞ∇ρ∇σδgμν; ð3Þ

7For the metric, the curvature tensors, and the EE we use the
Misner-Thorne-Wheeler “þ;þ;þ;þ” convention [45].
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where ∇ denotes covariant differentiation and we have

defined the scalar field ϕ≡ ∂fðRÞ
∂R .8

The second line can be split in a bulk plus a boundary
part

−
1

2k

Z
M

d4x
ffiffiffiffiffiffi
−g

p
ϕðgρσgμν − gρμgσνÞ∇ρ∇σδgμν

¼ −
1

2k

Z
∂M

d3y
ffiffiffi
h

p
αnρ½ϕðgρσgμν − gρμgσνÞ∂σδgμν�

þ 1

2k

Z
M

d4x
ffiffiffiffiffiffi
−g

p ð∇ρϕÞðgρσgμν − gρμgσνÞ∇σδgμν; ð4Þ

where fyag are the proper coordinates of the boundary ∂M,

which we assume to be nowhere null, and hμνðxÞ ¼
∂ya

∂xμ
∂yb

∂xν habðyÞ is its induced metric,9 which we held fixed
during the variation. The vector n is the unit normal vector
field to the boundary and α is a number taking values þ1
for outgoing n and −1 for ingoing n. In the derivation
we have also used that by hypothesis δgj

∂M ¼ 0, and
therefore ∇δgj

∂M ¼ ∂δgj
∂M. At the boundary we can write

gμν ¼ ϵnμnν þ hμν, with ϵ ¼ þ1 (−1) if ∂M is timelike
(spacelike); hence,

−
1

2k

Z
∂M

d3y
ffiffiffi
h

p
αnρ½ϕðgρσgμν − gρμgσνÞ∂σδgμν�

¼ −
1

2k

Z
∂M

d3y
ffiffiffi
h

p
αϕhμνnσ∂σδgμν: ð5Þ

Although this is a boundary contribution, it is in general
nonzero because the stationary action principle still allows
for a nontrivial variation of the configuration variables
orthogonal to the boundary surface. In GR the issue is
solved by adding to the gravitational action a term propor-
tional to the extrinsic curvature [66]. In fðRÞ gravity the
presence of the scalar ϕ makes things fairly more compli-
cated (see, e.g., [67]). Here we take a practical point of view
and assume that such a boundary contribution can, in fact,
be eliminated by adding a proper counterterm to the
gravitational action.

Integrating by parts once the second term in (4) we
finally obtain the variation of the gravitational action (up to
boundary contributions)

δgSG ¼ 1

2k

Z
M

d4x
ffiffiffiffiffiffi
−g

p
δgμν

×
�
1

2
gμνfðRÞ − ϕRμν − gμν∇2ϕþ∇μ∇νϕ

�
: ð6Þ

The modified EE are therefore

ϕRμν −
1

2
gμνfðRÞ þ gμν∇2ϕ −∇μ∇νϕ ¼ Tμν: ð7Þ

If ϕ≡ 1, the usual EE are recovered. Moreover, notice that
a Ricci-flat vacuum solution in GR is not a solution for
every fðRÞ, since ϕ should satisfy

ϕRμν þ ðgμν∇2R −∇μ∂νRÞ
∂ϕ

∂R
þ ½gμνð∂RÞ2 − ∂μR∂νR�

∂
2ϕ

∂R2

¼ 1

2
gμνfðRÞ; ð8Þ

in the limit of zero Ricci curvature. A strong condition
to ensure GR solutions would be limR→0ϕ < þ∞ and
limR→0fðRÞ ¼ 0. A weaker condition would be

limRμν;R→0Rμνϕ;R
∂ϕ
∂R;R

2 ∂
2ϕ
∂R2¼0, and again limR→0fðRÞ ¼ 0.

III. SPHERICALLY SYMMETRIC SYSTEMS

In this section we specialize the discussion to the
gravitational field produced in vacuum by a spherically
symmetric source. As shown in Appendix A, for such
systems there exist spherical coordinates centered on the
source in which the metric takes the form

ds2 ¼ −eνðr;tÞdt2 þ eμðr;tÞdr2 þ r2dΩ2; ð9Þ
where νðr; tÞ and μðr; tÞ are two arbitrary functions of time
and radius and dΩ2 ¼ dθ2 þ sin2ðθÞdφ2 is the metric on
the two-sphere.
By direct computation one can find the full set of

independent modified EE (7) for this metric. We report
them here for the convenience of the reader10

1

2

�
2ϕ

r
νr þ

2ϕ

r
μr þ μrϕr þ νrϕr − 2ϕrr

�
þ 1

2
eμ−νðμtϕt þ νtϕt − 2ϕttÞ ¼ 0; ð10Þ

ϕ

r2
eμþ1

2

�
ϕνrr−

ϕ

2
νrμrþ

ϕ

2
ν2r þ

ϕ

r
νrþ

ϕ

r
μrþϕrνr−

2ϕr

r
−
2ϕ

r2

�
þ1

2
eμ−ν

�
−ϕμttþ

ϕ

2
μtνt−

ϕ

2
μ2t þνtϕt−2ϕtt

�
¼ 0; ð11Þ

8The derivative of f embodies the additional, effective scalar degree of freedom of fðRÞ gravity. This can be seen, for example,
considering the O’Hanlon action SG ¼ 1

2k

R
M d4x

ffiffiffiffiffiffi−gp ðΦR − VðΦÞÞ [65], in which an additional scalar field mediates gravity.
Eliminating Φ through the field equations the fðRÞ action is recovered.

9See [66] for an introduction to the formalism of embedded surfaces.
10In order, these are the ttþ rr, ttþ θθ, tr, and θθ components of (7). The subscripts indicate partial differentiation with respect to the

coordinates ðgðr; tÞr ¼ ∂gðr;tÞ
∂r Þ.
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ϕ

r
μt − ϕtr þ

1

2
νrϕt þ

1

2
μtϕr ¼ 0; ð12Þ

1

2
eμfðRÞþ 1

2

�
ϕνrr−

ϕ

2
νrμrþ

ϕ

2
ν2r þ

2ϕ

r
νrþμrϕr−

4ϕr

r
− 2ϕrr

�
þ 1

2
eμ−ν

�
−ϕμttþ

1

2
ϕμtνt−

ϕ

2
μ2t þμtϕt

�
¼ 0: ð13Þ

As a warm-up we preliminarily study the equations in some
simple cases.

A. Affine GR

We consider first the case

ϕ≡ const ⇒ fðRÞ ¼ ϕRþ Λ: ð14Þ

From (12) we get μðr; tÞ ¼ μðrÞ, while from (10)

νðr; tÞ ¼ −μðrÞ þ TðtÞ: ð15Þ

Because of the freedom in the time reparametrization we
can just consider

νðr; tÞ ¼ −μðrÞ≡ lnðNðrÞÞ; ð16Þ

where a new function NðrÞ has been defined for conven-
ience. Using (14), (A14) and subtracting (13) from (11) we
get a simple equation for N

Nrr þ
2

r
Nr ¼

Λ
ϕ
: ð17Þ

The solution to the homogeneous part is

N0ðrÞ ¼ c1 þ
c2
r2

; ð18Þ

while a particular solution is given by

NpðrÞ ¼
1

6
þ Λ

ϕ
r2: ð19Þ

Therefore, the general solution for μ, ν is

νðrÞ ¼ ln

�
c1 þ

c2
r
þ 1

6

Λ
ϕ
r2
�

¼ −μðrÞ; ð20Þ

and the metric (9) takes the form

ds2 ¼ −
�
c1 þ

c2
r
þ 1

6

Λ
ϕ
r2
�
dt2 þ 1

c1 þ c2
r þ 1

6
Λ
ϕ r

2
dr2

þ r2dΩ2: ð21Þ

The constants c1, c2 can be fixed asking that for Λ ¼ 0, g00
tend to −1 − 2ϕN , where ϕN is the Newtonian potential
of the source ϕN ¼ −MG

r . This implies c1 ¼ 1 and

c2 ¼ −2MG; that is, the metric takes the form of the usual
Schwarzschild–de Sitter solution with Λ (related to) the
cosmological constant.

B. Schwarzschild solution

Here we assume the Schwarzschild potentials

ν ¼ ln

�
1 −

c
r

�
¼ −μ; c∈R; ð22Þ

and deduce which conditions this solution implies on ϕjR¼0

and fð0Þ.
Equation (12) gives

ϕtr −
1

r
νrϕt ¼ 0; ð23Þ

which reduces to an identity if ϕt ¼ 0. However, let us
assume ϕt ≠ 0. Integrating we get

νðrÞ − νðr0Þ ¼ 2 lnðϕtÞ þ gðtÞ;

which by hypothesis would imply

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 −

c
r

r
GðtÞ þ hðrÞ;

where GðtÞ ¼ R t0 dt0e−1
2
gðt0Þ−1

2
νðr0Þ. Inserting now Eq. (10)

and the expression for ϕ into Eq. (11), after some algebra
we get

�
c
r2

ffiffiffiffiffiffiffiffiffiffi
c

r − c

r
4c − 3r
2rðr − cÞ

�
GðtÞ þ 3c − 2r

2rðr − cÞ hr þ hrr ¼ 0;

which evidently cannot be satisfied at every time for every
r. Let us take ϕt ¼ 0 then. Equation (10) implies

ϕðrÞ ¼ αrþ β; α; β∈R; ð24Þ

while from (11)

α

�
1

2ðr − cÞ −
3

2

1

r

�
¼ 0: ð25Þ

The latter is satisfied only if α ¼ 0, which implies ϕ ¼ β.
Finally, Eq. (13) implies fð0Þ ¼ 0. This proves that the
Schwarzschild metric is still a solution of the fðRÞ
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extension if the strong condition stated at the end of Sec. II
is met.

C. Static scalar field

Since it will be the main case of study, we show
explicitly that a static scalar ϕt ¼ 0 implies a static metric.
From Eq. (12)

μt

�
ϕ

r
þ 1

2
ϕr

�
¼ 0; ð26Þ

and we see that either μt ¼ 0 or ϕ ¼ ϕ0
r2
0

r2. However, the
latter solution must be discarded because Eq. (10) would
imply ϕrr ¼ 0, which is absurd. Hence, we must take
μ ¼ μðrÞ. In this case Eq. (10) forces ν to take the form

νðr; tÞ ¼ ν1ðrÞ þ ν2ðtÞ; ð27Þ

but such a time dependence can always be reabsorbed into
the redefinition of the temporal coordinate and we can
simply take ν ¼ νðrÞ.
The discussion made here can be seen as a proof that the

Birkhoff theorem [68] trivially holds in fðRÞ gravity when
ϕ is stationary, but this is not true for more general fðRÞ
extensions [38].

IV. ASYMPTOTICALLY SCHWARZSCHILD
SOLUTIONS

In this section we consider spherically symmetric, sta-
tionary systems with ϕt ≡ 0. Since our focus is on the local
tests, we refer to compact objects whose Schwarzschild
radius sits well inside the visible radius R�, as for the Earth
or the Sun, so that we can always consider the surrounding
gravitational field in the weak field limit. Einstein’s theory
is extremely successful in this setting; hence, we ask from
the beginning a strong compatibility with GR where the
gravitational field is weak.

A. Assumptions

With this ideological posture it is natural to ask that
asymptotically far from the source (in units of its
Schwarzschild radius) the fðRÞ extension be just a slight
deviation from GR. As a consequence, we expect that the
solution to the modified EE be in turn a slight deviation
from the usual Schwarzschild metric in this region. We
therefore look for solutions of the form

ϕðrÞ ¼ 1þ σðrÞ;

νðrÞ ¼ ln

�
1 −

2MG
r

�
þ gðrÞ;

μðrÞ ¼ − ln

�
1 −

2MG
r

�
þmðrÞ; ð28Þ

where M is the mass of the compact object, equipped with
the conditions

lim
r=Rs→∞

σðrÞ; gðrÞ;mðrÞ ¼ 0; lim
r=Rs→∞

r
Rs

gðrÞ; r
Rs

mðrÞ ¼ 0;

ð29Þ

where Rs ¼ 2MG is the Schwarzschild radius. The con-
ditions (29) just tell us that the additional functions fall off
faster than the Schwarzschild potentials at infinity, possibly
allowing for a perturbative derivation of the corrections to
the Schwarzschild solution in the weak field region.
As in the Schwarzschild case we take σ, g, m analytical

functions everywhere but in r ¼ 0, where we assume a
polar singularity. This means that they can be expanded
around r ¼ 0 in the Taylor-Laurent series

σðrÞ ¼
Xþ∞

n¼1

ασn
rn

þ
Xþ∞

m¼0

βσmrm;

gðrÞ ¼
Xþ∞

i¼2

αgi
ri

þ
Xþ∞

j¼0

βgjr
j;

mðrÞ ¼
Xþ∞

i¼2

αmi
ri

þ
Xþ∞

j¼0

βmj r
j; ð30Þ

with infinite convergence radius. Notice that the β coef-
ficients cannot be all positive or negative to allow condition
(29). Moreover, if the Taylor part of the series is non-
vanishing, the relevant asymptotic behavior of the poten-
tials cannot be captured by means of a finite number of
basis elements since they have an essential singularity at
infinity. This really complicates any perturbative treatment
of the solution, since it should be performed in terms of the
arbitrary functions σ, g, m.
Here we make the simplifying choice to restrict the

solution to that class of functions with a vanishing Taylor
part of the Laurent series, βσ;g;mi ¼ 0 in (30). This allows a
straightforward perturbative derivation of the leading cor-
rection to the Schwarzschild line element. Moreover, notice
that this rules out Yukawa-like corrections, usually arising
from the assumption of an analytical fðRÞ [38].

B. Leading correction to Schwarzschild

Trailing the previous discussion, we consider the leading
correction to the scalar

ϕðrÞ ¼ 1þ c1
rn

þO
�

1

rnþ1

�
: ð31Þ

Here c1 should be intended as c1 ¼ ½c1� × ln, where ½c1� is a
real constant and l is a fundamental length scale. We take l
so that condition (29) holds with good approximation right
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outside the radius of the star R�; hence, at the very
least c1 ≪ 2MG × Rn−1� .
Equation (12) is trivial in the stationary case.

Equation (10) provides

μrþ νr ¼
2nðnþ 1Þ
2−n

�
1

r
−

rn−1

rnþ 2−n
2
c1

�
þO

�
1

rnþ2

�
; ð32Þ

which can be integrated in μþ ν giving

μþ ν ¼ 2ðnþ 1Þ
n − 2

ln

�
1þ 2 − n

2

c1
rn

�
þO

�
1

rnþ1

�

¼ −ðnþ 1Þ c1
rn

þO
�

1

rnþ1

�
: ð33Þ

Keeping into account the Laurent series (30), at this stage
we get

νðrÞ ¼ ln

�
1−

2MG
r

�
þ
Xn−1
i¼2

αi
ri
− ðnþ 1Þc2

rn
þO

�
1

rnþ1

�
;

μðrÞ ¼− ln

�
1−

2MG
r

�
−
Xn−1
i¼2

αi
ri
− ðnþ 1Þc3

rn
þO

�
1

rnþ1

�
;

c2þ c3 ¼ c1; n≥ 2; ð34Þ

where the conditions (29) have also been imposed. Notice
that given the structures (31) and (34), the modified EE and
the expressions of the curvature tensors can be trusted up to
order Oð 1

rnþ2Þ, since both are second order in the derivatives
of the metric.
For brevity, let us write ν as

ν ¼ sþ α − ðnþ 1Þ c2
rn

; ð35Þ

where s is the usual Schwarzschild contribution and α is the
sum of the terms αi

ri , i ¼ 2;…; n − 1. Equation (11) gives

esðαrr þ α2r þ 2srαrÞ þ
2

r2
ðe−α − 1Þ þ 1

2
ðn2 þ n − 2Þ

×
1

rnþ2
½c1 − ðnþ 1Þc2� ¼ 0; ð36Þ

where Eq. (33) has been used together with the condition

1

r2
ðe−s − 1Þ þ srr

2
þ s2r

2
¼ 0

holding for the Schwarzschild potential. Equation (36)
should be satisfied order by order in the inverse powers of
the radius. Inserting the expansion of α one can realize that,
starting from k ¼ 2, every order Oð 1

rkþ2Þ, k ¼ 2;…; n − 1

gives the condition

αk
rkþ2

½kðkþ 1Þ − 2� ¼ 0; ð37Þ

which is satisfied only if αk ¼ 0. This implies the vanishing
of every αi

ri term in (34).
The second line in (36) instead implies c2 ¼ 1

nþ1
c1 and,

together with (34), c3 ¼ n
nþ1

c1. The leading correction to
the Schwarzschild potentials is finally

ϕðrÞ ¼ 1þ c1
rn

þO
�

1

rnþ1

�
;

νðrÞ ¼ ln

�
1 −

2MG
r

�
−
c1
rn

þO
�

1

rnþ1

�
;

μðrÞ ¼ − ln

�
1 −

2MG
r

�
− n

c1
rn

þO
�

1

rnþ1

�
;

n ≥ 2: ð38Þ

Notice that μ and ν can also be written in a more familiar
form

νðrÞ ¼ ln

�
1 −

2MG
r

−
c1
rn

�
;

μðrÞ ¼ − ln

�
1 −

2MG
r

þ n
c1
rn

�
; ð39Þ

where it is left intended that the expressions hold up to
Oð 1

rnþ1Þ. To avoid pedantry, from now on we explicitly
indicate the presence of higher orders in the expressions
only when the order may be nontrivial.
Inserting in (9), the line element is obtained

ds2 ¼−
�
1−

2MG
r

−
c1
rn

�
dt2þ 1

1− 2MG
r þnc1

rn
dr2þ r2dΩ2;

ð40Þ

or equivalently,

ds2 ¼ −
�
1 −

2MG
r

�
dt2 þ 1

1 − 2MG
r

dr2 þ r2dΩ2

−
c1
rn

ð−dt2 þ ndr2Þ:

This is the usual Schwarzschild line element plus a linear
correction in ð1 − ϕÞ. Notice that nothing can be said about
a possible shift in the horizon, since this solution holds at
radii much bigger than the Schwarzschild radius.
Last, Eq. (13) implies

fðRðrÞÞ ¼ 3nðn − 1Þ c1
rnþ2

þO
�

1

rnþ3

�
: ð41Þ
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C. Recovering f ðRÞ
Equation (41) can be understood computing the leading

correction to the scalar curvature of the Schwarzschild
solution. Using (A14) we find

R ¼ 3nðn − 1Þ c1
rnþ2

þO
�

1

rnþ3

�
; ð42Þ

and hence, Eq. (41) just tells us that

fðRÞ ¼ Rþ higher orders; ð43Þ

again confirming the compatibility with GR in the weak
field region.
Because of the structure of the curvature tensors,

evidently the leading correction to the Einstein-Hilbert
action cannot be recovered from the modified EE.

However, it can be done using the definition of ϕðRðrÞÞ≡
∂fðRÞ
∂R ¼ 1þ c1

rn and Eq. (42) in

fðRðrÞÞ ¼
Z

ϕðRðrÞÞ dR
dr

dr ¼ 3nðn − 1Þ c1
rnþ2

þ 3nðn − 1Þ nþ 2

2nþ 2

c21
r2nþ2

þ const: ð44Þ

Inverting RðrÞ in (42) we finally get the f as a function of
the scalar curvature

fðRÞ ¼ Rþ 1

2
jc1j 2

nþ2
nþ 2

ðnþ 1Þð3n2 − 3nÞ n
nþ2

jRj2nþ1
nþ2: ð45Þ

The constant of integration is set to 0 asking that GR be
recovered when c1 ¼ 0. Some comments are in order.

1. How general is this f ðRÞ?
One may argue that (45) is actually the value of fðRÞ on-

shell for the solution (40). In other words, naming the value
in (42) Rloc one could argue that ϕ in (44) is really

ϕloc ¼ lim
R→Rloc

ϕðRÞ

and that the general fðRÞ is obtained integrating the
unknown ϕðRÞ.
This is only partially true, the reason being that the

metric (40) is not an exact solution; hence, (44) is not really
exactly evaluated on-shell. To see this consider (28) for
arbitrary functions φ; g; m. The modified EE outside a
static, spherical source when linearized around those
functions imply grr ¼ grrðφrrÞ; mrr ¼ mrrðφrrÞ, and there-
fore RðrÞ ∝ ϕrr. The function fðRÞ can then be recovered
as fðRÞ ¼ R ϕdϕrr. This is only because of spherical
symmetry and the assumed strong compatibility with
GR. The analytical form in (42) is instead a consequence

of the regularity we assumed for ϕ far from the source (28)
and (30), which nonetheless allows certain generality of the
discussion.
Keeping this in mind, our assessment of the generality of

fðRÞ in (45) is the following: it is the leading correction to
the Einstein-Hilbert action in the low curvature limit,
strictly speaking holding outside of a spherical, static
source and assuming some regularity of the metric at
infinity. One may try to generalize the use of this fðRÞ
as a “boundary” condition for the low curvature regimes in
other contexts, but this requires an additional assumption,
even though motivated by the study of spherical sources.

2. What are the next to leading corrections?

We are now in the position to understand what the next to
leading correction looks like. Considering

ϕ ¼ 1þ c1
rn

þ c2
rnþ1

þO
�

1

rnþ2

�
; ð46Þ

where again c2 ¼ ½c2�lnþ1, quite generally leads to

R ¼ ρ1ðc1Þ
rnþ2

þ ρ2ðc2Þ
rnþ3

þO
�

1

rnþ4

�
: ð47Þ

The term ρ1ðc1Þ is known from the leading order
ρ1ðc1Þ ¼ 3nðn − 1Þc1, while the term ρ2ðc2Þ can be com-
puted along the same lines first solving the EE and then
computing the scalar curvature. The fðRÞ function is
recovered from

fðRðrÞÞ ¼
Z �

1þ c1
rn

þ c2
rnþ1

�

×

�
−ðnþ 2Þ ρ1

rnþ3
− ðnþ 3Þ ρ2

rnþ4

�
dr; ð48Þ

where the integrand can be trusted up to Oð 1
r2nþ5Þ.

Integrating we get

fðRðrÞÞ ¼ ρ1ðc1Þ
rnþ2

þ ρ2ðc2Þ
rnþ3

þ 1

2

nþ 2

nþ 1

ρ1c1
r2nþ2

þ 1

2nþ 3
½ðnþ 2Þρ1c2 þ ðnþ 3Þρ2c1�

1

r2nþ3
:

ð49Þ

Notice that further corrections to the scalar seem to spoil
the perturbative expansion of the f, since they dominate the
corrections from the higher powers of R. However, the first
terms in the series always conspire to form the Einstein-
Hilbert part of the action; hence, it is still well defined as an
expansion in the scalar curvature.
Having (49) and the leading order correction (45), one

can realize that the next to leading correction in the scalar
curvature takes the form
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fðRÞ ¼Rþ 1

2

nþ 2

nþ 1
c1ρ1

���� Rρ1
����2

nþ1
nþ2 þαðn;c1; c2ÞjRj2nþ3

nþ2 : ð50Þ

The prefactor α can be fixed inserting the expression for R
(47), expanding to Oð 1

r2nþ4Þ

fðRÞ ¼ Rþ 1

2

nþ 2

nþ 1

c1ρ1
r2nþ2

þ 1

r2nþ3
ðc1ρ2 þ αjρ1j2nþ3

nþ2 Þ ð51Þ

and comparing with (49)

α ¼ 1

jρ1j2nþ3
nþ1

�
nþ 2

2nþ 3
ρ1c2 −

n
2nþ 3

ρ2c1

�
: ð52Þ

3. What is the meaning of the coupling?

As said, the dimensionate parameter c1 should be intended
as split in c1 ¼ ½c1�ln. The fundamental length l is needed to
provide the correct dimensions in the gravitational action,
and it determines the typical scale of deviation from GR. At
this stage l is a free parameter of the theory and may or may
not be determined by the Newton constant. The numerical
factor ½c1� is instead related to the expansion of the exact f in
the low curvature limit.
In the second part of the work we show how it is possible

to set upper bounds on c1 computing the corrections to the
outcomes of the local tests and comparing with the
observations. Clearly, as long as the leading order alone
is considered in the expansion of f, one can never really
distinguish l and ½c1�. To this purpose one should either
make a preliminary assumption on ½c1� or consider the
order next to leading.

4. Nonanalyticity

What is noteworthy about our procedure is that the
resulting expression for the fðRÞ, Eq. (45), is nonanalytic at
the background value R ¼ 0. Several consequences could
be traced back to this feature [38], as we are going to see.
Here we stress that derivatives of second order or higher are
not well defined in the limit R → 0.
More than that, consider what we have called the GR

limit c1 → 0 for a theory defined by the action (1) and (45)
in the low curvature regime. This is well defined for any
derivative order only as long as R stays different from zero,
which would imply discarding vacuum GR solutions.11 Of
course, this is not physically acceptable, and it is certainly
not consistent with our perturbative procedure.
Another formulation of the same problem is that the limit

c1 → 0 in the gravitational action does not commute with
(higher than second order) derivation with respect to R on
R ¼ 0 GR solutions. This means that, in general, we cannot
smoothly recover GR results in observables (if any)

involving second- or higher-order derivatives of the gravi-
tational action.
If we consider the family of local solutions with R in

(42), as we should, the situation is even bleaker because the
limit c1 → 0 also automatically implies R → 0. In fact, one
can verify that the second derivative of our fðRÞ is
independent from c1, while higher derivatives depend upon
inverse powers of it.

5. Effective range of the scalar

As said, a nonlinear function fðRÞ in the gravitational
action (1) provides an additional scalar degree of freedom
with respect to just the metric tensor. This is already clear
from the field equations (7), since they involve (at most)
second-order derivatives of the metric and of ϕ≡ ∂f

∂R.
Another way to see this12 is by looking at the classical
equivalence between fðRÞ and a scalar-tensor theory [70],
which also sheds some light on the properties of the scalar.
Consider the action

S ¼ 1

2k

Z
d4x

ffiffiffiffiffiffi
−g

p �
dfðχÞ
dχ

ðR − χÞ þ fðχÞ
�
; ð53Þ

where f is an arbitrary function, as in (1), and χ is an
additional scalar field. Variation with respect to χ and g
gives the field equations

δχS∶
d2fðχÞ
dχ2

ðR − χÞ ¼ 0; ð54Þ

δgS∶
dfðχÞ
dχ

Rμν −
1

2
gμν

�
dfðχÞ
dχ

ðR − χÞ þ fðχÞ
�

þ gμν∇2
dfðχÞ
dχ

−∇μ∇ν
dfðχÞ
dχ

¼ 0: ð55Þ

If d2fðχÞ
dχ2 is regular and different from zero, that is, f is

nonlinear, then χ ¼ R and Eq. (55) reduces to Eq. (7). Since
classically the fields are always on-shell, we can say that if
f is nonlinear, the field theory described by (53) is
equivalent to the fðRÞ theory deriving from (1). Notice
that the equations are now linear in the curvature and that χ
is indeed a dynamical field.
To render the action in a scalar-tensor form we need to

redefine the scalar field introducing ϕ≡ dfðχÞ
dχ . If the

equation is invertible, we can solve χ in terms of ϕ,
χ ¼ χðϕÞ, so that the action becomes

11Notice that this problem does not occur if fðRÞ is analytic.

12The most rigorous way to understand the degrees of freedom
of fðRÞ gravity, as in any covariant theory, would be by looking at
its Hamiltonian formulation and inspecting the corresponding
phase space [69].
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S ¼ 1

2k

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕðR − χðϕÞÞ þ fðχðϕÞÞ�: ð56Þ

Variation with respect to ϕ and g yields

δϕS∶ R − χðϕÞ − ϕ
dχðϕÞ
dϕ

þ dfðχðϕÞÞ
dϕ

¼ 0; ð57Þ

δgS∶ ϕRμν −
1

2
gμν½ϕðR − χðϕÞÞ þ fðχðϕÞÞ�

þ gμν∇2ϕ −∇μ∇νϕ ¼ 0: ð58Þ

Equation (57) gives R ¼ χðϕÞ, once the definition of ϕ is
used, and inserting in (58) again Eq. (1) is recovered. The
equivalence with a scalar-tensor theory becomes clearer by
introducing the potential

VðϕÞ ¼ ϕχðϕÞ − fðχðϕÞÞ; χðϕÞ∶ dfðχÞ
dχ

¼ ϕ; ð59Þ

and rewriting the action (56) as

S ¼ 1

2k

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕR − VðϕÞ�: ð60Þ

Taking the trace of Eq. (58) we see that the scalar ϕ obeys

∇2ϕ −
1

3

�
ϕ
dVðϕÞ
dϕ

− 2VðϕÞ
�

¼ 0; ð61Þ

where R ¼ dVðϕÞ
dϕ has been used. This is a Klein-Gordon

equation for ϕ, subject to the effective potential

VeffðϕÞ∶
dVeffðϕÞ

dϕ
¼ 1

3

�
ϕ
dVðϕÞ
dϕ

− 2VðϕÞ
�
: ð62Þ

Now, if VeffðϕÞ is bounded from below and admits one
global minimum, there is a natural definition of the
effective mass of ϕ for vacuum solutions near the minimum

m2
eff ≡ d2VeffðϕÞ

dϕ2

����
ϕ0

; ð63Þ

whereϕ0 is theminimum ofVeffðϕÞ. This is a measure of the
effective range of the fðRÞ extension [38,71]. We should
mention that (at least) twoother nonequivalent definitions are
possible [71], one making use of VðϕÞ in (59) instead of
VeffðϕÞ and one employing the Einstein frame representation
of VðϕÞ [71]. However, as argued in [71] the most reliable
definition is still the one given in (63), since it is directly
related to a Klein-Gordon equation for ϕ (61).
Let us consider the class of fðRÞ extension

fðRÞ ¼ Rþ αjRjk; α > 0; k > 1: ð64Þ

The function we have found in (45) belongs to this family
with 3

2
≤ k < 2, in the low curvature regime. The effective

potential for such a class of functions is a straightforward
computation

VeffðϕÞ ¼
α

3

k− 1

2k− 1

�jϕ− 1j
αk

� k
k−1½ð2− kÞϕþ 3ðk− 1Þ�: ð65Þ

For k ≠ 2 the potential has a local minimum at ϕ ¼ 1 and a
local maximum for ϕ ¼ 2 k−1

k−2, but its unbounded from below
in the limitϕ → −∞, for 1 < k < 2, and in the opposite limit
for k > 2. Therefore applying the definition of mass in these
cases is only of limited value since the solutions are unstable.
Moreover, the definition of a mass essentially relies on the
possibility of Taylor expanding the potential around its
minimum, but unless k

k−1 is an even integer, in which case
the effective potential is analytical at ϕ ¼ 1, higher-order
derivatives may not be defined or diverge and the expansion
is not defined. Hence, it is not even clear if a consistent
definition of a mass can be given this way. Interestingly, the
case k ¼ 2 corresponding to Starobinsky inflation is the only
one in which the potential is bounded, with a global
minimum at ϕ ¼ 1. The effective mass is thus well defined
in this case and given by m2

eff jk¼2 ¼ 1
6α.

Let us come to the definition of the effective range for
our fðRÞ in (45). As said, it belongs to the class (64) with
3
2
≤ k < 2 but only in the low curvature limit; hence, we

cannot really trust the potential far away from ϕ ¼ 1 and
certainly not its asymptotic divergences. In other words, it
is possible that higher-order terms in the expansion of the
fðRÞ can stabilize the solutions. Other than that, at the
moment we do not even have a clear figure of whether a
global minimum can appear and be shifted from the GR
local minimum when considering the exact fðRÞ. We must
therefore conclude that such a definition of the effective
range of the scalar cannot provide information in our case.
This being said, we will continue referring to a sort of

range of the scalar interaction in a nonrigorous but intuitive
way. In this context, the range is determined by the
magnitude of c1 in relation with the solar system typical
scales.

V. PPN PARAMETERS

Before looking at the local tests we briefly discuss the
prediction of the theory for the PPN parameters [45].

A. Isotropic metric

It is conventional to study the metric (A1) for a spherical,
static source in the isotropic form

ds2¼−HðρÞdt2þJðρÞ½dρ2þρ2ðdθ2þsinðθÞ2dφ2Þ�; ð66Þ

where HðρÞ≡ BðrðρÞÞ; JðρÞ≡ r2ðρÞ
ρ2

, and
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ρ ¼ 1

2
ρ0 exp

�Z
r

r0

ffiffiffiffiffiffiffiffiffiffi
Aðr0Þ

p dr0

r0

�
:

In particular, for the Schwarzschild solution

ds2S ¼ −

 
1 − MG

2ρ

1þ MG
2ρ

!
2

dt2 þ
�
1þMG

2ρ

�
4

ðdρ2 þ ρ2dΩ2Þ:

ð67Þ

B. Post-Newtonian approximation

The post-Newtonian approximation (to leading order)
requires one to limit gtt to second order in ϵ2 ¼ MG

ρ and gij
to first order13 [45]. Hence, to post Newtonian accuracy

ds2S ¼ −
�
1 −

2MG
ρ

þ 2
ðMGÞ2
ρ2

�
dt2

þ
�
1þ 2MG

ρ

�
ðdρ2 þ ρ2dΩ2Þ: ð68Þ

The structure of (68) for the leading corrections to the
Newtonian limit of the metric is, in fact, general and does
not really depend on the use of GR. By asking asymptotic
flatness and that the source be at rest at the origin of the
reference frame, in any metric theory of gravity (reliable in
the Newtonian limit) one obtains

ds2 ¼ −
�
1 −

2MG
ρ

þ 2β
ðMGÞ2
ρ2

�
dt2

þ
�
1þ 2γ

MG
ρ

�
ðdρ2 þ ρ2dΩ2Þ; ð69Þ

again to leading post-Newtonian order. The parameters β
and γ are two real constants, respectively quantifying the
nonlinear deviation from the Newtonian potential and the
curvature of the 3D hypersurfaces. These are two of the ten
parameters (PPN parameters) characterizing the post-
Newtonian approximation of a general metric [45], the
other eight being constrained by symmetry in this case and
the fact that the source is assumed at rest in the PPN frame.
GR foresees the values β ¼ γ ¼ 1; hence, precise mea-

surements of those parameters strongly constrain possible
modifications of Einstein’s theory. Current bounds are
γ − 1 ¼ ð2.1� 2.3Þ × 10−5 [46], from the time delay mea-
surements of the Cassini spacecraft [50], and β − 1 ¼
ð−4.1� 7.8Þ × 10−5

14 [46] from the perihelion precession
of Mercury.

C. PPN parameters for f ðRÞ
In isotropic coordinates the metric (40) reads

ds2 ¼ ds2S −
c1
ρn

ð−dt2 þ ndρ2Þ: ð70Þ

If n > 2, the deviation from the Schwarzschild metric does
not contribute to post Newtonian order and the prediction
for γ, β is the same as in GR. If n ¼ 2, which is the
minimum admissible value, to PPN accuracy we get

ds2 ¼ −
�
1 −

2MG
ρ

þ 2

�
1 −

cð2Þ1

2ðMGÞ2
� ðMGÞ2

ρ2

�
dt2

þ
�
1þ 2

MG
ρ

�
ðdρ2 þ ρ2dΩ2Þ: ð71Þ

The prediction for the PPN parameters are therefore γ ¼ 1

(see, e.g., [72]) and β ¼ 1 − cð2Þ
1

2ðMGÞ2. While the Cassini

bound is naturally saturated, the bound on β would
imply jc1jð2Þ ≲ 1.2 × 10−6 mm2.

VI. SOLAR SYSTEM TESTS

In this section we discuss the predictions of the fðRÞ
extension of GR found in Sec. IV for the outcomes of four
different solar system experiments: the gravitational red-
shift, the deflection of light, the precession of closed orbits,
and the Shapiro delay [44]. For each of them we compute
the leading correction to the value predicted by GR;
moreover, we set an upper bound on c1 at varying n by
comparing the predictions with measures of the sunlight
gravitational redshift [64].
For brevity we write general formulas for the observables

holding in any spherically symmetric metric (A12)

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dΩ2:

In our case

BðrÞ ¼ 1 −
2MG
r

−
c1
rn

;

AðrÞ ¼ 1

1 − 2MG
r þ n c1

rn
:

A. Gravitational redshift

Consider two observers O1, O2 located fixed at r1,
r2 > r1 from a spherical, static source and equal angular
coordinates. If O1 sends a light signal of frequency ν1 to
O2, the frequency detected by the latter will be

ν2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Bðr1Þ
Bðr2Þ

s
ν1: ð72Þ

13This is required in order to recover the correct Newtonian
limit of the geodesic equation for a test particle [45].

14This is found assuming a priori the Cassini bound on γ.
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The shift in the frequency can be quantified by

z≡ ν1 − ν2
ν1

¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffi
Bðr1Þ
Bðr2Þ

s
: ð73Þ

In the case of metric (40) we get a redshift

ν2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2MG

r1

1 − 2MG
r2

vuut ν1 −
1

2

c1
rn1

�
1 −

rn1
rn2

�
ν1; ð74Þ

z ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2MG

r1

1 − 2MG
r2

vuut þ 1

2

c1
rn1

�
1 −

rn1
rn2

�
: ð75Þ

The first term of the equations above is the usual GR
prediction, the second is the fðRÞ contribution. Notice that
the fðRÞ extension enhances the magnitude of the redshift
if c1 > 0 and reduces it if c1 < 0.
To set a bound on c1 we use observations of the

sunlight gravitational redshift performed by González
Hernández et al. in 2020 [64]. By analyzing the shift in
the spectral lines of Fe from the sunlight reflected by the
moon, the authors found a mean global line shift of
z ¼ 1

c ð638� 6Þ ms−1, which is consistent with the GR
prediction15 ∼633 ms−1. We can therefore take

1

2

jc1j
rn1

�
1 −

rn1
rn2

�
≲ 1

ms−1
c

:

The resulting upper bounds on c1 (in units of the
Schwarzschild radius of the Sun) for n up to four are
shown in Table I.
The length scale of the deviation from GR introduced by

fðRÞ increases with the order of the correction. Moreover,
notice that the bound on jc1jð2Þ found in the previous
section from the precession of the perihelion of Mercury
is way stronger, due to the greater accuracy of that
measurement.

B. Gravitational lensing

Consider light reaching the Earth from a very distant star.
Because of the presence of the Sun, the geodesic of a
photon will not be a straight line in the Euclidean sense.
Let us orient the reference frame so that the motion of the

photon lies on the plane θ ¼ π
2
and the incident direction is

at φ ¼ 0. Inspecting the null geodesic equation [44] the
trajectory is found as

φðrÞ ¼
Z

∞

r

ffiffiffiffiffiffiffiffiffiffi
Aðr0Þ

p ��
r0

r0

�
2 Bðr0Þ
Bðr0Þ − 1

�
−1
2 dr0

r0
: ð76Þ

Here r0 is the distance of closest approach to the Sun.
Notice that this solution refers to the branch in which r
decreases from infinity to r0, the other branch being
φ0ðrÞ ¼ 2φðr0Þ − φðrÞ. For the solution (40) and adopting
the same perturbative spirit we can expand the integrand up
to 1

r ×
c1
rn and find the leading correction to the exact

Schwarzschild result

φðrÞ ¼ φðrÞjSchwarzschild þ φðrÞjfðRÞ; ð77Þ

φðrÞjfðRÞ ¼ −
1

2
c1

Z þ∞

r

dr
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rr0Þ2 − 1

q
×

�
n
rn

þ r2

r2 − r20

�
1

rn
−

1

rn0

��
: ð78Þ

Upon performing the change of variable r → y ¼ r0
r the

integral can be performed analytically and gives

φðrÞjfðRÞ ¼
1

2

c1
rn0

�
r0
r

�
1 − ðr0r Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0r Þ2

q : ð79Þ

This is the leading contribution to the azimuthal trajectory
of a photon coming from the fðRÞ extension of GR.
Usually also the Schwarzschild contribution to φðrÞ is
computed perturbatively in MG

r [44,45]. Therefore, once
an order n is specified, in order to set an upper bound
on c1 one should first compute all the dominant GR
contributions.
The final direction of a photon departing from r0 again to

infinity is limr→∞φ
0ðrÞ ¼ 2φðr0Þ. In the Euclidean space

this angle would amount to π; hence, the total deflection
induced by the Sun is δα∞ ¼ 2φðr0Þ − π. Inserting
Eqs. (77) and (79) one can verify that there is no
contribution to the total deflection angle from the fðRÞ
extension at order c1

rn
0

, that is,

δα∞ ¼ 2φðr0ÞjSchwarzschild − π þO
�

1

rnþ1

�
: ð80Þ

TABLE I. Upper bounds on c1 at varying n from sunlight
gravitational redshift measurements [64].

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc1j

ð2M⊙GÞn
n
q

2 19.14
3 441.24
4 2118.45

15This value also accounts for the gravitational field of the
Earth [64].
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One should possibly consider the next to leading order in
(38) and perform again the computation.
This being said, the quantity of interest for an astronomer

on Earth is not the total deflection angle but rather the
deflection suffered by the light at the point of its encounter
with the telescope.16 Let us call α the angular separation
between the Sun and the apparent direction of the star as
seen from Earth. This is linked to the Earth position (φE) by

α ¼ π − φE þ δα; ð81Þ

where δα is the deflection we are interested in. Moreover,

tanðαÞ ¼ juφjE
jurjE

¼
ffiffiffiffiffiffiffigφφ

p dφ=dλffiffiffiffiffiffi
grr

p
dr=dλ

����
E

¼ rffiffiffiffiffiffiffiffiffi
AðrÞp dφ

dr

����
E

; ð82Þ

where uφ and ur are tangent vector fields to the trajectory of
the photon pointing, respectively, in the azimuthal and the
radial directions. The subscript indicates that the quantities
must be evaluated at the Earth position. Inserting (76) we
get

tanðπ − φE þ δαÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrEr0Þ2
Bðr0Þ
BðrEÞ − 1

q : ð83Þ

This equation can be solved iteratively by expanding the
left-hand side (lhs) in δα and the right-hand side (rhs) in MG

r .
Here we are interested in the correction introduced by the
fðRÞ extension up to order c1

rn. This can only appear (at
most) at the nth order of δα when the lhs is expanded
linearly in δα.17 Therefore, using

tanðπ − φE þ δαÞ ¼ − tanðφEÞ þ
δα

cos2ðφEÞ
þ oðδα2Þ

and expanding the rhs of (83) up to c1
rn we deduce the

correction

δαjfðRÞ ¼
1

2

c1
rn0

sinðαÞ
cosðαÞ ð1 − sinnðαÞÞ; ð84Þ

where we have also used that α ¼ π − φE þ oðMG
r Þ. For a

light ray grazing the Sun’s limb (α ¼ 0) the correction
vanishes, as found before. The correction also correctly
vanishes when the ray comes opposite to the Sun’s
direction (α ¼ π). Surprisingly enough, it also vanishes
when the light comes perpendicularly to the Sun’s direc-
tion (α ¼ π

2
).

Again, once an order n is chosen and the dominant GR
corrections are computed, one could use the result (84) to
set a bound on c1.

C. Shapiro delay

Here we consider light emitted from a source located at
the Schwarzschild coordinates r ¼ r1; θ ¼ π

2
;φ ¼ φ1. The

coordinate time interval the photon takes to reach its
minimum distance from the Sun (r0) is [44]

Δtð1;0Þ ≡ Δtðr1; r0Þ ¼
Z

r0

r1

dr

ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s �
1 −

BðrÞ
Bðr0Þ

�
r0
r

�
2
�
−1
2

ð85Þ

and suffers corrections in M⊙G
r0

, with respect to the Euclidean

value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 − r20

p
.

As before, we are interested in the correction produced
by the fðRÞ extension of GR. To this extent we expand the
integrand in (85) up to order Oð 1rnÞ, and isolating the fðRÞ
contribution we find

Δtðr1; r0ÞjfðRÞ ¼
c1
rn0

Z
r0

r1

dr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðr0r Þ2
q �

−
n − 1

2

�
r0
r

�
n

þ 1

2

�
1 −

�
r0
r

�
n
�

r20
r2 − r20

	
: ð86Þ

Again performing the change y ¼ r0
r the integral can be

computed explicitly and gives

Δtðr1; r0ÞjfðRÞ ¼
1

2

c1
rn−10

2
64r0
r1

1 − ðr0r1Þn−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0r1Þ2

q
3
75: ð87Þ

Notice that for n ¼ 2 there is no correction at this order.
The time of flight the photon takes to reach a target

located at r ¼ r2; θ ¼ π
2
;φ ¼ φ2 is Δt1;2 ¼ Δt1;0 � Δt2;0,

with a plus sign if the minimum distance r0 is crossed and a
minus sign otherwise.
Let us consider an observer on Earth launching a signal

toward a target in the solar system (a planet or a satellite, for
example [46]) and measuring the time interval it takes to
bounce back. The proper time elapsed for an observer on
Earth when the photon reaches the target is ΔτEðrE;r2Þ¼ffiffiffiffiffiffi
g00

p jEΔtðrE;r2Þ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 2M⊙G
rE

q
− 1

2
c1
rnE

�
ΔtðrE;r2Þ. The total

time elapsed when the signal again reaches Earth is twice as
much. In particular, the fðRÞ contribution to ΔτEðrE; r0Þ is

ΔτEðrE; r0ÞjfðRÞ ¼ ΔtðrE; r0Þ −
1

2

c1
rnE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2E − r20

q
: ð88Þ

16Even more interesting is the change in the relative angular
separation between two stars, as their light passes by the Sun, or
between the star of interest and another reference source whose
light stays possibly unscattered.

17Recall that solution (40) holds up to terms Oð 1
rnþ1Þ.
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The fðRÞ contribution to the total time of flight as measured by a clock on Earth finally is

2ΔτðrE; r2ÞjfðRÞ ¼
c1
rn−10

r0
rE

2
641 − 2ðr0rEÞn−2 þ ðr0rEÞnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðr0rEÞ2
q � ðrE → r2Þ

3
75: ð89Þ

D. Precession of closed orbits

As a last application we consider the effect of the fðRÞ extension on the precession of closed orbits.
Consider a test massive particle in a bound orbit around the Sun. Let us call a and b, respectively, the radial distances of

the perihelion and the aphelion of its trajectory and orient the reference frame (at some coordinate time) so that φðaÞ ¼ 0.
Starting from the perihelion, the angle swept by the particle when it reaches an intermediate radial position a < r < b is
given by [44]

φðrÞ ¼
Z

r

a

dr0

r0

ffiffiffiffiffiffiffiffiffiffi
Aðr0Þp
r0

�
a2ðB−1ðr0Þ − B−1ðaÞÞ − b2ðB−1ðr0Þ − B−1ðbÞÞ

a2b2ðB−1ðbÞ − B−1ðaÞÞ −
1

r2

�−1
2

: ð90Þ

By symmetry, the total angle swept in a revolution around the Sun is 2φðbÞ; hence, Δφ≡ 2φðbÞ − 2π quantifies the
precession of the perihelion.
The procedure at this point goes along the same lines as for the other tests: we expand the integrand and isolate the fðRÞ

contribution. The result is

φðbÞjfðRÞ ¼ −
1

2

a
2M⊙G

c1
an

Z
b

a

dr
r

�
r
b
r − a
b − a

þ ða ↔ bÞ − 1

�
−3
2

�
r2

bðb − aÞ
�
1 −

an

rn

�
−
rðr − aÞ
ðb − aÞ2

�
1

an−1
−

a
bn

�
þ ða ↔ bÞ

�
:

ð91Þ

The integral is somewhat more complicated than in the other cases but can nonetheless be performed analytically, the
important steps are reported in Appendix B. Here we give the result which can be written compactly as

φðbÞjfðRÞ ¼
π

4M⊙G
c1
an−1

ð1þ kÞ
Xn−2
j¼0

�
n

jþ 2

� ð2jþ 1Þ!
ðj!Þ2

�
k − 1

4

�
j
; ð92Þ

where k ¼ a
b. Notice that for n ¼ 2 the result simplifies to

φðbÞjfðRÞ;n¼2 ¼
π

4M⊙G
cð2Þ1

a

�
1þ a

b

�
: ð93Þ

The same conclusions holding for the other tests hold here
about the possibility of setting bounds on c1. Also, one could
use the results already found in Table I from the gravitational
redshift to infer concrete predictions on all the three tests
considered in this section and comparewith the experiments.

VII. COSMOLOGY

Webegan thiswork bymotivating anfðRÞ extension ofGR
as a possible answer to the shortcomings of the Λ-CDM
model. Although a thorough discussion lies outside the scopes
of the current work, to cosmology we shall now return.
A detailed and very general account of the conditions for

the cosmological viability of the fðRÞ model can be found

in [53]. Based on those results, if we try to just apply the
extension (45) in cosmology, we fail to reproduce the late
times inflation, in favor of a stable matter epoch. This
failure is, of course, expected: the expression in (45) must
be understood as the result of a weak field limit of an exact
fðRÞ, strictly speaking outside a spherical, static source,
and cannot be simply applied in cosmology.
As an example of how things could get interesting,

suppose that in (34) we ask for a more general
Schwarzschild–de Sitter background as a boundary for
our potentials, instead of just the Schwarzschild solution.
The computation of the leading correction to the back-
ground metric is identical, and we get

ds2 ¼ −
�
1 −

2MG
r

−
Λ
3
r2
�
dt2 þ 1

1 − 2MG
r − Λ

3
r2
dr2

þ r2dΩ2 −
c1
rn

ð−dt2 þ ndr2Þ: ð94Þ

FEDERICO SCALI and OLIVER F. PIATTELLA PHYS. REV. D 110, 064042 (2024)

064042-14



Again, from the scalar curvature of the metric

R ¼ 4Λþ 3nðn − 1Þ c1
rnþ2

ð95Þ

the corresponding fðRÞ is recovered,

fðRÞ ¼ R − 2Λþ 1

2
jc1j 2

nþ2
nþ 2

ðnþ 1Þð3n2 − 3nÞ n
nþ2

× ðjR − 4ΛjÞ2nþ1
nþ2: ð96Þ

The constant of integration is set so that the dominant term
is the usual Einstein-Hilbert. As before, expression (96)
should be understood as the expansion of fðRÞ in the limit
R → 4Λ, holding outside a spherical source and in the
presence of a cosmological constant.
This time the late times acceleration comes naturally, in

fact, we asked for it, but it is not clear if a standard matter
epoch is reproduced and a numerical studywould be required
[53]. In passing, this example also shows the impact of the
boundary conditions (which essentially determine the physi-
cal context we move in) we impose on the potentials (28).
Nonetheless, the direct application of the results found

here is of fairly limited value because of their highly special
intent (that is, the physics of the solar system).Amore serious
attempt in the cosmological context would be to start from
scratch and apply the same ideology employed here: study
the EE after the symmetry reduction and without any
preliminary assumption on fðRÞ; impose the known dynam-
ics of the Universe in different epochs as a strong boundary
condition on the unknown functions of the metric and
consider themost general but compatible class of corrections;
make minimal regularity assumptions on the corrections, so
that they can be found explicitly; and recover a posteriori the
fðRÞ. The work done here should serve as a consistency
condition on the fðRÞ and expression (45) should be
recovered at the solar system scales (neglecting the accel-
eration). Eventually, one should perform concrete predic-
tions for the relevant observables and constrain the free
parameters by comparison with the observations.
If this can be done and, more importantly, it shows to at

least alleviate the problems of standard cosmology, then we
could say that such a class of extensions of GR is a viable
alternative. This will be the theme of a subsequent work.

VIII. CONCLUSIONS

The aim of this work was to build a class of fðRÞ
extensions of GR fully compatible with solar system tests.
The key idea we wanted to implement (and to the best
knowledge of the authors also the true novelty) was that the
request of full compatibility with GR in the weak field limit
could be enough to constrain the form of fðRÞ and allow
for explicit calculations. Therefore, without making any
preliminary assumption on the mathematical properties of
fðRÞ, we considered the modified EE around a spherical,
static source (10)–(12) and looked for solutions of the form

(28) and (29). We banked on the fact that the relevant length
scale of the system is the Schwarzschild radius of the
source, which for a typical star like the Sun is much smaller
than its visible radius. Hence, the surrounding gravitational
field can always be considered in the weak field regime,
where a strong compatibility with GR holds. We stress that
considering a spherically symmetric, static setting and
using a perturbative approach are not in and of themselves
mandatory elements to achieve realistic fðRÞ’s. However,
in the spirit of the principle of compatibility with GR at
local scales and the idea of a bottom-up approach to fðRÞ,
these appear as natural conceptual tools to employ in a first
attempt in this direction.
To go further and perform explicit computations we

needed to assume some regularity of the functions correcting
the Schwarzschild potentials. In particular, we asked that
these could be expanded in a Laurent series around the origin
of the coordinates18 (as, in fact, the Schwarzschild potentials
themselves are), allowing for a perturbative approach
[Eq. (31) is emblematic on this point]. Although this is a
simplifying choice which in principle restricts the class of
possible fðRÞ’s, it still allows quite some generality in the
discussion. The resulting solution to the modified EE at
leading order in the corrections is displayed in (40).
Having the metric tensor made it possible to recover

a posteriori the corresponding fðRÞ by integrating the scalar
curvature, Eq. (45). This is the most delicate point of the
discussion and deserves attention, because although it is true
that the fðRÞ computed this way is “on-shell”with respect to
(40), the latter encompasses a whole class of solutions in the
weak field limit (which in our perspective are also the
relevant ones). Therefore the expression (45) should really
be understood as the small curvature limit of the fðRÞ outside
a spherical, static source. The expression of the leading
correction to the Einstein-Hilbert action (45) and that of the
leading correction to the Schwarzschild solution (40) are the
most important conceptual results of this paper.
In the second part of the work we turned our attention to

the free parameters in the solution (40). As said, while n
determines the order of the corrections and lets us “move”
within the fðRÞ class, c1 is related to some fundamental
length scale, essentially determining the range of the scalar
interaction introduced by the fðRÞ extension [71]. We first
computed the PPN parameters γ, β of the solution and found
that, while thevalue of γ agreeswithGR for everyn, thevalue
of β agrees with GR for n > 2. For n ¼ 2, which is the
minimum admissible value of n, the experimental bounds on

β set the first upper bound cð2Þ1 ≲ 1.2 × 10−6 mm2.
We went on studying the physical implications of such an

extension of GR to the solar system tests, the idea being that
the fundamental constant c1 can be properly set by com-
parison with the experimental results [46]. We computed the

18This assumption discarded Yukawa-like corrections which
are well known in the literature [38].
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leading corrections, with respect to the GR results, to the
gravitational redshift, the gravitational lensing, the Shapiro
delay, and the precession of closed orbits. In particular,
comparison with the gravitational redshift of sunlight [64]
allowed us to place bounds on c1 at varying n, the first three
values are shown in Table I. This showed that the typical
length scale of the scalar interaction is not necessarily smaller
than the Schwarzschild radius of a typical star and that it
increaseswith the order n of the correction. In principle, once
the dominant GR contributions are computed, also the other
three classical tests could be used to place bounds on c1. On
the other hand, the results already found in Table I could be
used to infer tentative predictions of the fðRÞ contributions.
Eventually we came back to cosmology, the logical next

step of this work. We argued that a direct application of the
expression (45) is fundamentally wrong, although interest-
ing suggestions can be found even so [see Eqs. (94)–(96)].
We should instead apply the point of view adopted here and
the entire methodology at the cosmological scales, asking
compatibility with the known dynamics. The results pre-
sented here would serve as additional consistency con-
ditions when local scales are reached.
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APPENDIX A: SPHERICALLY SYMMETRIC
METRIC

We are interested in the gravitational field generated by a
spherical source such as a star. The most general metric for
such systems can be written in spherical coordinates as

ds2 ¼−Bðr; tÞdt2þAðr; tÞdr2þCðr; tÞdrdtþDðr; tÞdΩ2;

ðA1Þ

where dΩ2 ¼ dθ2 þ sin2ðθÞdφ2 is the metric on S2. We
show that it is possible to find a coordinate transformation

r ¼ EðR; TÞ; t ¼ FðR; TÞ; ðA2Þ

so that grt ¼ 0 and Dðr; tÞ ¼ R2. Indicating with a sub-
script the partial differentiation with respect to one of the
variables

dr ¼ ERdRþ ETdT;

dt ¼ FRdRþ FTdT; ðA3Þ

the line element (A1) in terms of the new coordinates reads

ds2 ¼ −ðBðE; FÞF2
T − AðE;FÞE2

T − FTETCðE;FÞÞdT2

þ ðAðE;FÞE2
R − BðE; FÞF2

R þ FRERCðE;FÞÞdR2

þ ð2AðE; FÞERET − 2BðE;FÞFRFT

þ CðE; FÞðFRET þ FTERÞÞdRdT þDðE;FÞdΩ2:

ðA4Þ
We look for a transformation such that8<

:
2AðE;FÞERET − 2BðE;FÞFRFT

þCðE;FÞðFRET þ FTERÞ ¼ 0;

DðE;FÞ ¼ R2:

ðA5Þ

Differentiating the second in R and T we get the conditions�
ER ¼ 2RD−1

E − FRDFD−1
E ;

ET ¼ −FTDFD−1
E :

ðA6Þ

Inserting in the first equation we get the conditions on
FR, FT�
FR ¼ 2RD−1

E ðC−2ADFÞð2AD2
FD

−2
E þ 2Bþ 2CDFD−1

E Þ;
∀ FT ≠ 0:

ðA7Þ
The system (A6) can be integrated if�

ERT ¼ −FRTDFD−1
E ;

ETR ¼ −FTRDFD−1
E ;

ðA8Þ

which is satisfied if the integrability condition for (A7)
is met �

FRT ¼ 0;

FTR ¼ 0:
ðA9Þ

We deduce that the system (A7) always has a solution with

FðR; TÞ ¼ F1ðRÞ þ F2ðTÞ; ðA10Þ
for any choice of F2ðTÞ. This means that we can restrict to
transformations of the type

r ¼ EðR; TÞ; t ¼ T þ F1ðRÞ; ðA11Þ

with the additional freedom in the time reparametrization
T → T 0 ¼ GðTÞ. This residual freedom was expected,
since we require that the resulting time-space component
of the metric vanishes. In conclusion, for a spherically
symmetric system it is always possible to consider a
coordinate system in which

ds2 ¼ −Bðr; tÞdt2 þ Aðr; tÞdr2 þ r2dΩ2; ðA12Þ
with A;B > 0. Equivalently,
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ds2 ¼ −eνðr;tÞdt2 þ eμðr;tÞdr2 þ r2dΩ2: ðA13Þ

The expression of the Ricci scalar for this metric, is

R¼ 1

2
e−νð−μtνtþμ2t þ 2μttÞ

þ 1

2
e−μ
�
μrνrþ

4

r
μr− ν2r −

4

r
νr − 2νrr

�
þ 2

r2
−
2

r2
e−μ:

ðA14Þ

APPENDIX B: PRECESSION INTEGRAL

In this section we show in more detail the calculation of
the integral (91).
Introducing the variables k≡ a

b and y≡ a
r, the integral

can be restated as

φðbÞjfðRÞ ¼
1

4M⊙G
c1
an−1

ð1þ kÞ
Z

1

k

dy

ð1 − yÞ32ðy − kÞ32

×

�
kn − k
1 − k

þ 1 − kn

1 − k
y − yn

�
: ðB1Þ

Notice that the argument of the square brackets can be
written as

½� � �� ¼ ðy − kÞð1 − yÞ
Xn−2
j¼0

kj
Xn−j−2
l¼0

yl; ðB2Þ

showing that the integral is convergent. Consider the
integral

IðmÞ ¼
Z

1

k

dy
ð1 − yÞaðy − kÞa y

m: ðB3Þ

The expression (B1) is the sum of three contributions of this
type. The integral I can be performed analytically for a < 1
and expressed in terms of a regularized, ordinary hyper-
geometric function

IðmÞ ¼ ð1− kÞ1−2a Γð1−aÞ2
Γð2− 2aÞ 2F1ð1−a;−m; 2− 2a;1− kÞ:

ðB4Þ
Expanding 2F1 in terms of Euler Γ functions I can be
written as

IðmÞ ¼ ð1− kÞ1−2a
Xm
j¼0

�
m

j

�
Γð1−aÞΓð1−aþ jÞ

Γð2− 2aþ jÞ ðk− 1Þj:

ðB5Þ
Using this result, after some manipulations the combination

I ¼ kn − k
1 − k

Ið0Þ þ 1 − kn

1 − k
Ið1Þ − IðnÞ ðB6Þ

can be expressed as

I ¼ ð1 − kÞ1−2a Γð1 − aÞ2
Γð2 − 2aÞ

�
−
1

2
ð1 − knÞ − 1

2
nðk − 1Þ

−
Xn
j¼2

�
n

j

�
Γð2 − 2aÞΓð1 − aþ jÞ
Γð1 − aÞΓð2 − 2aþ jÞ ðk − 1Þj

�
: ðB7Þ

The whole point is to take lima→3
2
I, since we know that

the integral is well defined in this limit. Using that
limz→−1

1
ΓðzÞ ¼ 0 we get

I ¼ 2
ffiffiffi
π

p Xn−2
j¼0

�
n

jþ 2

�
Γðjþ 3

2
Þ

Γðjþ 1Þ ðk − 1Þj; ðB8Þ

and after some manipulations

φðbÞjfðRÞ ¼
π

4M⊙G
c1
an−1

ð1þ kÞ

×
Xn−2
j¼0

�
n

jþ 2

� ð2jþ 1Þ!
ðj!Þ2

�
k − 1

4

�
j
; ðB9Þ

which is the result reported in Eq. (92).
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