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Conformal Killing cosmology: Geometry, dark sector, growth of structures, and a big rip
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We introduce Sinyukov-like tensors, a special kind of conformal Killing tensors. In Robertson-Walker
space-times, they have the perfect-fluid form and only depend on two constants and the scale factor. They
are the candidates for the dark term of the newly proposed conformal Killing gravity, by Harada. In addition
to ordinary matter, the Friedmann equations contain a dark term and a A term that parametrize the
Sinyukov-like tensor. The expression of H(z) is tested on cosmological data based on cosmic chronometers
or including baryon acoustic oscillations. There is a large incertitude in Q, and Qg,, that may become
negative, but their sum is close to Q, of Lambda cold dark matter (ACDM). In any case, there is a future
singularity, that is, a big rip for all positive Q. We solve the equation for the evolution, in linear
approximation, of the density contrast in a matter-dominated universe. The dark sector and the A term give
no significative deviation from ACDM and general relativity results.
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I. INTRODUCTION

Since the observation of supernovae Snla by Riess and
Perlmutter in 1998-1999, dark energy stands as an
unsolved theoretical problem. The reintroduction of the
A term in the Friedmann equations successfully accounted
for a major accordance with observational cosmology,
together with the cold dark matter (CDM) assumption.
Nevertheless, the puzzle remains, with discrepancies
between theory and data. Several modifications of the
Standard Model have been proposed, in two mainstreams.
The first one modifies the energy-momentum source with
new fields [see the review by Copeland [1]]: phantom
field [2], quintessence [3], Chaplygin gas [4], and others.
The second class modifies geometry [see [5,6]] and
contains popular models such as f(R) [7.8], f(G) [9],
F(T) [10], mimetic gravity [11], and others. These theories
and others in Friedmann-Robertson-Walker (FRW) space-
times fit in the class of models of Cotton gravity [12].
A third route is explored in [13], with axion dark matter
and dark energy resulting from modified gravity with
f(R) = exp(—pR).

In 2023, Harada [14] introduced a modified theory
of gravity to explain the present accelerated phase of
the Universe without the explicit introduction of dark
energy. It is based on the following field equations in
4 dimensions:

“Contact author: carlo.mantica@mi.infn.it
"Contact author: luca.molinari @unimi.it

2470-0010,/2024/110(6)/064041(14)

064041-1

ijkl + kaj/ + lejk
1
~3 (9uV ;R + g ViR + g4 V/R)
== Vkal + vaﬂ + VlTjk

1
_g(gklva+gjlva+gjkvlT)' (1)

They are manifestly third-order in the derivatives of the
metric tensor and extend general relativity (GR): a
solution of the Einstein equations Rj; — %ngl =T isa
solutions of the new equations.

In static spherical symmetry Harada obtained the
Schwarzschild solution with new terms that are significant
at large distances, —goo = 1/g,, = 1 =2 —4/2 -4/ He
then derived an equation for the scale factor in RW space-
times. In a matter-dominated universe, the explicit solution
shows a transition from decelerating to accelerating expan-
sion without introducing dark sources in the equations; A
results as an integration constant.

Shortly after, we published a parametrization showing
that Harada’s equations are equivalent to the Einstein
equations modified by a supplemental conformal Killing
tensor that is also divergence-free [15]:

1
Ry — Engl =Tu+ Ky, (2)

1
=% (9uVK + 9, ViK + gy VK). (3)

© 2024 American Physical Society


https://orcid.org/0000-0001-5638-8655
https://orcid.org/0000-0002-5023-787X
https://ror.org/00wjc7c48
https://ror.org/00wjc7c48
https://ror.org/04w4m6z96
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.064041&domain=pdf&date_stamp=2024-09-11
https://doi.org/10.1103/PhysRevD.110.064041
https://doi.org/10.1103/PhysRevD.110.064041
https://doi.org/10.1103/PhysRevD.110.064041
https://doi.org/10.1103/PhysRevD.110.064041

MANTICA and MOLINARI

PHYS. REV. D 110, 064041 (2024)

For this reason, the theory was named conformal Killing
gravity (CKG).

The reformulation makes the extension of GR explicit
through the Killing term, that satisfies V¥K;; = 0 and poses
as a natural candidate for the energy-momentum of the dark
sector. In this direction, we proved that a space-time is
generalized Robertson-Walker (GRW) if and only if it
admits a conformal Killing tensor with the perfect-fluid
form with a closed velocity field. Requiring conformal
flatness restricts the space-time to RW.

We wrote the two Friedmann equations for the dark
pressure and the dark energy density, recovered Harada’s
solution for the scale factor a(¢) in a matter-dominated
universe, and discussed a toy model. Both cases led to the
conclusion that the dark fluid determines the late time
evolution of the scale parameter, with the equation of state
Pp/Hp — —% (phantom energy).

The cosmological scenarios of CKG were further
explored by Harada in [16] for various values of ,, in
the evolution equation of the Hubble parameter

e, [szmu YT oy
Q, Q, 12
+(1—1—1)24_(1—1—1)4} “)

and compared with ACDM. If the effective dark energy
Qp =1-Q,, — Q, (radiation and curvature are neglected)
is present in a moderate amount, CKG holds the potential to
resolve the Hubble tension. This remains true if Qp is
dominant in the total energy budget with A = 0.

Solutions with T); = 0 were obtained by Clément and
Noucier [17] in a variety of cases including singularity-free
eternal cosmologies and universes evolving symmetrically
in finite time from big bang to big crunch.

The static spherical solution was retaken by Barnes [18]
to include the case g,,.go9 # —1. The important issue of the
validity of Birkhoff’s theorem is discussed in [19].

Junior et al. [20] studied black hole solutions in
CKG coupled to nonlinear electrodynamics (NLED) with
canonical or phantom-like scalar fields. They found gener-
alizations of the Schwarzschild—Reissner-Nordstrom—AdS
solutions that extend the class of known regular black hole
solutions. In [21], they explore black bounce solutions, that
extend Bardeen-type and Simpson-Visser geometries, in
CKG coupled to NLED and scalar fields.

Solutions of CKG linearly coupled to Maxwell fields
were obtained by Barnes [19,22] as powers series; the
general closed-form solutions were then found by Clément
and Nouicer [17]. While these results were obtained by
solving the third-order Eq. (1) in static spherical symmetry,
we obtained them in a simpler manner by solving the
equivalent second-order Einstein-like equations [23].

Barnes obtained the most general pp-wave solutions in
CKG and their plane-wave specialization [24].

In this paper, we investigate conformal Killing gravity in
RW space-time. To be specific, the conformal Killing
tensor (3) is a perfect fluid and Sinyukov-like. In this case,
the geometry is wholly determined by two integration
constants that parametrize the dark fluid. Their numerical
values are fixed by the knowledge of €, and € in the
evolution (4) of H(z), for which data are still limited.

In Sec. II, we prove that a perfect-fluid tensor K;; =
Ag;; + Bu;u; is a conformal Killing tensor if the velocity is
shear-free. The fluid is conserved, VK ; = 0, if the velocity
is also vorticity-free. If the velocity is also acceleration-free,
the perfect-fluid tensor is of special type: we name it
Sinyukov-like. Conformal Killing gravity in generalized
Robertson-Walker space-times is thus provided by
Sinyukov tensors, presented in Sec. III. In the RW setting
the Ricci tensor is a perfect fluid and the Sinyukov tensor is
fixed by the scale parameter and two constants.

In Sec. IV, we write the analogs of the Friedmann
equations: the covariant approach is particularly effective
for this. We give the formulas for H(z), the deceleration
q(z), and the look-back time. In Sec. V, restricting to
Q,, +Qx + Qp =1, a preliminary fit shows a qualitative
difference if the dataset includes baryon acoustic oscilla-
tions (BAO). With exclusion, the resultis Q; > 0, allowing
for an interpretation of dark energy density and the
occurrence of a “big rip” future singularity. With inclusion,
it is Qp < 0: a different future singularity occurs, with
a =0, and the dark energy density remains positive for
most of the universe lifetime. In both cases, €, (matter) is
stable and close to the ACDM value.

In Sec. VI, we obtain the equation for the evolution of the
density contrast §,, in CKG (Sinyukov) cosmology in matter
dominance, with the A term. It is solved in the relevant
cases: Q,, +Q, =1 (ACDM), Q,, + Qp = 1 (CKG with
Q, =0),and Q,, + Q) + Qp = 1 (CKG). In matter domi-
nance, the analytic and numerical (full CKG) solutions do
not deviate from ACDM. Section VII contains a brief
discussion of og(z), the root mean square of §,,(z), whose
values can be inferred from galaxy surveys. The result is that
A, which is an integration constant in CKG, must be
nonzero to produce the observed maximum of f(z)og(z).
Conclusions summarize the results.

Notation: i, j, k,... =0,1,2,...; u,v,... = 1,2, ... The
dot derivative is H = u* VH, i.e., the time derivative in the
comoving frame (u° = 1, u* = 0).

II. PERFECT FLUID CONFORMAL KILLING
TENSORS

In this section, we study conformal Killing tensors that
are perfect-fluid tensors and the restrictions they pose on
the space-time.
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In dimension n, a symmetric tensor K;; is a conformal
Killing tensor (CKT) if [25]

ViKj + VK + ViK;; = nigji + 191 +mgij»  (5)

n+2 ’ (6)

ni

where #; is the associated conformal vector, K = ¢'K;; is
the trace, and V jKj ; 1s the divergence of the tensor. The
CKT tensor is divergence-free if and only if

VK
Cn42

ni (7)
A perfect-fluid tensor is characterized by a velocity vector
field u,u” = —1 and scalar fields A and B # 0:

Kjk :Agjk—i—Bujuk. (8)

We recall that a velocity field has the canonical decom-
position

Viuj = H(g;j + uju;) — uiit; + o + o5, )

where H = n—llvru’ is the expansion parameter, it; =
uFVu; is the acceleration, @;; = —;; is the vorticity, 6;; =
oj; is the shear, with g"6;; = 0, w;ju/ = o;;u/ = 0.

The following theorem parallels statements in [26]
and [27]. A proof, simpler in our view and in tensor index
notation, is given in Appendix A:

Theorem 1. The perfect-fluid tensor (8) is conformal
Killing if and only if

(1) the velocity is shear-free,

(2) the expansion parameter H and the scalar B satisfy

B
H=—. 10
V;B = —Bu; + 2Bii;. (11)

Then the conformal vector is

The scalar field A is unconstrained.
Now we impose that the perfect-fluid CKT is diver-
gence-free. The condition (7) is (n +2)n; = VK, where
K = nA — B. At the same time, (12) holds. Then

, 2A+B

(13)

The conformal vector becomes 7; =
and Eq. (12) gives

1 . )
We distinguish two cases:

B=0: n;=V;A and 2A+ B is a number. Since
Eq. (11) simplifies to V;B = 2Bi; the acceleration is
closed. If also w;; = 0, then the space-time is static:

Viuj = —uiuj,

Vi = V.

B # 0: Eq. (13) shows that u; is hypersurface orthogonal.
This implies that the vorticity is zero: ®;; =0. Then
Viu; = H(g;; + uiuj) — ;.

Proposition 2. 1f B # 0, then either the acceleration i; is
not closed or it; = 0.

Proof. Suppose that the acceleration is closed:
V,it; = V;ii;. Evaluate: 0=V,V;B-V,V,B=-u;V,B+
w;V ;B — B(u;it; —iy;u;). This implies V;B = —Bu; — Bi;.
Next evaluate: 0=V,;V;,A =V, VA= (n+2)B(u;it;—u;it;),
which gives Bir; = 0. .

Hereafter, we choose B # 0 and it = 0. This specializes
the theory of conserved perfect-fluid CKT tensors to space-
times of cosmology.

A GRW space-time has the warped metric

ds* = —di* + a(t)?gp, (x)dx"dx, (14)

where g, (x) is the Riemannian metric of a spacelike
hypersurface and a(f) is the scale factor. A covariant
characterization is the existence of a unit timelike vector
field, u,u* = —1, such that [see [28,29] ]:

Viu, = H(gjx + ujuy), (15)

V.H = —Hu;

j i (16)

Condition (16) is equivalent to requiring that u; is an
eigenvector of the Ricci tensor R;; w = Eu,. The eigenvalue
isé=(n—1)(H*>+ H).

In cosmology, H is the Hubble parameter and £ is related
to the acceleration:

H=2 5:(;1-1)%. (17)

a
The Ricci tensor and the scalar curvature in a GRW space-
time are

R —né R-¢
Ry = _1uzuk+n_19k1—(n—2)Ek1, (18)
R*
R=—5+(n-1)(n-2)H>+2¢, (19)
a
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where Ej = u/u™Cj, is the electric part of the Weyl
curvature tensor Cj,, and R* is the curvature of the
spacelike hypersurface.

Proposition 3. If K;; = Ag;; + Bu,u; is a divergence-
free CKT with i; = 0, then the space-time is GRW.

Proof. By hypothesis, (15) holds and we only need
show Eq. (16). With H = B/(2B) and V;B = —Bu;, let us
evaluate:

VJB = vj'(ukka),
= (vjuk)(—Buk> + Mijka,
= ukkajB = —MJB,

Therefore, V;H = —[%—f—%]uj = —Huj. L]

If &t; = 0, the perfect-fluid divergence-free CKT tensor
lives in a GRW space-time and has a special property:

vinl = gle,A + V,-(Bujul)
1 . .
= —E(n + I)Bulg][ - Bu,-ujul

+ BH(Zu,»uju, + giju; + giluj)
= —(n+1)BHu;g;; + BHu;g;; + BHu,g;;. ~ (20)

This motivates the definition in the next section.

III. SINYUKOV-LIKE TENSORS AND GRW
SPACE-TIMES

We consider symmetric tensors satisfying the relation
VK = a;gy + begy + bigjx (21)

and call them “Sinyukov-like” tensors [30,31]. When K; is
the Ricci tensor, we recover the characterization of
Sinyukov manifolds, investigated, for example, in [32].

Contractions with ¢/* and g" give a; and b; in terms
of K =g"K;; and the divergence of the tensor. Thus,
explicitly

(n+2)(n-1)
anka —ka
nr2)n—1) 9t

ijkl = ki

nV"Kpl - VIK
(n+2)(n—1) %%

(22)

The cyclic sum of (22) shows that a Sinyukov-like tensor is
a CKT.

At the end of Sec. II, we showed that a perfect-fluid
conformal Killing tensor K;; = Ag;; + Bu,u; that is diver-
gence-free and acceleration-free, i.e.,

Viu; = H(g;; + uu;), (23)

B . n+1.

is a Sinyukov-like tensor, and the space-time is a GRW.

Now we easily prove the opposite: in a GRW space-time
characterized by the velocity field u;, a perfect-fluid tensor
Ag;j + Bu;u; with A and B satisfying (24) is Sinyukov-like
and divergence-free.

Proof. The evaluation (20) proves that K;; is Sinyukov-
like. The contraction with ¢“ shows that it is also
divergence-free. [
We then conclude:

Theorem 4. A space-time is GRW if and only if it
admits a divergence-free, acceleration-free, perfect-fluid
Sinyukov-like tensor.

Equation (24) can be solved in terms of the scale function
a(t). The first one, H = a/a = B/(2B), has the solution
B(1) = -1 Ca*(t), where C is constant. The second and

third equations give A(t) = (n + 1)B(r) — A, where A is

another constant. Therefore, the final form of the Sinyukov-
like divergence-free tensor is only parametrized by the scale
function a(r) and the constants C and A:

In+1 2

Kkl:gkl|:§n_1

C
Ca® - A} + upu; a

n—

(25)

Hereafter, we set the space-time dimension n = 4 in all the
equations.

IV. CONFORMAL KILLING GRAVITY
IN RW SPACE-TIMES

A GRW space-time is RW whenever the Weyl tensor is
zero. With E;; = 0, the Ricci tensor (18) has the perfect-
fluid form and the Riemann tensor is [33]

1
Rjkim = 3 (R =2&)(9m9j1 = Gx19jm)

1
+ 5 (R = 48) (Grmt 1) — Gyt Uy = GjmUgclly

+ gjlukum)' (26)

Consider Eq. (3) of conformal Killing gravity in a RW
space-time with the Sinyukov-like perfect-fluid term Ky
describing the imposing dark sector of gravity.

Equations (18) and (25) give the perfect-fluid energy-
momentum tensor of ordinary matter with energy density y
and pressure p:
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T = (p+ wugu; + pgu

1
=Ry — Engl - Ky
= ——(R + 25 + 5CCl2 - 6A)gk1

(R — 4& — Ca®)uu,. (27)

W] = | =

+

After specifying R with (19) and & = 3(H? + H), the
Friedmann equations for CKG with ordinary matter are

R* 2 1 2
M:2—612+3H +§C61 —A, (28)
R* .5

They reduce to the GR equations when C = 0 and A = 0.
We obtain

p+3p=-62-2ca® +2A. (30)
a

In [15], we showed that (28) and (29) imply Eq. (32) by
Harada [14]. The converse was shown by Clément and
Noucier [17].

Let ordinary matter be composed of dust with energy
density p,, and zero pressure, and radiation with EoS
p,= %,ur. Then y=u,+p, and p = p,. They are
conserved  independently. Dust: 0 = V;(u,ufu;) =
(fty +3Hp,,)u;.  Radiation: 0= Vi (u, + p,)ufu, +
Vip,= ‘3—‘(/'4, +3Hu, )u; + %Vl/t,. The two equations give
Hm = ﬂmO(gio)_3 and Hy = /’er(gio)_‘" where ap = a([()) is the
present-time scale.

The Friedmann equation (28) of CKG with radiation,
matter, dark energy, A term, and curvature term is

-3 -4 R 1
Hmo < + Mo < :—2+3H2+—Ca2—A.
Clo Clo 261 2

We divide by 3H} (the value at scale a;) and obtain

(i) =) roei) vall)

a\?2
+QA+QD<a_O> , (31)
_ Fmo _ o .
" 3H} " 3H} 6Hja}
A CaZ
QA:—7 QD_——O (32)
3H} 6H}

Evidently, the cosmological parameters satisfy

Qin+Qr+Qk+QA+QD:1'

Since H = a/a, Eq. (31) gives the time evolution of the
scale function. In terms of the redshift 1 + z = ay/a, it
becomes Eq. (4) by Harada:

(%)2 =Q,(1+2)* +Q,(1+2) + (1 +2)?

4 (33)

L0, + .
AT (1 +2)?

The “lookback time” of a photon emitted at time ¢, at scale
a, = a(t,), and received at present time #, at scale factor
ap, is

t a da Ze dz
o= | dr= o[ (3
L / / i A<1+Z>H<z> (34)

The age of the Universe, if finite, is the limit z — oo of #;.
The future time span of the Universe from now (z = 0) is
the integral

0 dz
f—/zf 0T HR) (35)

We obtain a bound for the future time span, valid when all
Q;>0,z,=-1

/0 dz
THO <
-1 \/QA(I + Z)2 + QD

_ 1 1Og«/QD TO,+/Q, (36)
2V SOy + Qs — VO,

V. CKG PARAMETERS FROM DATA
FITS FOR H(Z)

In the following, we consider a flat space submanifold
Q; =0, and also Q, = 0. The smallness of Q, = 9.16 x
1073 (neutrino corrected) compared to Q,, = 0.31 (Planck
data) determines a large value 1 + z,, = Q,,/Q, where all
but matter contributions are negligible. At decreasing
redshifts, the Universe is in the matter-dominated era until
A and D take over.

With three relevant terms, it is

<%§)>2 — 0, (142 +9, +(1gj—DZ)z~ (37)

If Qp > 0, the squared Hubble parameter diverges to +oo
for z » —17 (future singularity). If Qp < 0, the require-
ment H%(z) > 0 determines a critical value H*(z.) =0,
where @ = 0 at finite scale a = ay/(1 + z.).

064041-5



MANTICA and MOLINARI

PHYS. REV. D 110, 064041 (2024)

The deceleration parameter is g = — Z—? =—-1- % With

H = _%dd_ff(z + 1), it is (see Fig. 3)

(Z) . Qm(l + Z)S - ZQA(I + Z)2 _4QD
T 720, (1127 120,(1+2)2 129,

(38)

As a preliminary test, we make a best fit for the
parameters o in

H(z) = \Ja,(1+2) +ay +ap(1 +2)7

with the available dataset (z i H oj) for cosmic chronom-
eters (CC, 32 points) and CC + BAO (58 points) taken
from [34-38] and listed in Appendix B. The fit is made
with Mathematica, NonLinearFit with weights (see
Figs. 1 and 2).

CcC CcC CC +BAO CC + BAO
ACDM CKG ACDM CKG
A, 1483:&]73 1586i303 1309i51 1262i63
an 3163549 1877 43119 3567 1193 4544 743
ap 16383919 —1688. 1320

Next, we evaluate Hy = H(0), Q; = a;/H3, and related
values listed in the table:

CcC CcC CC +BAO CC +BAO
ACDM CKG ACDM CKG
H, 68.16 71.42 69.83 64.17
q0 -0.516 —0.854 -0.549 —-0.130
Q, 0.323 0.311 0.301 0.306
Qp 0.677 0.368 0.699 1.103
Qp e +0.321 e -0.410
Age 13.59 13.47 13.92 14.10
250 ,
200 ,

150

100

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

FIG. 1. Best fit for H(z) for ACDM (dashed) and CKT (full),
with 32 experimental data points with cosmic chronometers,
including the recent point z = 1.26 [38]. The dotted line is the
output of the genetic algorithm with CC data (31 points), Eq. (7)
in [55], extrapolated out of 0 < z < 1.4.

FIG. 2. Best fit for H(z) for ACDM (dashed) and CKT (full)
and 58 CC + BAO data. The dotted line is the output of the
genetic algorithm, Eq. (9) in [55] extrapolated out of 0 < z < 1.4.

With cosmic chronometer (CC) data, one notes that Q,,
is little changed by the presence of the Sinyukov terms. The
ACDM value of Q4 splits into the sum of the two dark
terms. The ACDM and CKG fitting lines almost overlap in
the past and deviate for z near zero. The deviation is more
marked in ¢(z) toward the future: driven by the D term, the
CKG universe accelerates more than the ACDM solution,
driven by the A term.

With CC + BAO data, the significant feature is Qp < 0.
This makes H>(z) vanish at z. = —0.407 which is a limit
value (H? < 0 in the interval (—1,z.)).

Given the great uncertainty of the values a, and ap, a fit
with Snla and new data with small z are highly desirable.

The future time span of the Universe from now (z = 0) is
the integral

_/0 dz

o (1+2)H(z)
21.0 Gy Qp >0,z =-—1

- Yoo ! . (39)
15.1 Gy Qp <0,zy =-0.407

FIG. 3. The deceleration parameter ¢(z), Eq. (38), for ACDM
(dashed) and CKT (full) (CC data).
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FIG. 4. The dark energy density up(z) (dashed), the dark
pressure pp(z) (full), and the matter energy density u,,(z)
(dotted) in units 3HZ, evaluated with CC (top), CC + BAO
(bottom). For CC, the pressure is negative and not shown. Note
that up > 0 throughout almost the whole range; it turns negative
close to the future singularity with CC + BAO data.

The value 7 for Qp > 0 is only slightly smaller than the
estimate 7 < 21Gy with Eq. (36): this signals the ongoing
marginality of the matter term. Different from ACDM, 7 is
finite because of the occurrence of future singularities.
Future singularities are discussed in [39,40].

Qp > 0: Both H(z) and a(t) diverge at z = —1. The
parameters of the Sinyukov tensor (25) may be interpreted
as energy density and pressure of the dark perfect fluid:

1 Q
Up = —ECaz(t) + A =3Hj} [7’2+ QA} (40)

(1+2)°
5, B 5 Qp
pp =7 Ca (f)=A = 3H0[3(HZ)2+QA}, (41)

where up > 0 and pp < 0 (see Fig. 4). As both diverge, the
future singularity is a “big rip” [41]. w(z) = pp/up ranges
from —1 (past) to —5/3.

Qp < 0: H(z) vanishes as a square root at z(z) and a(z)
is finite. Given the values of the CC + BAO fit, for
z > —0.39, the energy density is positive; for z > —0.21,
the pressure is negative. At z(z), the pressure is finite and

positive, while yp < 0. This future singularity is not in the
scheme in [40].

In [42], the authors discussed a model for the present
accelerated phase of the Universe without the explicit
introduction of dark energy or new degrees of freedom:
it relies on the coupling between dark and ordinary matter
through an effective metric. A similar approach is pursued
in [43], where an exotic effective fluid arises from a
disformal transformation. In this scenario, the past evolu-
tion is similar to ACDM, but the late dynamics gives rise to
a monotonous increase of expansion.

The Hubble tension is a prominent problem in high-
precision cosmology. It refers to the fact that the local
measurement for H,, is significantly higher than the value
extrapolated from cosmological observations, notably CMB
measurements.

The SHOES team recently found H, = 73.0 +
1 km s™!/Mps [44]. On the other hand, CMB data refer
to the early Universe, and to extrapolate H, requires a
cosmological model. In ACDM, the value inferred from
Planck data is Hy = 67.8 0.5 kms™'/Mps [45]. The
value Hy = 71.4 kms~'/Mps that is here obtained in
CKG with the CC dataset seems to alleviate the tension.
A detailed survey of the H,, tension is in Sec. 2 of [46], that
also reports a list of measures of H (Table 1 and Fig. 10).

VI. GROWTH OF PERTURBATIONS
IN CKG COSMOLOGY

In this section, we investigate the equations governing
the growth of perturbations. We follow the framework
of spherical collapse illustrated by Abramo et al. [47].
The procedure has been used in several theories of
extended gravity, such as mimetic gravity [48], energy
momentum-squared gravity [49], time-dependent A [50],
modified torsion cosmology [51], and generalized Rastall
gravity [52].

We set the ordinary matter of the spatially flat FRW
Universe (R* = 0) to be a pressureless dust, in the presence
of the A and dark terms. Equations (28) and (29) give

C
o = 3H? + = a® = A, (42)
a U C , A

d_ _Hm & B 43
a 6 3913 (43)

Consider a local perturbation of the density that changes the
background value ,, to u$ = u,(1+6,). In spherical
symmetry, the mass y,,a> in a spherical volume with radius
a? fills a spherical volume with radius a?, with mass density

Hoy: M@y = ppa®. We infer

1
a,=a(l+3,)7? za(l —§5m>.
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The parameter &, = (u,/u,,) — 1 is the “density con-
trast” [53].

Let the conservation rule for the perturbed sphere be
fty + 3hug, = 0, where h = a,/a, is the “local” Hubble
parameter. While the background Universe evolves as (43),
an analogous evolution for the perturbed cluster is
assumed:

G _ _#n_Cp A (44)

In the linear approximation, it is @, = a(1 —135,,) — %aSm.
»=d(1-16,)—3ab,—

%aiﬁ'm. We divide by a, and use the evolution equations:

Another dot-derivative gives d

Hn C , Hm C 5 2 . 1.
. . S o N N °F S

6 3T 6 3¢ T3MOmT30m
We simplify by inserting u$, = p,,(1+6,) and a’ =
a*(1-26,,), using (43) to specify y,,. Then

. . I3 5 , A
2HS, — |2H* - —a®>-2|5,=0. (4
S +2HS, L S 2]5," 0. (45)

We trade the dot-derivative with the derivative with respect
to the scale factor

5 ds,, . d5mH
=—"a= a,
" da da
. &5, , do, .
= a
a5 ds, [H* 5 A
— mHZ 2 Fm - ~C 2_ =
a2 ! daa[Z TRt 2]
and obtain
P8y 5, o, [3 SC o A
a a - — a —
da’® da 2”7 1202° 217
3 5¢ , A
-2 - s, =0
{2 1262 2H2] &

The equation may be written in redshift space a =
(ag=1). It is

1
1+z

do do
it/ ———NE 2
da dz (1+2)
d*s d*s do
Zm _ 7m0 4 277m 3
dGQ dZ2 ( +Z) + dz ( +Z)
d*s,, 5C —6A(1 +z)?

ds 1
Zm 2.7mN 4= v
iz 1T +Z)[2+ 12H2(1 + 2)?

_[3_5C+6A(1+2) o
2 12H*(14z)?% "7

At this point, we employ C = —6H3Qp, and A = 3H3Q,:

P,
S d?
o (H/Hy)*(1+2)° = 5Qp =30, (1 + 2)°
2(H/H,)*(1 +2)?
_3(H/Ho)*(1+2)* +5Q) —3Q, (1 + 2)25
2(H/H,)*(1 +z2)? "

ds
0 1 24mq
(+z)+dz(+z)

And we insert H(z)/H, given in (37):

“Zf;"u +z)2+%d;;"
Q,(1+2)° =2Q,(1+2)* - 4Q,
Q,(1+2° +Q,(1+2)*+9Qp
S 3Q,,(142)° + 89y

29,1+ +Q,(1+22+Qp

O:

(1+72)

(46)

Now we discuss various cases:
(1) When Qp =0 and Q, =0, we recover the GR
evolution of the density contrast:

Suer(z) =ci(1+ 22+ (1 +2)71. (47)

The constants ¢; and ¢, are determined by initial
conditions at a reference redshift z; > 1 (matter
dominated era):

Smar(zi) = c1(1+2:)* +er(14+2,)7",
3
Sncr(2i) = 501(1 +2)? = (1 + 7))
It is required that the fluctuation is small and the
derivative is negative and small (initial growth of

structures). This rules out c¢; as unphysical and poses
the*“adiabatic condition”

6211 (Zi) =

(48)

that is used as a criterion to fix the constants in more
general conditions.

(2) Equation (46) is now studied for Q, #0 and
Qp = 0. This is standard ACDM [see Peebles [53]
and Martel [54]]. In this approximation, we put
a=Q,,/Q,. The common acceptance is a ~3/7.
Matter dominance means Q,,(1 +2)>>1-Q,,
ie., z> JVa=03.

The equation for o, is

064041-8
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3

d*s,, 1ds,, a(l+z)3-2
0= "Dy BT 2

gz L MRS

5y 3 3

_ 0w 3a(l+2) (49)

2a(l+z)P>+1°

Let us introduce the new variable x = (ll(l +2)7.

The differential equation becomes

&5, xds 1
m 2O (0x +7) =25,

0 = x2(1 -
*(1+x) dx? +6 dx 6

It reduces to a hypergeometric equation by appro-
priate y in §,,(x) = x"F(x). F solves the equation

X2(1 4 x)F" +gF’[2x(5 +6y) + 7+ 127]
F
+g(6y2 +6y—1+2xy(3y+2)| =

The choices y = § and y = —1 give two hypergeo-
metric equations for G(x) = F(—x):

/

G
x(1-x)G" + 3 [—2x(5 4+ 6y) + 7 + 12y]

G
—570r+2) =0.

For y=-3 G(x)=,F(}.—-3:4:x)=V1—x
Fory =1, G(x )—2F1(1,3,1—61;x).
The general solution is

1 1 11
+ +K2x1/32F1 (1 .X).

5m(x) =K X 3 6

It coincides with the case m = 0 for the evolution of
density perturbations in the Newtonian approxima-
tion with A = 3aa(r)™, by Silveira and Waga [50].
Back to redshift:

6m(z) =K

1 111 1
i (1zii————— ). (50
T '( 376 a(l—l—z)3) (50)

In the dominant matter regime, a(1 + z)? is large and
the hypergeometric function is around unity. The
ACDM density contrast is given by the above
formula with x; = 0 and becomes GR for large z.
For large z;, it fulfills the adiabatic condition (48).
Equation (46) is studied with Q, = 0 (in CKG, the
cosmological constant A is an integration constant,
not a term of the field equations). Now Q, comes
into play. Let f = Q,,/Qp.

1+a(l+z)3

064041-9

Jzém 1d(sm ﬂ(l +Z)5 -4
722 (1+z)2+§ 7z (1+z)/37<1+z)5le
13 S48

The equation is solved in the new variable

/;(1+) (H‘Z) 5xd6’” and(1+z)2%:

30x d5m + 2524 ‘5’" Equation (51) takes the form

X =

d*s,,
(14 x)

_8x+3
50

5, = 0. (52)

Now change the dependent variable §,,(x) =
X'F(x):

d’F dF 16x+ 11
x(1+x )d2 Tx [Zy(l—i—x) T}

(LR e

The value y=1 simplifies the

x(1+x)F"+F(2x+3) =0, ie.,

equation

LZC[ (1 4+ 2)F (x )—l—%F(x)] 0.

Then 2x(1 + x)F'(x) + F(x) = f;, where f is a

constant, with the solution F(x) = fy/1+ f.
The final result is a simple expression:
1 1+p(1+2)°
on(z) = + . 53
(@) = his e (53)

For large (1 + z), we recover the functional form of
the GR result (47). The evolution of the matter and
dark energy densities are

Q,(1+z)> Qp(142)72
(H(z)/Ho)* (H(z)/Hy)*"

Thus, the condition of matter dominance
Q,.(2)/Q(z)>1 is  pl+2z)P5>1, ie,
7> {/Qp/Q,, — 1. Since for large z the expression
of the density contrast is very similar to the GR
expression, we apply the adiabatic condition (48), as
usually done in the literature:

Q,(z) = Qp(z) =

dgm(z): fi L 3p(1+z2)0° -2
dz 1+27 204221+ 80127
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The adiabatic condition (48) at large z; imposes
f> =0. The density contrast grows linearly in the
scale factor as in GR.

(4) Evolution in CKG with Q) #0, Q, +Q, +
Qp = 1. Equation (46) is rewritten in the variable x:

1 Q. s|
X = 5 =0 n= 203"
p(1+2) Qp Q. Q,
d*s, 5 ds, 11+ 14nx3/5 + 16
0= 25x2_£n+_x_m + 14nx°/> + 16x
dx> 27 dx 143 +x
5, 3+8x

_Om 97O 54
21435 4+ x (54)

For z in the range 10-100 (small x), the leading
behaviour of the independent solutions is read in the
approximation 0 = 25x> % + %x% - % that
gives an expanding and a decreasing asymptotic
solution: §,,(x) = xk_x=3/10 4k x1/,
Starting with the factorization &, = x~3/19F~(x),
Eq. (54) becomes

2 - —

d°F 5 dF
25x2W(1 + x5 + x) +§x[5 + 10x + 877x3/5]a

1
- ZF[311x3/5 +25x] = 0.

Now make the ansatz F~(x)=+/1+ Anx®/> + Bx.

Neglecting terms of order x®° and smaller, it is x? d;f{ =
— 2 Anx®/ and x 4= = 3 Apx3/5 + B x. The equation for
F~ simplifies to 3(A — 1)yx3/> +25x(B—1) =0 that
gives A = B = 1. One then obtains the following expres-
sion, correct up to vanishing terms x%/°:

- 1+ 935 4+ x
On(X) =\ — 55— (55)

Next, by posing 6 (x) =& (x)F'(x), one obtains the
other approximate solution (this procedure is equivalent
to exploiting the Wronskian).

1+n354x [x X' (56)
x3/5 0 \/)7(1+71x’3/5 +x’)3/2'

Similar expressions, with different exponents, were
obtained by Hugo Martel in the study of density perturba-
tions of the Friedmann equations with the A term in a linear
adiabatic regime [Eqgs. (10) and (11) in [54] ].

Equation (46) 1is also solved numerically with
NDSolve (Mathematica 7). For comparison with other
approximations, the initial conditions §,,(z;) and &),(z;)

Sm(x) =

0.0010F
0.0008:
0.0006;
0.0004}

0.0002

100 200 300 400

FIG. 5. The density contrast §,(z) with initial conditions
5,,(400) = 0.0001 and &,,(400) = —6,,(400)/401 for ACDM
(dotted), and the numerical solution for CKG with CC data
(Mathematica).

are chosen as identical. We put §,(400) =0.0001
and &,(400) = —§,,(400)/401.

Despite the different analytic expressions and values of
Q;, the plots in Fig. 5 of CKG gravity with or without
cosmological constant do not show significative differences
with the expanding mode of GR and ACDM in the matter-
dominated phase.

VII. THE PARAMETER oy

A robust measurable quantity in redshift surveys, that is
related to the density contrast §,(z), is the product
f(z)og(z) [56] [for a simple account of the theory,
see [57]]. og(z) is the root-mean-square mass fluctuation
at the scale Rg = 8h~! Mpc:

o3(2) = 4z / " Rk (K)P;, (k.z).
0

In the integral, P; (k,z) is the mass power spectrum, i.e.,
the Fourier transform of the correlator (6,,(x)5,,(x)) at
redshift z. W(k) is the Fourier transform of a window
function W(r) that filters the spatial scale; a choice is
W(r) =3/(4zR3) if r < Rg and W(r) =0 if r > Ryg.

f is the growth rate of linear perturbations:

Fe dlogs, — 1+zds,

~dloga  68,(z) dz’
In the linear perturbation regime, §,,(z) and og(z) are
proportional [see Eq. (2.21) of [58] ]. Then, let us consider
the function

~ f(2)og(z)
g(z)i 68(0) B

The function is plotted for ACDM and CKG in Fig. 6.
The curve for ACDM shows a maximum, while the CKG

_1424d5,(z)
5,(0) dz

(57)

064041-10
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FIG. 6. The function ¢(z), Eq. (57), for ACDM (dashed) and
CKT (full). Left panel: CC data. Right panel: CC + BAO data.

curve does not for CC values of parameters. The maximum
occurs in a redshift range that is borderline of the dominant
matter era, wherein the linear evolution equations for §,,(z)
were obtained. Therefore, §,,(0) is an extrapolated value.

Experimental measures of f(z)og(z) < g(z) show a
weak maximum, as in Fig. 1 of [59].

To speculate about the occurrence of a maximum for g(z)
in CKG, let us fix the value Q;, = 0.3. It is numerically
found that the maximum occurs at z = 0 for Q, = 0.55
(then Qp = 0.15). By increasing €2,, the maximum shifts
to higher z. At Q, = 0.7, the function g(z) is ACDM; at
higher values, Q becomes negative (see Fig. 7). For the
limit case ¢'(0) = 0, with the aid of Eq. (46), one obtains

3Q,, + 8Q
g9(0) = vt B

_ = 0.617.
Q, +4Q, + 69Q,

An interesting point of the plot is z* ~ 0.85, where the
curves almost meet with the value g* = 0.55. It is then
f(z%)og(z*) = 0.5564(0) independently of the values
Of QD + QA =0.7.

The tension in 63 = 63(0) is the discrepancy between the
values measured in the late Universe, that are smaller than
the values found in CMB (early Universe). Planck data [45]
give o3 = 0.8120 =+ 0.0073.

0.35-

0.30

FIG. 7. The function g(z), Eq. (57), with Q) = 0.3 in three
cases: (1) CKG limit case Q, = 0.55, Qp = 0.15 (full line);
(2) ACDM with Q, = 0.7, Qp = 0 (dotted line); (3) CKG with
Q, =1, Qp = —0.3 (dashed line).

A complete survey of oy tension is contained in [46],
Sec. III.1, together with a wide list of measures of oy
(Table 2 and Fig. 21).

The function g(z) and datasets for f(z)og(z) allow in
principle a determination of og in CKG. According to the
linear theory, Eq. (57), the ratio f(z)og(z)/g(z) is constant
and equal to og. We use two datasets, Benisty [Table 1 with
47 points in [59] ], and Kazantzidis and Perilovaropoulos
[Table IT with 63 points in [60] ], and evaluate g(z;) with CC
or CC + BAO parameters. Different points yield different
ratios; the best fitting values og (omitting error bar analysis
of input data) are reported below, in the different cases:

[59] [60]
ACDM (CC) 0.779 0.768
CKG (CC) 0.727 0.711
ACDM (CC + BAO) 0.791 0.780
CKG (CC 4+ BAO) 0.943 0.927

Due to the very uncertain behaviour of g(z) in CKG with
CC or CC + BAO datasets, a comparison with experimen-
tal data to verifty the og tension is premature.

VIII. CONCLUSIONS

A space-time is generalized RW if and only if it admits a
divergence-free, acceleration-free, perfect-fluid Sinyukov-
like tensor. Such tensors are conformal Killing tensors and
are candidates for the dark sector of conformal Killing
gravity. We study the Friedmann equations for CKG and
determine the analytic form of H(z). Neglecting radiation,
in spatially flat RW space-time, H(z) is fitted against
experimental datasets for CC or CC 4+ BAO to estimate the
dark sector parameters Qp, €, and the matter parameter
Q,,. While the model shows nonrelevant deviation of H(z)
in CKG from ACDM in the past, the future is driven by the
dark term to a future singularity: a big rip if Qp and Q, are
positive, an exotic one if Qp < 0. Next we solve the
equation for the evolution of the density contrast §,,(z) in
the linear regime. The solution in CKG, for values
Q, +Q\ + Qp =1, shows no sensible deviation in the
matter-dominated regime from the ACDM or GR solutions.

While conformal Killing gravity, as an extension of
Einstein’s gravity, does not contradict the present view of
the past evolution of the Universe, it differs in describing
the late accelerated phase. New data for H(z) are needed to
solve the sign ambiguity of Qp that influences the
evolution picture offered by the theory. The discussion
of oy clarifies that A, as an integration constant in CKG,
must be taken as nonzero with Q, > 0.55, to comply with
present measures of f(z)og(z). Fitting with CC data does
not yield a large enough value of Q. The extension of data
other than CC and BAO will be important to better
determine the CKG parameters and validate the theory.

064041-11
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APPENDIX A: PROOF OF THEOREM 1
The perfect-fluid tensor Agj, + Bujuy is a CKT if (5)
holds, with conformal vector (6):
(n+2)n; = (n+2)V,A - V,;B + 2Bu; + 2Bi;
+ 2BMIVJMJ

The condition (5) with (A1) is

0= (n+2)[Vi(Buju;) + V;(Buju;) + V(Bu;u;)]
— 9[=ViB + 2Bu; + 2Bit; + 2Bu;(V ,u”)]
— gu[=V,;B + 2Bu; + 2Bit; + 2Bu;(V ,u”)]
— 9i;[=VB + 2Bu; + 2Bit; + 2Buy(V ,u”)]. (A2)

Contraction with u’u/u’ is

0 =3(n+2)uwu'u'V,;(Buju;) — 3[3B + 2B(V ,u”)],
1.€.,

V”up B
—H=—. A3
n—1 2B ( )

Contraction of (A2) with w/u' is

+ 2Bu;(V ,uP) = 2u;[-3B — 2B(V ,u”)]
= (n+1)V;B=2(n—-2)Bu; —2(n + 1)Bi;
+ 6Bu;(V,u”).
We use (A3) and obtain Eq. (11): V,B = —Bu; + 2Bi,.
This and (A3) are inserted in (A2):
0 = 2B (it;uju; + wiitjuy + w;u it
+ B[V,(uju;) + V(ujug) + V(u;u;)]

— (uju; + gjl)B”i — (wju; + giz)B”j — (uju; + gij)Bul-

Contraction with u! is

B
Vjul + V,u] = —

B (ujul +gjl) - Mjl;ll - I/tll;lj.

If we insert the standard decomposition (9) of V,;u,, the
equation is satisfied with shear ;; = 0. The CKT condition
(5) is now identically verified. The conformal vector (6)

becomes (n +2)(n; — V;A) = 3Bu; + 2BV, ie., n; =
V.A + Bu,.

Let us prove the opposite. Suppose that the perfect fluid
tensor (8) has shear-free velocity with expansion B/2B
and B that satisfies (11).

ViK; = g;ViA + (=Bu; + 2Bi;)uju; + B(u;Viu; +
wViu;) = gy VA 4+ B(2iguuy — wujiy — witjuy) +
5 B(ujgy + wigij) + 5 Bujwy + wo;).

In the cyclic sum, many terms cancel: V,K; +
cyclic = g;(V;A + Bu;) 4 cyclic. The CKT condition is
satisfied with #; = V,A + Bu,. m

APPENDIX B: DATASETS FOR H(z)

The left half is the CC dataset, and the right half is the
BAO dataset [37,38].

zZ H(z) c z H(z) c
0.070 69 19.6 0.24 79.69 2.99
0.090 69 12 0.30 81.7 6.22
0.120 68.6 26.2 0.31 78.18 4.74
0.170 83 8 0.34 83.8 3.66
0.1791 75 4 0.35 82.7 9.1
0.1993 75 5 0.36 79.94 3.38
0.200 72.9 29.6 0.38 81.5 1.9
0.270 77 14 0.40 82.04 2.03
0.280 88.8 36.6 0.43 86.45 3.97
0.3519 83 14 0.44 82.6 7.8
0.3802 83 13.5 0.44 84.81 1.83
0.400 95 17 0.48 87.79 2.03
0.4004 77 10.2 0.51 90.4 1.9
0.4247 87.1 11.2 0.52 94.35 2.64
0.4497 92.8 12.9 0.56 93.34 23
0.470 89 34 0.57 87.6 7.8
0.4783 80.9 9 0.57 96.8 34
0.480 97 62 0.59 98.48 3.18
0.593 104 13 0.60 87.9 6.1
0.6797 92 8 0.61 97.3 2.1
0.7812 105 12 0.64 98.82 2.98
0.8754 125 17 0.73 97.3 7.0
0.880 90 40 2.30 224 8.6
0.900 117 23 2.33 224 8
1.037 154 20 2.34 222 8.5
1.26 135 65 2.36 226 9.3
1.300 168 17

1.363 160 33.6

1.430 177 18

1.530 140 14

1.750 202 40

1.965 186.5 50.4
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