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Cylindrically symmetric vacuum spacetimes are of immense interest in theoretical physics due to their
connection to cosmic strings hypothesized in quantum field theory. In this article, we explore the properties
of such a spacetime and provide the complete, exact solution by quadrature to the timelike and lightlike
geodesics in it, using the Hamilton-Jacobi formalism. In addition, we compare several properties of
massive particle trajectories in relativistic cylindrically symmetric vacuum spacetimes to their non-
relativistic, Newtonian gravitational counterparts. On top of that, we devise a classification scheme and use
it to categorize the orbits of massive particles.
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I. INTRODUCTION

Since their first realization by Kibble [1] in 1976, cosmic
strings have intrigued many cosmologists and relativists.
Cosmic strings are one-dimensional topological defects,
formed in the early Universe due to a symmetry breaking
phase transition [1–4]. These primordial cosmic line
defects potentially form a string network at a cosmological
scale [5,6]. Their vibrations might produce gravitational
waves, radiating a stochastic gravitational-wave signature
across the Universe [3,7–9]. Even though it is likely that
cosmic strings exist, the probability of finding one is very
small [10,11]. However, in recent years, the hope of
detecting cosmic strings by means of gravitational waves
has risen due to the direct detection of gravitational
waves by the LIGO and Virgo collaborations [12–14].
Furthermore, the recently released 12.5-year data set of the
NANOGrav Collaboration might suggest the very first
detection of cosmic strings and hence their existence,
according to some authors [15–17].
An infinitely long, straight (idealized) cosmic string

gives rise to a cylindrically symmetric spacetime around
it [18–20]. However, the discovery of a cylindrically
symmetric vacuum solution to Einstein’s equation dates
back to 1919 and is called the Levi-Civita spacetime,
named after its discoverer [21,22]. In 1958, Marder proved

that the Levi-Civita solution possesses two independent
parameters [22,23]. Considering the mostly positive sign
convention, the metric tensor in the Levi-Civita spacetime
can be written as [24–26]

ds2 ¼ −ξ4σdt ⊗ dtþ ð1 − 2σÞ2P2ξ8σ
2−4σdξ ⊗ dξ

þ P2ξ2−4σdϕ ⊗ dϕþ ξ8σ
2−4σdz ⊗ dz; ð1Þ

where −∞ < t < ∞, 0 ≤ ξ < ∞, 0 ≤ ϕ ≤ 2π, and
−∞ < z < ∞, with ϕ ¼ 2π identified as ϕ ¼ 0. The
above-mentioned metric tensor contains two independent
parameters, σ and P, where σ is dimensionless and P has
the dimension of length. For an infinitely long linear mass
distribution [27], the parameter σ ∈ ½0; 1=2� determines the
linear mass density μ via the relation [28]

μ ¼ σ

1 − 2σ þ 4σ2
ð2Þ

and is known as the mass parameter. On the other hand, the
parameter P∈ ½1;∞Þ carries the information about the
“deficit angle” of the Levi-Civita spacetime [25]. For
σ ¼ 0 and P ¼ 1, the Levi-Civita spacetime reduces to
the Minkowski spacetime; for σ ¼ 0 but P ≠ 1, it repre-
sents the spacetime around an idealized cosmic string, as
one easily sees.
There have been multiple attempts to find the geodetic

motion in other cylindrically symmetric spacetimes. In the
late 1990s, Herrera and Santos derived a circular geodetic
motion of massive particles in Lewis spacetime [29].
In 2014, Brito et al. found the solution to the geodesic
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equations in Linet-Tian spacetime for a few special
cases [30]. In 2019, Célérier et al. explored radial, axial,
and circular geodetic motions in a cylindrically symmetric
translating spacetime [31]. In 2016, Hoseini et al. came up
with an analytic solution to the geodesic equation in a
static cylindrically symmetric conformal spacetime [32].
However, the search for a complete, exact solution to the
geodetic motion of massive and massless particles moving
in Levi-Civita spacetime continues to this day. This is
because the differential geodesic equations it gives rise to
are too complicated to solve exactly in terms of elementary1

functions (see Appendix A). As a preview, Fig. 1 shows
two typical three-dimensional trajectories of massive par-
ticles moving in Levi-Civita spacetime.
In this article, we present a complete, exact solution

by quadrature to the differential geodesic equations in Levi-
Civita spacetime using the Hamilton-Jacobi formalism.2

The Hamilton-Jacobi formalism serves as a very power-
ful tool to solve Hamiltonian systems when the corre-
sponding Hamilton-Jacobi equation is separable [37,38].
Interestingly enough, the Hamiltonian corresponding to the
geodesic motion in Levi-Civita spacetime gives rise to a
separable Hamilton-Jacobi equation and, consequently, the
equation of motion is reduced to quadrature. The resulting
integral solutions are also expanded into infinite series.

The resulting integral solution to the geodetic motion is
presented for arbitrary parameters and initial conditions;
the integrations are performed for a few special cases and
the results are compared to the Newtonian counterparts.
A proof of a theorem on the boundedness of the orbits for
both Newtonian and relativistic cases is demonstrated.
Moreover, a classification of the orbits is presented based
on the orbit parameters.

II. MOTION IN CYLINDRICALLY
SYMMETRIC SPACETIMES

Though the metric tensor of Levi-Civita spacetime, as
depicted in Eq. (1), represents the general cylindrically
symmetric solution of Einstein’s equation in vacuum, the
geometric meaning of the coordinates used may not be
immediately transparent. In particular, the radial coordinate
ξ does not represent the “circumferential radius”; that is to
say, when the angular coordinate ϕ goes from 0 to 2π
keeping the other coordinates fixed, the proper distance
covered is not equal to 2πξ. To resolve this issue, we make a
coordinate transformation of the form

ρ ¼ Pξ1−2σ ð3Þ

keeping the other coordinates unchanged. Under the above
transformation, the new metric tensor can be written as

ds2 ¼ −
�
ρ

P

� 4σ
1−2σ

dt ⊗ dtþ
�
ρ

P

� 8σ2

1−2σ
dρ ⊗ dρ

þ ρ2dϕ ⊗ dϕþ
�
ρ

P

�
−4σ

dz ⊗ dz: ð4Þ

As the angular coordinate runs from 0 to 2π, the
radial coordinate ρ in Eq. (4) can be interpreted as the
“circumferential radius.”As it will turn out later, this choice
of radial coordinate in the weak gravitational field limit
facilitates establishing a correspondence between the rela-
tivistic cylindrically symmetric vacuum spacetime and its
Newtonian gravitational counterpart written in cylindrical
polar coordinates.

A. Motion of a massive particle

To find the solution to the geodetic motion of a point
particle moving in a curved spacetime, one needs to separate
the equation obtained upon substituting Eq. (B7) into
Eq. (B5). The substitution results in

1þ gμν
∂S
∂qμ

∂S
∂qν

¼ 0 ð5Þ

Substitution of the metric tensor from Eq. (4) yields the
Hamilton-Jacobi equation for a massive particle moving
in a cylindrically symmetric vacuum spacetime,

FIG. 1. Trajectories of particles moving in Levi-Civita space-
time. The thick black curves are the original trajectories, while
the thin gray curves are their projections on z ¼ 0 planes.
(a) Trajectory in spacetime with ðσ; PÞ ¼ ð0.1; 1Þ. (b) Trajectory
in spacetime with ðσ; PÞ ¼ ð0.001; 1Þ.

1Elementary functions are those that can be obtained in a
finite number of algebraic operations, taking exponentials and
logarithms [33].

2Complete solution refers to the solution to the equation of
motion where the corresponding Hamilton’s principal function
contains the appropriate number of separation constants [34]. On
the other hand, the exact solution means that the presented
solution is neither an approximate nor a numerical one. And
finally, solution by quadrature (also known as “reduction to
quadrature”) refers to the solution of a differential equation in
terms of one or more definite integrals containing all of the initial
data explicitly. Many differential equations in physics are solved
in this manner whenever a solution in terms of elementary
functions is not available [35,36].
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1 −
�
ρ

P

�
− 4σ
1−2σ

�
∂S
∂t

�
2

þ
�
ρ

P

�
− 8σ2

1−2σ
�
∂S
∂ρ

�
2

þ ρ−2
�
∂S
∂ϕ

�
2

þ
�
ρ

P

�
4σ
�
∂S
∂z

�
2

¼ 0: ð6Þ

Equation (6) appears to be a separable one as the
coefficients are functions of ρ only. To separate the
equations, we try an ansatz of the form Sðt; ρ;ϕ; zÞ ¼
StðtÞ þ SρðρÞ þ SϕðϕÞ þ SzðzÞ. Upon separation, we inte-
grate the separated equations and reconstruct the generation
function as

S ¼ −Δtþ Aϕþ Bzþ
Z �

Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ

− B2

�
ρ

P

� 4σ
1−2σ

−
�
ρ

P

� 8σ2

1−2σ
�1

2

dρ ð7Þ

where Δ, A, and B are separation constants and serve as the
first half of the constants of motion. It is straightforward to
see that A is the conserved momentum conjugate to the
azimuthal coordinate, B can be interpreted as the conserved
momentum along the z coordinate, andΔ is the total energy
of the moving particle.
The motion of a particle in four-dimensional spacetime

contains six constants of motion, three of which we have
already obtained and interpreted for their physical signifi-
cance. The other constants of motion are contained in
the final solution of the geodesic motion obtained
through applying Eq. (B8). All of these constants are
related to the initial data, namely, the initial momenta and
initial coordinates. In this article, we chose the initial
coordinates ρ0, ϕ0, and z0, the initial momenta A and B,
and the total energy Δ to appear explicitly in the final
integral solution,

t ¼ Δ
Z

ρ

ρ0

�
ρ

P

�
−4σ

�
Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ
− B2

�
ρ

P

� 4σ
1−2σ

−
�
ρ

P

� 8σ2

1−2σ
�

−1
2

dρ; ð8aÞ

ϕ ¼ ϕ0 þ A
Z

ρ

ρ0

ρ−2
�
ρ

P

� 8σ2

1−2σ
�
Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ
− B2

�
ρ

P

� 4σ
1−2σ

−
�
ρ

P

� 8σ2

1−2σ
�

−1
2

dρ; ð8bÞ

z ¼ z0 þ B
Z

ρ

ρ0

�
ρ

P

� 4σ
1−2σ

�
Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ
− B2

�
ρ

P

� 4σ
1−2σ

−
�
ρ

P

� 8σ2

1−2σ
�

−1
2

dρ: ð8cÞ

However, one might choose to write the solution by
quadrature above in terms of Γ, the initial value of the
momentumconjugate to the radialcoordinate,using the relation

Γ ¼
�
Δ2

�
ρ0
P

�
−4σ

− A2ρ−20

�
ρ0
P

� 8σ2

1−2σ

− B2

�
ρ0
P

� 4σ
1−2σ

−
�
ρ0
P

� 8σ2

1−2σ
�1

2 ð9Þ

instead of Δ.
In that case, Δ should be written in terms of Γ and the

other constants of motion.
The solution by quadrature given in Eqs. (8a)–(8c)

includes nonelementary integrals, which can be integrated
numerically for the general cases if needed. Nevertheless,
for the case of A ¼ 0 along with B ¼ 0, the angular and
axial equations reduce to ϕ ¼ ϕ0 and z ¼ z0, respectively,
implying a purely radial motion. The only nontrivial
integral is that of t, which can be performed using the
Euler-Gauss hypergeometric function 2F1 [39], giving t as
a function of ρ in a closed form,3

t ¼ P
1 − 2σ

��
ρ

P

�
1−2σ

2F1

�
1

2
;
1 − 4σ þ 4σ2

4σ
;
1þ 4σ2

4σ
;

1

Δ2

�
ρ

P

� 4σ
1−2σ

��
ρ

ρ0

: ð10Þ

In addition, it can be easily checked that, in the limit
σ → 0 andP ¼ 1, Eqs. (8a)–(8c) boils down to the geodesic
equations of a massive particle moving in a flat spacetime
written in cylindrical polar coordinates. Moreover, in the
case of σ → 0 but P ≠ 1, the geodetic motion reduces to the
motion on a “hypercone,” i.e., the three-dimensional analog
of a conical surface.

B. Null geodesics

Not unlike a massive particle, a massless particle parallel
transports its four-momentum along with its worldline.
Upon integration, this leads to the constraint (B6), which
determines the trajectory of the massless particle. The set of
all possible trajectories through a point constitutes a
hypersurface in four-dimensional spacetime, known as
the light cone. The light cone imposes a physical limit
on the trajectories of all particles such that no causal
geodesic can reside outside of it. Since a massive cosmic3Using the identity

R
1ffiffiffiffiffiffiffiffi
1−xn

p dx ¼ x · 2F1ð12 ; 1n ; 1þ 1
n ; x

nÞ.
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string might be able to strongly bend light that is intense
enough to observe, obtaining the photon trajectories is
therefore of particular interest. The same procedure used
for the massive particles (Sec. II A), when deployed for the
massless ones, leads to a generating function for the

Hamilton-Jacobi equation, giving rise to the massless
particle trajectories. Like the massive particle case, the
motion of a massless particle includes six constants of
integration, namely, Δ, A, B, and the initial coordinates ρ0,
ϕ0, and z0,

t ¼ Δ
Z

ρ

ρ0

�
ρ

P

�
−4σ

�
Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ
− B2

�
ρ

P

� 4σ
1−2σ

�
−1
2

dρ; ð11aÞ

ϕ ¼ ϕ0 þ A
Z

ρ

ρ0

ρ−2
�
ρ

P

� 8σ2

1−2σ
�
Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ
− B2

�
ρ

P

� 4σ
1−2σ

�
−1
2

dρ; ð11bÞ

z ¼ z0 þ B
Z

ρ

ρ0

�
ρ

P

� 4σ
1−2σ

�
Δ2

�
ρ

P

�
−4σ

− A2ρ−2
�
ρ

P

� 8σ2

1−2σ
− B2

�
ρ

P

� 4σ
1−2σ

�
−1
2

dρ: ð11cÞ

Similar to the massive particle case, the integral solution
given in Eqs. (11a)–(11C) involves nonelementary integrals
and numerical methods can be employed to perform the
integrals. However, there exist a couple of special yet
physically interesting cases, where the integrals can be
carried out using the Euler-Gauss hypergeometric function

2F1 introduced in Sec. II A. One of the special cases where

the integrations can be performed is B ¼ 0. It involves
motion confined to the z ¼ z0 plane, which is significant
due to its potential for aiding the direct observation of
cosmic strings. On performing the integrals, t and ϕ can be
expressed as functions of ρ in closed forms through the
Euler-Gauss hypergeometric function,

t ¼ P
1 − 2σ

��
ρ

P

�
1−2σ

2F1

�
1

2
;−

1 − 4σ þ 4σ2

2 − 8σ
;
1 − 4σ − 4σ2

2 − 8σ
;

A2

Δ2P2

�
ρ

P

�
−2−8σ
1−2σ

��
ρ

ρ0

; ð12aÞ

ϕ ¼ ϕ0 −
ð1 − 2σÞA

ð1 − 4σ − 4σ2ÞPΔ
��

ρ

P

�
−1−4σ−4σ2

1−2σ

2F1

�
1

2
;
1 − 4σ − 4σ2

2 − 8σ
;
3 − 12σ − 4σ2

2 − 8σ
;

A2

Δ2P2

�
ρ

P

�
−2−8σ
1−2σ

��
ρ

ρ0

: ð12bÞ

Another important case resulting in a solution in terms of
a well-known function is that of zero angular momentum
with a nonzero axial momentum, leading to the motion of a
massless particle entirely confined to the plane ϕ ¼ ϕ0.
This solution provides a graphic connection between the
radial and axial motion of the particle, which, in turn,
provides insights into the gravitational strength of the
cosmic string. This might allow us to measure the
gravitational strength of an observable cosmic string by

observing the accreting photons in its local vicinity moving
through gas clouds. Similar to the case of zero axial
momentum, the solution to this one can also be written
in a closed form using the Euler-Gauss hypergeometric
function. As one might expect, both solutions to the special
cases A ¼ 0 [given in (12a) and (12b)] and B ¼ 0 (given
below) reduce to the same expression when these con-
ditions hold simultaneously,4

t ¼ P
1 − 2σ

��
ρ

P

�
1−2σ

2F1

�
1

2
;
1 − 4σ þ 4σ2

8σ − 8σ2
;
1þ 4σ − 4σ2

8σ − 8σ2
;
B2

Δ2

�
ρ

P

�8σ−8σ2
1−2σ

��
ρ

ρ0

; ð13aÞ

z ¼ z0 þ
ð1 − 2σÞPB

ð1þ 4σ − 4σ2ÞΔ
��

ρ

P

�1þ4σ−4σ2
1−2σ

2F1

�
1

2
;
1þ 4σ − 4σ2

8σ − 8σ2
;
1þ 12σ − 12σ2

8σ − 8σ2
;
B2

Δ2

�
ρ

P

�8σ−8σ2
1−2σ

��
ρ

ρ0

: ð13bÞ

4Due to the fact that 2F1ðp; q; r; 0Þ ¼ 1 for all p; q; r∈N.

DIP, ANJUM, AHMED, and ZUMARRADAH PHYS. REV. D 110, 064040 (2024)

064040-4



C. Series solution to the geodesic equations

The complete, exact solution by quadrature to the
massive particle geodesics presented in Eqs. (8a)–(8c)
and to the massless particle geodesics presented in
Eqs. (11a)–(11c) is enough to extract all of the necessary
information about the motion in Levi-Civita spacetime.
However, one might want to explore the nature of the
functions presented in Eqs. (8a)–(8c) and (11a)–(11c) to a

greater extent. It will allow us to understand not only the
motion in Levi-Civita spacetime but also its connection to
similar motions in other settings.
In order to explore the nature of the functions in

Eqs. (8a)–(8c) and (11a)–(11c), we need to expand the
functions into a series. To achieve that goal, we reduce the
integrals in Eqs. (8a)–(8c) and (11a)–(11c) to a common
format and define it as a function κða; b;p; q; r; xÞ,

κða; b;p; q; r; xÞ ¼
Z

x

0

ð1 − xp − axq − bxrÞ−1
2dx

¼
X∞
k¼0

X
k1;k2;k3

�
− 1

2

k

� ð−1Þkδkk1þk2þk3
ak2bk3k!

ð1þ pk1 þ qk2 þ rk3Þk1!k2!k3!
x1þpk1þqk2þrk3 : ð14Þ

In Eq. (14), we have expanded the integrand using
multinomial expansion and performed the integration term-
wise, obtaining a series expansion for the function
κða; b;p; q; r; xÞ. In the expansion, k; k1; k2, and k3 are all
positive integers and range from 0 to ∞. Furthermore,
δkk1þk2þk3

ensures that the relation k ¼ k1 þ k2 þ k3 is
satisfied for each of those terms in the sum. Using the integral
definition and the series expansion of κða; b;p; q; r; xÞ, one
can find relevant properties of the function.

The solutions by quadrature for the massive particle
geodesics in Eqs. (8a)–(8c) can easily be expressed using
the definition of the κða; b;p; q; r; xÞ function, as we show
below. It is worth mentioning that both the integral
expressions and the series expansions are equivalent when
pursuing numerical methods to generate trajectories, and
ultimately choosing one of these methods boils down to a
matter of preference:

t ¼ P
1 − 2σ

�
A
ΔP

�1−4σþ4σ2

1−4σ
�
κ

�
B2

Δ2

�
A
ΔP

�8σ−8σ2
1−4σ

;
1

Δ2

�
A
ΔP

� 4σ
1−4σ

; � � �

−
2 − 8σ

1 − 4σ þ 4σ2
;

8σ − 8σ2

1 − 4σ þ 4σ2
;

4σ

1 − 4σ þ 4σ2
;

�
A
ΔP

�
−1−4σþ4σ2

1−4σ
�
ρ

P

�
1−2σ

��
ρ

ρ0

; ð15aÞ

ϕ ¼ ϕ0 −
PBð1 − 2σÞ

Δð1 − 4σ − 4σ2Þ
�

A
PΔ

�1þ4σ−4σ2
1−4σ

�
κ

�
B2

Δ2

�
A
ΔP

�8σ−8σ2
1−4σ

;
1

Δ2

�
A
ΔP

� 4σ
1−4σ

; � � �

−
2 − 8σ

1 − 4σ − 4σ2
;−

8σ − 8σ2

1 − 4σ − 4σ2
;−

4σ

1 − 4σ − 4σ2
;

�
A
ΔP

�1−4σ−4σ2
1−4σ

�
ρ

P

�
−1−4σ−4σ2

1−2σ
��

ρ

ρ0

; ð15bÞ

z ¼ z0 þ
PBð1 − 2σÞ

Δð1þ 4σ − 4σ2Þ
�

A
PΔ

�1þ4σ−4σ2
1−4σ

�
κ

�
B2

Δ2

�
A
ΔP

�8σ−8σ2
1−4σ

;
1

Δ2

�
A
ΔP

� 4σ
1−4σ

; � � �

−
2 − 8σ

1þ 4σ − 4σ2
;

8σ − 8σ2

1þ 4σ − 4σ2
;

4σ

1þ 4σ − 4σ2
;

�
A
ΔP

�
−1þ4σ−4σ2

1−4σ
�
ρ

P

�1þ4σ−4σ2
1−2σ

��
ρ

ρ0

: ð15cÞ

On the other hand, to find the series expansion of the
solution for the massless particle in Eqs. (11a)–(11c), one
can use the same set of equations as for the massive
particles in Eqs. (15a)–(15c) except substituting b ¼ 0 and
r ¼ 0 into κða; b;p; q; r; xÞ appearing in the equations for
t, ϕ, and z.

D. Weak gravitational field limit

Another interesting scenario one might want to explore is
that when the mass parameter σ is sufficiently small,
leading to a weak gravitational field. For all causal geo-
desics having σ ≪ 1, the mass density μ in Eq. (2) can be
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approximated as μ ≈ σ
1−2σ, since the parameter σ is bounded

by 1=2 from above in such cases. As a result, the
Newtonian gravitational potential Φ for an infinitely long
linear mass distribution can be written as

Φ ¼ 2σ

1 − 2σ
ln

�
ρ

R

�
; ð16Þ

where the linearmass densityμ is approximated asmentioned
above and ρ ¼ R is the surface on which the gravitational
potential is taken to be zero, for an arbitrarily chosen R.
On theother hand, themetric tensor itself canbe interpreted

as the potential for the general-relativistic case. To see a
connection between the Newtonian gravitational potential
and the metric tensor in general relativity, one might expand
ds2ðet; etÞ considering the weak gravitational field limit,
where et is the coordinate basis vector along the coordinate t.
Upon expansion, ds2ðet; etÞ ≈ −ð1þ 2ΦÞ is expected,
ignoring the second- and higher-order corrections [40].
Considering the metric tensor in Eq. (4), we write

ds2ðet; etÞ ¼ −
�
1þ 4σ

1 − 2σ
ln

�
ρ

P

�

þ 1

2

�
4σ

1 − 2σ
ln

�
ρ

P

��
2

þ � � �
�
: ð17Þ

The quadratic and higher-order terms can be ignored as
4σ

1−2σ ≈ 4σ in the limit σ → 0. Indeed, it can be seen that
ds2ðet; etÞ ≈ −ð1þ 2ΦÞ if we choose R ¼ P. This corre-
spondence allows us to interpret P, the parameter related to
the “deficit angle” of the Levi-Civita spacetime, to be the
radius of the cylindrical surface on which the Newtonian
gravitational potential is taken to be zero.
As demonstrated above, for small σ, there exists a

correspondence between the Levi-Civita spacetime and
the Newtonian gravitational field generated by an infinitely
long straight mass distribution. Consequently, the respec-
tive motions of a massive particle coincide as well, in the
appropriate limit, i.e., σ ≪ 1.

III. BOUNDEDNESS OF ORBITS

Long before the birth of general relativity, Newton found
the exact solution to the motion of a bounded point particle
moving in spherically symmetric Newtonian gravity to be
an ellipse, consistent with Kepler’s empirical laws of
planetary motion. A key insight for all of the bounded
orbits, including those in Schwarzschild geometry, is that
the radial coordinates describing the motions are always
bounded between a minimum and a maximum value.
Extending a similar investigation for the geodetic motion
in Levi-Civita spacetime, we have seen that the radial
coordinate ρ describing the motion is bounded between a
lower limit ρ and an upper limit ρ̄ as well. To show this, we
rewrite Eq. (6) in terms of conserved momenta and set
B ¼ 0 to get the equation in the z ¼ z0 plane. In addition,
we set the radial velocity to zero and obtain

ρ2 − Δ2ρ2
�
ρ

P

�
− 4σ
1−2σ þ A2 ¼ 0; ð18Þ

which determines the extrema of the radial coordinate. This
is a transcendental equation, which can be solved either
graphically or numerically. To graphically see that the
radial coordinate ρ is bounded between a lower limit
and an upper limit, we plot the function f, defined by
fðρ;A;Δ;σ;PÞ≔ ρ2 −Δ2ρ2ðρ=PÞ− 4σ

1−2σ þA2, against ρ with
physically attainable parameter values and a horizontal line
defined by hðρÞ ¼ 0.
In Fig. 2, apparently Eq. (18) has two distinct solutions

given by the intersection points between the plots of
fðρ;A;Δ; σ; PÞ and hðρÞ.
On the other hand, it is instructive to find numerical

solutions to Eq. (18) and obtain ρ and ρ̄. To obtain the lower
limit ρ, we rewrite Eq. (18) as ρ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2ðρ=PÞ− 4σ
1−2σ−1

p and apply

the fixed-point iteration technique to obtain an approximate
solution for ρ, using ρ0 as the initial value solution. This is
because, for the fixed-point iteration technique, ρ is a fixed
point, i.e., a stable point and for any initial value that lies
between ρ and ρ̄ the iteration converges to ρ. However,

FIG. 2. fðρ;A;Δ; σ; PÞ plots intersect the hðρÞ ¼ 0 line twice,
showing the existence of a lower limit ρ and an upper limit ρ̄ of
the radial coordinate. (a) Varying σ keeping A ¼ 1;Δ ¼ 1.5, and
P ¼ 1. (b) Varying Δ keeping A ¼ 1; σ ¼ 0.2, and P ¼ 1.
(c) Varying A keeping Δ ¼ 1.5; σ ¼ 0.2 and P ¼ 1. (d) Varying
P keeping A ¼ 1;Δ ¼ 1.5, and σ ¼ 0.2.
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for ρ̄, this method fails as the iteration diverges away from
the point. In such a case, other iteration techniques, such as
the secant method, can be employed.

A. Absence of unbounded solution

A key feature of the Levi-Civita spacetime is that the
orbit of a massive point particle is always bounded, unlike
the trajectory in Schwarzschild spacetime. This can be
proven quite generally from the fact that the function
fðρ;A;Δ; σ; PÞ increases unboundedly as the radial coor-
dinate increases and has only one minimum, while no
maximum occurs except at ρ ¼ 0. Therefore, for all
physically valid values of A and Δ, Eq. (18) always has
two distinct solutions, ρ and ρ̄ (excepting the circular orbits
where ρ ¼ ρ̄), and the radial coordinate oscillates between
these two points. This proves that the radial coordinate is
always bounded from above by ρ̄, leading to a bounded
orbit of a massive particle for all physically valid initial
conditions.
This behavior persists in the orbit of a massive particle

moving in a Newtonian gravitational field, generated by an
infinitely long linear mass distribution. As can be seen from
Eq. (16), the potential Φ also increases unboundedly due to
its logarithmic nature. For this reason, a particle moving in
it would require an infinite amount of energy to escape
from the gravitational pull.

IV. CLASSIFICATION OF ORBITS

Even though the motion of a massive particle confined to
the plane z ¼ z0 is significant for astrophysical observa-
tions, the solution for this case in terms of elementary
functions is yet to be found. This is why it is worth
resorting to numerical procedures. However, it is difficult to
extract general characteristics of orbits from numerical
solutions, which could have been readily found from a
complete, exact solution expressed in terms of well-known

functions if they were available. To mitigate the situation,
we need to categorize the orbits depending on their
properties. The goal of this section is to categorize different
orbits based on their visual appearances and lay out a
system that assigns a set of unique identification parameters
to each type of orbit. To identify an orbit uniquely, only
three real numbers ðC; ϵ; γÞ are required, which we dem-
onstrate in Sec. IVA. Based on these parameters, we lay out
a detailed categorization scheme in Sec. IV B.

A. Background of the classification scheme

Point particles moving in Schwarzschild spacetime
follow precessing elliptical orbits [41]. This is formally
shown in Appendix C. As proven earlier, orbits of massive
point particles in Levi-Civita spacetime are also bounded
between the periastron at ρ ¼ ρ and the apastron at ρ ¼ ρ̄;
thus, one might hypothesize that their planar geodetic
motion can be approximated to be precessing ellipses as
well. In order to see this, we make a number of apt
approximations to Eq. (8b) considering B ¼ 0, σ ≪ 1, and
jρ=ρj < 1. Beginning with the integral in Eq. (8b) with
B ¼ 0, we expand the integrand retaining up to quadratic
terms in both σ and jρ=ρj. This allows us to perform the
integration, resulting in the following closed-form formula
for trajectory in the z ¼ z0 plane:�

ρ

ρ

�
1−η

¼ C
1 − ϵ cos½γðϕ − δÞ� ; ð19Þ

where C, ϵ, γ, and δ are dimensionless quantities (given
by the formulas below) that carry information about the
size, eccentricity, precession rate, and phase shift of the
orbit. These parameters are dependent on the initial con-
ditions. On the other hand, the parameter η is dependent
on the spacetime itself. For Levi-Civita spacetime, it
is η ¼ 2σ þ 8σ2,

C ¼
�
4σρ2 þ 8σ2A2 þ 24σ2ρ2 þ 16σ2ρ2 ln

�
ρ

P

��
−1

×

�
A2 þ 2σρ2 þ 4σA2 ln

�
ρ

P

�
þ 12σ2A2 þ 16σ2ρ2 þ 8σ2A2 ln

�
ρ

P

�
þ 8σ2ρ2 ln

�
ρ

P

�
þ 8σ2A2ln2

�
ρ

P

��
; ð20aÞ

ϵ ¼
�
4σρ2 þ 24σ2ρ2 þ 8σ2A2 þ 16σ2ρ2 ln

�
ρ

P

��
−1

×

�
Δ2A2ρ2 − A2ρ2 þ 2σΔ2ρ4 − 2σρ4 − 6σA2ρ2 þ 4σΔ2A2ρ2 ln

�
ρ

P

�
þ 4σΔ2A2ρ2 ln

�
ρ

P

�
− 8σA2ρ2 ln

�
ρ

P

�

− 4σ2A4 þ 16Δ2ρ4σ2 − 12ρ4σ2 þ 12Δ2σ2A2ρ2 − 44σ2A2ρ2 þ 8Δ2σ2ρ4 ln

�
ρ

P

�
− 16σ2ρ4 ln

�
ρ

P

�

þ 8Δ2σ2A2ρ2 ln

�
ρ

P

�
− 64σ2A2ρ2 ln

�
ρ

P

�
þ 8Δ2σ2A2ρ2ln2

�
ρ

P

�
− 32σ2A2ρ2 ln

�
ρ

P

��1
2

; ð20bÞ
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γ ¼
�
1 − 4σ − 4σ2

1 − 2σ

�
×

�
1þ 2σ

ρ2

A2
þ 12σ2 þ 16σ2

ρ2

A2
− 8σ2 ln

�
ρ

P

��1
2

; ð20cÞ

δ ¼ ϕ0 −
1

γ
arccos

�
1

ϵ
−
C
ϵ

�
ρ

ρ0

�
1−η

�
: ð20dÞ

It is evident from Eq. (19) that the trajectory approx-
imately follows a precessing elliptical orbit. We also notice
that the shape of the trajectory is uniquely determined by
only three of the parameters, namely C, ϵ, and γ. This is
because the parameter δ can always be set to zero by a mere
rotation with respect to the z axis.
The parameter C determines the size of the orbit. An

important thing to notice in Eq. (20a) is that C goes to
infinity as σ approaches zero. This is reasonable since
σ ¼ 0 represents the complete absence of the matter
distribution, leading to a straight-line trajectory. Another
important parameter characterizing the orbit is its eccen-
tricity ϵ, such that 0 ≤ ϵ < 1 for a spacetime with a nonzero
σ. In such a spacetime, the orbit of a massive particle is
always bounded between ρ ¼ ρ and ρ ¼ ρ̄, as we proved in
Sec. III A. From this, one concludes that the orbit must have
an eccentricity that is always less than 1.
Out of the four parameters of the trajectory, γ is the most

important one for our purpose since it determines the rate of
precession and consequently the number of “petals.”
However, for a closed orbit, γ must be a rational number.
For an irrational γ, the orbit never closes and the trajectory
keeps filling out a circular area as time increases. Hence,
simply counting the number of “petals” loses its meaning.
In Sec. IV B, we lay out a classification scheme that is
practical and incorporates all possible orbits.

B. Classification scheme

It is apparent from Eq. (20) that the parameters C, ϵ, and
γ contain all of the information regarding an orbit in the
z ¼ z0 plane. The parameter C defines the size of the orbit,
and the parameter ϵ defines the eccentricity of the orbit. A
rather interesting one is the parameter γ. Depending on its
value, an orbit can be a closed or an ever-precessing one.
Tweaking its value, one can even change the number of
“petals” in a closed orbit. Figure 3 shows two examples of
possible orbits of massive particles in Levi-Civita space-
time. The first one is a closed orbit with three petals and the
second one is a precessing orbit with six petals. Therefore,
given enough time (t ≈ 28 300), the trajectory will start to
fill the localized region between ρ and ρ̄. Before discussing
the categorization scheme, we need to define a few terms.
Let us use the orbits shown in Fig. 4 as specimens to aid

our discussion. Both orbits have what we call three “leaves”
or “petals.” To demonstrate, we number the petals of the
closed orbit in Fig. 4(a), starting from 0 in the counter-
clockwise direction. In Fig. 4(b), a three-petal orbit is

precessing and we plot three complete traces of the orbit.
We call each trace a “corolla” and number them starting
from 0, based on their chronology. In the diagram, the solid,
the dashed, and the dotted lines represent corolla 0,
corolla 1, and corolla 2, respectively. This procedure of
assigning an ordered pair of numbers to identify a petal of a
corolla can be generalized to any such orbits, as is done in
Fig. 5(a). The first number of the pair denotes the corolla
and the second denotes the petal in that corolla. We call the
petals that share the same corolla [e.g., (1, 0) and (1, 2)]
“sisters” and petals that share the same second number
[e.g., (1, 1) and (2, 1)] “clones” of each other.
At this point, it is natural to ask for a criterion that

makes the distinction between sister petals and their clones.

FIG. 3. Particle moving in Levi-Civita spacetime exhibiting
closed and precessing trajectories. (a) A closed orbit with three
petals in spacetime with ðσ; PÞ ¼ ð0.001; 1Þ. (b) A precessing
orbit with six petals in spacetime with ðσ; PÞ ¼ ð0.1; 1Þ.

FIG. 4. A closed and a precessing orbits with three petals.
(a) A corolla with three petals of a closed orbit. (b) Three corollas
of a precessing orbit.
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Our definition goes like this. If, for a set of chronologically
consecutive petals, all of the intersection points between
any two petals fall inside of a circle defined by ρ ¼ λρ̄, for
some λ∈ ½0; 1�, the petals are sisters for that chosen λ. The
maximal set of sister petals makes a corolla. A petal in a
corolla is said to be a clone of a petal in a preceding corolla
if the mentioned petals share an intersection point that lies
the farthest from the origin, among all of the intersection
points in the said consecutive corollas.
For instance, in Fig. 5(b) we chose λ ¼ 0.9, and therefore

the corresponding circle ρ ¼ λρ̄ (dash-dotted curve) in the
figure portrays a circle with a radius of 90% of the peak
radial coordinate ρ̄. In the figure, the orbit starts with the
petal (0, 0), which is then followed by the petals (0, 2) and
(0, 1). This three petals are sisters, as any intersection point
(for example, the points A, B, and C) between these petals
remains inside the dash-dotted circle. The set of (0, 0),
(0, 1), and (0, 2) also make a corolla, as the chronologically
fourth petal (1, 0) has an intersection point (point D) that
falls outside of the dash-dotted circle. In Fig. 5(b), since D
is the farthest from the origin among all of the intersection
points, the petal (1, 0) is a clone of (0, 0).
Finally, armed with a precise definition of a corolla, we

are ready to lay out the desired categorization scheme. We
split the orbit parameter γ in Eq. (19) such that

γ ¼ m − χ

n
ð21Þ

where m and n are positive coprime integers and χ is a real
number on the interval ð−1; 1Þ. A quick inspection reveals
thatm is the number of petals in a corolla, n is the “winding
number,” i.e., the number of complete rotations a massive
particle makes around the cosmic string during the course
of a single corolla, and χ is a small number that represent
the “rate of precession” of a corolla. If χ ¼ 0 for the orbit,
we refer to its corolla as “closed,” meaning that it is not
precessing. It is worth mentioning that an orbit with a
closed corolla is always closed, but the converse is not true.
Evidently, the numbersm, n, and χ for a given orbit depend

on, but are not sensitive to, the choice of λ.5 We discuss the
dependence of the orbit parameters on the parameter λ in
detail in Appendix D.
Throughout this article, we have chosen λ ¼ 0.9. One

can pick a higher or a lower value of λ for convenience. To
avoid ambiguity, one must mention the λ parameter of their
classification scheme. For example, we call our classifica-
tion scheme a “90% level classification scheme.”
In Fig. 6, both orbits have closed corollas with four

petals each, as they have m ¼ 4. However, the one in
Fig. 6(a) makes three full rotations around the center before
it reaches its initial position as it has n ¼ 3. Right after
leaving the petal 0, the particle in Fig. 6(a) skips two petals
and traces out petal 3 directly. On the other hand, the orbit
in Fig. 6(b) has n ¼ 5 and makes five full rotations before
reaching the initial position. After leaving petal 0, the
particle makes a full rotation around the center and reaches
petal 1. In the course of going from petal 0 to petal 1, the
particle skips four petals. It is impossible to have an orbit of
four petals in which the particle skips one petal after
leaving petal 0 and enters petal 2 directly because, in that
situation, the particle would enter petal 0 after leaving
petal 2, which would make it a closed orbit of two
petals only.
Similarly, in Fig. 7 all of the orbits have m ¼ 5 and

therefore have five petals each. However, they differ in n.
The orbits in Figs. 7(a)–7(c) have n ¼ 4, n ¼ 7, and n ¼ 9,
respectively. We observe that, for any orbit, right after
leaving petal 0, the particle directly enters in and traces out
petal n mod m.
There is one more property that could make two

closed orbits visually different: the number of extra full
rotations the particle makes during the transition from one
petal to another. Both particles in Figs. 7(a) and 7(c) enter
petal 4 after leaving petal 0. But the particle in Fig. 7(c)
makes an extra 2π rotation around the center before
entering petal 4. It can be easily seen that the number of

FIG. 6. Closed orbits with four petals. (a) γ ¼ 4=3. (b) γ ¼ 4=5.FIG. 5. Identification of a corolla in a precessing orbit.
(a) Scheme for numbering petals in an orbit. (b) Distinguishing
sister petals from their clones.

5A finitely small change in λ results in a finitely small change
in the orbit parameters [42].
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extra full rotations w is related to m and n by the relation
n ¼ ðwþ 1Þmþ n mod m.
Finally, consider the orbit in Fig. 7(d). The orbit is,

essentially, that in Fig. 7(a) with a small precession.
Starting at point A, the particle traces out five petals and
ends up at pointB, creating an angular separationΔϕwith its
starting point A. For any orbit, one can show that the angular
separation is related to the parameter χ by the relation

Δϕ ¼ 2πn
m − χ

χ ð22Þ

using Eqs. (19) and (21). For an orbit, a parameter χ ¼ 0
leads to a zero angular separation between the end points,
leaving a closed trace. Therefore, the parameter χ measures
how badly a corolla in a given orbit fails to close.
So far, we have discussed the geometric interpretations

of the parameters C, ϵ, m, n, and χ. These parameters are
sufficient to identify any orbit around an infinitely long,
straight cosmic string. Therefore, in our classification
scheme, we assign a unique quintuple ðC; ϵ; m; n; χÞ to
each orbit. One might suppress the first two numbers and
write the triplet ðm; n; χÞ only if the size and eccentricity of
the orbits are not the parameters of interest.
The classification scheme we have laid out here is

inspired by the 2008 work of Levin and Perez-Giz [43].
In their article, Levin and Perez-Giz laid out a scheme that
categorizes the orbits around a black hole according to the
geometric shapes of the orbits. They used three numbers, z,
w, and v, to identify “zoom” or the number of petals,

“whirl” or the extra complete rotations per petal the particle
makes, and the petal number that the particle hits right
after leaving petal 0, respectively. It is apparent from the
discussions above that the parameters for closed orbits
ðz; w; vÞ by Levin and Perez-Giz are related to our
parameters m and n by the relations

z ¼ m; ð23aÞ

w ¼ 1

m
ðn − nmodmÞ − 1; ð23bÞ

v ¼ nmodm: ð23cÞ
Equations (23a)–(23c) show that only two parameters

are enough to express the information contained in the
parameters z, w, and v. Another limitation of the classi-
fication scheme developed by Levin and Perez-Giz is that it
would label two visually similar orbits far from each other.
For example, the orbits in Figs. 7(a) and 7(d) have γ ≈ 1.25
and γ ≈ 1.2396734, respectively. The classification scheme
of Levin and Perez-Giz would label the first one as (5, 0, 4)
and the second one as (6198367, 0, 1198367). It is also
prone to truncation errors. On the other hand, our classi-
fication scheme labels the orbits in Figs. 7(a) and 7(d) as
(5, 4, 0) and (5, 4, 0.0413065), respectively, when the first
two parameters are suppressed. For categorizing astronom-
ically observable ellipse-like orbits, our classification
scheme might prove to be useful as it labels the visually
similar orbits with labels (i.e., orbit parameters) that differ
by small amounts only.

V. EXAMPLES OF MASSIVE PARTICLE ORBITS

In this section, we explore the orbits of massive particles
in Levi-Civita spacetime graphically. In Figs. 8–10 we see
48 orbits in total. The list includes orbits as simple as an
ellipse to orbits with many petals and whirls. In these
figures, the images in the first and third columns are of
closed orbits, whereas those in the second and fourth
columns are of orbits with small precession.
Observing the images in Figs. 8–10, we make few

qualitative inferences regarding the orbit parameters. We
begin our discussion by analyzing the eccentricity of the
orbits. In Figs. 8(a), 8(c), and 8(e) we see three one-petal
orbits with increasing winding numbers n. The orbits in the
mentioned images have eccentricities 0.73, 0.738, and 0.8,
respectively. This means that the orbit in Fig. 8(c) is slightly
more eccentric than the one in Fig. 8(a), and the one in
Fig. 8(e) is even more eccentric. Despite this, the orbit in
Fig. 8(a) “looks”more eccentric than the orbits in Figs. 8(c)
and 8(e). This is because the orbits in Figs. 8(c) and 8(e)
make one and two extra rotations before closing. Generally,
orbits with the same eccentricity but higher winding
numbers look more round-shaped than those with lower
n values. This behavior is seen in all of the later orbits
as well.

FIG. 7. Orbits with five petals. (a) γ ¼ 5=4. (b) γ ¼ 5=7.
(c) γ ¼ 5=9. (d) γ ≈ 1

4
ð5 − 0.0413065Þ.
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FIG. 8. Examples of massive particle orbits in Levi-Civita spacetime I. (a) ð27; 0.73; 1; 1; 0Þ. (b) ð32.5; 0.675; 1; 1; 0.01024Þ.
(c) ð25; 0.75; 1; 2; 0Þ. (d) ð26.2; 0.738; 1; 2; 0.005392Þ. (e) ð20; 0.8; 1; 3; 0Þ. (f) ð22; 0.78; 1; 3; 0.014784Þ. (g) ð17.5; 0.825; 2; 3; 0Þ.
(h) ð15.8; 0.842; 2; 3;−0.013078Þ. (i) ð10.3; 0.897; 2; 5; 0Þ. (j) ð10.5; 0.895; 2; 5; 0.028316Þ. (k) ð20.3; 0.797; 3; 2; 0Þ.
(l) ð28.3; 0.717; 3; 2; 0.046172Þ. (m) ð14.5; 0.855; 3; 4; 0Þ. (n) ð14; 0.86; 3; 4;−0.010714Þ. (o) ð26.5; 0.735; 3; 5; 0Þ.
(p) ð25; 0.75; 3; 5;−0.01738Þ.
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Another general behavior of massive particle orbits in
Levi-Civita spacetime that we observed is that the γ
parameter of an orbit decreases as the spacetime parameter
σ increases. Furthermore, increasing the initial azimuthal

momentum decreases the γ parameter as well. These two
behaviors are of significant interest as they can be used to
generate orbits with desired numbers of petals and winding
numbers.

FIG. 9. Examples of massive particle orbits in Levi-Civita spacetime II. (a) ð13.1; 0.869; 3; 7; 0Þ. (b) ð12.9; 0.871; 3; 7;−0.01365Þ.
(c) ð25.4; 0.745; 4; 3; 0Þ. (d) ð28.5; 0.715; 4; 3; 0.02556Þ. (e) ð7.5; 0.925; 4; 5; 0Þ. (f) ð8; 0.92; 4; 5; 0.027323Þ. (g) ð23.7; 0.763; 4; 7; 0Þ.
(h) ð23.6; 0.764; 4; 7;−0.01104Þ. (i) ð11; 0.89; 4; 9; 0Þ. (j) ð11.1; 0.889; 4; 9; 0.011752Þ. (k) ð13.5; 0.865; 5; 4; 0Þ.
(l) ð14.8; 0.852; 5; 4; 0.022983Þ. (m) ð12.6; 0.874; 5; 6; 0Þ. (n) ð12.95; 0.8705; 5; 6; 0.01039Þ. (o) ð19.55; 0.8045; 5; 7; 0Þ.
(p) ð19.7; 0.803; 5; 7; 0.011116Þ.
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For an orbit with a closed corolla, a small increment of
the parameter γ introduces a small clockwise precession to
the orbit. This is why increasing σ or A a little bit produces
a small counterclockwise precession of the orbit. One can

use this property to produce closed orbits by “fine-tuning”
the precessing ones.
Raising the spacetime parameter σ to a higher value leads

to a sufficiently small value of γ, for which the winding

FIG. 10. Examples of massive particle orbits in Levi-Civita spacetime III. (a) ð5.4; 0.946; 5; 8; 0Þ. (b) ð5.5; 0.945; 5; 8; 0.0057942Þ.
(c) ð8.3; 0.917; 5; 9; 0Þ. (d) ð8.4; 0.916; 5; 9; 0.016061Þ. (e) ð19.5; 0.805; 5; 11; 0Þ. (f) ð19.4; 0.806; 5; 11; 0.011862Þ.
(g) ð14.7; 0.853; 5; 12; 0Þ. (h) ð14.8; 0.852; 5; 12; 0.005258Þ. (i) ð30.5; 0.695; 6; 5; 0Þ. (j) ð30.2; 0.698; 6; 5; 0.0057664Þ.
(k) ð25.8; 0.742; 6; 7; 0Þ. (l) ð26.1; 0.739; 6; 7; 0.005057Þ. (m) ð13.8; 0.862; 6; 11; 0Þ. (n) ð13.7; 0.863; 6; 11; 0.011192Þ.
(o) ð9.1; 0.909; 6; 13; 0Þ. (p) ð9; 0.91; 6; 13; 0.0028481Þ.
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number n of an orbit is much bigger than the number of
petalsm of that orbit. In that situation, the particle can make
one or more extra rotations around the cosmic string during
its course from one petal to another. These kinds of orbits
are collectively known as “zoom-whirl orbits” for their
zooming and whirling behavior. For example, the orbits in
Figs. 8(c) and 8(e) are single-petal zoom-whirl orbits. The
zoom-whirl orbits are “strong gravity phenomena” as they
require higher values of the spacetime parameter σ.

VI. COMPARISON BETWEEN NEWTONIAN
AND RELATIVISTIC ORBITS

In Sec. II C, we demonstrated that the gravitational field
generated by a cosmic string matches with the gravitational

field of its Newtonian counterpart in the weak-field limit,
σ ≪ 1. In this section we explore the orbits of massive
particles moving in the Newtonian gravitational field of an
infinitely long linear mass distribution. We begin our
discussion by deriving the complete, exact solution by
quadrature to the equation of motion of a point particle
around a Newtonian linear mass distribution. Considering
the Newtonian gravitational potential of a linear mass
distribution, we write the Hamilton-Jacobi equation for
the system in cylindrical coordinates. Following the stan-
dard procedure [44], we obtain the following general
integral solution to the equations of motion for the point
particle:

t ¼
Z

ρ

ρ0

�
2Δ − A2ρ−2 − B2 −

4σ

1 − 2σ þ 4σ2
ln

�
ρ

R

��
−1
2

dρ; ð24aÞ

ϕ ¼ ϕ0 þ A
Z

ρ

ρ0

ρ−2
�
2Δ − A2ρ−2 − B2 −

4σ

1 − 2σ þ 4σ2
ln

�
ρ

R

��
−1
2

dρ; ð24bÞ

z ¼ z0 þ B
Z

ρ

ρ0

�
2Δ − A2ρ−2 − B2 −

4σ

1 − 2σ þ 4σ2
ln

�
ρ

R

��
−1
2

dρ: ð24cÞ

Similar to the case of a massive particle in Levi-Civita
spacetime in Eqs. (8a)–(8c), we have used the initial
coordinates ρ0, ϕ0, and z0, the conserved momentum
conjugate to the ϕ coordinate A, the conserved momentum
in the z coordinate B, and the total energy Δ as constants of
motion in the final integral solution in Eqs. (24a)–(24c).
However, one might want to write the integral solution in
Eqs. (24a)–(24c) in terms of Γ, the initial value of the
momentum conjugate to the radial coordinate, using the
relation

Γ ¼
�
2Δ −

A2

ρ0
2
− B2 −

4σ

1 − 2σ þ 4σ2
ln

�
ρ0
R

��1
2

; ð25Þ

instead of Δ; doing so will be useful for running numerical
routines that take Γ as initial data, rather than Δ.
The Newtonian gravitational potentialΦ for an infinitely

long linear mass distribution is unbounded from above and
goes to infinity as the radial coordinate increases, implying
that the motion of a point particle around it is always
bounded, like its relativistic counterpart. As a result, in the
z ¼ z0 plane, the trajectory of a point particle around a
Newtonian linear mass distribution always remains on a
washer, defined by ρ < ρ < ρ̄, where ρ and ρ̄ are the lower
and upper limits of the radial coordinate, respectively. To
see this, one starts with the Hamilton-Jacobi equation of the
system in cylindrical coordinates and rewrites it in terms of
the conserved energyΔ and conserved momenta A and B of

the motion. Then, setting the momentum conjugate to the
radial coordinate and B to zero, one gets

4σ

1 − 2σ þ 4σ2
ln

�
ρ

R

�
ρ2 − 2Δρ2 þ A2 ¼ 0: ð26Þ

Equation (26) is the Newtonian analog of Eq. (18).
The coordinate ρ in Eq. (26) has two distinct solutions, like
its relativistic counterpart. To show this graphically, we
define gðρ;A;Δ; σ; RÞ ≔ 4σ

1−2σþ4σ2
lnðρRÞρ2 − 2Δρ2 þ A2 and

plot it against gðρ;A;Δ; σ; RÞ. In Fig. 11, we can see that the

FIG. 11. gðρ;A;Δ; σ; RÞ plots intersect the hðρÞ ¼ 0 line twice,
showing the existence of a lower limit ρ and an upper limit ρ̄ of
the radial coordinate. (a) Varying σ keeping A ¼ 1;Δ ¼ 1.5, and
R ¼ 1. (b) Varying Δ keeping A ¼ 1; σ ¼ 0.12, and R ¼ 1.
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horizontal line hðρÞ ¼ 0 intersects the curve of
gðρ;A;Δ; σ; RÞ twice, providing the two solutions to ρ.
We denote the smaller solution by ρ and the larger one by ρ̄.
This establishes the fact the radial coordinate ρ is bounded
between ρ ¼ ρ and ρ ¼ ρ̄, as mentioned earlier in Sec. III A.
We demonstrated in Sec. IVA that, in theweak-field limit,

the orbit of a massive particle in the z ¼ z0 plane in Levi-
Civita spacetime approximately follows a precessing ellip-
tical path. Naturally, the motion of a point particle around a
Newtonian linear mass distribution is expected to be a
precessing ellipse as well. To demonstrate this, we take
Eq. (24b) andmake approximations to it consideringB ¼ 0,
σ ≪ 1, and jρ=ρj < 1, leading to the exact closed-form
formula as in Eq. (19) with η ¼ 0. The parameters of the
orbit C, ϵ, γ, and δ are given by the relations

C ¼ 1

4σρ2
×

�
A2 þ 2σρ2 − 2σA2 þ 4A2σ2

�
; ð27aÞ

ϵ ¼ 1

4σρ2
×

�
2ΔA2ρ2 − 8σΔA2ρ2 − 6σA2ρ2

þ 4σΔρ4 − 4σA2ρ2 ln

�
ρ

R

�
þ 24σ2ΔA2ρ2

þ 12σ2A2ρ2 − 8σ2Δρ4 þ 4σ2ρ4

þ 8σ2A2ρ2 ln

�
ρ

R

�
− 8σ2ρ4 ln

�
ρ

R

��1
2

; ð27bÞ

γ ¼ ½1 − 2σ þ 4σ2�−1
2

×

�
1 − 2σ þ 2σ

ρ2

A2
þ 4σ2

�1
2

; ð27cÞ

δ ¼ ϕ0 −
1

γ
arccos

�
ρ0 − Cρ

ϵρ0

�
: ð27dÞ

Aswe discussed earlier for the case ofmassive particle orbits
in Levi-Civita spacetime, the parameters C, ϵ, and γ are

enough to uniquely determine the trajectory, whereas the
parameter δ can always be set to zero by a rotation of
coordinates around the z axis.Once again,C, ϵ, and γ contain
the information regarding the size, eccentricity, and pre-
cession rate of the orbit, respectively.
However, from Eqs. (20a)–(20d) and (27a)–(27d) it is

not apparent how the trajectory of a massive particle in
Levi-Civita spacetime matches with the trajectory of a point
mass around a Newtonian linear mass distribution in the
weak-field limit. To see the correspondence, we make
further approximations to Eqs. (20a)–(20d) and (27a)–(27d)
considering σ ≪ 1 and keep the terms containing the lowest
two powers in σ. We compare the results side by side in
Eqs. (28a)–(28f):

CN ≈
A2

4σρ2
þ 1

2
−

A2

2ρ2
; ð28aÞ

CR ≈
A2

4σρ2
þ 1

2
−
3A2

2ρ2
−

A4

2ρ4
; ð28bÞ

ϵN ≈
�
ΔA2

8σ2ρ2
þ Δ
4σ

−
3A2

8σρ2
−
A2 ln

	
ρ

R



4σρ2

−
ΔA2

2σρ2

�1
2

; ð28cÞ

ϵR ≈

2
64 Δ̃A2

8σ2ρ2
þ Δ̃
4σ

−
3A2

8σρ2
−
A2 ln

	
ρ

P



4σρ2

−
3Δ̃A2

2σρ2

þ
Δ̃A2 ln

	
ρ

P



2σρ2

−
Δ̃A4

2σρ4
−
Δ̃A2 ln

	
ρ

P



σρ2

3
75

1
2

; ð28dÞ

γN ≈ 1þ σ
ρ2

A2
; ð28eÞ

γR ≈ 1þ σ
ρ2

A2
− 2σ; ð28fÞ

FIG. 12. Massive particle moving in Levi-Civita spacetime
(left) and around a Newtonian linear mass distribution (right)
with parameter σ ¼ 0.0003. (a) ð80.8; 0.192; 3; 2; 0.1645Þ.
(b) ð80.8; 0.192; 3; 2; 0.1612Þ.

FIG. 13. Massive particle moving in Levi-Civita spacetime
(left) and around a Newtonian linear mass distribution (right)
with parameter σ ¼ 0.001. (a) ð35.8; 0.642; 3; 2; 0.07999Þ.
(b) ð35.8; 0.642; 3; 2; 0.06868Þ.
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where Δ̃ is defined by the relation Δ̃ ≔ 1
2
ðΔ2 − 1Þ. In the

equations above, the parameters of a particle’s orbit around a
Newtonian linear mass density are denoted by CN, ϵN , and
γN , whereas CR, ϵR, and γR are the parameters of a massive
particle’s orbit in Levi-Civita spacetime. It is apparent from
Eqs. (28a)–(28f) that the massive particle orbits in Levi-
Civita spacetime coincide with particle orbits around a
Newtonian linear mass density in the weak gravity limit,
as the corresponding orbit parameters match in the lowest
power of σ and start to deviate only when the terms with the
second lowest power in σ are considered. Finally, let us
compare the orbits graphically.
For any set of initial data, it is expected that the orbits of

massive particles in Levi-Civita spacetime will match the
orbits around a Newtonian linear mass distribution in the
weak gravitational field limit. Figure 12 shows a particle
moving in Levi-Civita spacetime (left) and a particle
moving around a Newtonian linear mass distribution
(right), where both particles have the same set of initial
data ðρ0;ϕ0; z0;Γ; A; BÞ ¼ ð100; 0; 0; 0; 2; 0Þ. For both
cases, the energy density parameter is set to σ ¼ 0.0001,
making strings the sources of weak gravitational fields. As
we can see, both particles in Fig. 12 follow effectively the
same trajectory, confirming Eqs. (28a)–(28f). However, the
orbits have a small deviation in their precession parameter
χ. The difference decreases even further for the weaker
gravitational sources.
Keeping the set of initial data unchanged, we increase the

parameter σ and set it to 0.001 in Fig. 13, which makes both
orbits more eccentric. However, the difference in the χ
values of the orbits becomes larger. Apparently, the χ value
for the orbit around the Newtonian linear mass density
changes more rapidly than that of the massive particle orbit
in Levi-Civita spacetime as σ changes. In Fig. 14 the σ
parameter is set to 0.003, without changing the initial data.
As a result, the orbits in Fig. 14 become more eccentric.
However, the orbit in Levi-Civita spacetime becomes
slightly more eccentric than the other one, and the χ value
continues to change more rapidly in the orbit around the

Newtonian linear mass density. All of these qualitative
observations are consistent with Eqs. (28a)–(28f).
Finally, in Fig. 15 we turn up the σ parameter even

further to 0.01, keeping the initial data fixed. At this point,
the parameter γ of the orbits becomes different enough to
break the visual similarity between the orbits.

VII. APPLICATIONS AND FUTURE WORKS

Our work potentially opens many doors for future works.
Unsurprisingly, the results may have definite implications
for corresponding observational works related to cosmic
strings and networks of them. There is room for future
theoretical works as well; for instance, further endeavours
can investigate the geodetic motions confined to the ϕ ¼ ϕ0

plane, i.e., particles with no initial angular momentum.
Similar analysis can be carried out for photon trajectories at
sufficient depth. All of these works can be extended to the
corresponding setting of Newtonian gravity.
The classification scheme developed in this article

can now be applied to orbits in spacetimes with differ-
ent characteristic symmetries, such as those of the
Schwarzschild and Kerr spacetimes. Another possible
extension to our work is to investigate the gravitational
radiation for highly eccentric orbits of massive and mass-
less particles around cosmic strings. Nonetheless, more
pathways for future works will unfold as more work is
carried out on relevant topics.

VIII. CONCLUSION

In this article, we utilized the separability of the
Hamilton-Jacobi equations to derive the complete, exact
integral solution to the geodesic equations for massive and
massless particles in Levi-Civita spacetime. Additionally,
we expanded the resulting integral solutions into corre-
sponding infinite series. Integrals were performed to obtain
solutions in terms of well-known functions for a few special
cases. Moreover, the complete, exact integral solution to the
Newtonian differential equation of motion for massive

FIG. 14. Massive particle moving in Levi-Civita spacetime
(left) and around a Newtonian linear mass distribution (right)
with parameter σ ¼ 0.003. (a) ð14.9; 0.851; 3; 2; 0.022021Þ.
(b) ð15; 0.85; 3; 2; 0.049991Þ.

FIG. 15. Massive particle moving in Levi-Civita spacetime
(left) and around a Newtonian linear mass distribution (right)
with parameter σ ¼ 0.01. (a) ð5.2; 0.948; 17; 11; 0.001294Þ.
(b) ð5.2; 0.948; 8; 5; 0.027502Þ.
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particles moving around an infinitely long straight linear
mass distribution was obtained as well.
A surprising discovery is that both the Newtonian and

relativistic orbits are always bounded, and they coincide in
the weak-field limit. Most importantly, we presented a
simple classification scheme for the orbits and compared it
to the other existing scheme. Finally, we applied the
scheme to categorize the closed and precessing relativistic
orbits of a massive particle in Levi-Civita spacetime. The
relativistic massive particle trajectories were compared
against their Newtonian counterparts.
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APPENDIX A: DIFFERENTIAL
GEODESIC EQUATIONS

In a four-dimensional curved spacetime, a causal geo-
desic is a path that a particle, whether it is massive or not,
follows. During the course, a massive particle tries to
maximize the proper time which, as it turns out, can be
treated as the action corresponding to the motion.
Therefore, extremizing the action [45]

S½q� ¼
Z

τf

τi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνq̇μq̇ν

p
dτ ðA1Þ

leads to the geodesic equations

q̈κ þ Γκ
μνq̇μq̇ν ¼ 0; ðA2Þ

where the qμ denote the spacetime coordinates, overdots
denote derivatives with respect to the proper time parameter
τ, and Γκ

μν denote the connection coefficients of the
spacetime. For the metric tensor in Eq. (4), we can find
the differential geodesic equations as follows:

̈tþ 4σ

ð1 − 2σÞρ ρ̇ ṫ ¼ 0; ðA3aÞ

ρ̈þ 2σ

ð1 − 2σÞP
�
ρ

P

�
4σ−1

ṫ2 þ 4σ2

ð1 − 2σÞρ ρ̇
2

−
�
ρ

P

�
− 8σ2

1−2σ
ρϕ̇2 þ 2σ

P

�
ρ

P

�
−1þ2σ
1−2σ

ż2 ¼ 0; ðA3bÞ

ϕ̈þ 2

ρ
ρ̇ ϕ̇ ¼ 0; ðA3cÞ

̈z −
4σ

ρ
ρ̇ ż ¼ 0: ðA3dÞ

The above equations are not simple enough to solve
analytically. That is why we look for another method,
namely, the Hamilton-Jacobi procedure, to solve the
geodesic equations.

APPENDIX B: HAMILTON-JACOBI PROCEDURE

Considering the action in Eq. (A1), we can define the
Lagrangian of the system as

Lðq; q̇; τÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνq̇μq̇ν

p ðB1Þ

and the canonical momenta corresponding to the spacetime
coordinates as

pκ ¼
∂L
∂q̇κ

¼ −
gκλq̇λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνq̇μq̇ν

p : ðB2Þ

Using the above definitions of the Lagrangian and the
momenta, we can construct the canonical Hamiltonian of
the system as

Hðq; p; τÞ ¼ pκq̇κ − Lðq; q̇; τÞ ¼ 0: ðB3Þ

This shows that the Lagrangian of the system is
degenerate, meaning the relations between the velocity
and the momentum variables are not invertible. It can quite
easily be shown that the determinant of the corresponding
Hessian matrix is zero, confirming the degeneracy of the
Lagrangian,

det
�

∂
2L

∂q̇κ∂q̇λ

�
¼ 0: ðB4Þ

In such a case, Dirac reasoned that there exists a
constraining relation between the momentum variables
themselves [46]. For a massive particle, it takes the form

1þ gμνpμpν ¼ 0: ðB5Þ

However, for a massless particle there exists no such
action principle. Rather, the constraining relation among
the momenta comes from the first integral of the geodesic,
which is

gμνpμpν ¼ 0: ðB6Þ

Together with the definition of the generating function

pμ ¼
∂S
∂qμ

ðB7Þ

Equations (B5) and (B6) can be treated as the Hamilton-
Jacobi equations for the massive and massless particles,
respectively [47]. The solution to the differential geodesic
equations can be found using
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Qμ ¼ ∂S
∂Pμ

; ðB8Þ

where Qμ and Pμ are the constants of motion. For massive
particles, Eq. (B5) [and for massless particles, Eq. (B6)
instead] together with Eqs. (B7) and (B8) constitutes a
complete set of equations from which a unique solution to
the geodesics can be obtained.

APPENDIX C: CLASSIFICATION SCHEME
APPLIED TO SCHWARZSCHILD SPACETIME

The classification scheme laid out in Sec. IV applies to
other important spacetime geodesics as well. In particular,
it aptly describes the massive particle geodesics in
Schwarzschild spacetime. Even though it is well known in
the literature [41], we show it systematically here for
completeness. We begin with the integral solution to the
orbit equation ofmassive particlegeodesics inSchwarzschild
spacetime written in Schwarzschild coordinates ðt; r; θ;ϕÞ
(at θ ¼ π=2) given by the following equation:

ϕ¼ϕ0þ
Z

r

r0

l
r2

�
E2−1−

2M
r

−
l2

r2
þ2Ml2

r3

�
−1
2

dr; ðC1Þ

whereE is the energyof amassive particlewith unitmass and
l is the angularmomentumof theparticle [48].We expand the
integrand with respect to the periastron location r and keep
the terms up to the second order in jr=rj. We then integrate
the approximate trajectory integral, giving an orbit equation
exactly of the form depicted in Eq. (19), where the radial
variable ρ is replaced by the Schwarzschild radial coordinate
rwith η ¼ 0. The orbit parametersC, ϵ, γ, and δ are given by
the following relations:

C ¼ 2k2
2k2 − k1

; ðC2aÞ

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k0k2 þ k21
ð2k2 − k1Þ2

s
; ðC2bÞ

γ ¼ r
ffiffiffiffiffi
k2

p
l

; ðC2cÞ

δ ¼ ϕ0 −
1

γ
arccos

�
r0 − Cr
ϵr0

�
: ðC2dÞ

In the above relations, k0, k1, and k2 are defined as follows:

k0 ¼ E2 − 1þ l2

4M2
þ 2M

r
−
l2

r2

þ 3l2

4M2
ln

�
2M
r

�
þ 9l2

8M2
ln2

�
2M
r

�
; ðC3aÞ

k1 ¼ −
3l2

4M2
−
2M
r

þ 2l2

r2
−

9l2

4M2
ln

�
2M
r

�
; ðC3bÞ

k2 ¼ −
3l2

4M2
þ l2

r2
−

9l2

8M2
ln

�
2M
r

�
: ðC3cÞ

Having shown that the approximate geodesic in
Schwarzschild spacetime follows the path of a precessing
ellipse as in Eq. (19), one can use the classification scheme
laid out in Sec. IV.

APPENDIX D: DEPENDENCE OF THE ORBIT
PARAMETERS ON THE PARAMETER λ

As we mentioned earlier, the orbit parametersm, n, and χ
depend on, but are not sensitive to, the parameter λ. If the
product λρ̄ falls between the radial coordinate of the
intersection of the two nearest sister petals and that of
the two nearest clone petals, a small change in λ does not
alter the orbit parameters. Mathematically, for a given λ, the
orbit parameters become independent of the parameter λ on
a typical interval defined by the following inequality:

cosðγϕpÞ <
1

ϵ
−
1 − ϵ

ϵλ1−η
< cosðγϕcÞ: ðD1Þ

In the inequality above, γ is defined by Eq. (21), ϕp is the
angular coordinate where the two nearest sister petals
intersect, and ϕc is the angular coordinate where the two
nearest clone petals intersect each other. The quantities ϕp

and ϕc can be written explicitly in terms of the orbit
parameters,

ϕp ¼ πn
m − χ

�
mþ 2 −

mþ 1

nmod m

�
− 2π

�
n

m − χ

�

þ π

�
n

m − χ

�
mþ 1

nmod m
−m

��
; ðD2aÞ

ϕc ¼
πn

m − χ
χ: ðD2bÞ

However, the orbit parameters m, n, and χ change at the
boundaries of the inequality in Eq. (D1). Basically, when
the circle defined by the radius λρ̄ includes or excludes an
intersection point of two nearby petals on the trajectory due
to a small change in λ, the orbit parameters change. In fact,
on a given orbit, there are many such intervals inside which
the orbit parameters are independent of the variation of λ.
The boundaries of those intervals, where small changes in λ
change the orbit parameters, are determined by the inter-
section points of the orbit.
Therefore, it is enough to identify the values of λ where

the product λρ̄ matches with the radial coordinates of all of
the intersections of the nearby petals,
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λk ¼
�

1 − ϵ

1 − ϵ cosðπkÞ
� 1

1−η
: ðD3Þ

In the equation above, k∈Z. Since the cosine function is
not monotonic, the sequence of intersection distances from

the origin does not automatically follow from the sequence
of k. The bottom line is that the orbital parameters change
with respect to λ discretely only at λ ¼ λk and otherwise
remain unaltered. In other words, m, n, and χ are section-
ally constant functions of the parameter λ.
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[31] M. N. Célérier, R. Chan, M. F. A. da Silva, and N. O. Santos,
Gen. Relativ. Gravit. 51, 149 (2019).

[32] B. Hoseini, R. Saffari, S. Soroushfar, S. Grunau, and J.
Kunz, Phys. Rev. D 94, 044021 (2016).

[33] J. F. Ritt, Trans. Am. Math. Soc. 27, 68 (1925).
[34] H. Goldstein, C. P. Poole, and J. Safko, Hamilton-Jacobi

theory and action-angle variable, in Classical Mechanics,
3rd ed. (Pearson Education, London, 2001), Chap. 10,
pp. 430–482.

[35] A. S. Kompaneyets, Motion in a central field, in Theoretical
Physics, 1st ed. (Foreign Language Publishing House,
Moscow, 1961), Chap. 5, pp. 041–048.

[36] G. Birkhoff and G. Rota, First-order differential equations,
in Ordinary Differential Equations, 4th ed. (John Wiley and
Sons, New Jersey, 1991), Chap. 1, pp. 001–033.

[37] C.W. Misner and K. S. Thorne and J. A. Wheeler, The “pit
in the potential” as the central new feature of motion in
Schwarzschild geometry, in Gravitation, PUP ed.
(Princeton University Press, New Jersey, 2017), Chap. 25,
pp. 641–649.

[38] M. de León, P. D. Prieto-Martínez, N. Román-Roy, and S.
Vilariño, J. Math. Phys. (N.Y.) 58, 092901 (2017).

[39] K. Aomoto and M. Kita, Introduction: The Euler-Gauss
hypergeometric function, in Theory of Hypergeometric
Functions (Springer Science+Business Media, New York,
2011), 1st ed., Chap. 1, pp. 1–18.

[40] S. Weinberg, The principle of equivalence, in Gravitation
and Cosmology: Principles and Applications of the Gen-
eral Theory of Relativity, 1st ed. (John Wiley and Sons,
New York, 1972), Chap. 3, pp. 70–79.

[41] J. L. Synge, Fields with spherical symmetry, in Relativity:
The General Theory, 1st ed. (North-Holland Publishing
Company, Amsterdam, 1960), Chap. 8, pp. 289–298.

[42] H. Goldstein, C. P. Poole, and J. Safko, Classical chaos, in
Classical Mechanics, 3rd ed. (Pearson Education, London,
2001), Chap. 11, p. 483.

[43] J. Levin and G. Perez-Giz, Phys. Rev. D 77, 103005
(2008).
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