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We study the causal dynamics of an embedded null horizon foliated by marginally outer trapped surfaces
(MOTS) for a locally rotationally symmetric background spacetime subjected to linear perturbations. We
introduce a simple procedure which characterizes the transition of the causal character of the null horizon.
We apply our characterization scheme to nondissipative perturbations of the Schwarzschild and spatially
homogeneous backgrounds. For the latter, a linear equation of state was imposed. Assuming a harmonic
decomposition of the linearized field equations, we clarify the variables of a formal solution to the
linearized system that determine how the null horizon evolves. For both classes of backgrounds, the shear
and vorticity 2-vectors are essential to the characterization, and their roles are made precise. Finally, we
discuss aspects of the relationship between the characterizing conditions and the MOTS stability operator.
Various properties related to the self-adjointness of the MOTS stability operator are extensively discussed.
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I. INTRODUCTION

A. Background and motivation

The discovery of supermassive black holes as well as the
detection of gravitational waves emitted by inspiraling
black holes have ignited renewed interest in black hole
physics. A key concept in understanding the dynamics of
black holes is the notion of a trapped surface, those on
which both ingoing and outgoing null rays are converging,
introduced in the proof of the 1965 singularity theorem by
Penrose [1].
Marginally outer trapped surfaces (MOTS) are the mar-

ginal case of trapped surfaces, closed surfaces on which the
outgoing null ray is neither converging nor diverging. Slight
iterations to the definition of MOTS can be found in the
literature from Wald’s marginally trapped surface [2] (note
the “outer” here has been dropped) which rather imposes that
both null rays are nondiverging, to Hayward’s marginal
surface [3], which is in fact what we call aMOTS here, but in
Hayward’s case the choice of which of the null rays that is
neither converging nor diverging is not fixed. (SeeRefs. [4,5]
for excellent reviews and additional details. The notion of a
MOTS will also be rigorously defined in Sec. III).

MOTS foliate three-dimensional hypersurfaces known as
“marginally outer trapped tubes” (MOTTs) [6], and where
the causal character is fixed at all points of aMOTT it will be
referred to by the common name “horizon,” which under
certain conditions bound trapped regions containing trapped
surfaces. Dynamical and null horizons are well-known cases
of horizons (see, for example, [7]). The timelike MOTTs are
usually referred to simply as “membranes” as they, by
definition, cannot enclose trapped surfaces.
MOTS have also been fundamental to understanding the

formation of black holes due to gravitational collapse, aswell
as their dynamics and evolution. MOTS admit a notion of
stability [8,9] (consequently leading to a notion of stability of
black holes). This is a way to determine whether one can
deform aMOTSS to anotherS0 along a unit direction normal
to S that points along the slice in which S is embedded. This
stability condition is given in terms of conditions on the
principal eigenvalue of a second order linear elliptic operator.
It has been shown that, under physically reasonable con-
ditions, strict stability, where the principal eigenvalue is
positive, a MOTS will evolve to foliate a dynamical horizon
[8] (the same conclusion follows in the case where the
operator has no zero eigenvalue).
Given a horizon embedded in a background spacetime

which is subjected to a perturbation, one expects the
perturbation to, in general, affect the dynamics and hence
the causal character of the horizon. Perturbations of
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horizons have been examined variously in different con-
texts using different approaches. For example, in [10] linear
perturbations of a null horizon by a gravitational field was
studied and it was established that such perturbations do not
affect the causal character of the horizon. This feature of the
invariance of the causal character, as has already been
mentioned, will not be the case, in general, and this was
neatly discussed in [11], where generic first and higher
order perturbations of nonexpanding horizons were
considered.
A more explicit example was considered by Pilkington

et al. [12]. Embedding a stationary metric in the Weyl
solution is a way of smoothly distorting stationary black
holes (see, for example, [13]). The Weyl potentials tune the
behavior of horizons and are referred to as “distortion
potentials.” The authors demonstrated that, while for small
distortions the horizon is apparently “well behaved,” for
large distortions, the expansion of ingoing null rays will not
have a consistent sign along the MOTS so that the MOTS is
unstable. In other words, the variation of the ingoing null
expansion along ingoing null rays has a inconsistent sign.
Some recent works have considered the effects of scalar

field perturbations on the evolution of the black hole [14].
In particular, it is known that scattered ingoing waves from
the scalar field are partially absorbed by the black hole
resulting in an area increase of the horizon. Thus, horizon
evolution is computed as a backreaction effect on the
spacetime geometry.

B. Objectives

Our aim here is to introduce an approach which
characterizes the evolution of MOTS in a linearly perturbed
locally rotationally symmetric (LRS) background space-
time [15,16]. More precisely we consider the following
problem: How does a null horizon foliated by MOTS,
embedded in a LRS background solution, evolve when the
background is subjected to linear perturbations?
We will employ the 1þ 1þ 2 covariant formalism

[17,18], which has been used in several works to study
MOTS and their evolution in background LRS spacetimes
[19–22]. After formulating the characterization scheme, we
will adapt our approach to cases of some well-known
background solutions. Specifically, we consider the null
event horizon in the Schwarzschild background and null
horizons in hypersurface orthogonal and spatially homo-
geneous background solutions. As will be seen, at least in
these examples to which our scheme will be applied, the
shear and vorticity 2-vectors appear to consistently play the
pivotal roles in determining the causal behavior of the null
horizons under perturbations. (The roles of these 2-vectors
will be made more precise in the text).
We also aim to consider aspects of the self-adjointness of

the stability operator. As it will be seen, the 1-form that
characterizes the self-adjointness of the operator is defined
in terms of the shear and vorticity 2-vectors as well, and so

it is quite natural to consider this in relation to the evolution
of the horizons.

C. Structure

Section II of the paper gives a quick overview of the
covariant formalism that is used, and the procedure for
linearizing a LRS background solution, which provides the
mapping between a background solution and a perturbed
one, is outlined. The process to harmonically decompose
first order scalars, 2-vectors and 2-tensors, in this formal-
ism is briefly reviewed following the standard literature. In
Sec. III, we introduce an approach to characterize MOTS
evolution in the perturbed solution.
We start by briefly introducing the notion of a MOTS,

which is well proliferated in the literature but nonetheless
necessary for the flow of the paper. We then go on to
introduce the characterization scheme where it becomes
transparent how the required gauge choice forces us to
consider a null horizon in the background. That is, our
scheme does not work for a non-null horizon. Section IV
applies the characterization scheme to static and spatially
homogeneous LRS backgrounds. In both cases the evolu-
tion of the null horizon is characterized, with an equation of
state imposed in the case of the latter and a partial
characterization provided. In Sec. V, we discuss some
simple implications of the results of Sec. IV for the self-
adjointness of the MOTS stability. Several additional
properties of the MOTS and aspects of the stability operator
are discussed. We conclude with discussion of results in
Sec. VI and discuss potential avenues for future research.

II. PRELIMINARIES

In this section we briefly introduce the 1þ 1þ 2
covariant formalism. We then describe the general pre-
scription for the perturbative scheme that has been used
extensively over the last few years, to carry out perturba-
tions of background LRS solutions.

A. Covariant decomposition

There is by now a well-established trove of literature on
the 1þ 1þ 2 covariant formalism, with several references
providing details of the steps in the decomposition. A
reader interested in more details is referred to the following
standard texts [17,18] (also see Refs. [23–25] for some
recent corrections to the full set of equations). As such, the
introduction here would be very brief, only necessary
enough for the work carried out in this paper.
In the well-known and powerful 1þ 3 approach, a unit

tangent direction—call this ua—along which timelike
observers flow, is what threads the spacetime. The field
equations are decomposed along ua plus some constraint
equations. If there exists some unit spacelike vector na

obeying uana ¼ 0, the 3-space from the previous split can
be further decomposed along this direction as a 1þ 2
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product manifold. This, in addition to the “evolution”
equations along ua, introduces a set of “propagation”
equations along na, as well as some constraint equations.
The splitting naturally introduces new derivative along na

and on the 2-space (generally referred to as the “sheet”):
(i) along ua: ψ̇a���b

c���d ¼ uf∇fψ
a���b

c���d,
(ii) along na: ψ̂a���b

c���d ¼ nf∇fψ
a���b

c���d, and
(iii) along the sheet: δfψ

a���b
c���d ¼ Nc̄

c � � �Nd̄
dN

a
ā � � �

Nb
b̄
Ne

f∇eψ
ā���b̄

c̄���d̄,
for any tensor ψa���b

c���d, where Nab ¼ gab þ uaub − nanb

projects vectors and tensors to the sheet (it is the metric
induced from the splitting, on the sheet).
A spacetime vector ψa can accordingly be decomposed

as ψa ¼ Ψua þ Ψ̄na þ Ψa (Ψa is the sheet component of
ψa), and a fully projected tensor 3ψab on the 3-space
decomposes as

3ψab ¼ Ψ
�
nanb −

1

2
Nab

�
þ ΨðanbÞ þ Ψab; ð1Þ

with Ψ ¼ −3ψabNab, Ψa ¼ N b
a
3ψbcnc and

Ψab ¼
�
N c

ðaN
d
bÞ −

1

2
NabNcd

�
3ψcd; ð2Þ

as the symmetric, fully projected and trace-free part of 3ψab.
The above can be seen as the 1þ 1þ 2 analog of the 1þ 3
orthogonally projected symmetric trace-free part of a
4-tensor,

ψ habi ¼
�
hðach

bÞ
d −

1

3
habhcd

�
ψcd; ð3Þ

where hab ¼ gab þ uaub which introduces the derivative
operator

Dfψ
a���b

c���d ¼ hc̄c � � � hd̄dhaā � � � hbb̄hef∇eψ
ā���b̄

c̄���d̄:

So, for example, the shear, electric, and magnetic Weyl
3-tensors decompose, respectively, as

σab ¼ σ

�
nanb −

1

2
Nab

�
þ ΣðanbÞ þ Σab; ð4Þ

Eab ¼ E
�
nanb −

1

2
Nab

�
þ EðanbÞ þ Eab; ð5Þ

Hab ¼ H
�
nanb −

1

2
Nab

�
þHðanbÞ þHab: ð6Þ

Similarly, gradients of scalars decompose along these
directions,

∇aψ ¼ −ψ̇ua þ ψ̂na þ δaψ : ð7Þ

The energy momentum tensor takes the covariant form

Tab ¼ ρuaub þ phab þ 2qðaubÞ þ πab:

Here, ρ ¼ Tabuaub is the (local) energy density, 3p ¼
Tabhab is the (isotropic) pressure, qa ¼ Tbchbauc is the
heat flux vector (qa ¼ Qna þQa), and πab, which can be
decomposed using (1) (with Π ¼ Tabnanb − p), captures
the degree of anisotropy.
From the Einstein field equations with cosmological

constant

Rab −
1

2
Rgab þ Λgab ¼ Tab; ð8Þ

where Rab and R are, respectively, the spacetime Ricci
tensor and scalar curvature, one can write down the Ricci
tensor of the spacetime in the covariant form

Rab ¼ g1uaub þ g2nanb þ 2ðQuða þ ΠðaÞnbÞ
þ
�
g2 −

3

2
Π
�
Nab þ 2QðaubÞ þ Πab;

where

g1 ¼
1

2
ðρþ 3p − 2ΛÞ and g2 ¼

1

2
ðρ − pþ 2Λþ 2ΠÞ:

The covariant derivatives of the unit vector fields can be
written down in terms of the kinematic (geometrical)
variables,

∇aub ¼ −uaðAeb þAbÞ þ
�
1

3
θ þ σ

�
nanb

þ 1

2

�
2

3
θ − σ

�
Nab þΩεab þ Σab

þ 2ðnðaΣbÞ þ n½aεb�cΩcÞ; ð9aÞ

∇anb ¼ −uaðAub þ αbÞ þ
�
1

3
θ þ σ

�
naub

þ 1

2
ϕNab þ ξεab þ ζab þ naab þ ðΣa − εacΩcÞub:

ð9bÞ

A ¼ nau̇a is acceleration, θ ¼ habD̄aub is expansion of ua,
ϕ is expansion of na (called sheet expansion), σ ¼ σabnanb

is the shear scalar, and 2Ω ¼ εab∇aub and 2ξ ¼ εab∇anb
are the respective twists of ua and na (Ω is usually referred
to as vorticity or rotation, and εab is the two-dimensional
alternating tensor). Aa is the sheet component of u̇a; αa is
the sheet component of ṅa; aa ¼ n̂a is the acceleration of
na; and ζab ¼ δfanbg is the shear of na.
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The field equations then take a covariant form as a set of
evolution and propagation equations of the covariant
scalars, vectors, and tensors, along with some constraint
equations. These are obtained from the field equations
themselves and the Ricci and Bianchi identities for the
unit fields ua and na. We do not need all of these equations
here and will not enlist them. The few equations that will
be needed for the current work will be introduced
accordingly.

B. Mapping the background and “true” spacetimes

Perturbative schemes to study LRS cosmologies have
been recently implemented using the 1þ 1þ 2 formalism.
They have largely been applied to the LRS II class of
spacetimes, with a recent consideration being a generali-
zation which introduces dissipation of the fluid via the
nonvanishing of the anisotropic stress on the background
(see, for example, these recent works [23,24]).
In this section, we begin by first introducing LRS

spacetimes in context of the 1þ 1þ 2 formulation, and
we briefly discuss the linearization procedure (more details
can be found in Refs. [17,18]), up to where it is relevant to
this paper.
Locally rotationally symmetric spacetimes admit a con-

tinuous isotropy group at each point, as well as a preferred
spatial direction (see Refs. [15,16] for more details).
The symmetry of these spacetimes allows one to write

the metric in local coordinates ðt; r; y; zÞ as (see [16] for
example)

ds2 ¼ −A2
1dt

2 þ A2
2dr

2 þ A2
3dy

2

þ
�
ðDA3Þ2 þ ðA2hÞ2 − ðA1gÞ2

�
dz2

þ 2ðA2
1gdt − A2

2hdrÞdz; ð10Þ

where Ai ¼ Aiðt; rÞ, and g ¼ gðyÞ, h ¼ hðyÞ. D ¼ Dðy; kÞ
where k is a constant and specified D: For k ¼ −1,
D ¼ sinh y; for k ¼ 0, D ¼ y; and for k ¼ 1, D ¼ sin y.
In the limiting case that g ¼ 0 ¼ h, we recover the well-

studied LRS II class of spacetimes, which generalizes
spherically symmetric solutions to the Einstein field equa-
tions. This class includes Friedmann-Lemaître-Robertson-
Walker models, the Lemaître-Tolman-Bondi spacetime
model, the Schwarzschild solution, the Oppenheimer-
Snyder dust model, etc.
The covariant set

D∶≡ fA; θ; σ;ϕ; ξ;Ω; ρ; p;Q;Π; E;Hg ð11Þ

specifies a LRS spacetime.
In general, the mapping between the background and

perturbed spacetime generally depends on the problem of
physical interest. And for the specific background under
consideration, the linearization procedure may or may not
be particularly cumbersome. Essentially, the problem

reduces to determining which quantities vanish in the
background and which do not. Here, we outline the
procedure for the perturbation. (A detailed discussion on
this is found in [18], formulated differently but unchanging
the underlying concept.)
The 1þ 1þ 2 decomposition allows for one to specify

a spacetime by a set of scalar, vector, and tensor quantities,
i.e.,

D̃∶≡ fφi;Ψj
a;Ψw

abgi∈ I;j∈ J;w∈W; ð12Þ

with I, J, and W being indexing sets. The scalars φi are
those of the set (11), except that, in general, these scalars do
not have to respect the local rotational symmetry. In the
case of LRS one has that all of Ψj

a and Ψw
ab vanish and the

sets D̃ and D coincide.
The linearization procedure, given a LRS background, is

then reduced to choosing your gauge invariant quantities
which are those that will vanish in the background.

(i) We first define the background spacetime: start with
a background LRS spacetime M, and let the collec-
tion of scalars

D1∶≡ fφkgk∈K; ð13Þ

for some indexing set K ⊆ I, specify M,
i.e., D1 ⊂ D.

(ii) Define the set

D2∶≡DnD1 ð14Þ

of those covariant scalars in D that vanish in the
background.

(iii) Further introduce the set of 2-vectors and 2-tensors,

D3∶≡ fΨj
a;Ψw

abgj∈ J;w∈W; ð15Þ

a subset of D̃ (note that all 2-vector and 2-tensor
quantities vanish in the background).

(iv) The full set of gauge invariant quantities is then
given by

D2 ∪ D3¼ OðϵÞ; ð16Þ

where ϵ is the smallness parameter capturing the
deviation from the exact solution [we have used the
above notation OðϵÞ to indicate these quantities are
of first order], which follows from the Stewart-
Walker lemma [26]. One can then use the Ricci
and Bianchi identities for ua and the direction of
anisotropy na to obtain the linearized equations for
the set D̄∶≡D1 ∪ D2 ∪ D3.

It is indeed important to emphasize now that,
while not particularly obvious in our setup here,
though it should be expected under perturbation, the
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symmetry of the background is broken, i.e., the set D̄
does not inherit the symmetry of the background.
One manifestation of this is related to direction of
symmetry na inheriting some degrees of freedom as
explained in the next point (v).
The linearized system is generally not gauge

invariant. The evolution and/or propagation equa-
tions of the background quantities may contain
terms that do not vanish in the background. This
is resolved by introducing δ gradients of the back-
ground quantities whose evolution and propagation
equations replace those of the background scalars.

(v) We note that the “type” of perturbation being carried
out will further simplify the collection D2 ∪ D3. For
example, one may consider an irrotational or a shear-
free perturbation, eliminating all shear and vorticity
quantities.
There is also a degree of freedom in choosing the

frame as na inherits a first order change under the
perturbation, given a ua. This choice will depend on
the particular physical consideration at hand. One
common choice when dealing with black hole
perturbation is to set the sheet component of the
acceleration to zero [17] which corresponds to a
hovering observer. (At some point in this work we
will make this choice of frame to transparently
demonstrate our characterization scheme.) Other
choices include the aligning of na along the vorticity
or the electric Weyl scalar. That is, one makes the
respective frame choices Ωa ¼ 0 and Ea ¼ 0. (We
note that there is also some degree of freedom to
specify ua and it is only after specifying ua that we
can fix our na. So here we are assuming our ua has
been specified. Interested readers are directed to
Ref. [17] which discusses the degrees of freedom in
specifying the frame.)

(vi) In general, the linearized equations are quite messy
and seldom tractable, analytically. This generally
results from the presence of the angular “δ” deriva-
tive. One approach is to decompose first order
variables into harmonics, which converts the linear-
ized equations into ordinary differential equations
which in some cases can be solved exactly.

In this work we do not seek to solve the linearized system.
Rather, we suppose that the harmonically decomposed
linearized system can be solved exactly for an appropriate
basis. Then, we specify the roles that certain components of
the even (electric) vector harmonics (to be defined shortly)
play in the evolution of a null horizon embedded in a LRS
background which is subject to a perturbation.

C. Harmonic decomposition

We now present a quick overview of the harmonic
decomposition procedure adapted to the formalism. Here
we again follow the general setup in Refs. [17,18].

One starts by introducing dimensionless harmonic func-
tions that satisfy

δ2Q ¼ −
k̄2

r̄2
Q; Q̂ ¼ Q̇ ¼ 0 ð0 ≤ k̄2Þ ð17Þ

on any LRS background, i.e., they are eigenfunctions of the
sheet Laplacian. The function r̄ is covariantly specified by
the relations

˙̄r ¼ r̄
2

�
2

3
θ − σ

�
; ˆ̄r ¼ r̄

2
ϕ; δar̄ ¼ 0: ð18Þ

One may decompose any first order scalar Ψ as

ψ ð1Þ ¼
X

ψ ðk̄Þ
S Qðk̄Þ; ð19Þ

usually written simply as ψ ð1Þ ¼ ψSQ, with the sum
implicit over k̄, and the S subscript signaling a scalar
decomposition.
The 2-vectors are also expanded in harmonics via the

following defined basis:

Qk̄
a ¼ r̄δaQk̄ ⇒ Nb

aQ̂b ¼ 0 ¼ Nb
aQ̇b;

δ2Qa ¼
1

r̄2
ð1 − k̄2ÞQa; ð20aÞ

Q̄k̄
a ¼ r̄εabδbQ̄k̄ ⇒ Nb

a
ˆ̄Qb ¼ 0 ¼ Nb

a
˙̄Qb;

δ2Q̄a ¼
1

r̄2
ð1 − k̄2ÞQ̄a; ð20bÞ

respectively named even (electric) and odd (magnetic)
vector harmonics. (For all that are to follow, there should
be no confusion that is to arise if we drop the superscript k̄
in relevant expressions.)
Notice that the harmonic basis vectors Qa and Q̄a can

be obtained from one another, up to sign reversal, by
applying εab: Q̄a ¼ εabQb ⇔ Qa ¼ −εabQ̄b. For this rea-
son, εab is understood as a parity operator, in the sense
of the harmonics introduced here. A quick check also
shows that

δaQ̄a ¼ 0 ¼ εabδ
aQb;

δaQa ¼ −
k̄2

r̄
Q ¼ −εabδaQ̄b: ð21Þ

Since for each k̄, QaQ̄a ¼ 0, first order vectors (2-vectors)
can always be decomposed as

Ψa ¼
X

Ψðk̄Þ
V Qa þ Ψ̄ðk̄Þ

V Q̄a ¼ ΨVQa þ Ψ̄VQ̄a; ð22Þ

again, where the sum over k̄ is implicit, with the V signaling
a vector decomposition. We note the following important
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point: for any first order 2-vectorΨa, a quick check gives its
sheet divergence as

δaΨa ¼ −
k̄2

r̄
ΨVQ: ð23Þ

Thus, Ψa is gradient if and only if ΨV vanishes.
For a 2-tensor Ψab, the even and odd parity tensor

harmonics are defined, respectively, as

Qab ¼ r̄2δfaδbgQ ⇒ Q̂ab ¼ 0 ¼ Q̇ab; ð24aÞ

Q̄ab ¼ r̄2εcfaδcδbgQ ⇒ ˆ̄Qab ¼ 0 ¼ ˙̄Qab: ð24bÞ

Again, we see that εab is a parity operator here:
Q̄ab ¼ εcfaQ c

bg ⇔ Qab ¼ −εcfaQ̄ c
bg . Indeed, for each

k̄, QabQ̄ab ¼ 0 so that any Ψab can be decomposed as

Ψab ¼ ΨTQab þ Ψ̄TQ̄ab;

with the T signaling a tensor decomposition.
We note that in the case of LRS solutions the function r̄

and the radial coordinate r coincide.

III. CHARACTERIZING MOTS EVOLUTION

We introduce a characterization scheme for the evolution
of a marginally outer trapped surface orthogonal to ua and
na. We are interested in how MOTS in constant time slices
in linearized LRS background geometries evolve. We begin
with a quick definition of MOTS, after which we introduce
the characterization. As will be seen, the particular problem
we are trying to address, or more precisely, how our
objective is formulated, is imposed by the required gauge
invariance of the evolution characterizing function.
Some of the notations here may not be familiar to those

working in numerical relativity and even some of those who
work on MOTS, their evolution, and their stability. This
may present some confusion in interpreting some of the
calculations and results. For this reason, we have added an
Appendix with a table to provide a comparison of a few of
our notations here with the mostly well-known ones.

A. MOTS

For the surfaces under consideration, the following must
hold in order for “2-space” to be a genuine surface rather
than simply a collection of tangent planes (see Ref. [18] for
discussion),

ξ ¼ Ω ¼ aa ¼ 0;

Σa þ εabΩb − αa ¼ 0: ð25Þ

(The left-hand side of the second line is known as the
Greenberg vector.) In particular, these conditions ensure

that the Lie bracket of ua and na vanishes, i.e., ua and na

are surface forming, and that the operator δa is a true
covariant derivative for the surface [18].
Consider a 2-surface S in spacelike constant t slices, with

unit spacelike normal na. Outgoing and ingoing null
normals are, respectively,

ka ¼ ua þ na; la ¼ 1

2
ðua − naÞ;

normalized so that laka ¼ −1. There is a degree of freedom
to rescale the null vectors as ka → fka; la → f−1la, for
f > 0. However, as will be noted shortly, the MOTS
character relevant here is invariant under such scaling.
The induced metric on S is

F ab ¼ gab þ 2kðalbÞ; ð26Þ

and the ingoing and outgoing expansions are, respectively,

χ ¼ F ab∇akb; χ̄ ¼ F ab∇alb:

(For our current purposes,F ab here is justNab.) By MOTS,
we mean that, on S, one has χ ¼ 0. In the case that the sign
of χ̄ is constrained as χ̄ < 0 on S, MOTS is abbreviated to
marginally trapped surface (MTS). (A MTS is generally
considered to be associated with horizons that enclose
black holes in dynamical spacetimes.) One sees that, under
the rescaling, the expansion becomes χf ¼ fχ (similarly,
χ̄f ¼ f−1χ̄). Thus, it is clear that any sign conditions on χ
and χ̄ is seen to be invariant under the freedom to scale the
null vectors.
A hypersurface foliated by MOTS is referred to as a

MOTT. And in the case where there is a consistent sign of χ̄
for each MOTS, the term outer is dropped and the hyper-
surface is denoted as a marginally trapped tube.

B. MOTS evolution

Because of the MOTS condition χ ¼ 0, we consider the
gradient∇aχ which is orthogonal to a family of MOTS that
foliate a MOTT, up to some scale. Hence the norm, which
we notate by z̄, specifies the causal character of the MOTT,
pointwise,

z̄ > 0 ðTimelikeÞ; z̄ < 0 ðSpacelikeÞ; z̄¼ 0 ðNullÞ:

(As we are interested in the sign of the norm of∇aχ, scaling
of the norm does not influence the characterization herein.)
Let us decompose the expansion χ into zeroth (back-

ground) and first order scalars,

χ ¼ χ0 þ χ1;

with the subscripts 0 and 1 denoting, respectively, zeroth
and first orders. (In general, this will be the case, as this is a
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linear combination of the covariant scalars, some of which
may or may not vanish in the background.) We expand the
norm z̄ as

z̄ ¼ ð−χ̇20 þ χ̂20Þ þ ð−χ̇21 þ χ̂21Þ þ 2ð−χ̇0χ̇1 þ χ̂0χ̂1Þ
þ ðδaχ0δaχ0 þ δaχ1δ

aχ1 þ 2δaχ0δ
aχ1Þ: ð27Þ

As we neglect the products of first order quantities, the
second and fourth parenthesized terms of (27) vanish and
we have

z̄ ¼ ð−χ̇20 þ χ̂20Þ þ 2ð−χ̇0χ̇1 þ χ̂0χ̂1Þ: ð28Þ

Indeed, it is clear that, depending on the particular
background solution one begins with, the above expression
will simplify, as will later be observed.
Of course there will be some cases where even extending

to the nonlinear regime, i.e., in cases of nonlinear pertur-
bations, the characterization can proceed using the form of
z̄ (28), for example, when z̄ is optical, i.e., when δaz̄δaz̄
vanishes on the MOTS. Let us consider some cases where
this is true for a particular frame choice or a class of
backgrounds: The commutation relations between the “δa”
and the dot and hat derivatives, acting on a scalar ψ, are
given, respectively, as (we set Ω ¼ ξ ¼ aa ¼ 0)

δaψ̇ − N b
a ðδbψÞ· ¼ −Aaψ̇ þ ðΣa − εabΩb þ αaÞψ̂

þ 1

2

�
2

3
θ − σ

�
δaψ ; ð29Þ

δaψ̂ − N b
a

dðδbψÞ ¼ −ðΣa − εabΩbÞψ̇ þ 1

2
ϕδaψ : ð30Þ

Now notice that the function r̄ introduced in the
harmonic decomposition obeys

˙̄rþ ˆ̄r ¼ r̄
2
χ:

And upon using Eqs. (29) and (30) with ψ ¼ r̄ we find that

δaχ ¼ ðAa þ αaÞϕ: ð31Þ

So, a frame choice Aa ¼ αa ¼ 0, δaχ ¼ 0. Also, on any
background with a vanishing sheet expansion, it is true that
δaχ ¼ 0 on the MOTS. Thus, analyzing MOTS in perturbed
spatially homogeneous or static LRS backgrounds, the form
of the function z̄ suffices even in nonlinear regimes, although
the linearized equation is now more formidable. However,
we will keep the forthcoming applications modest and
restrict ourselves to linear perturbations.
As is easily seen from (28), the scalar zwill generally not

be gauge invariant: Indeed, the second parenthesized terms
do vanish in the background due to the presence of χ1 and
derivatives thereof, but the first parenthesized ones do not.

Characterization of the evolution of the MOTS in the
perturbed spacetime obviously requires a gauge invariant z̄.
In fact, z̄ is gauge invariant if and only if the combination of
terms in the first parentheses vanishes. It indeed follows
that, were one to start with a null horizon H̄, foliated by
MOTS, in the background, z̄ is gauge invariant with respect
to H̄ since the vanishing of the sum in the first parentheses
characterizes the nullity of H̄ in the first place. For this
reason, we can more precisely frame what is being done in
this work:
Consider an exact LRS background spacetimeM and let

H̄ be a null horizon in M, foliated by MOTS. Let us
suppose that M is subject to a perturbation of linear order.
How do we characterize the evolution of the horizon H̄
under the perturbation?
Now we emphasize again that we are not interested in

solving the linearized system. It is assumed that an
appropriate gauge (and possibly frame) choice has been
made, so that one has a mapping between the background
and the perturbed spacetimes. Independent of the gauge
choice, then, by simply imposing the vanishing condition

−χ̇20 þ χ̂20 ¼ 0;

the function z̄ will characterize the evolution of a null
horizon from the background. The gauge choice that maps
the background and perturbed spacetimes of course deter-
mines the simplification of z̄ as it is constructed from
elements of the linearized equations.
Now, to ensure a consistent sign of z̄ along a horizon

foliated by the MOTS under consideration, one requires
δaz̄ ¼ 0. Explicitly, this is the requirement that

χ̇0δaχ̇ − χ̂0δaχ̂ ¼ 0: ð32Þ

Again, once a background is specified, the expression (32)
simplifies as will be seen in Sec. IV.
Remark 1. We point out that if one relaxes the δaz̄ ¼ 0

condition, one allows for a range of possibilities, for
example, horizons with different portions exhibiting vary-
ing causal characters. Also, this δaz̄ ≠ 0 allows for MOTS
with nontrivial topologies, for example, when one switches
between coordinate systems, examples of which were
recently found in [27] and those located in binary black
hole mergers [28]. This is beyond the scope of the current
work and will be deferred for a subsequent paper.
Let us now compute the forms of the outgoing and

ingoing null expansion scalars,

χ ¼ 2

3
θ − σ þ ϕ; χ̄ ¼ 1

2

�
2

3
θ − σ − ϕ

�
: ð33Þ

Thus, a MOTS is specified by the covariant triple ðθ; σ;ϕÞ,
and for any particular background, this splits into the
background and first order parts.
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If our interest is in MOTS that are MTS, then the
requirement that χ̄ < 0 implies that necessarily ϕ > 0. For
our purposes here, however, we will not impose such
restriction and will instead consider the more gen-
eral MOTS.
We note that the form of χ, first equation of (33), is form

invariant with respect to the background and so the gauge
problem is automatically fixed. This is a consequence of the
particular class of MOTS we are considering for this work.
For a different class of MOTS, this correspondence may be
broken and some additional condition may have to be
imposed to fix the gauge, in general. However, up to linear
order for null horizons as is considered here (or more
generally nonexpanding horizons), χ vanishes on the
perturbed horizon as was established in [11].
Remark 2. Before proceeding, we point out that caution

is to be exercised when considering the vanishing of the
first parenthesized terms of (27). For example, if one is to
consider a static background, then obviously χ̇20 should
vanish. However, χ̂20 does not vanish on a null horizon in the
background. So, the terms should be taken together. In fact,
its easily seen that the first parenthesized terms of (27)—we
denote this as F—factors as

F ¼ −LkχLlχ: ð34Þ

The vanishing condition in the background, assuming the
null energy condition, is then Lkχ ¼ 0. So, one has to take
care of the function F, so that once a background is
specified, F vanishes on a null horizon in the background.
The evolution and propagation equations for ϕ and

ð2=3Þθ − σ, up to linear order, are [17]

ϕ̇ ¼
�
2

3
θ − σ

��
A −

1

2
ϕ

�
þQþ δaα

a; ð35aÞ

ϕ̂ ¼ −
1

2
ϕ2 þ

�
2

3
θ − σ

��
1

3
θ þ σ

�
− E −

1

2
Π −

2

3
ðρþ ΛÞ

þ δaaa; ð35bÞ

2

3
θ̇− σ̇ ¼Aϕ−

1

2

�
2

3
θ− σ

�
2

þ E −
1

2
Π−

1

3
ðρþ 3p− 2ΛÞ

þ δaAa; ð35cÞ

2

3
θ̂ − σ̂ ¼ 3

2
ϕσ þQþ δaðΣa þ εabΩbÞ: ð35dÞ

Equation (35d) is obtained by projecting along na the shear
divergence equation [29]

Dbσba −
2

3
Daθ þ εabcðDb þ 2u̇bÞωc þ qa ¼ 0;

where

ωa ¼ Ωna þ Ωa; qa ¼ Qna þQa:

Equations (35a)–(35c) are obtained, respectively, by apply-
ing uaNbc, naNbc, and −naubuc to the Ricci identities
for na.
We can write down the evolution of the null expansion

along the null rays as

Lkχ ¼ χ

�
A −

1

2
ϕþ 3

2
σ

�
− ðρþ pþ ΠÞ

þ 2Qþ δaðαa þAa þ aa þ Σa þ εabΩbÞ; ð36Þ

Llχ ¼ −
1

2
χ

�
χ −

1

2
ϕþ 3

2
σ

�
þ 1

3
ðρ − 3pÞ þ 2E

þ δaðαa þAa − aa − Σa − εabΩbÞ: ð37Þ

Note that χ vanishes on the horizon and hence the above are
simplified there. The scalar F now expands, up to linear
order on the horizon, to the form

F ¼
�
1

3
ðρ− 3pÞ þ 2E

�
ððρþpþΠÞ− 2Q− δaZaÞ ð38Þ

where we have defined

Za ¼ αa þAa þ aa þ Σa þ εabΩb: ð39Þ

Depending on the particular class of background, and
how one chooses the fua − nag frame by appropriately
fixing the na direction, the scalar F can be considerably
simplified, as will be seen in the next section.

1. The future outer trapping condition

A MOTS S on which the ingoing expansion χ̄ is strictly
negative and Llχ < 0 is known as a “future outer trapped
surface” (FOTS). A horizon foliated by FOTS is a “future
outer trapping horizon” (FOTH). These were introduced by
Hayward in [3] and have since be extensively studied
[30,31]. In the dynamical and isolated cases, respectively,
assuming the null energy condition, one has that Lkχ < 0
and Lkχ ¼ 0. In this case, we have a dynamical FOTH and
an isolated FOTH. Crucially, the FOTH condition immedi-
ately implies the presence of a black hole as it ensures the
existence of trapped surfaces just to the inside of the
horizon. Thus, the conditions characterizing a FOTH for
the dynamical and isolated cases are χ̄ < 0 (32), plus
Lkχ < 0 and Lkχ ¼ 0, respectively,

z̄ < 0; χ̇ < 0; χ̂ < 0; ð40Þ

z̄ ¼ 0; χ̇ < 0; χ̂ > 0: ð41Þ

Henceforth, when specifying to a FOTH the condition
χ̄ < 0 will be assumed.
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In the next section, we consider some backgrounds as
particular examples, to apply the horizon characterization
scheme developed in this section to horizons in the
corresponding perturbed spacetime.

IV. APPLICATIONS

In this section we consider some particular background
LRS solutions. Specifically, we consider static and spatially
homogeneous LRS backgrounds, with restriction to the
class II. We will also briefly comment on the case of a
background with both t and r dependence (see Remark 3).
For the setup in Sec. III, it is understood a foliation is

specified through the unit ua. If a surface is chosen an
“appropriate” spacelike unit normal to this surface is
specified. Once this has been done the various quantities
of the formalism can be computed. So, this indeed allows
for changing the foliation. For example, if one considers the
Schwarzschild case, in the usual coordinates one has
ua ¼ −gtt∂t. Then for a surface S and a chosen spacelike
unit normal, we can compute all the 1þ 1þ 2 scalars,
vector and tensor quantities. If one switches to the Painlevé-
Gullstrand coordinates, then one has for this foliation
ua ¼ ∂τ − ð1=2Þgtr∂r. And for a specified surface with
an appropriately chosen unit spacelike normal, the calcu-
lations and subsequent analysis proceeds as usual.
In this section, however, the examples consider LRS

background models with ua ¼ −gtt∂t specified. Under
perturbation, generally, one can have a linear change in
the directions ua. For our examples considered, we assume
this direction has been fixed, but the choice of the spatial
normal has certain freedom here so as to fix the fu; ng
frame. This then breaks the symmetry. It is assumed that
one has made the frame choice by fixing na via the
prescription in Sec. II. In this sense, the foliation and
frame are fixed and the evolution will be unique.

A. Static background

Let us take as an example a nondissipative linear
perturbation of the Schwarzschild background with metric
(we set the mass to unity here, which does not, in any
serious way, affect the calculations)

ds2 ¼ −
�
1 −

2

r

�
dt2 þ

�
1 −

2

r

�
−1
dr2 þ r2dς2; ð42Þ

where dς2 is the metric on the unit 2-sphere. We know the
above is time symmetric, i.e., θ ¼ 0 ¼ σ. Hence, we have
the zeroth and first order decompositions of the null
expansion χ as

χ0 ¼ ϕ and χ1 ¼
2

3
θ − σ:

Therefore, χ̇0 and χ̇1 are first order quantities so that
χ̇20 ¼ χ̇0χ̇1 ¼ 0. The only nonvanishing background

covariant scalars are A;ϕ; E, given in coordinate forms as

A ¼ 1

r2

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

2

r

r �−1

; ϕ ¼ 2

r

ffiffiffiffiffiffiffiffiffiffiffi
1 −

2

r

r
; E ¼ −

2

r3
:

In this background, the MOTS is located at
ϕ ¼ 0 ⇔ r ¼ 2. Now, the norm z becomes

z̄ ¼ F þ 2χ̂0χ̂1

¼ −4EδaðZa þ Σa þ εabΩbÞ: ð43Þ

Additionally one also requires, from (32), that (we have
now set aa ¼ 0 on the horizon as it should be)

0 ¼ χ̂0δaχ̂ ¼ δaE þ δa½δbðΣb þ εbcΩcÞ�: ð44Þ

Since E < 0, coupled with (44), the r ¼ 2 horizon in the
Schwarzschild background evolves into an isolated (respec-
tively, dynamical) horizon provided that

δaðZa þ Σa þ εabΩbÞ ¼ ðrespectively; >Þ0: ð45Þ

Separately, we examine the two cases of (45).

1. Null case

We start with the null criterion, with the vanishing of
(45), in harmonics, yielding

0 ¼ −
k̄2

r̄2
½AV þ 2ðΣV − Ω̄VÞ�; ð46Þ

which should hold for all k̄.
By defining Ya ¼ δaE and decomposing Eq. (44) into

harmonics, we write it down as the pair of equations

YV ¼ −
k̄2

r̄2
ðΣV − Ω̄VÞ; ȲV ¼ 0: ð47Þ

Upon substituting the first equation of (47) into (46) gives

0 ¼ −
k̄2

r̄2
AV þ 2YV: ð48Þ

Evoking the vanishing of the Greenberg vector, (47) is
r̄2YV þ k̄2αV ¼ 0, so that (48) reduces to the condition

AV þ 2αV ¼ 0: ð49Þ

This is the required condition that preserves the null
character of the null horizon r ¼ 2 under linear
perturbation.
Were one to fix the frame by setting Aa ¼ 0 (so that na

points along u̇a), we will have that the condition (49) now
becomes αV ¼ 0. Otherwise, the horizon does not retain its
null character.
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On the other hand, by (49), the vanishing condition ΣV −
Ω̄V ¼ 0 would lead to the nullity condition fixing the
frame: AV ¼ 0.
FOTH. Let us consider the FOTH condition, χ̇ < 0 and

χ̂ > 0. If one fixes the frame by setting Aa ¼ 0, the FOTH
condition trivially follows: Explicitly, the FOTH condition
is the pair

E < −δaαa; ð50Þ

E < δaaa þ δaα
a; ð51Þ

where we have used the fact that the Greenberg vector must
vanish. So, again, how the black hole evolves under linear
perturbation depends crucially on how the frame is chosen,
as one would expect.
Again, aa must vanish for our MOTS to be a genuine

surface. As the specification of the frame choice Aa ¼ 0
gives αV ¼ 0, the FOTH condition is simply the require-
ment that E < 0, which always holds.

2. Dynamical case

Let us now consider the case where the r ¼ 2m null
horizon possibly evolves to acquire a different character.
(Again for simplicity let us make the same frame choice
here by setting Aa ¼ 0.) Then, with all considerations of
the vanishing Greenberg vector, as well as the necessity
of the vanishing of aa, the characterizing norm z̄ takes
the form

z̄ ¼ −12
k̄2

r̄
EðΣV − Ω̄VÞ: ð52Þ

We note that from the field equations the vectors Σa and
Ωa do not evolve independently [17,18], and so the
presence of one ensures the nonvanishing of the other.
Hence, we see that as long as there is a nonvanishing shear,
z̄ ≠ 0 for k̄2 ≠ 0, and if there is no shear the horizon stays
null as was seen in the previous case.
We do expect that under the perturbation and in the

presence of a nonzero shear the Schwarzschild event
horizon becomes spacelike. This then imposes that

ΣV − Ω̄V < 0; ð53Þ

thereby imposing a constraint on the solution to the
harmonically decomposed linearized system, when res-
tricted to the horizon. We summarize the above discussion
as follows:
Let M̃ be the spacetime obtained by linearly perturbing a

Schwarzschild background. Then the r ¼ 2 horizon is
null in M̃ if and only if the shear and vorticity 2-vectors
obey ΣV − Ω̄V ¼ 0, but otherwise spacelike in M̃ with
ΣV − Ω̄V < 0.

Note.A nondissipative perturbation is assumed here. The
above conclusion drawn, therefore, may or may not be true
in the presence of a nonzero Q and Π, depending on their
relative magnitudes.

B. Spatially homogeneous background

We consider a hypersurface orthogonal LRS II solution,
which is spatially homogeneous, with metric

ds2 ¼ −dt2 þ ā21ðtÞdr2 þ ā22ðtÞdς̄2: ð54Þ
(The 2-surface with metric dς̄2 is allowed different geom-
etries, including a toroidal one.) In this case we have that
A ¼ ϕ ¼ 0, with the nonvanishing background kinematic
quantities being the expansion and shear

θ ¼ ā1t
ā1

þ 2
ā2t
ā2

; σ ¼ 2

3

�
ā1t
ā1

−
ā2t
ā2

�
; ð55Þ

where the subscript “t” indicates partial differentiation.
Hence,

χ0 ¼
2

3
θ − σ and χ1 ¼ ϕ:

Indeed, χ̇1 and χ̂0 are first order quantities so that
χ̂20 ¼ χ̂0χ̂1 ¼ 0. For simplicity, we specify to a conformally
flat perturbation, and set Λ ¼ 0. We further restrict to the
nondissipative case. This then gives the norm z̄ as (we
recall that this is always evaluated at χ ¼ 0)

z̄ ¼ F − 2χ̇0χ̇1

¼ 1

3
ðρ − 3pÞ½ðρþ pÞ − δaZa� − 4

3
ρδaα

a: ð56Þ

Also, the vanishing condition (32) becomes (again
evaluating at χ ¼ 0)

0 ¼ χ̇0δaχ̇ ¼ −
1

3
ðρþ 3pÞδaðδbAb þ δbα

bÞ

¼ k̄2

3r̄2
ðρþ 3pÞðAV þ αVÞQa: ð57Þ

So, either we fix the equation of state ρþ 3p ¼ 0 or
AV þ αV ¼ 0.
Now, for the former case this would require that ρ (and

consequently p) vanishes in the background to ensure the
gauge invariance of z̄, in which case the horizon is
always null.
Let us consider the latter case and consider the particular

frame choice Aa ¼ 0. This would impose that αV ¼ 0.
(Note again that this condition is compatible with ΣV −
Ω̄V ¼ 0 by virtue of the vanishing of the Greenberg vector.)
Therefore, the characterizing function z̄ reduces to

z ¼ 1

3
ðρ − 3pÞðρþ pÞ: ð58Þ
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Hence, assuming the weak energy condition, the character
of a null horizon, evolving under linear perturbation,
behaves according to the sign of ρ − 3p: the horizon stays
null or becomes spacelike or timelike provided ρ ¼ 3p,
ρ < 3p, or ρ > 3p. So, for example, with a linear equation
of state (EOS) p ¼ wρ, the above conditions are the
respective requirements w ¼ 0, w > 0, and w < 0.
Of course, a choice different from Aa ¼ 0 may be used

to fix the frame. In this case, we will have z̄ assuming
the form

z̄ ¼ 1

3

�
ðρ − 3pÞðρþ pÞ þ k̄2

r̄
ð5ρ − 3pÞαV

�
: ð59Þ

We see that even with a linear EOS of the form p ¼ wρ,
the signature of z̄ above acquires some complexity and
carries a crucial dependence on the sign of the component
αV (note that αV ¼ ΣV − Ω̄V). We may however still
comment on some possible characters of the perturbed
horizon (we are assuming a positive ρ). For example, it is
not difficult to see that, for the range

−1 ≤ w ≤
1

3
; ð60Þ

αV > 0 precludes a spacelike or null character, allowing for
only a timelike character. This indeed differs from the
timelike characterization of the background as the extremes
w ¼ −1 and w ¼ 1=3 allow only for the null character.
(See, for example, Refs. [20,32].) If we look outside the
bound (60) in the case αV > 0, for w < −1, the horizon
character will depend on the magnitude of αV at each r̄ in
relation to each k̄2. [In the background, this is quite
straightforward, as outside the bound (60), the horizon is
spacelike. Again, see Refs. [20,32].] This will also be the
case for the bound

1

3
< w <

5

3
; ð61Þ

but for w ≥ 5=3, only the timelike character is possible.
Now consider the case for αV < 0. Then, a timelike or

null character is ruled out within the bound (61), allowing
for only a spacelike character. For the bounds

−1 < w <
1

3
and w >

5

3
; ð62Þ

the character again depends on the magnitude of αV at each
r in relation to each k̄2.
At the extreme w ¼ 1=3 the horizon is spacelike and

timelike for

1

3
< w ≤

5

3
; ð63Þ

and for values w < −1, a timelike or null character is
prohibited. (Notice that at the critical point w ¼ 5=3 the
horizon signature is insensitive to the sign of αV .)

We summarize the above results as follows:
Let M̃ be the spacetime obtained by linearly perturbing a

spatially homogeneous background M with EOS p ¼ wρ,
and let T be a null horizon foliated by MOTS in M. Then
for ΣV − Ω̄V ¼ 0, T is null, spacelike, or timelike in M̃
provided w ¼ 0, w > 0, or w < 0, respectively. Otherwise,
for ΣV − Ω̄V ≠ 0, see Table I. (Note that αV ¼ ΣV − Ω̄V on
the MOTS.)
Let it be emphasized that the linear choice of the EOS is

for demonstrable purposes for our particular application
and there is no restriction here. Any EOS is, in principle,
allowable with the (possible) caveat being the analysis
acquiring a more complicated character.
We will now conclude this section with the following

remark:
Remark 3. In a general inhomogeneous case, χ1 ¼ 0 and

we see that the associated norm is simplified,

z̄ ¼ F;

so that the characterization proceeds from (38). However,
the consideration of the δaz̄ ¼ 0 criterion is now signifi-
cantly more complicated. Relaxing this condition of course
then gives a simple pointwise characterization via (38). If
one does not impose δaz̄ ¼ 0 a priori, this allows for the
possibility of varying character across the horizon. This is
clearly a more involved case and this is worth considering
for a subsequent work. However, as was just mentioned,
while generally these cases are expected to pose problems,
we see that in a general inhomogeneous background the
condition provides a certain analytic simplicity, at least
pointwise.

V. ON THE MOTS STABILITY OPERATOR

As has been seen from the previous section, the 2-vectors
associated with the shear and vorticity play a crucial role in
how a null horizon in a LRS background spacetime evolves

TABLE I. The behavior of a null horizon evolving under linear
perturbation. Assuming a linear equation of state p ¼ wρ, the
table shows the character of the horizon for different ranges of the
equation of state parameter w and the relationship with the sheet
vector αa decomposed harmonically. The dots indicate a non-
trivial relationship which is dependent on the magnitudes of αV
and ρ as well as the value of the non-negative integer k̄2.

Null horizon character under linear perturbation

αV w Character

αV > 0 ð−1 ≤ w ≤ 1
3
Þ ∪ ðw ≥ 5

3
Þ Timelike

ð1
3
< w < 5

3
Þ ∪ ðw < −1Þ � � �

αV < 0 ð−1 < w < 1
3
Þ ∪ ðw > 5

3
Þ � � �

1
3
< w ≤ 5

3
Timelike

ðw ≤ −1Þ ∪ ðw ¼ 1
3
Þ Spacelike
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under a linear perturbation. This particular combination of
the shear and vorticity evolves simultaneously according to
the field equations and has no independent evolution or
propagation equations as was mentioned in the previous
section. This relationship has implications for the self-
adjointness of the MOTS stability operator as these same
2-vectors also control the self-adjointness of the operator.We
will begin by introducing the MOTS stability operator, after
whichwe provide some commentary on this relationship.We
will then delve into several properties of the operator in the
context of our current considerations as it relates to self-
adjointness. The evolution, propagation, and sheet equations
that will be utilized here have been obtained in [17,18] (with
corrections in [23,24] as stated in Sec. III). So, especially
Ref. [17] is implicit wherever these equations appear.

A. The MOTS stability operator

Given aMOTSS and a normal foliationby a collectionSv,
with the subscript “v” labeling the foliation, one may define
the tangent vector to curves generating the deformation as

∂v ¼ ψ̄na;

for some smooth function ψ̄ on S. Then, stability of S is
captured via thevariation of the expansion χ along ∂v (several
discussions of this can be found in the original papers [8,9],
as well as, for example, the works [33,34] and references
therein),

δ̄ψ̄nχ ¼ LSψ̄ ;

where the operator LS is

LS ¼ −δ2 þ 2s̃aδa þ F̄; ð64Þ

with the definition

F̄ ¼ 1

2
RS − s̃as̃a þ δasa −Gabkalb: ð65Þ

(It is important to note that the scalar ψ̄ completely character-
izes the variation of S.) The 1-form s̃a ¼ −Nc

alb∇ckb is the
projection of the torsion of ka onto S, Gab is the Einstein
tensor, and RS is the scalar curvature of S.
S is said to be strictly or marginally stable if there exists a

non-negative (and not identically zero) ψ̄ obeying, respec-
tively, LSψ̄ > 0 or LSψ̄ ¼ 0, and unstable otherwise.
For a 1þ 1þ 2 decomposed spacetime, s̃a is explicitly

s̃a ¼ Σa − εabΩb; ð66Þ

and in the harmonic basis,

s̃a ¼ ðΣV þ Ω̄VÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
s̃V

Qa þ ðΣ̄V −ΩVÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¯̃sV

Q̄a: ð67Þ

In general, the operator LS is not self-adjoint, which
results from the presence of the linear term s̃aδa so that LS
is allowed to have complex eigenvalues. The imaginary part
encodes information about rotation through the Komar
angular momentum, obtained by integrating over the
MOTS the inner product of s̃a and an axial Killing field.
Still, the principal eigenvalue, which we denote as λ̄, is

always real [8]. The stability of a MOTS S then reduces to
the sign of λ̄: S is strictly or marginally stable if λ̄ > 0 or
λ̄ ¼ 0, and unstable otherwise.
Here, we are interested in the implications of the

characterization conditions obtained for the backgrounds
in the previous sections, for the self-adjointness of the
stability operator. Crucially, the dependence on the sign of
αV (or equivalently ΣV − Ω̄V).
Now, it is known that the self-adjointness of the MOTS

stability operator is guaranteed by the 1-form s̃a being a
gradient [34]. Particularly, if the 1-form s̃a is gradient, then
the operator LS is similar to a self-adjoint operator. (Of
course, the case of vanishing s̃a is trivial, and so we
consider this possibility s̃a ≠ 0.) This self-adjointness in the
case that s̃a is gradient can be seen here in a rather trivial
way. To see this, let us consider the action of the operator
LS on a first order scalar ψ ð1Þ ¼ ψSQ,

LSyð1Þ ¼
�
ð−δ2 þ F̄ÞQþ 1

r
s̃V

�
ψS: ð68Þ

(The normalization QaQa ¼ 1 has been assumed for
simplicity.) Since if the s̃a is gradient it has a vanishing
divergence, it is then clear that this requires the vanishing of
s̃V , i.e.,

ΣV þ Ω̄V ¼ 0: ð69Þ

Thus, the eigenvalue problem for the MOTS stability
operator simply reduces to the following eigenvalue
problem for Q:

−δ2Qþ FQ ¼ λQ: ð70Þ

That is, the problem reduces to the eigenvalue problem for
the self-adjoint operator L0

SQ ¼ ð−δ2 þ FÞQ ¼ λQ so that

λk̄2 ¼
k̄2

r̄2
þ F̄; ð71Þ

i.e., the eigenvalues are parametrized by k̄2. Thus, strict
stability is always guaranteed for

F̄ ¼ 1

2
ðRS − RÞ − ¯̃s2V − ðpþQÞ þ 2Λ > 0: ð72Þ

(Recall that R is the four-dimensional scalar curvature.)
It will later be seen that ¯̃sV is necessarily zero on the

MOTS in the case that s̃V ¼ 0, i.e., s̃a is a gradient. So, in

DUNSBY, KOH, and SHERIF PHYS. REV. D 110, 064039 (2024)

064039-12



this case for pþQ ≤ 0 and Λ ≥ 0, whenever RS > R, the
operator has no negative eigenvalue. The principal eigen-
value and the MOTS is strictly stable. This is indeed the
case, say, for vacuum solutions undergoing a shear-free and
a nondissipative perturbation where one will have s̃V
vanishing.
On the other hand, consider an irradiating (Q ¼ 0)

spacetime with a positive scalar curvature, a vanishing Λ,
and a non-negative pressure. Then, for a sufficiently largep it
is possible that F̄ < 0, so that the principal eigenvalue is
always negative and hence the MOTS will be unstable.
Remark 4. Actually, in the linear regime any perturbation

to the MOTS scalar curvature RS is encoded in first order
scalars. Particularly, if the scalars E, Π, and Λ (if Λ is
included as a perturbation variable) are nonvanishing in the
background, then RS is not perturbed. However, nonlinear
effects are present under perturbation of the background as

RS ¼ 0RS þ Z; ð73Þ

where Z ¼ ΣabΣab − ζabζ
ab is just twice the inner product

of the projected shears of ka and la. So, it is clear that once
nonlinear effects are factored in any analysis, we do expect
the behavior of the eigenvalues to be modified.
Now, the commutation relations of the dot and hat

derivatives for an arbitrary 2-vector Ψa (imposing the
vanishing of the Greenberg vector and taken up to linear
order)

ˆ̇Ψa −
˙̂Ψa ¼ −AΨ̇a þ

�
1

3
θ þ σ

�
Ψ̂a þHεabΨb: ð74Þ

Harmonically decomposing the above relation and applying
to the 1-form s̃awhile setting the component s̃V ¼ 0 says that

ˆ̄̇s̃V − ˙̄̂
s̃V ¼ −A ˙̃̄sV þ

�
1

3
θ þ σ

�
ˆ̃̄sV; ð75Þ

H ¯̃sV ¼ 0: ð76Þ

The above is meant to suggest that, for a magnetized
(H ≠ 0) linear perturbation M̃ of a LRS background
spacetime M, if the 1-form s̃a is gradient in which case
the MOTS stability operator is self-adjoint (remember this
is for the class of MOTS under consideration), then s̃a
necessarily vanishes on the MOTS. However, as it will be
seen shortly, the quantities ¯̃sV and H are proportional so
that in the linear regime on any MOTS it is true that both ¯̃sV
and H vanish. More specifically, H must be first order.

B. Comments on relations to the characterization
of null horizons

Let us now specify our discussions to the backgrounds of
the previous section.

1. Schwarzschild background

To begin with, consider the case of the Schwarzschild
background. We will establish the following statement (C1)
and the corresponding implication (C2):

(C1) For a linear perturbation M̃ of a Schwarzschild
background, the 1-form s̃a is gradient (in which
case the MOTS stability operator is self-adjoint) if
and only if s̃a is identically zero; ⇒.

(C2) For a linear perturbation M̃ of a Schwarzschild
background, if the 1-form s̃a ≠ 0 and the vorticity
2-vector has a nonzero contribution from the odd
sector, the r ¼ 2 null horizon necessarily evolves
to a spacelike character.

Note. As was mentioned in the previous section, away
from the null case the horizon can only evolve to the
spacelike case with the even parity component of Σa þ
εabΩa being negative. (A timelike character would imply
that timelike curves do enter the trapped region, which is of
course ruled out.) Thus, statement (C2) above follows from
the fact that s̃V; Ω̄V ≠ 0 ensures that ΣV − Ω̄V ≠ 0.
Let us apply the tensor εabnc to the Ricci identities for

the unit field na to get

δaðΩa þ εabΣbÞ ¼ ð2A − ϕÞΩþH; ð77Þ

and upon noting Ω should be zero on the MOTS, the above
reduces to

−
k̄2

r̄
¯̃sVQ ¼ H; ð78Þ

so that H is a first order quantity that vanishes on the
background, i.e., H is decomposed into the harmonic
Q basis.
Then, by (76) it follows that H ¼ ¯̃sV ¼ 0. It therefore

follows that s̃V ¼ 0 ⇔ s̃a ¼ 0, i.e., s̃a is gradient if and
only if s̃a vanishes identically.
Finally, the linearized evolution and propagation equa-

tions of H are, respectively, given by (these are, respec-
tively, the ua and na components of the magnetic Weyl
divergence equation [29])

Ḣ ¼ −3Eξ − εabδ
aEb; ð79Þ

Ĥ ¼ −3EΩ − 3ϕH − δaHa; ð80Þ

which translates to, by the vanishing ofH as well as noting
that Ω ¼ ξ ¼ 0 on the MOTS,

HV ¼ 0; ĒV ¼ 0: ð81Þ
This is to say that, necessarily, on the MOTS one requires
that Ha is solenoidal (divergence-free) and that Ea has no
odd parity contribution on the MOTS.
While there appears to be freedom in the quantities EV and

H̄V , they are actually constrained by a coupling of the sheet
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expansionϕ and the 1-form s̃a (see the discussions of thenext
subsection). For example, for a vanishing s̃a in the case of a
nondissipative perturbation, it follows that one requires
(again, see the next subsection for more details on this)

EV þ H̄V ¼ 0:

Of course, we do not rule out self-adjointness of the
operator in the case of a spacelike character. This is, in
principle, possible depending on the nature of the pertur-
bation. This case will however impose that ΣV < 0.
On the other hand, the null character does not necessarily

imply the self-adjointness of the operator. The self-adjointness
due to vanishing of s̃a, in this case, would imply (and is
implied by) ΣV ¼ Ω̄V ¼ 0.

2. Hypersurface orthogonal and spatially
homogeneous background

We now consider the spatially homogeneous case of the
previous section and stick with a nondissipative perturba-
tion. In this case the equations corresponding to (77), (79),
and (80) are, respectively,

Ḣ ¼ −
3

2

�
2

3
θ − σ

�
H − 3Eξ − εabδ

aEb; ð82Þ

Ĥ ¼ −3ðE þ ρþ pÞΩ − 3ϕH − δaHa; ð83Þ

H ¼ δaðΩa þ εabΣbÞ þ 3ξσ: ð84Þ

The vanishing of Ω; ξ ¼ 0, and H then implies the result
HV; ĒV; ¯̃sV ¼ 0 follows as in the Schwarzschild case. For
this reason, the statement (C1) of the previous subsection
also holds here, although for obvious reasons the statement
(C2) does not hold.
Remark 5.We do expect these three vanishing properties

to be generic to the MOTS we are considering in the sense
that they are independent of the particular background one
works with. It will be quite interesting to see how much
these vanishing conditions further constrain the MOTS in
full generality. This is, however, beyond the scope of the
current work.
In the self-adjoint case with a vanishing s̃a, obviously

either one of the components ΣV or Ω̄V, paired with the
parameter ranges suffice for the characterization of the
horizon.
On the other hand, if one is to impose the condition that

jΣV j ≠ jΩ̄V j, this of course ensures that s̃a is nonvanishing,
in which case one may then check which conditions this
further imposes on the horizon character. However, this
does not in by itself rule out self-adjointness of the operator.
In principle, if one can expand a nonvanishing s̃V in the
harmonicQ basis, then the operator can still be brought to a
self-adjoint form. In the forthcoming subsection wewill see

a particular class of perturbations where this may be
possible.

C. More on the MOTS and stability operator

We obtain some additional results required to be satisfied
on the MOTS, given properties derived from the 1-form s̃a.
As we shall see, this will provide some interesting insights
into properties of the 1-form s̃a.
The magnetic Weyl tensor is written down as a constraint

to the field equation [29],

Hab ¼ εcdhaDcσ d
bi − 2u̇haωbi −Dhaωbi: ð85Þ

One may interpret the above as the magnetic Weyl tensor
measuring the degree of distortion of vorticity.
Taking the na component of (85) produces the constraint

equation, up to linear order,

−δa
�
2

3
θ − σ

�
¼ −2δbΣab − ϕs̃a

− 2εab½Hb þ ðδb þ 2AbÞΩ�
þ ξðΩa − 3εabΣbÞ: ð86Þ

By setting Ω ¼ ξ ¼ 0 we have

−δa
�
2

3
θ − σ

�
¼ −2ðδbΣab þ εabHbÞ − ϕs̃a: ð87Þ

Also, fully projecting the Ricci identities for na taken up to
linear order and imposing the MOTS condition and the
vanishing of ξ and Ω as required we obtain

−δaϕ ¼ 2ðEa − δbζabÞ − Πa − ϕs̃a; ð88Þ
and upon combining with (87) and (88) we have

−=δaχ ¼ 2½Ea − δbðΣab þ ζabÞ − εabHb� − ϕs̃a; ð89Þ

where we have written =δa ¼ δa − s̃a. One may then use the
Codazzi equations to establish the following:

−Qa þ Zabkb ¼ 2ðEa − εabHbÞ − ϕs̃a; ð90Þ

where Zab ¼ N c
a Ccbdekdle, with Cabcd being the spacetime

Weyl tensor.
We will now utilize a curvature property of the MOTS to

establish that the second term on the left-hand side of (90)
is of nonlinear order on the MOTS. With this we will have
established a relationship between the Weyl and heat flux
2-vectors and the rotation 1-form.
The curvature 2-form on the MOTS, i.e., the curvature

of s̃a—which we denote by Ω̃ab—contracted along the null
direction ka can be shown to obey the relation

kbΩ̃ba ¼ −N c
a Zcbkb;
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so that

kbΩ̃ba ¼ −½2ðEa − εabHbÞ − ϕs̃a þQa�: ð91Þ

Explicitly, the left-hand side of (91) can be reduced to

kbΩ̃ba ¼ −
1

2
Σbδakb

¼ −
1

2
ðΣab þ ζabÞΣb;

which we ignore as it is of second order. Thus,

ϕs̃a ¼ Qa þ 2ðEa − εabHbÞ: ð92Þ

Furthermore, imposing the MOTS condition on (30) we
have

=δaϕ ¼ 0;

so that by (88) it follows

Πa ¼ 2ðEa − δbζabÞ: ð93Þ

Clearly, away from the case of a vanishing ϕ, the
following statement is concluded:
The MOTS stability operator in a conformally flat and

nondissipative (this imposes that ζab is divergence-free)
linearly perturbed inhomogeneous LRS background is
self-adjoint.
So, for example, the above will be true for a non-

dissipative perturbation of a Lemaître-Tolman-Bondi type
solution.
Notice that if the tensor δanb is pure trace, dissipation on

the MOTS is generated entirely by contributions from the
Weyl tensor.
On the other hand, without restricting to the nondissi-

pative case, using the vanishing of ĒV;HV , and ¯̃sV we have
the following pair of equations from (92):

Q̄V ¼ 0; ð94Þ

ϕs̃V ¼ QV þ 2ðEV þ H̄VÞ: ð95Þ

In any case, we can draw some immediate conclusions
from both (92) and (93) about the generation of rotation on
a horizon:

(i) In a conformally flat linearly perturbed inhomo-
geneous LRS background, rotation of a horizon
foliated byMOTS can be entirely sourced by the heat
flux 2-vector along the MOTS. This then implies that
self-adjointness of theMOTS stability operator in this
particular case may be obtained by switching off any
heat flux contribution along the MOTS.

(ii) In a nondissipative linearly perturbed inhomo-
geneous LRS background, rotation of a horizon
foliated by MOTS can be sourced by the 2-vector
components of the Weyl curvature tensor. This is to
say that in this case the contributing sources are tidal
forces acting along the MOTS.

Remark 6.We remark here that the form of (95) suggests
that it is possible, in principle, to have a nonvanishing s̃V—
i.e., a nonvanishing s̃a—even in the case of a conformally
flat perturbation with a vanishing heat flux and vanishing ϕ.
Thus, in the first point above, we were quite cautious with
semantics when we used “may be” when switching off the
heat flux contribution along the MOTS to obtain self-
adjointness of the stability operator. Only when ϕ is
nonzero in the perturbed spacetime that this is true, at
least in our current context.
Finally, let us describe a simple case where s̃V is non-

vanishing but the stability operator may take a self-adjoint
form. More specifically, we may be able to express s̃V in
terms of theQ basis. We shall consider a static background,
i.e., the shear and expansion scalars vanish on the
background.
We note that for any 2-tensor Ψab one has as the

divergence

δbΨab ¼
1

r̄
ðk̄2 − 2Þð−Ψ̄TQa þΨTQ̄aÞ: ð96Þ

Thus, one can harmonically decompose (87) to obtain the
pair of constraint equations

0 ¼ 1

r̄
ðk̄2 − 2ÞΣT þHV; ð97Þ

0 ¼ 1

r̄
ðk̄2 − 2ÞΣ̄T þ H̄V þ 1

2r̄

�
2

3
θS − σS

�
− ϕs̃V: ð98Þ

Indeed, from Eq. (97) it follows that the tensorial part ΣT ,
for k̄2 ≠ 2, vanishes by virtue of the vanishing of the
quantity HV. Furthermore, by imposing the MOTS con-
dition χ ¼ 0, Eq. (98) can be recast as

0 ¼ 1

r̄
ðk̄2 − 2ÞΣ̄T þ H̄V þ ϕ

�
1

2rQ
− s̃V

�
: ð99Þ

Therefore, as long as the MOTS is nonminimal in the
perturbed spacetime [recall that by nonminimal it is meant
that ϕ and ð2=3Þθ − σ cannot vanish simultaneously on the
MOTS], for a perturbation with no contributions from the
odd vector harmonics part ofHa and the shear 2-tensor Σab,
the 1-form component s̃V can effectively be cast as

s̃V ¼
�

1

2r̄Q2

�
Q: ð100Þ
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(Of course s̃V is nonzero and so s̃a is not a gradient.)
This then allows us to write down the eigenvalues of the
operator as

λk̄2 ¼
k̄2

r̄2
þ 1

2r̄2Q2
þ F̄: ð101Þ

Consequently, the positivity of the modification term
means that F̄ > 0 again ensures non-negativity of the
eigenvalues.

VI. SUMMARY AND OUTLOOK

A. Summary

In this work we have considered the behavior of a null
horizon foliated by MOTS in a LRS background spacetime
subjected to linear perturbations. The problem is fixed by the
gauge invariant requirement of the characterizing function.
More precisely, we set out to characterize the evolution of a
MOTS in a linearized spacetime admitting a 1þ 1þ 2
decomposition, which lies in the slice orthogonal to the
ua. The gauge invariance of the characterizing function
introduced is possible if and only if a certain function
vanishes in the background. This vanishing condition is
equivalent to the condition for a horizon in the background to
be null, thus phrasing the problem in terms of the evolu-
tionary behavior of a null horizon in a LRS background
subjected to linear perturbations. In other words—and
emphasis is placed on this—this characterization fails in
the case of a non-null horizon in the background. While this
work has been dedicated to the case of linear perturbations, it
was demonstrated that the characterizing function is form
invariant even when extending to nonlinear regimes, for a
certain frame choice or provided that the perturbed spacetime
has a vanishing sheet expansion.
We focused the application of our characterization to

nondissipative perturbations. As was described in the
Introduction, perturbing a seed metric generally affects the
dynamics of an embedded horizon and that this is the case of
the null event horizon in the Schwarzschild spacetime. The
presence of shear ensures a spacelike transition of the null
horizon.We have assumed a harmonic decomposition of first
order scalarsΨ and2-vectorsΨa, where the notationsΨV and
Ψ̄V are used, respectively, for the components ofΨa along the
even and odd vector harmonics. It is established here that
this spacelike transition requires that a particular relation-
ship between the shear and the vorticity 2-vectors holds,
specifically, ΣV − Ω̄V < 0. In order for the causal preserva-
tion of the horizon character, ΣV − Ω̄V ¼ 0. The result was
obtained for the particular consideration of a nondissipative
perturbation where the scalars, tensors, and vector quantities
associated with the heat flux and anisotropic pressure vanish.
We also considered the case of a spatially homogeneous

background solution and wrote down the form of the
horizon characterizing function. In the Schwarzschild case,
any transition from a null character is necessarily spacelike

as the horizon encloses a black hole (note that we are
assuming the MOTS condition is preserved). However, for
the spatially homogeneous case null horizons do not
enclose black holes, and therefore the causal character
could transition to a timelike one under the perturbation.
Imposing a linear equation of state, for a particular frame
choice, i.e., fixing the spatial unit vector to align with the
acceleration of the temporal unit vector (which coincides
with the vanishing of the difference between the 2-vector
components, i.e., ΣV − Ω̄V ¼ 0), the sign of the equation of
state parameter w alone characterizes the evolution: null if
w ¼ 0, spacelike if w > 0, and timelike if w < 0. Without
this frame choice, the evolution of the horizon is a bit more
involved. We nonetheless present a partial characterization
of the horizon dynamics in the presence of perturbations. In
particular, where the difference between these vector
components is strictly negative or strictly positive, we find
the ranges of the equation of state parameter where the
induced metric on the horizon has absolute sign, i.e., the
causal character is time- or spacelike. However, there are
ranges of the parameter for which the causal character is
determined by a complex relationship between the 2-vectors,
the energy density, and the eigenvalues of MOTS Laplacian,
which we could not analytically determine.
Finally, we considered the relationship between the shear

and vorticity 2-vectors which play a crucial role in the
characterization of the horizon, to the MOTS stability
operator. These 2-vectors also specify the 1-form s̃a which
controls the self-adjointness of the operator and points to an
obvious connection to the characterization we have intro-
duced. We established that the component ¯̃sV vanishes
for our particular consideration in this work, and that
s̃V ¼ ΣV þ Ω̄V . This implied that for our consideration the
1-form s̃a is a gradient (so that theMOTS stability operator is
self-adjoint) if and only if s̃a vanishes identically. As a
consequence, in the case of perturbation of a Schwarzschild
background, it follows that when the stability operator is not
self-adjoint and Ω̄V ≠ 0, the event horizon necessarily
transitions to a spacelike character. In the case of a spatially
homogeneous background, in the self-adjoint case with a
vanishing s̃a, it is clear that only one of the componentsΣV or
Ω̄V is needed for the characterization.
Several additional results were also obtained, restricting

the form of 2-tensors and 2-vectors on the MOTS. For
example, it was established that (and this appears inde-
pendent of the choice of background) the components of
the even and odd vector harmonics, respectively, of the
magnetic and electric Weyl 2-vectors necessarily vanish on
the MOTS. In fact, it was demonstrated that the bi-
implication ¯̃sV ¼ 0 ⇔ H ¼ 0 follows, which is due to
the fact that H is necessarily a first order quantity.
Furthermore, the component of the odd tensor harmonics
of the shear 2-tensor also vanishes on the MOTS.
As the 1-form s̃a is tied to rotation generation on the

horizon, we provide a clear picture, at least in the linear
regime, of the precise source of rotation on the horizon: for

DUNSBY, KOH, and SHERIF PHYS. REV. D 110, 064039 (2024)

064039-16



a nondissipative linear perturbation of a LRS background
spacetime, rotation is entirely sourced by contributions
from the Weyl 2-vectors on the MOTS. If one includes
dissipation, then rotation gains a contribution from the heat
flux 2-vector. Actually, there could be dissipation from the
anisotropic 2-vector and no contribution from the heat flux
2-vector, and it remains true that horizon rotation will be
entirely sourced by Weyl contributions. It then follows that,
for a conformally flat and nondissipative perturbation of an
inhomogeneous LRS background spacetime, the stability
operator is necessarily self-adjoint.
We also presented a class of perturbations for which the

1-form s̃a is nonvanishing but one may nonetheless expand
the component ¯̃sV in the harmonic basis so that the MOTS
stability operator can be brought to a self-adjoint form.

B. Outlook

There are several interesting directions that could be
explored. In this work, we have restricted ourselves to first
order perturbations. What happens when nonlinearities are
incorporated into the analysis of the horizon evolution?
Naturally the problem becomes a bit (or a lot) more
complicated, as seen from the characterizing function z̄
in (27). For example, there will be additional contributions
from the nonlinearities to the scalar curvature of the MOTS,
so that large distortions are introduced on the MOTS. These
distortions are not present at first order as was discussed
earlier. Modification to the eigenvalue in the self-adjoint
case will present in the form of the inclusion of dissipation
and the cosmological constant Λ (if Λ is considered a
perturbation “variable”). Any nonlinearity introduced is an
extra contribution to the principal eigenvalue through the
scalar curvature of the MOTS.
Another example is the following. At every stage of our

analysis we have imposed the MOTS condition χ ¼ 0,
meaning that the built-in assumption here is that a back-
ground horizon, under perturbations of its ambient back-
ground spacetime, evolves to a horizon foliated by MOTS.

However, it is quite possible that under the perturbation the
MOTS become unstable so that the horizon is no longer
future outer trapped. This is the case of the Weyl-distorted
Schwarzschild geometry discussed in the Introduction,
where by the tuning up the distortion parameter the r ¼ 2
MOTS is no longer a MTS, i.e., the ingoing null expansion
has varying signs along the MOTS so that the MOTS is not
future outer trapped [12]. This degeneracymaybe a feature of
nonlinearities under the perturbation and so might not
happen in the linear perturbative case considered in this
work. It was also emphasized in that work that the distortions
consideredwere quite strong andmay have consequences for
the energy conditions. However, as mentioned in the second
point above, extending our analysis to nonlinear perturba-
tions it would suffice as a more general consideration, not to
impose the future outer trapping condition a priori and
analyze the nonlinear equations.
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APPENDIX: TABLE OF NOTATIONS USED

In this appendix we provide Table II, which gives
comparisons between some of the notations used in this
work and those more familiar to numerical relativists and
researchers working on more geometrical aspects of MOTS,
especially of quantities defined on the MOTS. We will
compare our work with Refs. [4,9], whose notations are
more common to the community.

TABLE II. A comparison of some of the notations in this work with those of Refs. [4,9], which are more common
to those working in this niche of general relativity.

Notational comparisons

Quantity This work Others

Unit spacelike normal na [9] va;[4] r̂a

Null normal vectors Outgoing: ka; Ingoing: la Outgoing and ingoing, respectively: [9] la

and ka;[4] la and na

Null expansion scalars Outgoing: χ; Ingoing: χ̄ Outgoing and ingoing, respectively: [9] θl
and θk;[4] θðlÞ and θðnÞ

Rotation 1-form s̃a [9] sa;[4] ω̃a
Derivative on MOTS δa [9] Da;[4] Da
Projected shears to MOTS Σab ¼ δfaubg ¼ Na

cNb
bσðnÞab ;

ζab ¼ δfanbg ¼ Na
cNb

dσðuÞab

[4] σðlÞab ¼ Σab þ ζab; σ
ðnÞ
ab ¼ 1

2
ðΣab − ζabÞ

CAUSAL DYNAMICS OF NULL HORIZONS UNDER LINEAR … PHYS. REV. D 110, 064039 (2024)

064039-17



[1] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[2] R. Wald, General Relativity (University of Chicago Press,

Chicago, IL, 1984).
[3] S. A. Hayward, Phys. Rev. D 49, 6467 (1994).
[4] I. Booth, Can. J. Phys. 83, 1073 (2005).
[5] I. Booth, L. Brits, J. A. Gonzalez, and C. Van Den Broeck,

Classical Quantum Gravity 23, 413 (2005).
[6] A. Ashtekar and G. J. Galloway, Adv. Theor. Math. Phys. 9,

1 (2005).
[7] A. Ashtekar and B. Krishnan, Living Rev. Relativity 7, 10

(2004).
[8] L. Andersson, M. Mars, and W. Simon, Phys. Rev. Lett. 95,

111102 (2005).
[9] L. Andersson, M. Mars, and W. Simon, Adv. Theor. Math.

Phys. 12, 853 (2008).
[10] M. Korzynski, Phys. Rev. D 74, 104029 (2006).
[11] A. Ashtekar, N. Khera, M. Kolanowski, and J.

Lewandowski, J. High Energy Phys. 02 (2022) 066.
[12] T. Pilkington, A. Melanson, J. Fitzgerald, and I. Booth,

Classical Quantum Gravity 28, 125018 (2011).
[13] R. Geroch and J. Hartle, J.Math. Phys. (N.Y.) 23, 680 (1982).
[14] M. de Cesare and R. Oliveri, Phys. Rev. D 108, 044050

(2023).
[15] G. F. R. Ellis, J. Math. Phys. (N.Y.) 8, 1171 (1967).
[16] J. M. Stewart and G. F. R. Ellis, J. Math. Phys. (N.Y.) 9,

1072 (1968).
[17] C. Clarkson and R. K. Barrett, Classical Quantum Gravity

20, 3855 (2003).
[18] C. Clarkson, Phys. Rev. D 76, 104034 (2007).

[19] George F. R. Ellis, R. Goswami, A. I. Hamid, and S. D.
Maharaj, Phys. Rev. D 90, 084013 (2014).

[20] A. M. Sherif, R. Goswami, and S. D. Maharaj, Classical
Quantum Gravity 36, 215001 (2019).

[21] A. M. Sherif, Eur. Phys. J. C 81, 1 (2021).
[22] A. M. Sherif and P. K. S. Dunsby, Classical Quantum

Gravity 40, 045005 (2023).
[23] P. Semrén, Universe 8, 406 (2022).
[24] P. Semrén and M. Bradley, Classical Quantum Gravity 39,

235003 (2022).
[25] C. Hansraj, R. Goswami, and S. D. Maharaj, Eur. Phys. J. C

83, 321 (2023).
[26] J. M. Stewart and M. Walker, Proc. R. Soc. A 431, 49

(1974).
[27] I. Booth, R. A. Hennigar, and S. Mondal, Phys. Rev. D 102,

044031 (2020).
[28] D. Pook-Kolb, I. Booth, and R. A. Hennigar, Phys. Rev. D

104, 084084 (2021).
[29] G. F. R. Ellis and H. Van Elst, NATOAdv. Study Inst. Ser. C

Math. Phys. Sci. 541, 1 (1999).
[30] I. Booth and S. Fairhurst, Phys. Rev. Lett. 92, 011102

(2004).
[31] I. Booth and S. Fairhurst, Classical Quantum Gravity 22,

4515 (2005).
[32] I. Ben-Dov, Phys. Rev. D 70, 124031 (2004).
[33] J. L. Jaramillo, Classical Quantum Gravity 32, 132001

(2015).
[34] I. Booth, G. Cox, and J. Margalef-Bentabol, Classical

Quantum Gravity 41, 115003 (2024).

DUNSBY, KOH, and SHERIF PHYS. REV. D 110, 064039 (2024)

064039-18

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1139/p05-063
https://doi.org/10.1088/0264-9381/23/2/009
https://doi.org/10.4310/ATMP.2005.v9.n1.a1
https://doi.org/10.4310/ATMP.2005.v9.n1.a1
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.4310/ATMP.2008.v12.n4.a5
https://doi.org/10.4310/ATMP.2008.v12.n4.a5
https://doi.org/10.1103/PhysRevD.74.104029
https://doi.org/10.1007/JHEP02(2022)066
https://doi.org/10.1088/0264-9381/28/12/125018
https://doi.org/10.1063/1.525384
https://doi.org/10.1103/PhysRevD.108.044050
https://doi.org/10.1103/PhysRevD.108.044050
https://doi.org/10.1063/1.1705331
https://doi.org/10.1063/1.1664679
https://doi.org/10.1063/1.1664679
https://doi.org/10.1088/0264-9381/20/18/301
https://doi.org/10.1088/0264-9381/20/18/301
https://doi.org/10.1103/PhysRevD.76.104034
https://doi.org/10.1103/PhysRevD.90.084013
https://doi.org/10.1088/1361-6382/ab45bc
https://doi.org/10.1088/1361-6382/ab45bc
https://doi.org/10.1140/epjc/s10052-020-08759-1
https://doi.org/10.1088/1361-6382/acb195
https://doi.org/10.1088/1361-6382/acb195
https://doi.org/10.3390/universe8080406
https://doi.org/10.1088/1361-6382/ac9bc7
https://doi.org/10.1088/1361-6382/ac9bc7
https://doi.org/10.1140/epjc/s10052-023-11433-x
https://doi.org/10.1140/epjc/s10052-023-11433-x
https://doi.org/10.1098/rspa.1974.0172
https://doi.org/10.1098/rspa.1974.0172
https://doi.org/10.1103/PhysRevD.102.044031
https://doi.org/10.1103/PhysRevD.102.044031
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevLett.92.011102
https://doi.org/10.1103/PhysRevLett.92.011102
https://doi.org/10.1088/0264-9381/22/21/006
https://doi.org/10.1088/0264-9381/22/21/006
https://doi.org/10.1103/PhysRevD.70.124031
https://doi.org/10.1088/0264-9381/32/13/132001
https://doi.org/10.1088/0264-9381/32/13/132001
https://doi.org/10.1088/1361-6382/ad3dab
https://doi.org/10.1088/1361-6382/ad3dab

