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We investigate the parity-violating scalar-tensor theory and pay special attention to terms that are free of
the Ostrogradsky ghost in the unitary gauge, i.e., when the scalar field possesses a timelike gradient. We
exhaustively identify the generally covariant scalar-tensor theory (GST) monomials with parity violation up
to d ¼ 4, where d is the total number of derivatives in the unitary gauge. According to the correspondence
between GST terms and the spatially covariant gravity (SCG) terms in the unitary gauge, we also
exhaustively identify the SCGmonomials with parity violation up to d ¼ 4, where the Lie derivatives of the
extrinsic curvature and the lapse function are necessarily introduced. We find a total of nine independent
parity-violating SCG monomials, of which seven contain no higher-order Lie derivatives and are thus
automatically free of ghosts, while two involve Lie derivatives of the extrinsic curvature and the lapse
function and are thus potentially dangerous. By explicitly deriving their generally covariant correspon-
dence, we obtain seven independent scalar-tensor terms dubbed the “Qi-Xiu” Lagrangians, which are the
most general parity-violating scalar-tensor theories that are ghost-free in the unitary gauge up to d ¼ 4. Our
results include the existing theories in the literature, such as the Chern-Simons term and the chiral scalar-
tensor theories, as special cases.
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I. INTRODUCTION

While the dark sector of current cosmology remains
insufficiently understood, new physics beyond general
relativity (GR) and the standard model of particle physics,
including the strong, electromagnetic, and weak inter-
actions, is required. Various observable effects, such as
helicity asymmetry and beta decay, have been observed,
indicating the presence of parity violation in weak inter-
actions [1,2]. In the era of precision cosmology, the
polarization features of the cosmic microwave background
reveal clues about parity violation [3–7] beyond the
standard model. Consequently, when turning our attention
to gravity, it is natural to question if there are any parity-
violating effects in gravitational interactions.
From a theoretical perspective, incorporating parity-

violating terms opens up new avenues for understanding
fundamental aspects of gravity. At the quantum level,

parity-violating terms would contribute to the renormali-
zation and ultraviolet behavior of the theory, thus poten-
tially providing insights into the quantization of gravity or
the final unified theory [8–12]. From an observational
perspective, the detection of gravitational wave events
[13,14], together with forthcoming gravitational wave
experiments [15–21], opens a new window and provides
an opportunity to directly test these parity-violating theories
and models. Different polarization modes in a cosmological
background would be exhibited in these parity-violating
theories, and modifications to the dispersion relations would
also be introduced [22,23]. Moreover, as corrections to
standard inflationary models, parity-violating terms change
the polarization modes of the resulting primordial gravita-
tional waves [24–27], which should produce nonvanishing
TB/EB correlations in the cosmic microwave background
polarization [28–32]. The resulting behavior of GWs in
different parity-violating gravity models has been exten-
sively studied [33–46].
For the purpose of constructing gravitational theories

with parity violation, the parity-violating terms can enter
the gravitational action through various approaches. A
certain class of quintessence or axion fields [47–49] would
generate such a parity-violating feature by coupling the
pseudo-scalar with electromagnetism. Another notable
example is the four-dimensional Chern-Simons modified
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gravity [50–53], in which the Pontryagin term with a
coefficient depending on a scalar field is added to the
standard Einstein-Hilbert action. Generalization of Chern-
Simons gravity in the more general scalar-tensor theories is
considered in [54], in which various couplings between the
Riemann tensor and covariant derivatives of the scalar field
up to the second order are introduced. A totally antisym-
metric Levi-Civita tensor (volume form) εμνρσ appears in
the action and is used to construct various parity-violating
terms. One lesson from the construction of these parity-
violating terms in the framework of scalar-tensor theory is
that the resulting theories are ghost-free only if the scalar
field possesses a timelike gradient so that the so-called
unitary gauge can be taken.
On the other hand, generally covariant scalar-tensor

(GST) theories in the unitary gauge take the form of metric
theories with Lorentz violation and, more specifically,
spatially covariant gravity (SCG) theories respecting only
spatial covariance. The SCG theories have simpler forms
and are, in fact, more convenient in the cosmological
context. Well-studied examples, although originally moti-
vated by different purposes, include the Hořava-Lifshitz
gravity [55–63], as well as the effective field theory of
inflation/dark energy [64–69]. The parity-violating effects
in Hořava gravity have been investigated in [70–72]. A
general class of SCG theories was proposed in [73,74] as an
alternative and more unifying approach to introducing a
scalar degree of freedom and generalizing the scalar-tensor
theories. It was further extended by introducing a dynami-
cal lapse function [75–77], nonmetricity [78], as well as an
auxiliary scalar field [79,80]. Constraints from cosmologi-
cal perturbations and gravitational waves on SCG have
been explored in [81–85].
There are several advantages to working in the frame-

work of SCG theories. Firstly, in the case of a single scalar
degree of freedom, there is a one-to-one correspondence
between theories of GST and SCG through gauge-fixing/
gauge-recovering procedures. Based on the classification of
GST monomials in [86], such a correspondence has been
discussed in detail in [87,88], and the explicit linear
mappings between GST and SCG monomials are devel-
oped in [89] (see also [90,91]). In other words, SCG should
not be viewed merely as Lorentz-violating theories but as a
general and unifying description of scalar-tensor theories.
Second, thanks to its dependence only on spatial diffeo-
morphism, the separation of temporal and spatial deriva-
tives allows us to generally include the parity-violating
terms with odd-order spatial derivatives and linear terms of
higher-order time derivatives in the action without intro-
ducing ghost DoFs. This is also reflected in the fact that the
absence of ghosts in SCG (i.e., in the unitary gauge) is a
necessary condition for the corresponding GST theory to be
ghost-free (i.e., in any gauge) [88]. The specific behavior of
theories that are degenerate in the unitary gauge is
discussed in [92,93]. Therefore, SCG provides a unifying

framework to study gravity theories with parity violation in
a systematic manner.
In this work, we aim to investigate parity-violating

scalar-tensor theories without ghosts in the unitary gauge.
We concentrate on the GST Lagrangians of the poly-
nomial type. Instead of starting from the most general
GST polynomial and studying its behavior in the unitary
gauge so that all the ghostlike terms get canceled, we will
make use of the correspondence between GST and SCG.
That is, we will construct the most general SCG mono-
mials with parity violation and then find their generally
covariant correspondence. The parity-violating SCG
monomials have been studied in [87] without Lie deriv-
atives of the lapse function and the extrinsic curvature.
However, these terms naturally arise in GST terms in the
unitary gauge. Therefore, a complete analysis of both GST
and SCG monomials up to d ¼ 4with d being the number
of derivatives in the unitary gauge is needed. Then, by
making use of the covariant correspondence, we can get
the desired parity-violating scalar-tensor theories without
ghosts in the unitary gauge. This work is thus devoted to
these issues.
The paper is organized as follows. In Sec. II, we briefly

review the general framework of SCG theory. We also
show a specific SCG model in Sec. II B with parity-
violating terms of the polynomial type as an illustration of
the construction and classification of the SCG monomials.
In Sec. III, we list the basic building blocks for SCG by
introducing new operators involving Lie derivatives of the
lapse function and the extrinsic curvature. We then
exhaust all the possible parity-violating SCG monomials
up to d ¼ 4 with d being the total number of derivatives.
In Sec. IV, we connect the ghost-free SCG model with
parity-violating scalar-tensor theories. In particular, we
get a set of 7 parity-violating scalar-tensor Lagrangians
that are ghost-free in the unitary gauge. Finally, Sec. V is
devoted to conclusions.
Throughout this paper, we use i; j; k; � � � to denote spatial

indices in a coordinate basis, and a; b; c; � � � to denote
spacetime indices in a general basis. Curvature tensors such
as Rabcd and Rab denote the 4-dimensional quantities, while
3Rab and 3Rij etc. denote the 3-dimensional (spatial)
quantities.

II. SPATIALLY COVARIANT GRAVITY

A. General framework

The Lagrangian of SCG is built of metric variables and
is only invariant under 3-dimensional spatial diffeomor-
phisms xi → x̃i ¼ x̃iðxjÞ, which breaks time diffeomor-
phism. The action of such theories can be constructed
in terms of scalars under spatial diffeomorphism.
Consequently, it is natural and convenient to employ
the Arnowitt-Deser-Misner (ADM) variables N, Ni and
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hij, which are based on the foliation structure of
spacetime.1

The general action for SCG, which extends the original
proposal in [73,76] by allowing higher-order temporal
derivatives, takes the form

S ¼
Z

dtd3xN
ffiffiffi
h

p
Lðt; N; hij; 3Rij;∇i; £u; εijkÞ; ð1Þ

where N is the lapse function, hij is the 3-dimensional
spatial metric, Rij is the 3-dimensional spatial Ricci tensor,
∇i is the covariant derivative compatible with hij, u is the
normal vector of the spatial hypersurfaces given by
ua ¼ −N∇aϕ.

2 In order to introduce the parity-violating
terms, the Levi-Civita tensor εijk ≡

ffiffiffi
h

p
ϵijk with ϵ123 ¼ 1 is

included. Please note the shift vector Ni should not
be included explicitly, since it is not a genuine geo-
metrical quantity characterizing the foliation structure
but merely encodes the gauge degrees of freedom of spatial
diffeomorphism.
The formulation in terms of the ADM variables and the

spacetime decomposition makes the kinetic terms be
introduced in a natural and transparent manner. In particu-
lar, the separation of the temporal and spatial derivatives in
the SCG allows us to focus on higher-order time deriva-
tives, which could possibly introduce unwanted ghostlike
or unwanted degrees of freedom without any restrictions.
As mentioned above, the basic variables in SCG are the
lapse function N and the spatial metric hij. In the original
proposal of [73,74], only the extrinsic curvature Kij, which
is the kinetic term for hij, is included in the Lagrangian.
However, since time diffeomorphism is broken in SCG, N
should not be treated as an auxiliary field anymore. In fact,
N and hij are independent and should be treated on equal
footing, and thus the temporal derivatives of both variables
should enter the Lagrangian through the Lie derivatives £u,
even up to higher orders.
Following [75,76], the velocity of the lapse function N,

namely Ṅ, enters in the Lagrangian through

F≡ 1

N
£uN ¼ 1

N2
ðṄ − Ni∇iNÞ; ð2Þ

with a dot denoting the time derivative ∂t. The velocity of
the spatial metric hij, namely ḣij, enters the Lagrangian

through the extrinsic curvature Kij defined by3

Kij ¼
1

2
£uhij ¼

1

2N
ðḣij −∇jNi −∇iNjÞ: ð3Þ

The resulting action is given by

S ¼
Z

dtd3xN
ffiffiffi
h

p
Lðt; N; hij; F; Kij; 3Rij;∇i; εijkÞ: ð4Þ

In the action (4), N and hij both act as dynamical variables,
with no higher-order time derivatives appearing in the
action. Other derivatives are purely spatial, which auto-
matically evade the unwanted ghostlike mode. Generally
speaking, there are four dynamical degrees of freedom
(DoFs), consisting of two tensor and two scalar DoFs.
Extensive research has been conducted on the degeneracy
conditions under which the number of dynamical DoFs
reduces to three [75,76] (and to two [77], i.e., without any
scalar DoF).4 In other words, additional conditions must
be applied to ensure that only a single scalar DoF is present.
In principle, higher-order temporal derivatives, such

as £2uN and £2uhij can also be considered, although gen-
erally they will introduce unwanted or ghost-like DoFs.
Nevertheless, in this work, we will consider the Lie
derivative of N in terms of F defined in (2) and the
second-order Lie derivative of hij in terms of £uKij, which
will be discussed in detail in Sec. III.

B. SCG with nondynamical lapse function

The SCG theory proposed in [73,74] (with parity-
violating extension) is described by the action

S ¼
Z

dtd3xN
ffiffiffi
h

p
Lðt; N; hij; Kij; 3Rij;∇i; εijkÞ; ð5Þ

in which the only time derivative entering in the Lagrangian
is encoded in Kij. The theory (5) has been proved to
possess 3 DoFs through a Hamiltonian analysis [74].5

For the purpose of obtaining concrete 3-DoF ghost-free
models, SCG Lagrangians of the polynomial type are
considered and investigated in [87]. In order to get general
theoretical forms while keeping the number of monomials
finite, additional restrictions are necessary to exhaust all
possible monomials. In [87], it is assumed that the total
number of derivatives does not exceed 4. As we will see
later, this implies that the Riemann curvature tensor is up to

1Under the infinitesimal transformation δxi ¼ ξi, the ADM
variables transform as δN ¼ ξi∂iN, δNi ¼ ∂iξ

jNj þ ξj∂jNi and
δhij ¼ ∂iξ

khjk þ ∂jξ
khik þ ξk∂khij, which clearly show that N,

Ni and hij transform as a scalar, a vector and a tensor under
spatial diffeomorphism, respectively.

2Here we use u (instead of n) to emphasize the scalar field ϕ
specifying the hypersurfaces coincides with the time coordinate,
which corresponds to the so-called unitary gauge.

3Throughout this work, Lie derivatives acting on spatial
tensors are understood as shorthands of the spatial components
of the 4-dimension quantities. For example, £uhij ≡ eaiebj£uhab,
where eai is the spatial components of the general basis ea.

4The time derivative of the lapse function is also discussed
in [94].

5The presence of εijk does not alter the constraint structure of
the theory.
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the quadratic order, the derivatives (both spatial and Lie
derivatives) of N and hij are up to second order.
Degeneracy conditions reducing 3-DoF SCG theories to
2-DoF SCG theories, in which no scalar mode is propa-
gating, can be found in [95,96].
It is necessary to make a classification of the possible

SCG monomials due to their large number. We will follow
the same conventions and classification as in [86,89]. By
the Stueckelberg trick, an SCG term can be mapped to a
corresponding generally covariant scalar-tensor (GST)
term. Accordingly, we can assign each SCG term the set
of integers (c0; d2, d3) to characterize the GST combina-
tion, where c0 is the number of Riemann curvature tensors,
d2, d3 are the numbers of the second and the third covariant
derivatives of ϕ, respectively.6 Schematically, we can write

Kij ∼ ai ∼ ð0; 1; 0Þ; ð6Þ
3Rij ∼ ð1; 0; 0Þ; ð7Þ

∇kKij ∼∇jai ∼ ð0; 0; 1Þ; ð8Þ

where ai is the acceleration defined by ai ¼ ∇i lnN.
Thus, the total number of derivatives in each monomial
is given by7

d ¼
X
n¼0

½ðnþ 2Þcn þ ðnþ 1Þdnþ2�; ð9Þ

in which cn is the number of nth covariant derivative term
of the spacetime Riemann tensor, dn is the number of the
nth covariant derivative term of the scalar field. Since the
resulting GST terms would arise only from the combina-
tions of GST monomials of the same values of d, the
number d can be used as a generic label characterizing
monomials of both GST and SCG, which makes the
correspondences more transparent. In this work, we con-
sider monomials with d ≤ 4. Even considering higher-
order operators, one would find that no new independent
monomials are present in each category, as long as the value
of the total number of derivatives d is not larger than 4.
Based on (5), a specific ghost-free SCG Lagrangian

of the polynomial type with parity violation was proposed
in [87]. The parity-violating terms are denoted by L̃ð3Þ for
d ¼ 3 and L̃ð4Þ for d ¼ 4, which are given by

L̃ð3Þ ¼ cð0;1;1ÞεijkKi
l∇jKkl; ð10Þ

and

L̃ð4Þ ¼ cð0;2;1Þ1 εijkKimKjn∇mKk
n þ cð0;2;1Þ2 εijkKmnKi

m∇jKk
n

þ cð0;2;1Þ3 εijkKi
la

j∇kal þ cð0;2;1Þ4 εijkKi
l∇jKklK

þ cð1;2;0Þ1 εijk
3Ri

lK
jlak þ cð1;0;1Þ1 εijk

3Ri
l∇jKkl; ð11Þ

respectively. The coefficients cðc0;d2;d3Þm are generally func-
tions of t and N.
In the next section, we will extend the above Lagrangian

by introducing new parity-violating terms involving Lie
derivatives of the lapse function and the extrinsic curvature.

III. PARITY-VIOLATING MONOMIALS IN SCG

In this section, by considering novel SCG operators
involving higher-order derivatives, we will construct and
classify the parity-violating SCG monomials in a system-
atic way under the restriction d ≤ 4, with d being the total
number of derivatives.

A. Building blocks

First of all, we need to extend the set of operators for our
purpose. Fundamental geometrical quantities, including the
lapse function N, the spatial metric hij, the acceleration ai,
the extrinsic curvature Kij, and the spatial Ricci tensor 3Rij,
along with their spatial derivatives, are involved as the basic
ingredients. It should be noted that these quantities are
associated with the foliation defined by the scalar field once
the time coordinate is fixed. Moreover, we will introduce
higher-order derivatives of the lapse function N and the
spatial metric hij. Precisely, spatial and Lie derivatives of
Kij, ai, and F, i.e., ∇kKij, ∇iaj, ∇iF, £uKij, and £uF, as
well as £uai, will be taken into account in our construction.
The reason for introducing these higher-order derivative
operators is not only because they would extend the SCG
construction, but also because they naturally (or neces-
sarily) arise in the unitary gauge for GST monomials up
to d ¼ 4.
When evaluating Lie derivatives with respect to the

normal vector u, it is necessary to transform the expressions
into a generally covariant form. Once it is established that
these operators are indeed spatial tensors, we can then take
their spatial components with indices i; j; � � �. For example,
the Lie derivative of the extrinsic curvature with lower
indices is a spatial tensor since nb£uKab ¼ nb£uKba ¼ 0.
More explicitly, we have

£uKij¼
1

N
½K̇ij−ðNk∇kKijþKkj∇iNkþKki∇jNkÞ�; ð12Þ

which involves the second order time derivative of hij
through K̇ij. On the other hand, one can show that Lie
derivative of the acceleration can be reduced,

6Up to d ¼ 4 with d being the total number of derivatives,
higher-order integers such as c1 (the number of the first-order
derivative of Riemann tensor) and d4 (the number of the fourth-
order derivative of the scalar field) etc., are not needed, since the
corresponding SCG monomials can always be reduced.

7Note d is also equivalent to the mass dimension of each SCG
monomial.

YU-MIN HU and XIAN GAO PHYS. REV. D 110, 064038 (2024)

064038-4



£uai ¼ £u

�∇iN
N

�
¼ ∇iF þ Fai; ð13Þ

which implies that £uai is not an independent operator. A
subtle point arises when taking Lie derivatives of spatial
tensors with upper indices.8 To avoid confusion, we only
use the Lie derivative of spatial tensors with lower indices
in SCG. Lie derivatives of spatial tensors with mixed or
upper indices are understood as merely shorthands. For
example, only the Lie derivative £uKij (spatial component
of £uKab) is defined in SCG, while £uKi

j is just a shorthand
that stands for

£uKi
j ≡ hik£uKkj ¼ hikeckebj£uKcb ¼ eaiebjhac£uKcb:

ð14Þ

Similarly, £uKij ≡ hikhjl£uKkl, etc. Note we also have a
useful relation for the spatial derivative of the acceleration
∇iaj:

∇iaj ¼ ∇i∇j lnN ¼ ∇j∇i lnN ¼ ∇jai; ð15Þ

which implies that its indices are symmetric.
Moreover, up to d ¼ 4, SCG monomials involving

third-order or fourth-order derivatives can be reduced to
equivalent combinations of the same order of d but with
lower-order operators through integration by parts. This
allows for the construction of a simplified and complete set
of basis monomials, facilitating analysis and computations.
Finally, we have a complete set of operators for our

purpose. The lapse function N and the induced metric hij
can be regarded as the operators for d ¼ 0. The independent
operators up to d ¼ 2 are shown in Table I. As we have
mentioned above, up to d ¼ 4 we do not need to consider
operators involving derivatives higher than the second
order (acting on the ADM variables), such as £u3Rij,
£2uKij, ∇i∇jKij, etc.

B. Complete basis for the parity-violating monomials

To identify all the parity-violating terms constructed by
these building blocks, we divide the entire process into two
steps. The first step involves determining all the possible
types of combinations of the given order. In this step, we
do not distinguish various contractions from each other.

For notational simplicity, we use the initial letters to
represent each geometric quantity, such as a for ak, K
for Kij, R for 3Rij, £K for £uKij, ∇K for ∇kKij, etc. In the
second step, we systematically explore all the possible
contractions and identify all the independent monomials.
Note that the spatial Levi-Civita tensor εijk is necessary in
order to construct monomials with parity violation.

1. d = 3

There are no parity-violating monomials in the cases of
d ¼ 0; 1; 2.9 So we start from the case of d ¼ 3. In the case
of d ¼ 3, we have two types of operator combinations,
schematically denoted by ½1þ 2� and ½1þ 1þ 1�. Here the
integers denote orders of derivatives in each building block
(operator). For example, a monomial built from contracting
F and∇iF will be of ½1þ 2� type, since F contains the first-
order derivative and ∇iF contains the second-order deriva-
tive of N, respectively.
For the type of ½1þ 2�, besides the combinations ½K∇K�,

½a∇a�, and ½aR� that have been considered in [87,89], we
have the following new combinations

½F∇F�; ½a£F�; ½K∇F�; ½F∇K�; ½a£K�;

due to the presence of F and £uKij. Due to the
(anti)symmetry of indices, no viable monomials arise
from these parity-violating combinations except ½K∇K�.
Therefore, we refer to these cases as being “empty” and can
disregard them in the subsequent step. The other type of
operator combination, i.e., ½1þ 1þ 1�, contains the com-
bination ½aaa� as well as the new ones10

½aKF�; ½aFF�:

Clearly, no viable parity-violating monomials emerge from
these combinations.
As a result, it becomes evident that the only nonempty

parity-violating combination is ½K∇K�. Moreover, the only
independent contraction within this combination is

TABLE I. Building blocks in SCG.

d ¼ 0 hij N
d ¼ 1 Kij F; ak
d ¼ 2 £uKij;∇kKij; 3Rij £uF;∇kF;∇iaj
… … …

8For instance, Lie derivatives of the extrinsic curvature with
mixed or upper indices are given by

£uKd
c ¼ hda£uKac − 2Ka

cKd
a þ aaKacnd ≠ hda£uKac;

£uKab ¼ hadhbc£uKdc − 4KaeKb
e þ aeðKbena þ KaenbÞ

≠ hbchad£uKdc;

which are not spatial tensors neither.

9This can be seen easily from Table I. The building blocks up
to d ¼ 2 either have number of indices less than 3, or are
symmetric in (some of) their indices, which have vanishing
contractions with the Levi-Civita tensor.

10Since we are considering parity-violating monomials, the
epsilon tensor εijk must be present. Therefore, we only need to
consider combinations of operators with an odd number of
indices.
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½K∇K�∶ εijkKi
l∇jKkl; ð16Þ

which has already been studied in [87,89]. In brief, in
the case of d ¼ 3, despite the introduction of new operators
F and £uKij, no new parity-violating SCG monomial
emerges.

2. d = 4

In the case of d ¼ 4, we have three different types
of operator combinations: ½2þ 2�, ½1þ 1þ 2�, and
½1þ 1þ 1þ 1�. Based on the same notation, we express
all the possible combinations of each type.
For the type of ½1þ 1þ 1þ 1�, besides the combina-

tions ½aKKK�, ½aaaK�, we have the following new combi-
nations due to the presence of F,

½KKaF�; ½aaaF�; ½KaFF�; ½aFFF�:

No viable parity-violating monomials exist in these types of
combinations.
For the type of ½1þ 1þ 2�, there are viable parity-

violating monomials from the combination types

½aK∇a�; ½aa∇K�; ½KK∇K�; ½aKR�; ð17Þ

which have been considered in [87,89]. In addition, there
are new viable parity-violating monomials corresponding
to the combinations

½aK£K�; ½FK∇K�: ð18Þ

While the following combinations

½Ka£F�; ½Fa£K�; ½Fa£F�; ½Fa∇a�; ½FaR�;
½FF∇K�; ½KK∇F�; ½KF∇F�; ½FF∇F�; ½aa∇F�;

yield no viable monomials.

For the type of ½2þ 2�, besides the combinations ½R∇K�
and ½∇a∇K�, we have one new combination

½£K∇K�; ð19Þ

with empty cases

½£F∇F�; ½£K∇F�; ½£F∇K�; ½R∇F�; ½∇a∇F�:

In summary, due to the presence of F and £uKij, there
arise 3 new parity-violating SCG monomials in the case of
d ¼ 4, which are

½FK∇K�∶ fεijkFKi
l∇jKklg; ð20Þ

½aK£K�∶ fεijkaiKjl£uKk
l g; ð21Þ

½£K∇K�∶ fεijk£uKli∇jKk
l g: ð22Þ

At this point, we note that not all these terms are
independent. One can check that the last term, i.e.,
εijk£uKli∇jKk

l , is not independent and can be expressed
by linear combinations of the other terms up to total
derivatives. The details can be found in Appendix A.
Therefore, in the following, we do not need to con-
sider εijk£uKli∇jKk

l .
We list all the irreducible and reducible parity-violating

SCG monomials in Table II. In the case of d ¼ 3, there
is only one parity-violating monomial. In the case of
d ¼ 4, there are 8 independent parity-violating mono-
mials. Following the terminology developed in [89], the
complete basis of parity-violating SCG polynomials for
d ¼ 3 is thus

Z3 ¼ fεijkKi
l∇jKklg; ð23Þ

which is composed of a single unfactorizable and irreduc-
ible monomial. In other words, we have dimðZ3Þ ¼ 1.

TABLE II. Classification of the parity-violating SCG monomials.

d Category Form Irreducible Reducible Number

3 (0; 1, 1) ½K∇K� εijkKi
l∇jKkl � � � 1

4 (0; 0, 2) ½£K∇K� � � � εijk£uKli∇jKk
l 0

½∇a∇K� � � � εijk∇lai∇jKk
l

(0; 2, 1) ½aK∇a� εijkai∇lajKk
l � � � 6

½aa∇K� � � � εijkalai∇jKk
l

½KK∇K� εijkKi
lK

j
m∇mKkl; εijkKi

lK
ml∇jKk

m; εijkKKi
l∇jKkl � � �

½aK£K� εijkaiKjl£uKk
l � � �

½FK∇K� εijkFKi
l∇jKkl � � �

(1; 2, 0) ½RKa� εijkaiKjl3Rk
l � � � 1

(1; 0, 1) ½R∇K� εijk
3Rli∇jKk

l � � � 1
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The “enlarged” basis for the parity-violating SCG poly-
nomials for d ¼ 4 is given by

Z4 ¼ fεijk3Ri
lK

jlak; εijkKimKjn∇mKk
n; εijkKmnKi

m∇jKk
n;

εijkKi
la

j∇kal; εijk3Ri
l∇jKkl; εijkKKi

l∇jKkl;

εijkaiKjl£uKk
l ; εijkFK

i
l∇jKklg; ð24Þ

with dimðZ4Þ ¼ 8. Note that the monomial in (23), as well
as the first six monomials in (24), contain no F or £uKij and
thus are ghost-free. However, the last two monomials in
(24) involve F or £uKij (although in a linear manner) and
thus possibly suffer from the Ostrogradsky ghost even in
the SCG.

IV. GHOST-FREE SCALAR-TENSOR THEORIES
WITH PARITY VIOLATION

The GST monomials are systematically classified, and
the complete basis for GST polynomials up to d ¼ 4 is
derived in [86,87]. We refer to Appendix C for the explicit
expressions of the parity-violating GST monomials, which

we denote Fðc0;d2;d3Þ
n for short. Our purpose is to find the

ghost-free combinations of these GST monomials. To this
end, we will first derive the corresponding expressions of
these parity-violating monomials in the unitary gauge,
which explicitly show the dangerous terms ∼£uKij and
F, thus giving us guidance on how to build the ghost-free
combinations.
Before proceeding, we would like to clarify the notation

in this work. For our purpose, we frequently switch among
different but equivalent formulations of the theory. First, we
refer to SCG, in which all the quantities are spatial tensors
with spatial indices i; j; k; � � �. For example, the actions (1)
and (4) are of the SCG form. Sometimes it is convenient or
even necessary to work with the generally covariant
correspondence of the SCG terms. For example, for the
extrinsic curvature, we may work with Kab instead of Kij,
where the former is understood asKab ¼ 1

2
£uhab with ua ¼

−N∇aϕ and hab ¼ gab þ uaub. In principle, it is essentially
a generally covariant scalar-tensor theory term, but
“wrapped” in terms of hypersurface geometrical quantities.
Following the strategy in [88], we refer to expressions in
such a form as the “unitary gauge” or “u.g.” form for
short.11

A. Decomposition in the unitary gauge

First of all, there are 4 parity-violating GST monomials
that do not contain higher-order time derivatives in the
unitary gauge, i.e., without the dangerous terms £uKab or
F, which are

Fð1;1;0Þ
1 ═

u:g:
2εabcKadDbKc

d; ð25Þ

Fð0;2;1Þ
6 ═

u:g:
− εabcKa

da
bDcad; ð26Þ

Fð1;2;0Þ
2 ═

u:g:
εabcð−2aaadDcKb

d þ 2Ka
dK

deDcKb
eÞ; ð27Þ

and

Fð1;2;0Þ
7 ═

u:g:
2εabcaaadDcKb

d. ð28Þ
In the above andwhat follows,Da is the covariant derivatives
compatible with the induced metric hab defined by (e.g.)
Daab≡ha

0
a hb

0
b ∇a0ab0 and DaKbc≡ha

0
a hb

0
b h

c0
c ∇a0Kb0c0 , etc.

Here and in the following, we define

εabc ≡ udεdabc; ð29Þ

and “u.g.” denotes equality in the unitary gauge. In deriving
the above expressions, no integration by parts has been
performed. As a result, we can conclude that these 4 GST
monomials are automatically free of the Ostrogradsky ghost
in the unitary gauge.
Before proceeding, note that the SCG monomials in the

decomposition of Fð1;2;0Þ
2 and Fð1;2;0Þ

7 in (27) and (28) are not
precisely the SCG monomials chosen in the complete basis
(24). Nevertheless, they can be recast as linear combinations
of the SCG monomials in the complete basis up to total
derivatives. The relevant expressions are given in (B2)
and (B5). We also refer to Appendix B for more detailed
integrations by parts we have used in deriving the above and
in the following expressions. At this point, note that the

expressions of Fð0;2;1Þ
6 and Fð1;2;0Þ

7 in the unitary gauge differ
by a total derivative term. Indeed, this also happens for their
general covariant expressions (C19), which implies that

although Fð0;2;1Þ
6 is algebraically independent, it is not

independent in the sense of integration by parts.
According to Appendix C, there are in total 10 parity-

violating GST monomials in the ð1; 2; 0Þ category. Besides
Fð1;2;0Þ
2 and Fð1;2;0Þ

7 mentioned above, the remaining 8
monomials in the ð1; 2; 0Þ category will contribute to terms
linear in F and/or £uKij in the unitary gauge. The following
three monomials would contribute to the ½FK∇K� term:

Fð1;2;0Þ
4 ═

u:g:
εabcð2aaKdb3Rc

d−2aaadDcKb
d−2FDaKb

dK
cdÞ;
ð30Þ

11We emphasize that in the literature “unitary gauge” is often
referred to as “SCG” in our terminology, which is written in a
concrete coordinate system. For our purpose, we refer to the
unitary gauge as merely a special choice of the normal vector
na → ua ≡ −N∇aϕ, which has nothing to do with any specific
coordinates. See the discussion in [88] for details.

PARITY-VIOLATING SCALAR-TENSOR THEORY PHYS. REV. D 110, 064038 (2024)

064038-7



Fð1;2;0Þ
9 ═

u:g:
εabcð2FKadDbKc

d − 2KKeaDbKc
eÞ; ð31Þ

and

Fð1;2;0Þ
10 ═

u:g:
− 2εabcFKadDbKc

d: ð32Þ

SCG monomials in the decomposition of Fð1;2;0Þ
4 in (30)

have not been in the form of the complete basis (24).

Similar to Fð1;2;0Þ
2 and Fð1;2;0Þ

7 above, it can be recast as a
linear combination of monomials in the complete basis up
to a total derivative, which is given in (B4). The following
three monomials contribute to the ½aK£K� term:

Fð1;2;0Þ
5 ═

u:g:
εabcð−KadKbeDeKc

d − Ka
da

bDcad

− aaKdbhec£uKdeÞ; ð33Þ

Fð1;2;0Þ
6 ═

u:g:
εabcð−3Ra

dK
dbac þ Ka

da
bDcad

þ aaKdbhec£uKdeÞ; ð34Þ

and

Fð1;2;0Þ
8 ═

u:g:
εabcð−Ka

da
bDcad − aaKdbhec£uKdeÞ: ð35Þ

Finally, the following two monomials would contribute to
both ½FK∇K� and ½aK£K� terms:

Fð1;2;0Þ
1 ═

u:g:
4εabcðaaKdb3Rc

d − aaKc
dD

bad − aaadDcKb
d

−FDaKb
dK

cd −KadKbeDeKc
d − aaKdbhec£uKdeÞ;

ð36Þ

Fð1;2;0Þ
3 ═

u:g:
2εabcðaaKc

dD
bad þ aaadDcKb

d þ FDaKb
dK

cd

þ aaKdbhec£uKdeÞ: ð37Þ

Again, (36) and (37) can be recast as linear combinations
of monomials in the complete basis through integrations
by parts, which are given in (B1) and (B3), respectively.
Thus, within the ð1; 2; 0Þ category, in order to make the
theory healthy in the unitary gauge, we obtain three special
combinations that cancel both dangerous terms ½aK£K� and
½FK∇K�, such as Fð1;2;0Þ

1 − 2Fð1;2;0Þ
4 þ 4Fð1;2;0Þ

6 , Fð1;2;0Þ
3 þ

Fð1;2;0Þ
4 − 2Fð1;2;0Þ

6 and Fð1;2;0Þ
5 þ Fð1;2;0Þ

6 . These combina-
tions are totally healthy in the unitary gauge with any
coefficient functions of ϕ and X.
There are in total 5 monomials of the ð2; 0; 0Þ category. It

is easy to show that all the monomials in this category
would produce dangerous terms of the ½£K∇K� form. We
have

Fð2;0;0Þ
1 ═

u:g:
16εabcðDaadDcKb

d þ aaadDcKb
d þ 3RdaDcKb

d

þ Ka
dK

deDcKb
e − KdaKebDeKc

d

− hdaDcKeb£uKdeÞ; ð38Þ

Fð2;0;0Þ
2 ═

u:g:
8εabcðDaadDcKb

d þ aaadDcKb
d þ Ka

dK
deDcKb

e

− hdaDcKeb£uKdeÞ; ð39Þ

Fð2;0;0Þ
3 ═

u:g:
4εabcð−DaadDcKb

d − 3RdaDcKb
d − aaadDcKb

d

− Kd
aKdeDcKb

e þ KdaKebDeKd
c

þ hdaDcKeb£uKdeÞ; ð40Þ

Fð2;0;0Þ
4 ═

u:g:
2εabcð−DaadDcKb

d þ 3RdaDcKb
d − aaadDcKb

d

− 2Ka
dK

deDcKb
e þ KKeaDcKb

e

þ hdaDcKeb£uKdeÞ; ð41Þ
Fð2;0;0Þ
5 ═

u:g:
2εabcðDaadDcKb

d þ aaadDcKb
d þ Ka

dK
deDcKb

e

− hdaDcKeb£uKdeÞ: ð42Þ
Again, (38)–(42) can be recast as linear combinations of
monomials in the complete basis through integrations by
parts, which are given in (B6)–(B10), respectively.
Thus, within the ð2; 0; 0Þ category, it is easy to find some
special combinations without the ½£K∇K� term, such as

Fð2;0;0Þ
2 − 1

2
Fð2;0;0Þ
1 , Fð2;0;0Þ

3 þ 1
4
Fð2;0;0Þ
1 , Fð2;0;0Þ

4 þ 1
8
Fð2;0;0Þ
1 ,

and Fð2;0;0Þ
5 − 1

8
Fð2;0;0Þ
1 .

B. Ghost-free scalar-tensor polynomials

Based on the covariant scalar-tensor terms corresponding
to the SCG terms developed in [87], the covariant corre-
spondence of the SCG monomials, including the parity-
violating monomials, has been shown in [89]. However,
in [89], only the matrices of the linear mapping are shown,
instead of the explicit expressions for the covariant corre-
spondence. Moreover, the higher-order Lie derivatives have
not been taken into account in [87]. In the following, wewill
show the explicit expressions for the covariant correspon-
dence of the parity-violating SCG monomials up to d ¼ 4.
For d ¼ 3, the only parity-violating SCG monomial is

given in (23), of which the covariant correspondence is
[54,87,89]

εijkKi
l∇jKkl → εabcduaKe

bDcKde

¼ 1

2ð2XÞ3=2 ε
abcdRcdefϕaϕ

eϕf
b ≡ 1

2
Fð1;1;0Þ
1 :

ð43Þ
Here and in what follows, we use shorthands ϕa ≡∇aϕ,
ϕab ≡∇b∇aϕ and X ≡ − 1

2
ϕaϕ

a, which is the canonical
kinetic term of the scalar field. (43) can be compared
with (25).
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For d ¼ 4, the first 6 monomials in the complete basis (24) do not involve F or £uKij, the covariant correspondence of
which is

εijk
3Ri

lK
jlak → εabcduaabKe

c
3Red

¼ −
1

4X2
εabcdRafϕbϕ

eϕedϕfc −
1

8X3
εabcdRcmefϕaϕ

nϕmϕeϕf
dϕbn

≡ −Fð1;2;0Þ
6 − Fð1;2;0Þ

8 ; ð44Þ

εijkKimKjn∇mKk
n → εabcduaKe

bK
f
cDfKde

¼ −
1

8X3
εabcdϕaϕ

eð−2XRefcmϕ
f
bϕ

m
d þ Refcmϕ

mϕnϕnbϕ
f
dÞ

≡ Fð1;2;0Þ
5 − Fð1;2;0Þ

8 ; ð45Þ

εijkKmnKi
m∇jKk

n → εabcduaK
f
bK

e
fDcKde

¼ −
1

16X3
εabcdϕaϕ

eð2XRefcdϕ
m
b ϕ

f
m þ Rcdefϕ

nϕmϕf
mϕnbÞ

≡ −
1

2
ðFð1;2;0Þ

2 þ Fð1;2;0Þ
7 Þ; ð46Þ

εijkKi
la

j∇kal → εabcduaKb
racDdar

¼ −
1

8X3
εabcdϕaϕ

eϕfϕebϕ
r
cϕdrf

≡ −Fð0;2;1Þ
6 ¼ 1

2
Fð1;2;0Þ
7 −∇d

�
1

σ6
εabc

dϕeϕfϕaϕb
eϕ

cmϕmf

�
; ð47Þ

where we have used (C19),

εijk
3Ri

l∇jKkl → εabcdua3Re
bDcKde

¼ 1

16X3
εabcdf−4X2Re

aRcdefϕ
fϕb − 2Xϕbϕ

mϕfϕnRam
e
nRcdef þ 2Xϕaϕ

eðRcdefϕ
f
bϕ

r
r − Rcdefϕ

m
b ϕ

f
mÞ

þ Rcdefϕaϕ
eϕnϕmð−ϕf

mϕnb þ ϕf
bϕmnÞg

≡ −
1

2
ðFð2;0;0Þ

4 þ Fð2;0;0Þ
5 þ Fð1;2;0Þ

2 þ Fð1;2;0Þ
7 − Fð1;2;0Þ

9 − Fð1;2;0Þ
10 Þ; ð48Þ

and

εijkKKi
l∇jKkl → εabcduaKKe

bDcKde

¼ −
1

16X3
εabcdϕaϕ

eð2RcdefXϕ
f
bϕ

r
r þ Rcdrsϕ

rϕfϕs
bϕefÞ

≡ −
1

2
ðFð1;2;0Þ

9 þ Fð1;2;0Þ
10 Þ: ð49Þ

The last 2 monomials in the complete basis (24) involve F or £uKij, which were not considered previously. Their
covariant correspondences are

εijkFKi
l∇jKkl → εabcduaFKfbDcK

f
d

¼ −
1

16X3
εabcdRcdrsϕaϕ

rϕs
bϕfeϕ

eϕf

≡ −
1

2
Fð1;2;0Þ
10 ; ð50Þ
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and

εijkaiKjl£uKk
l → εabcduaabK

f
ched£uKef

¼ 1

8X3
εabcdϕaϕ

eϕfϕebðϕdrfϕ
r
cþRdfrsϕ

rϕs
cÞ

≡Fð0;2;1Þ
6 −Fð1;2;0Þ

8

≡−
1

2
Fð1;2;0Þ
7 −Fð1;2;0Þ

8

þ∇d

�
1

σ6
εabc

dϕeϕfϕaϕb
eϕ

cmϕmf

�
; ð51Þ

where σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−ϕaϕ
ap
and again we have used (C19). We

emphasize that the ½FK∇K� term and ½aK£K� are inde-
pendent in the sense that they cannot be reduced or related
to each other by integration by parts.
To summarize, we find 7 combinations of GST mono-

mials, given in (43) and (44)–(49), which are free of the
Ostrogradsky ghost in the unitary gauge. On the other hand,
the 2 combinations (50) and (51) contain linear terms in
either £uKij or F, which are thus potentially risky even in
the unitary gauge.
It is convenient to further combine (43)–(49) to obtain

a set of 7 independent, ghost-free parity-violating
Lagrangians. For d ¼ 3, we choose

L1 ≡ Fð1;1;0Þ
1 ¼ 1

σ3
εabcdRef

cdϕaϕeϕbf; ð52Þ

which is, in fact, the single GST monomial of the ð1; 1; 0Þ
category, i.e., linear in both the curvature tensor and the
second-order derivative of the scalar field. For d ¼ 4, there
are 5 combinations of the ð1; 2; 0Þ category, i.e., linear in
the curvature tensor and quadratic in the second derivative
of the scalar field, which we choose to be

L2 ≡ Fð1;2;0Þ
2 ¼ 1

σ4
εabcdRef

cdϕaϕeϕb
mϕ

fm; ð53Þ

L3 ≡ Fð1;2;0Þ
7 ¼ 1

σ6
εabcdRef

cdϕmϕnϕeϕaϕf
mϕb

n; ð54Þ

L4 ≡ Fð1;2;0Þ
6 þ Fð1;2;0Þ

8

¼ 1

σ4
εabcdRamenϕbϕfϕc

eϕ
d
f

�
gmn þ

1

σ2
ϕnϕm

�
; ð55Þ

L5 ≡ Fð1;2;0Þ
5 − Fð1;2;0Þ

8

¼ 1

σ4
εabcdRef

cmϕaϕeϕbfϕdn

�
gmn þ

1

σ2
ϕmϕn

�
; ð56Þ

L6 ≡ Fð1;2;0Þ
9 þ Fð1;2;0Þ

10

¼ 1

σ4
εabcdRef

cdϕaϕeϕbfϕmn

�
gmn þ

1

σ2
ϕmϕn

�
: ð57Þ

There is also a combination of the ð2; 0; 0Þ category, i.e.,
quadratic in the curvature tensor and without higher order
derivatives of the scalar field, which we choose to be

L7 ≡ Fð2;0;0Þ
4 þ Fð2;0;0Þ

5

¼ 1

σ2
εabcdRef

cdRamenϕbϕf

�
gmn þ

1

σ2
ϕmϕn

�
: ð58Þ

The 7 Lagrangians (52)–(58) are the main results in this
work. Due to their generality and importance, we dub them
the “Qi-Xiu” Lagrangians for the sake of brevity.12

Recall that we have in total 17 GST monomials of d ¼ 4

(see Table III). According to (C19) and (C22), Fð0;2;1Þ
6 and

TABLE III. Parity-violating GST monomials.

d Category Unfactorizable Factorizable Number

3 f1; 1; 0g Fð1;1;0Þ
1

� � � 1

4 f0; 2; 1g Fð0;2;1Þ
6

� � � 1

f1; 2; 0g Fð1;2;0Þ
1

10

Fð1;2;0Þ
2 ; Fð1;2;0Þ

3 ; Fð1;2;0Þ
4 ; Fð1;2;0Þ

5 ; Fð1;2;0Þ
6 Fð1;2;0Þ

9 ¼ Fð1;1;0Þ
1 Eð0;1;0Þ

1

Fð1;2;0Þ
7 ; Fð1;2;0Þ

8 Fð1;2;0Þ
10 ¼ Fð1;1;0Þ

1 Eð0;1;0Þ
2

f2; 0; 0g Fð2;0;0Þ
1

� � � 5

Fð2;0;0Þ
2 ; Fð2;0;0Þ

3 ; Fð2;0;0Þ
4

Fð2;0;0Þ
5

f1; 0; 1g Fð1;0;1Þ
4

� � � 1

12“Qi-Xiu” stands for “Seven Constellations” in Classical
Chinese.
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Fð1;0;1Þ
4 can be reduced by integrations by parts. Moreover,

there are 7 identities in the unitary gauge among the rest 15
GST monomials of categories ð1; 2; 0Þ and ð2; 0; 0Þ, which
are shown in (C23)–(C29). As a result, besides the 2
potentially dangerous terms, we are left with exactly 7
independent GST terms (6 of d ¼ 4 together 1 of d ¼ 3)
that are ghost-free in the unitary gauge. We thus conclude
that up to d ¼ 4, any parity-violating scalar-tensor theory
that is ghost-free in the unitary gauge can be expressed as

L ¼
X7
a¼1

Caðϕ; XÞLa; ð59Þ

that is, linear combinations of the “Qi-Xiu” Lagrangians
with coefficients Ca being general functions of ϕ and X.

C. Comparing with the existing theories

According to the previous section, up to d ¼ 4, there are,
in total, 9 independent SCG monomials, of which 7 contain
no F or £uKij terms and thus are automatically healthy, and
2 are linear in F or £uKij and thus are dangerous. Their
generally covariant correspondence is 9 GST polynomials.
Any parity-violating GST polynomial up to d ¼ 4 can be
expressed as a linear combination of these 9 combinations
up to the identities in the unitary gauge (C23)–(C29).
Let us take Chern-Simons gravity as an example. The

usual Chern-Simons term corresponds to the monomial

Fð2;0;0Þ
1 in our classification of GST monomials. The

“covariant” 3þ 1 decomposition of Chern-Simons gravity
with coefficient fðϕ; XÞ is given by

LCS ¼ fðϕ; XÞFð2;0;0Þ
1

¼ fðϕ; XÞnaεabcdð−2DeabDcKd
e þ 2DeKfbKc

eKd
f

− 2DbKfcKp
fK

d
p þ 3Ref

cdDeKfb

þ 2hpdDbKfc£nKfpÞ; ð60Þ

where the covariant 3þ 1 decomposition is performed with
respect to an arbitrary normal vector na (with no relation to
ϕ), i.e., no specific gauge is taken. Ostrogradsky ghosts
would appear in this case since the second-order time
derivative of hij, namely £nKij, is kinetically mixed with
the dynamical scalar field through the function of X, which
cannot be reduced by integration by parts. Even in the
unitary gauge with na ¼ ua ≡ −N∇aϕ, the risky term
£uKij will still be present, although it only appears linearly
in the Lagrangian. This is consistent with the previous

analysis since Fð2;0;0Þ
1 is not ghost-free by itself.

As a special case, if the coefficient f is a function of ϕ
only, the term linear in £nKij can be reduced by integration
by parts, which yields [82]

fðϕÞFð2;0;0Þ
1 ═

u:g:
8εijkf

�
KilKlm∇jKkm þ Kl

iK
m
j ∇mKkl

− KKl
i∇jKkl ð61Þ

− 23Rl
i∇jKkl −

1

N
ḟ
f
Kl

i∇jKkl

−
2

N
∇iKjl∇k∇lN

�
; ð62Þ

in the unitary gauge after fixing the spatial coordinates. It is
transparent that in the unitary gauge, Chern-Simons gravity
with coefficient fðϕÞ reduces to the form of a ghost-free
SCG (i.e., with 3 DoFs). In particular, it takes the form of a
linear combination of 6 monomials in (23) and (24).
Similar analysis can be performed for chiral scalar-tensor

theories proposed in [54], in which three classes of
Lagrangians without the Ostrogradsky ghosts in the unitary
gauge were identified. The first class of Lagrangian is a
linear combination of the following four terms:

LPV1 ¼
X4
n¼1

anðϕ; XÞAn; ð63Þ

where A1;…;A4 correspond to ð2; 0; 0Þ category in our
notation,13

A1 ¼ εabcdRcdefRab
e
gϕ

fϕg ≡ −σ2Fð2;0;0Þ
2 ; ð64Þ

A2 ¼ εabcdRcdefRf
bϕ

eϕa ≡ σ2Fð2;0;0Þ
4 ; ð65Þ

A3 ¼ εabcdRcdefRag
efϕbϕ

g ≡ σ2Fð2;0;0Þ
3 ; ð66Þ

A4 ¼ εabcdRcdefRef
abϕgϕ

g ≡ −σ2Fð2;0;0Þ
1 ; ð67Þ

where a1;…; a4 are general functions of ϕ and
2X ≡ −ð∂ϕÞ2 ≡ σ2. In the above we have explicitly
denoted these terms in the notation of GST monomials

Fð2;0;0Þ
n . According to (38)–(42), in the unitary gauge, there

are terms linear in £uKij, which may be dangerous due
to the second order time derivative encoded in £uKij.
The coefficient of the combination of such terms is
proportional to 4a1 þ 2a2 þ a3 þ 8a4. Therefore, the
degenerate condition

4a1 þ a2 þ 2a3 þ 8a4 ¼ 0; ð68Þ

13Here the correspondences betweenA1;…;A4 and L1;…; L4

in [54] are A1 ¼ L1, A2 ¼ L3, A3 ¼ L2 and A4 ¼ L4. Note
there are in total 5 linearly independent monomials in ð2; ; 0; 0Þ
category [see (C13)–(C17)]. Fð2;0;0Þ

5 is not considered in [54].
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identified in [54] can be regarded as requiring the vanishing
of the dangerous term ½£K∇K� in the unitary gauge.
Since the four coefficients a1;…; a4 are subject to a

single constraint (68), we have three combinations of terms

O1≡A1−
1

2
A4 ¼ εabcdRcdef

�
Rab

e
gϕ

fϕg−
1

2
Ref

abϕgϕ
g

�
;

ð69Þ

O2 ≡A2 −
1

8
A4 ¼ εabcdRcdef

�
Rf

bϕ
eϕa −

1

8
Ref

abϕgϕ
g

�
;

ð70Þ

O3≡A3−
1

4
A4 ¼ εabcdRcdef

�
Rag

efϕbϕ
g −

1

4
Ref

abϕgϕ
g

�
;

ð71Þ

which are free of the Ostrogradsky ghost in the unitary
gauge. Indeed, in the unitary gauge one finds that [82]

Oðu:g:Þ
1 ¼ −

8

N2
εijkKliKmj∇mKk

l þ
8

N2
εijk

3Rli∇kKj
l ; ð72Þ

Oðu:g:Þ
2 ¼ −

2

N2
εijkKliKmj∇mKl

k

−
2

N2
εijkðKi

mKlm − KKliÞ∇kKl
jKj

l

þ 4

N2
εijk

3Rli∇kKj
l ; ð73Þ

and Oðu:g:Þ
3 ≡ 0.14 Therefore, when restricted to the 4 GST

monomials in (64)–(67), there are 2 independent ghost-free
combinations, given in (69) and (70).
The second class of Lagrangian is composed of a single

term belonging to the ð1; 1; 0Þ category,

LPV2 ¼ bðϕ; XÞB; with

B ¼ εabcdRcdefϕaϕ
eϕf

b ≡ σ3Fð1;1;0Þ
1 ; ð74Þ

which is healthy in the unitary gauge since

Bðu:g:Þ ¼ 2

N3
εijkKli∇jKk

l : ð75Þ

The third class of Lagrangian is the linear combination of
6 monomials belonging to the ð1; 2; 0Þ category,

LPV3 ¼
X6
n¼1

cnðϕ; XÞCn; ð76Þ

with15

C1 ¼ εabcdRcdefϕ
e
aϕ

f
bϕgϕ

g ≡ −σ4Fð1;2;0Þ
1 ; ð77Þ

C2 ¼ εabcdRcdefϕ
e
aϕ

g
bϕ

fϕg ≡ σ4Fð1;2;0Þ
3 ; ð78Þ

C3 ¼ εabcdRcefgϕ
f
aϕ

g
bϕ

eϕd ≡ −2σ4Fð1;2;0Þ
5 ; ð79Þ

C4 ¼ εabcdRcdefϕ
e
aϕ

f
gϕbϕ

g ≡ −σ4Fð1;2;0Þ
4 ; ð80Þ

C5 ¼ εabcdRdeϕ
e
aϕ

f
bϕcϕf ≡ −σ4Fð1;2;0Þ

6 ; ð81Þ

C6 ¼ εabcdRcdefϕ
eϕaϕ

f
b□ϕ≡ σ4Fð1;2;0Þ

9 ; ð82Þ

where c1;…; c6 are general functions of ϕ and X. After
some manipulations, one can show that the coefficients of
£uKij and £uN are proportional to 4c1 þ 2c2 þ 2c3 − c5
and 2c1 þ c2 þ c4 þ c6, respectively. In [54], c6 is set to be
vanishing.16 Thus one requires

4c1 þ 2c2 þ 2c3 − c5 ¼ 0; ð83Þ

2c1 þ c2 þ c4 ¼ 0; ð84Þ

in order to evade the Ostrogradsky ghost. Now there are
five coefficients c1;…; c5 subject to two constraints.
Therefore, we have three combinations of terms that are
free of Ostrogradsky ghosts in the unitary gauge:

O1 ≡ C1 − 2C4 þ 4C5

¼ εabcd½Rcdefðϕf
bϕgϕ

g − 2ϕf
gϕbϕ

gÞ þ 4Rdeϕ
f
bϕcϕf�ϕe

a;

ð85Þ

O2 ≡ C2 − C4 þ 2C5

¼ εabcd½Rcdefðϕg
bϕ

fϕg − ϕf
gϕbϕ

gÞ þ 2Rdeϕ
f
bϕcϕf�ϕe

a;

ð86Þ

and

O3 ≡ C3 þ 2C5 ¼ εabcdðRcgefϕ
gϕd þ 2RdeϕcϕfÞϕe

aϕ
f
b:

ð87Þ

This can be checked explicitly. In the unitary gauge [82],

14Note L3 in (71) is nothing but Eq. (3.5) in [54], which has
been pointed out to be vanishing in the unitary gauge.

15Here the correspondences between C1;…; C6 and L2;…; L7

in Eq. (3.13) of [54] are C1 ¼ −σ2L2, C2 ¼ L3, C3 ¼ L5,
C4 ¼ L4, C5 ¼ L6, C6 ¼ L7. Recall that there are in total
10 linearly independent monomials in ð1; 2; 0Þ category
[see (C3)–(C12)]. Only six of them were considered in [54].

16This is to get rid of the dangerous term without fixing the
unitary gauge.
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Oðu:g:Þ
1 ¼ 4

N4
εijk

�
KliKmj∇mKl

k −
1

N
Klj3Rl

k∇iN

�
; ð88Þ

while Oðu:g:Þ
2 ¼ 0 and Oðu:g:Þ

3 ¼ 1
2
Lðu:g:Þ
1 . Therefore, when

restricted to the six GST monomials in (77)–(82), there is
only one independent ghost-free combination given in (85).

V. CONCLUSIONS

Recently, there has been an increasing interest in study-
ing gravitational theories with parity violation. In this work,
we have investigated the scalar-tensor theory with parity
violation. In particular, we are looking for the special
combinations of the scalar-tensor monomials that are free
of the Ostrogradsky ghost in the unitary gauge, i.e., when
the scalar field possesses a timelike gradient.
Since the generally covariant scalar-tensor theory (GST)

in the unitary gauge takes the form of spatially covariant
gravity (SCG), in Sec. II, we describe the general frame-
work of SCG theory and the classification of SCG mono-
mials. We extend the SCG theory by introducing Lie
derivatives of the lapse function F≡ £u lnN and the
extrinsic curvature £uKij. This is not only because they
are the natural building blocks of SCG, but also because
they necessarily arise in the decomposition of scalar-tensor
theory in the unitary gauge up to d ¼ 4 with d the total
number of derivatives.
In Sec. III, by including F and £uKij as the building

blocks of SCG, we exhausted the SCG monomials up to
d ¼ 4, which are classified and summarized in Table II.
Based on this classification, we obtain the complete basis
for the parity-violating SCG polynomials of d ¼ 3 and
d ¼ 4, which are given in (23) and (24), respectively. In
total, there are 9 independent SCG monomials with parity
violation, of which 7 contain no higher temporal derivatives
and are thus automatically free of ghosts, while 2 involve
Lie derivatives of the extrinsic curvature and the lapse
function and are thus potentially risky. Our analysis thus
generalizes the previous result presented in [87].
Our final goal is to find the ghost-free combinations of

GST monomials, which is performed in Sec. IV. To this
end, in Sec. IVA we derive the decomposition of the GST
monomials in the unitary gauge. The resulting expressions
show the dangerous temporal derivative terms explicitly
and thus give us guidance on finding the ghost-free
combinations. The main results in this work are presented
in Sec. IV B, where we derive the generally covariant
correspondence of the 9 parity-violating SCG monomials
in the complete basis (23) and (24). Since 7 out of the 9
SCG monomials are ghost-free, there must be 7 scalar-
tensor Lagrangians that are ghost-free in the unitary gauge,
which we choose to be (52)–(58) and dub them the
“Qi-Xiu” Lagrangians for short. Up to d ¼ 4, since any
parity-violating GST polynomial in the unitary gauge takes
the form of a linear combination of the 9 parity-violating

SCG monomials in the complete basis, we conclude that,
up to 7 identities in the unitary gauge (C23)–(C29), the
“Qi-Xiu” Lagrangians (52)–(58) are the most general
parity-violating scalar-tensor theories that are ghost-free
in the unitary gauge up to d ¼ 4. As shown in Sec. IV C, our
results have included the Chern-Simons term as well as the
chiral scalar-tensor theory proposed in [54] as special cases.
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APPENDIX A: REDUCTION OF ½£K∇K� TERM
In this appendix, we will show that εijk£uKi

l∇jKkl can be
reduced by integration by parts. When performing integra-
tion by parts regarding the SCG terms, it is more convenient
to use the generally covariant corresponding expressions. In
our case, it is given by

εijk£uKli∇jKl
k → fεub̂ ĉ d̂hef£uKbeDcKdf ≡O; ðA1Þ

where we define εub̂ ĉ d̂ ≡ uahbb0h
c
c0h

d
d0ε

ab0c0d0 for later
convenience.
There are two equivalent approaches to performing the

integrations by parts: either using the Lie derivative and
intrinsic derivative directly, or using the 4-dimensional
covariant derivative ∇a by expanding Lie/intrinsic deriv-
atives in terms of the covariant derivative. Here we choose
the former. We have

O ¼ fεub̂ ĉ d̂hef£uKbeDcKdf

¼ £uðfεub̂ ĉ d̂hefKbeDcKdfÞ − Kbe£uðfεub̂ ĉ d̂hefDcKdfÞ
≃ −Kfεub̂ c d̂Kf

bDcKdf − Kbe£uðfεub̂ ĉ d̂hefÞDcKdf

− Kbefεub̂ ĉ d̂hef£uDcKdf

¼ −fεub̂ ĉ d̂KKf
bDcKdf − Kbe£uðfεub̂ ĉ d̂hefÞDcKdf

− Kf
bfε

ub̂ ĉ d̂½£u;Dc�Kdf − DcðKf
bfε

ub̂ ĉ d̂£uKdfÞ
þ Dcðfεub̂ ĉ d̂ÞKf

b£uKdf þ DcK
f
bfε

ub̂ ĉ d̂£uKdf; ðA2Þ

where we have used that for a scalar field Φ,
£uΦ ¼ ua∇aΦ ≃ −KΦ, and the commutator is defined by

½£u;Dc�Kdf ¼ £uðDcKdfÞ − Dcð£uKdfÞ: ðA3Þ

For the second term in (A2), by using

£uf ¼ ∂f
∂ϕ

£uϕþ N
∂f
∂N

F;
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with F≡ 1
N £uN,

£uhab ¼ −2Kab þ 2uðaabÞ;

and

£uεnâ b̂ ĉ ¼ adεdâ b̂ ĉ − ðKa
e − uaaeÞεueb̂ ĉ − ðKb

e − ubaeÞεuâeĉ − ðKc
e − ucaeÞεuâ b̂ e;

we find

Kbe£uðfεub̂ ĉ d̂hefÞDcKdf ¼
�
∂f
∂ϕ

£uϕþ N
∂f
∂N

F

�
εub̂ ĉ d̂Kf

bDcKdf − 3fεub̂ ĉ d̂Kf
mKm

bDcKdf − fεub̂ ĉ d̂Kf
bK

e
cDeKdf: ðA4Þ

For the third term in (A2), the commutator is given by

½£u;Dc�Kdf ¼ ac£uKdf þ ΞcdmKm
f þ ΞcfmKm

d ;

with

Ξcdm ¼ −ðacKdm þ adKmc − amKcdÞ − ðDcKdm þ DdKmc − DmKcdÞ;

and Ξcfm is given accordingly. Thus

Kf
bfε

ub̂ ĉ d̂½£u;Dc�Kdf ¼ −fεub̂ ĉ d̂abK
f
c£uKdf − 2fεub̂ ĉ d̂Kf

bK
e
cDeKdf: ðA5Þ

For the fourth term in (A2), we have

DcðKf
bfε

ub̂ ĉ d̂£uKdfÞ ≃ fεub̂ ĉ d̂abK
f
c£uKdf; ðA6Þ

where we have used that for a tangent vector Aa, DaAa ¼ ∇aAa − aaAa.
For the fifth term in (A2), we have

Dcðfεub̂ ĉ d̂ÞKf
b£uKdf ¼ −εub̂ ĉ d̂N

∂f
∂N

abK
f
c£uKdf; ðA7Þ

where we have used Dcε
ub̂ ĉ d̂ ¼ Kceε

eb̂ ĉ d̂.
Putting all the above together, and noting that the last term in (A2) is nothing but −O, we get

O ≃ −
1

2
fεub̂ ĉ d̂KKf

bDcKdf þ
3

2
fεnb̂ ĉ d̂Kf

mKm
bDcKdf þ

3

2
fεub̂ ĉ d̂Kf

bK
e
cDeKdf −

1

2

�
∂f
∂ϕ

£uϕþ N
∂f
∂N

F

�
εub̂ ĉ d̂Kf

bDcKdf

−
1

2
εub̂ ĉ d̂N

∂f
∂N

abK
f
c£uKdf: ðA8Þ

In terms of spatial indices with t ¼ ϕ,

O ≃ −
1

2
fεijkKKl

i∇jKkl þ
3

2
fεijkKl

mKm
i ∇jKkl þ

3

2
fεijkKl

iK
m
j ∇mKkl −

1

2

�
∂f
∂t

þ N
∂f
∂N

F

�
εijkKl

i∇jKkl

−
1

2
εijkN

∂f
∂N

aiKl
j£uKkl: ðA9Þ

To conclude, we have explicitly shown that εijk£uKli∇jKl
k is not independent, which can be reduced to a linear

combination of ½KK∇K�, ½K∇K�, and ½aK£K� terms by integrations by parts.
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APPENDIX B: INTEGRATIONS BY PARTS

For the ð1; 2; 0Þ category, the decomposition of the following GST monomials can be recast by integration by parts

Fð1;2;0Þ
1 ═

u:g:
4εabcð−3Ra

dK
dbac − 2Ka

da
bDcad − FKadDbKc

d − KadKbeDeKc
d − aaKdbhec£uKdeÞ − 4∇cðεabcaaadKb

dÞ; ðB1Þ

Fð1;2;0Þ
2 ═

u:g:
− 2εabcðKa

eabDcae þ Ka
dK

deDbKc
eÞ − 2∇cðεabcaaadKb

dÞ; ðB2Þ

Fð1;2;0Þ
3 ═

u:g:
2εabcð2Ka

da
bDcad þ FKadDbKc

d þ aaKdbhec£uKdeÞ þ 2∇cðεabcaaadKb
dÞ; ðB3Þ

Fð1;2;0Þ
4 ═

u:g:
− 2εabcðKa

eabDcae þ 3Ra
dK

dbac þ FKadDbKc
dÞ − 2∇cðεabcaaadKb

dÞ; ðB4Þ

and

Fð1;2;0Þ
7 ═

u:g:
2εabcKa

eabDcae þ 2∇cðεabcaaadKb
dÞ: ðB5Þ

For the ð2; 0; 0Þ category, the decomposition of the following GST monomials can be recast by integration by parts:

Fð2;0;0Þ
1 ═

u:g:
8εabcð23RadKb

da
c − 23RdaDbKc

d þ Ka
dK

deDbKc
e þ KdaKebDeKc

d − KKa
eDbKceÞ þ 8D; ðB6Þ

Fð2;0;0Þ
2 ═

u:g:
4εabcð23RadKb

da
c þ Ka

dK
deDbKc

e þ 3KdaKebDeKc
d − KKa

eDbKceÞ þ 4D; ðB7Þ

Fð2;0;0Þ
3 ═

u:g:
2εabcð−23RadKb

da
c þ 23RdaDbKc

d − Ka
dK

deDbKc
e − KdaKebDeKc

d þ KKa
eDbKceÞ − 2D; ðB8Þ

Fð2;0;0Þ
4 ═

u:g:
εabcð−23RadKb

da
c − 23RdaDbKc

d þ Ka
dK

deDbKc
e − 3KdaKebDeKc

d − KKeaDcKb
eÞ −D; ðB9Þ

and

Fð2;0;0Þ
5 ═

u:g:
εabcð23RadKb

da
c þ Ka

dK
deDbKc

e þ 3KdaKebDeKc
d − KKeaDbKc

eÞ þD; ðB10Þ

where in (B6)–(B10), D stands for the total derivative

D ¼ 2∇cðεabcðDaad þ aaadÞKb
dÞ þ∇eðuaεabcdueKd

f∇bKcfÞ þ∇bðuaεabcdKcfue∇eKd
fÞ: ðB11Þ

In deriving the decomposition in the unitary gauge, we frequently make use of the following integrations by parts

εabcDaadDcKb
d ¼ −εabcðKa

eabDcae − 3Ra
eKbeacÞ þ∇cðεabcDaadKb

dÞ; ðB12Þ

εabcaaadDcKb
d ¼ εabcKa

eabDcae þ∇cðεabcaaadKb
dÞ; ðB13Þ

and

εabcdua£uKbeDcKe
d ¼

1

2
εabcð3Ka

eKe
fD

bKcf þ 3KeaKrbDrKc
e − KKa

fD
bKcfÞ þ 1

2
∇eðεabcueKc

f∇aKbfÞ

þ 1

2
∇aðεabcKbfue∇eKc

fÞ: ðB14Þ

In the above, εabc is defined in (29). The purpose of extracting the total derivatives is to recast the expressions in terms of
monomials in the SCG basis. One can also show that

∇cðεabcaaadKb
dÞ ¼ εabcð−Ka

eabDcae þ aaadDcKb
dÞ; ðB15Þ

∇cðεabcDaadKb
dÞ ¼ εabcðKa

eabDcae − 3Ra
eKbeac þ εabcDaadDcKb

dÞ: ðB16Þ
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APPENDIX C: PARITY-VIOLATING GST
MONOMIALS

The linearly independent GST monomials up to d ¼ 4
have been exhausted and classified in [86] (see also [87]).
In this appendix, we list the parity-violating monomials in
the cases of d ¼ 3 and d ¼ 4 for convenience, which are
summarized in Table III.
For the ð1; 1; 0Þ category, there is one monomial

Fð1;1;0Þ
1 ¼ 1

σ3
εabcdRef

cdϕaϕeϕbf: ðC1Þ

Here and in what follows, the factor σ is a shorthand
for σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ϕaϕ
ap ¼ ffiffiffiffiffiffi

2X
p

.
For the ð0; 2; 1Þ category, there is one monomial,

Fð0;2;1Þ
6 ¼ 1

σ6
εabcdϕ

eϕfϕ
aϕb

eϕ
c
m∇mϕdf: ðC2Þ

For the ð1; 2; 0Þ category, there are 10 linearly independent
monomials,

Fð1;2;0Þ
1 ¼ 1

σ2
εabcdRef

cdϕaeϕbf; ðC3Þ

Fð1;2;0Þ
2 ¼ 1

σ4
εabcdRef

cdϕaϕeϕb
mϕ

fm; ðC4Þ

Fð1;2;0Þ
3 ¼ 1

σ4
εabcdRef

cdϕeϕmϕa
mϕ

fb; ðC5Þ

Fð1;2;0Þ
4 ¼ 1

σ4
εabcdRef

cdϕaϕmϕbeϕf
m; ðC6Þ

Fð1;2;0Þ
5 ¼ 1

σ4
εabcdRef

cmϕaϕeϕbfϕd
m; ðC7Þ

Fð1;2;0Þ
6 ¼ 1

σ4
εabcdRaeϕbϕfϕc

eϕ
d
f; ðC8Þ

Fð1;2;0Þ
7 ¼ 1

σ6
εabcdRef

cdϕmϕnϕeϕaϕf
mϕb

n; ðC9Þ

Fð1;2;0Þ
8 ¼ 1

σ6
εabcdRef

cmϕaϕeϕmϕ
nϕb

nϕ
df; ðC10Þ

Fð1;2;0Þ
9 ¼ Fð1;1;0Þ

1 Eð0;1;0Þ
1 ¼ 1

σ4
εabcdRef

cdϕaϕeϕbfϕm
m;

ðC11Þ

Fð1;2;0Þ
10 ¼ Fð1;1;0Þ

1 Eð0;1;0Þ
2 ¼ 1

σ6
εabcdRef

cdϕaϕeϕbfϕmϕnϕ
mn;

ðC12Þ

where the 2 factorizable monomials Fð1;2;0Þ
9 and Fð1;2;0Þ

10 are
also shown explicitly. For the ð2; 0; 0Þ category, there are 5

linearly independent monomials,

Fð2;0;0Þ
1 ¼ εabcdRef

cdRabef; ðC13Þ

Fð2;0;0Þ
2 ¼ 1

σ2
εabcdRef

cdRabf
mϕ

eϕm; ðC14Þ

Fð2;0;0Þ
3 ¼ 1

σ2
εabcdRef

cdRefa
mϕ

bϕm; ðC15Þ

Fð2;0;0Þ
4 ¼ 1

σ2
εabcdRef

cdRaeϕbϕf; ðC16Þ

Fð2;0;0Þ
5 ¼ 1

σ4
εabcdRef

cdRamenϕbϕfϕmϕn: ðC17Þ

For the ð1; 0; 1Þ category, there is a single independent
monomial

Fð1;0;1Þ
4 ¼ 1

σ4
εabcdRef

cdϕaϕeϕm∇bϕf
m: ðC18Þ

The above complete sets of GST monomials derived
in [86] are independent in the sense of linear algebra. Some
of the monomials are related to each other up to total

derivatives. For Fð0;2;1Þ
6 , after some manipulations, we find

Fð0;2;1Þ
6 ¼ −

1

2
Fð1;2;0Þ
7 þ∇d

�
1

σ6
εabc

dϕeϕfϕaϕb
eϕ

cmϕmf

�
:

ðC19Þ

It is interesting to note that the total derivative has
effectively vanishing contribution if the coefficients are
functions of ϕ and X, since

fðϕ; XÞ∇d

�
1

σ6
εabc

dϕeϕfϕaϕb
eϕ

cmϕmf

�

≃∇df
1

σ6
εabc

dϕeϕfϕaϕb
eϕ

cmϕmf

¼
�
∂f
∂ϕ

ϕd þ
∂f
∂X

ð−ϕndϕ
nÞ
��

1

σ6
εabc

dϕeϕfϕaϕb
eϕ

cmϕmf

�

≡ 0:

As a result, (C19) implies that

fðϕ; XÞFð0;2;1Þ
6 ≃ −

1

2
fðϕ; XÞFð1;2;0Þ

7 : ðC20Þ

For Fð1;0;1Þ
4 , we have

Fð1;0;1Þ
4 ¼ −Fð1;2;0Þ

2 − Fð1;2;0Þ
4 − 4Fð1;2;0Þ

7

þ∇b

�
1

σ4
εabcdRef

cdϕaϕeϕmϕf
m

�
: ðC21Þ
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For coefficients that are functions of ϕ and X, we have

fFð1;0;1Þ
4 ≃ −fFð1;2;0Þ

2 − fFð1;2;0Þ
4 − 4

�
f −

X
2

∂f
∂X

�
Fð1;2;0Þ
7 :

ðC22Þ

As a result, according to Table III, since Fð0;2;1Þ
6 and Fð1;0;1Þ

4

can be reduced by integrations by parts, we are left with 15

GST monomials Fð1;2;0Þ
1 ;…; Fð1;2;0Þ

10 and Fð2;0;0Þ
1 ;…; Fð2;0;0Þ

5 .
It is also interesting to verify that these 15 GST monomials
satisfy seven identities in the unitary gauge, which we
choose to be

Fð2;0;0Þ
1 þ 4Fð2;0;0Þ

3 ═
u:g:

0; ðC23Þ

Fð2;0;0Þ
2 − 4Fð2;0;0Þ

5 ═
u:g:

0; ðC24Þ

Fð1;2;0Þ
3 þ Fð1;2;0Þ

4 − 2Fð1;2;0Þ
6 ═

u:g:
0; ðC25Þ

Fð1;2;0Þ
1 − 2Fð1;2;0Þ

4 − 4Fð1;2;0Þ
5 ═

u:g:
0; ðC26Þ

Fð1;2;0Þ
3 − Fð1;2;0Þ

7 þ 2Fð1;2;0Þ
8 þ Fð1;2;0Þ

10 ═
u:g:

0; ðC27Þ

Fð2;0;0Þ
1 − 8Fð2;0;0Þ

4 þ 8Fð1;2;0Þ
1 − 16Fð1;2;0Þ

4 þ 32Fð1;2;0Þ
6

═
u:g:

− 16D; ðC28Þ

Fð2;0;0Þ
2 þ 3Fð1;2;0Þ

1 þ 2Fð1;2;0Þ
2 þ 6Fð1;2;0Þ

3 − 2Fð1;2;0Þ
4

− 2Fð1;2;0Þ
9 ═

u:g:
− 4D; ðC29Þ

whereD in the last two identities is the total derivative term
defined in (B11). Therefore, in the sense of the unitary
gauge, there are only eight independent GST monomials of
d ¼ 4, which is exactly the same number of SCG mono-
mials of the complete basis.
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