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We investigate the parity-violating scalar-tensor theory and pay special attention to terms that are free of
the Ostrogradsky ghost in the unitary gauge, i.e., when the scalar field possesses a timelike gradient. We
exhaustively identify the generally covariant scalar-tensor theory (GST) monomials with parity violation up
to d = 4, where d is the total number of derivatives in the unitary gauge. According to the correspondence
between GST terms and the spatially covariant gravity (SCG) terms in the unitary gauge, we also
exhaustively identify the SCG monomials with parity violation up to d = 4, where the Lie derivatives of the
extrinsic curvature and the lapse function are necessarily introduced. We find a total of nine independent
parity-violating SCG monomials, of which seven contain no higher-order Lie derivatives and are thus
automatically free of ghosts, while two involve Lie derivatives of the extrinsic curvature and the lapse
function and are thus potentially dangerous. By explicitly deriving their generally covariant correspon-
dence, we obtain seven independent scalar-tensor terms dubbed the “Qi-Xiu” Lagrangians, which are the
most general parity-violating scalar-tensor theories that are ghost-free in the unitary gauge up to d = 4. Our
results include the existing theories in the literature, such as the Chern-Simons term and the chiral scalar-

tensor theories, as special cases.

DOI: 10.1103/PhysRevD.110.064038

I. INTRODUCTION

While the dark sector of current cosmology remains
insufficiently understood, new physics beyond general
relativity (GR) and the standard model of particle physics,
including the strong, electromagnetic, and weak inter-
actions, is required. Various observable effects, such as
helicity asymmetry and beta decay, have been observed,
indicating the presence of parity violation in weak inter-
actions [1,2]. In the era of precision cosmology, the
polarization features of the cosmic microwave background
reveal clues about parity violation [3-7] beyond the
standard model. Consequently, when turning our attention
to gravity, it is natural to question if there are any parity-
violating effects in gravitational interactions.

From a theoretical perspective, incorporating parity-
violating terms opens up new avenues for understanding
fundamental aspects of gravity. At the quantum level,
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parity-violating terms would contribute to the renormali-
zation and ultraviolet behavior of the theory, thus poten-
tially providing insights into the quantization of gravity or
the final unified theory [8—12]. From an observational
perspective, the detection of gravitational wave events
[13,14], together with forthcoming gravitational wave
experiments [15-21], opens a new window and provides
an opportunity to directly test these parity-violating theories
and models. Different polarization modes in a cosmological
background would be exhibited in these parity-violating
theories, and modifications to the dispersion relations would
also be introduced [22,23]. Moreover, as corrections to
standard inflationary models, parity-violating terms change
the polarization modes of the resulting primordial gravita-
tional waves [24—27], which should produce nonvanishing
TB/EB correlations in the cosmic microwave background
polarization [28-32]. The resulting behavior of GWs in
different parity-violating gravity models has been exten-
sively studied [33-46].

For the purpose of constructing gravitational theories
with parity violation, the parity-violating terms can enter
the gravitational action through various approaches. A
certain class of quintessence or axion fields [47—49] would
generate such a parity-violating feature by coupling the
pseudo-scalar with electromagnetism. Another notable
example is the four-dimensional Chern-Simons modified
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gravity [50-53], in which the Pontryagin term with a
coefficient depending on a scalar field is added to the
standard Einstein-Hilbert action. Generalization of Chern-
Simons gravity in the more general scalar-tensor theories is
considered in [54], in which various couplings between the
Riemann tensor and covariant derivatives of the scalar field
up to the second order are introduced. A totally antisym-
metric Levi-Civita tensor (volume form) €,,,, appears in
the action and is used to construct various parity-violating
terms. One lesson from the construction of these parity-
violating terms in the framework of scalar-tensor theory is
that the resulting theories are ghost-free only if the scalar
field possesses a timelike gradient so that the so-called
unitary gauge can be taken.

On the other hand, generally covariant scalar-tensor
(GST) theories in the unitary gauge take the form of metric
theories with Lorentz violation and, more specifically,
spatially covariant gravity (SCG) theories respecting only
spatial covariance. The SCG theories have simpler forms
and are, in fact, more convenient in the cosmological
context. Well-studied examples, although originally moti-
vated by different purposes, include the Horava-Lifshitz
gravity [55-63], as well as the effective field theory of
inflation/dark energy [64—69]. The parity-violating effects
in Horava gravity have been investigated in [70-72]. A
general class of SCG theories was proposed in [73,74] as an
alternative and more unifying approach to introducing a
scalar degree of freedom and generalizing the scalar-tensor
theories. It was further extended by introducing a dynami-
cal lapse function [75-77], nonmetricity [78], as well as an
auxiliary scalar field [79,80]. Constraints from cosmologi-
cal perturbations and gravitational waves on SCG have
been explored in [81-85].

There are several advantages to working in the frame-
work of SCG theories. Firstly, in the case of a single scalar
degree of freedom, there is a one-to-one correspondence
between theories of GST and SCG through gauge-fixing/
gauge-recovering procedures. Based on the classification of
GST monomials in [86], such a correspondence has been
discussed in detail in [87,88], and the explicit linear
mappings between GST and SCG monomials are devel-
oped in [89] (see also [90,91]). In other words, SCG should
not be viewed merely as Lorentz-violating theories but as a
general and unifying description of scalar-tensor theories.
Second, thanks to its dependence only on spatial diffeo-
morphism, the separation of temporal and spatial deriva-
tives allows us to generally include the parity-violating
terms with odd-order spatial derivatives and linear terms of
higher-order time derivatives in the action without intro-
ducing ghost DoFs. This is also reflected in the fact that the
absence of ghosts in SCG (i.e., in the unitary gauge) is a
necessary condition for the corresponding GST theory to be
ghost-free (i.e., in any gauge) [88]. The specific behavior of
theories that are degenerate in the unitary gauge is
discussed in [92,93]. Therefore, SCG provides a unifying

framework to study gravity theories with parity violation in
a systematic manner.

In this work, we aim to investigate parity-violating
scalar-tensor theories without ghosts in the unitary gauge.
We concentrate on the GST Lagrangians of the poly-
nomial type. Instead of starting from the most general
GST polynomial and studying its behavior in the unitary
gauge so that all the ghostlike terms get canceled, we will
make use of the correspondence between GST and SCG.
That is, we will construct the most general SCG mono-
mials with parity violation and then find their generally
covariant correspondence. The parity-violating SCG
monomials have been studied in [87] without Lie deriv-
atives of the lapse function and the extrinsic curvature.
However, these terms naturally arise in GST terms in the
unitary gauge. Therefore, a complete analysis of both GST
and SCG monomials up to d = 4 with d being the number
of derivatives in the unitary gauge is needed. Then, by
making use of the covariant correspondence, we can get
the desired parity-violating scalar-tensor theories without
ghosts in the unitary gauge. This work is thus devoted to
these issues.

The paper is organized as follows. In Sec. II, we briefly
review the general framework of SCG theory. We also
show a specific SCG model in Sec. II B with parity-
violating terms of the polynomial type as an illustration of
the construction and classification of the SCG monomials.
In Sec. III, we list the basic building blocks for SCG by
introducing new operators involving Lie derivatives of the
lapse function and the extrinsic curvature. We then
exhaust all the possible parity-violating SCG monomials
up to d = 4 with d being the total number of derivatives.
In Sec. IV, we connect the ghost-free SCG model with
parity-violating scalar-tensor theories. In particular, we
get a set of 7 parity-violating scalar-tensor Lagrangians
that are ghost-free in the unitary gauge. Finally, Sec. V is
devoted to conclusions.

Throughout this paper, we use i, j, k, - - - to denote spatial
indices in a coordinate basis, and a, b, c,--- to denote
spacetime indices in a general basis. Curvature tensors such
as R,,.q and R, denote the 4-dimensional quantities, while
R,y and °R;; etc. denote the 3-dimensional (spatial)
quantities.

II. SPATIALLY COVARIANT GRAVITY

A. General framework

The Lagrangian of SCG is built of metric variables and
is only invariant under 3-dimensional spatial diffeomor-
phisms x’ — & = % (x/), which breaks time diffeomor-
phism. The action of such theories can be constructed
in terms of scalars under spatial diffeomorphism.
Consequently, it is natural and convenient to employ
the Arnowitt-Deser-Misner (ADM) variables N, N; and
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hij.
spacetime.

The general action for SCG, which extends the original
proposal in [73,76] by allowing higher-order temporal
derivatives, takes the form

which are based on the foliation structure of
1

S = /drd%ch/Ec(t, N.hij R, Vi £gsei)s (1)
where N is the lapse function, h;; is the 3-dimensional
spatial metric, R;; is the 3-dimensional spatial Ricci tensor,
V, is the covariant derivative compatible with h;;, u is the
normal vector of the spatial hypersurfaces given by
u, = —NV, % In order to introduce the parity-violating
terms, the Levi-Civita tensor &;;, = vhe;j;, with €53 = 1 is
included. Please note the shift vector N; should not
be included explicitly, since it is not a genuine geo-
metrical quantity characterizing the foliation structure
but merely encodes the gauge degrees of freedom of spatial
diffeomorphism.

The formulation in terms of the ADM variables and the
spacetime decomposition makes the kinetic terms be
introduced in a natural and transparent manner. In particu-
lar, the separation of the temporal and spatial derivatives in
the SCG allows us to focus on higher-order time deriva-
tives, which could possibly introduce unwanted ghostlike
or unwanted degrees of freedom without any restrictions.
As mentioned above, the basic variables in SCG are the
lapse function N and the spatial metric /;;. In the original
proposal of [73,74], only the extrinsic curvature K;;, which
is the kinetic term for A;;, is included in the Lagrangian.
However, since time diffeomorphism is broken in SCG, N
should not be treated as an auxiliary field anymore. In fact,
N and h;; are independent and should be treated on equal
footing, and thus the temporal derivatives of both variables
should enter the Lagrangian through the Lie derivatives £,,,
even up to higher orders.

Following [75,76], the velocity of the lapse function N,
namely N, enters in the Lagrangian through

1

F=—
N

1 . .

with a dot denoting the time derivative d,. The velocity of

the spatial metric h;;, namely h;;, enters the Lagrangian

ijo

'Under the infinitesimal transformation 8x’ = &, the ADM
variables transform as SN = E0;N, 6N; = 0,6/N; + &/0;N; and
oh;; = difkhjk + aﬁ"hik + f"akhij, which clearly show that N,
N; and h;; transform as a scalar, a vector and a tensor under
spatial diffeomorphism, respectively.

Here we use u (instead of n) to emphasize the scalar field ¢
specifying the hypersurfaces coincides with the time coordinate,
which corresponds to the so-called unitary gauge.

through the extrinsic curvature K;; defined by3

1 1

Kij e 5£uhij == ﬂ

(hjj—V;N; = V.N,). (3)

)

The resulting action is given by

S:/dtdeN\/EE(t,N,hij,F,K Rij. Vieijn)- (4)

ijs

In the action (4), N and h;; both act as dynamical variables,
with no higher-order time derivatives appearing in the
action. Other derivatives are purely spatial, which auto-
matically evade the unwanted ghostlike mode. Generally
speaking, there are four dynamical degrees of freedom
(DoFs), consisting of two tensor and two scalar DoFs.
Extensive research has been conducted on the degeneracy
conditions under which the number of dynamical DoFs
reduces to three [75,76] (and to two [77], i.e., without any
scalar DoF).4 In other words, additional conditions must
be applied to ensure that only a single scalar DoF is present.

In principle, higher-order temporal derivatives, such
as £ZN and £3h;; can also be considered, although gen-
erally they will introduce unwanted or ghost-like DoFs.
Nevertheless, in this work, we will consider the Lie
derivative of N in terms of F defined in (2) and the
second-order Lie derivative of /;; in terms of £, K;;, which
will be discussed in detail in Sec. IIL.

ijs

B. SCG with nondynamical lapse function

The SCG theory proposed in [73,74] (with parity-
violating extension) is described by the action

K 3Rija viv£ijk)7 (5)

S = / dtd*xNVRL(t, N, h;;. K ;.
in which the only time derivative entering in the Lagrangian
is encoded in K;;. The theory (5) has been proved to
possess 3 DoFs through a Hamiltonian analysis [74].”
For the purpose of obtaining concrete 3-DoF ghost-free
models, SCG Lagrangians of the polynomial type are
considered and investigated in [87]. In order to get general
theoretical forms while keeping the number of monomials
finite, additional restrictions are necessary to exhaust all
possible monomials. In [87], it is assumed that the total
number of derivatives does not exceed 4. As we will see

later, this implies that the Riemann curvature tensor is up to

*Throughout this work, Lie derivatives acting on spatial
tensors are understood as shorthands of the spatial components
of the 4-dimension quantities. For example, £, h;; = e"l-ebjfu haps
where e“; is the spatial components of the general basis e“.

The time derivative of the lapse function is also discussed
in [94].

The presence of ¢;;; does not alter the constraint structure of
the theory.
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the quadratic order, the derivatives (both spatial and Lie
derivatives) of N and h;; are up to second order.
Degeneracy conditions reducing 3-DoF SCG theories to
2-DoF SCG theories, in which no scalar mode is propa-
gating, can be found in [95,96].

It is necessary to make a classification of the possible
SCG monomials due to their large number. We will follow
the same conventions and classification as in [86,89]. By
the Stueckelberg trick, an SCG term can be mapped to a
corresponding generally covariant scalar-tensor (GST)
term. Accordingly, we can assign each SCG term the set
of integers (cy; d,, d3) to characterize the GST combina-
tion, where ¢, is the number of Riemann curvature tensors,
d,, d5 are the numbers of the second and the third covariant
derivatives of ¢, respectively.6 Schematically, we can write

Kij"’aiN(O;l,O)’ (6)
ViK;j~V;a; ~(0,0,1), (8)

where a; is the acceleration defined by a; = V;InN.
Thus, the total number of derivatives in each monomial
is given by’

d=Y [0+ 2ent (it Vs, (9)
n=0

in which c,, is the number of nth covariant derivative term
of the spacetime Riemann tensor, d,, is the number of the
nth covariant derivative term of the scalar field. Since the
resulting GST terms would arise only from the combina-
tions of GST monomials of the same values of d, the
number d can be used as a generic label characterizing
monomials of both GST and SCG, which makes the
correspondences more transparent. In this work, we con-
sider monomials with d < 4. Even considering higher-
order operators, one would find that no new independent
monomials are present in each category, as long as the value
of the total number of derivatives d is not larger than 4.
Based on (5), a specific ghost-free SCG Lagrangian
of the polynomial type with parity violation was proposed

in [87]. The parity-violating terms are denoted by £©) for
d=3and L¥ for d = 4, which are given by

L) = 01D, KIVIKH, (10)

6Up to d =4 with d being the total number of derivatives,
higher-order integers such as ¢; (the number of the first-order
derivative of Riemann tensor) and d, (the number of the fourth-
order derivative of the scalar field) etc., are not needed, since the
corresponding SCG monomials can always be reduced.

Note d is also equivalent to the mass dimension of each SCG
monomial.

and
z(4) _ CEO;Z.I)giijiijnvaﬁ + Cgo;z,l)giijmilKianKﬁ
I CgO;2,l)€iij;'ajvkal + Cé(‘o;z.l)giij;'ijle

(1;2,0)

+ (& E'ijkBRjKﬂak + C(ll;owl)é'ijk3R;'ijkl, (11)

respectively. The coefficients cleodzs)
tions of # and N.

In the next section, we will extend the above Lagrangian
by introducing new parity-violating terms involving Lie
derivatives of the lapse function and the extrinsic curvature.

are generally func-

II1. PARITY-VIOLATING MONOMIALS IN SCG

In this section, by considering novel SCG operators
involving higher-order derivatives, we will construct and
classify the parity-violating SCG monomials in a system-
atic way under the restriction d < 4, with d being the total
number of derivatives.

A. Building blocks

First of all, we need to extend the set of operators for our
purpose. Fundamental geometrical quantities, including the
lapse function N, the spatial metric h;;, the acceleration a;,
the extrinsic curvature K;, and the spatial Ricci tensor 3R, i
along with their spatial derivatives, are involved as the basic
ingredients. It should be noted that these quantities are
associated with the foliation defined by the scalar field once
the time coordinate is fixed. Moreover, we will introduce
higher-order derivatives of the lapse function N and the
spatial metric h;;. Precisely, spatial and Lie derivatives of
K, a;, and F, ie., ViK;;, Via;, V,F, £,K;;, and £, F, as
well as £, a;, will be taken into account in our construction.
The reason for introducing these higher-order derivative
operators is not only because they would extend the SCG
construction, but also because they naturally (or neces-
sarily) arise in the unitary gauge for GST monomials up
to d = 4.

When evaluating Lie derivatives with respect to the
normal vector u, it is necessary to transform the expressions
into a generally covariant form. Once it is established that
these operators are indeed spatial tensors, we can then take
their spatial components with indices i, j, - - -. For example,
the Lie derivative of the extrinsic curvature with lower
indices is a spatial tensor since n’£,K,, = n’£,K,, = 0.
More explicitly, we have

1 .
£uKij :N[K” - (Nkkaij +KkjviNk + Kkiv]'Nk)], (12)
which involves the second order time derivative of £;;
through K; ;- On the other hand, one can show that Lie

derivative of the acceleration can be reduced,
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V,N
N

£uCll' = £u< ) = V,F + Fai, (13)

which implies that £,a; is not an independent operator. A
subtle point arises when taking Lie derivatives of spatial
tensors with upper indices.® To avoid confusion, we only
use the Lie derivative of spatial tensors with lower indices
in SCG. Lie derivatives of spatial tensors with mixed or
upper indices are understood as merely shorthands. For
example, only the Lie derivative £,K;; (spatial component
of £,K ;) is defined in SCG, while £uK; is just a shorthand
that stands for

£qu- = hikqukj = hikeckebjful(cb = eaiebjh"”ful(cb.
(14)

Similarly, £,K" = hi*ni'£,K,,, etc. Note we also have a
useful relation for the spatial derivative of the acceleration
Vl-a i

J

Vl-aj = vlv] InN = V,V, InN = v.)'ai, (15)

which implies that its indices are symmetric.

Moreover, up to d =4, SCG monomials involving
third-order or fourth-order derivatives can be reduced to
equivalent combinations of the same order of d but with
lower-order operators through integration by parts. This
allows for the construction of a simplified and complete set
of basis monomials, facilitating analysis and computations.

Finally, we have a complete set of operators for our
purpose. The lapse function N and the induced metric A;;
can be regarded as the operators for d = 0. The independent
operators up to d = 2 are shown in Table I. As we have
mentioned above, up to d = 4 we do not need to consider
operators involving derivatives higher than the second
order (acting on the ADM variables), such as £,°R

£2K,., VIVIK ., etc.

ijs ijs

ijs

B. Complete basis for the parity-violating monomials

To identify all the parity-violating terms constructed by
these building blocks, we divide the entire process into two
steps. The first step involves determining all the possible
types of combinations of the given order. In this step, we
do not distinguish various contractions from each other.

For instance, Lie derivatives of the extrinsic curvature with
mixed or upper indices are given by

£,KE = h£,K o = 2KIKG + a“K e # h£,K o
£,K% = h*pbe£,K 4. — AK“K? + a,(K"n® 4+ K“n")
# hbchadqudc’

which are not spatial tensors neither.

TABLE I. Building blocks in SCG.
d == ] Kl] F’ aj
d=2

£uKij,VkK,-j,3R,-j £uF»ka,viaj

For notational simplicity, we use the initial letters to
represent each geometric quantity, such as a for q;, K
for K;;, R for °R;;, £K for £,K;;, VK for V,K,;, etc. In the
second step, we systematically explore all the possible
contractions and identify all the independent monomials.
Note that the spatial Levi-Civita tensor ¢;; is necessary in
order to construct monomials with parity violation.

1.d=3

There are no parity-violating monomials in the cases of
d=0,1, 2.% So we start from the case of d = 3. In the case
of d =3, we have two types of operator combinations,
schematically denoted by [1 + 2] and [1 + 1 + 1]. Here the
integers denote orders of derivatives in each building block
(operator). For example, a monomial built from contracting
F and V,F will be of [1 + 2] type, since F contains the first-
order derivative and V,;F contains the second-order deriva-
tive of N, respectively.

For the type of [1 + 2], besides the combinations [K VK],
[aVa], and [aR] that have been considered in [87,89], we
have the following new combinations

[FVF], [a£F], [KVF], [FVK], [a£K],
due to the presence of F and £,K;;. Due to the
(anti)symmetry of indices, no viable monomials arise
from these parity-violating combinations except [KVK].
Therefore, we refer to these cases as being “empty” and can
disregard them in the subsequent step. The other type of
operator combination, i.e., [1 + 1 + 1], contains the com-
bination [aaa] as well as the new ones

[aKF], [aFF).
Clearly, no viable parity-violating monomials emerge from
these combinations.

As a result, it becomes evident that the only nonempty
parity-violating combination is [KVK]. Moreover, the only
independent contraction within this combination is

“This can be seen easily from Table I. The building blocks up
to d = 2 either have number of indices less than 3, or are
symmetric in (some of) their indices, which have vanishing
contractions with the Levi-Civita tensor.

Since we are considering parity-violating monomials, the
epsilon tensor ¢;;; must be present. Therefore, we only need to
consider combinations of operators with an odd number of
indices.
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[KVK]: EUkKﬁijkl, (16)

which has already been studied in [87,89]. In brief, in
the case of d = 3, despite the introduction of new operators
F and £,K;;, no new parity-violating SCG monomial
emerges.

Jj°

2.d=4

In the case of d =4, we have three different types
of operator combinations: [2+42], [I+1+2], and
[1 +1-+ 1+ 1]. Based on the same notation, we express
all the possible combinations of each type.

For the type of [1 4+ 1+ 1+ 1], besides the combina-
tions [aKKK], [aaaK], we have the following new combi-
nations due to the presence of F,

[KKaF], l[aaaF), [KaFF], [aFFF).
No viable parity-violating monomials exist in these types of
combinations.

For the type of [1 4 1+ 2], there are viable parity-
violating monomials from the combination types
[aKVa], [aaVK], [KKVK], [aKR], (17)
which have been considered in [87,89]. In addition, there
are new viable parity-violating monomials corresponding
to the combinations

laK£K].  [FKVK]. (18)

While the following combinations

[KafF),
[FFVK],

[FafK],
[KKVF],

[FafF],
[KFVF],

[FaVa|, [FaR|,
[FFVF], [aaVF],

yield no viable monomials.

For the type of [2 + 2], besides the combinations [RVK]
and [VaVK], we have one new combination

[£KVK], (19)
with empty cases

[€FVF], [£KVF], [£FVK]. [RVF], [VaVF).

In summary, due to the presence of F' and £,K;;, there

arise 3 new parity-violating SCG monomials in the case of
d = 4, which are

[FKVK]: {4 FK{VIK!}, (20)
[aK£K]: {e;a K/'£,K"}, (21)
[£KVK]: {e;;£,K"VIKE}. (22)

At this point, we note that not all these terms are
independent. One can check that the last term, i.e.,
ety K"VIKY, is not independent and can be expressed
by linear combinations of the other terms up to total
derivatives. The details can be found in Appendix A.
Therefore, in the following, we do not need to con-
sider ;. £,K"VIK}.

We list all the irreducible and reducible parity-violating
SCG monomials in Table II. In the case of d = 3, there
is only one parity-violating monomial. In the case of
d =4, there are 8 independent parity-violating mono-
mials. Following the terminology developed in [89], the
complete basis of parity-violating SCG polynomials for
d =3 is thus

Z3 = {5iijfijkl}’ (23)

which is composed of a single unfactorizable and irreduc-
ible monomial. In other words, we have dim(Z3;) = 1.

TABLE II. Classification of the parity-violating SCG monomials.
d Category Form Irreducible Reducible Number
3 0; 1, 1) [KVK] e KiVIKH 1
4 0; 0, 2) [£KVK] eintuK"VIKE 0
[VaVK] eixV'a'VIK}
0; 2, 1) [aKVal] gipa'Via K¥ - 6
[aaVK] . eijpa'a’ VIK§
[KKVK] ¢ KiK V" K", €, KiK' VIKY, €, KKIVIK -
[aK£K] ena' K £,KE
[FKVK] e FKVIKM
(1;2,0) [RKda] e;jxa' K/PRY . 1
(1; 0, 1) [RVK] gl.jk?’Rliij;‘ ... 1
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The “enlarged” basis for the parity-violating SCG poly-
nomials for d = 4 is given by

Z4 = {Eijk3R5Klelk, El‘ijiijnva];l, 8iijmnK£nij}],€l,
Eiij;ajvkal, gijk:;R;ijkl, EiijKfijkl,
eina KI'£,K}, e, FKINV KM, (24)

with dim(Z,) = 8. Note that the monomial in (23), as well
as the first six monomials in (24), contain no F or £,K;; and
thus are ghost-free. However, the last two monomials in
(24) involve F or £,K;; (although in a linear manner) and
thus possibly suffer from the Ostrogradsky ghost even in
the SCG.

IV. GHOST-FREE SCALAR-TENSOR THEORIES
WITH PARITY VIOLATION

The GST monomials are systematically classified, and
the complete basis for GST polynomials up to d =4 is
derived in [86,87]. We refer to Appendix C for the explicit

expressions of the parity-violating GST monomials, which

we denote F\%) for short. Our purpose is to find the

ghost-free combinations of these GST monomials. To this
end, we will first derive the corresponding expressions of
these parity-violating monomials in the unitary gauge,
which explicitly show the dangerous terms ~£,K;; and
F, thus giving us guidance on how to build the ghost-free
combinations.

Before proceeding, we would like to clarify the notation
in this work. For our purpose, we frequently switch among
different but equivalent formulations of the theory. First, we
refer to SCG, in which all the quantities are spatial tensors
with spatial indices i, j, k, - - -. For example, the actions (1)
and (4) are of the SCG form. Sometimes it is convenient or
even necessary to work with the generally covariant
correspondence of the SCG terms. For example, for the
extrinsic curvature, we may work with K, instead of K;;,
where the former is understood as K ,;, = %;Eu h,, withu, =
—NV ¢ and hg, = g, + u,u,. In principle, it is essentially
a generally covariant scalar-tensor theory term, but
“wrapped” in terms of hypersurface geometrical quantities.
Following the strategy in [88], we refer to expressions in
such la1 form as the “unitary gauge” or “u.g.” form for
short.

""We emphasize that in the literature “unitary gauge” is often
referred to as “SCG” in our terminology, which is written in a
concrete coordinate system. For our purpose, we refer to the
unitary gauge as merely a special choice of the normal vector
n, = u, = —NV ¢, which has nothing to do with any specific
coordinates. See the discussion in [88] for details.

A. Decomposition in the unitary gauge

First of all, there are 4 parity-violating GST monomials
that do not contain higher-order time derivatives in the
unitary gauge, i.e., without the dangerous terms £,K ,;, or
F, which are

Fgl;l.o) ug. 2. KD K, (25)

FORDLE o KiabDea, (26)

Fél 2,0) _ug €abc(—20aachKZ + ZKZKdeDCKg)’ (27)
and

Fgl;z.()) LR eapea®a’DCKD. (28)

In the above and what follows, D, is the covariant derivatives
compatible with the induced metric 4, defined by (e.g.)
D,a,=hhyVyay and DKy =h?hhiV Ky, ete.
Here and in the following, we define

Eabe = udgdabc s (29)

and “u.g.” denotes equality in the unitary gauge. In deriving
the above expressions, no integration by parts has been
performed. As a result, we can conclude that these 4 GST
monomials are automatically free of the Ostrogradsky ghost
in the unitary gauge.

Before proceeding, note that the SCG monomials in the

decomposition of F’ <21;2‘0) and F 51’2'0) in (27) and (28) are not
precisely the SCG monomials chosen in the complete basis
(24). Nevertheless, they can be recast as linear combinations
of the SCG monomials in the complete basis up to total
derivatives. The relevant expressions are given in (B2)
and (B5). We also refer to Appendix B for more detailed
integrations by parts we have used in deriving the above and

in the following expressions. At this point, note that the

expressions of F’ 20;2’1) and F ;1;2,0) in the unitary gauge differ
by a total derivative term. Indeed, this also happens for their

general covariant expressions (C19), which implies that

although F 20;2’1) is algebraically independent, it is not

independent in the sense of integration by parts.
According to Appendix C, there are in total 10 parity-

violating GST monomials in the (1;2,0) category. Besides
F él 29 and F §‘ 29 mentioned above, the remaining 8
monomials in the (1;2,0) category will contribute to terms
linear in F and/or £, K;; in the unitary gauge. The following
three monomials would contribute to the [FKVK] term:

1:2,0)_u.g.

F| Eape(2a°KP3RE —2a%aDE K —2FDA KB K<),

(30)
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Fgm,o) ug. eape(2FK“DPKS — 2KK*DPKS),  (31)

and

(1:2,0) _u.g.
Fig

— 2, FK“DPK®. (32)

SCG monomials in the decomposition of F, (120) 4 (30)

have not been in the form of the complete basis (24).

Similar to F <21 29 and F§1'2’0> above, it can be recast as a

linear combination of monomials in the complete basis up
to a total derivative, which is given in (B4). The following
three monomials contribute to the [aK£K] term:

F{PO g | (~K“KP*D, K¢ — K9a’D<ad
_ aathheci‘uKde)’ (33)
Fél 2,0) _Ug abc( ’%Rade ¢4 Ka bpDegd
+ aadehecqude)7 (34)
and
Fél;zﬁo) e Eabc(_Kzachad _ a“K‘”’h“qude). (35)

Finally, the following two monomials would contribute to
both [FKVK] and [aK£K] terms:

Fil i2,0) i“'gahc (aade3RZ _

— FDUK K —

a’KsDba? — a“a’DK},
K“KPD K — a*KPhe £,K 4,
(36)

1:2,0) _u.g

F| 20 (a°KDPa + a®a’DEKY + FDUKb K

+ a’KPhe£,K ). (37)

Again, (36) and (37) can be recast as linear combinations
of monomials in the complete basis through integrations
by parts, which are given in (B1) and (B3), respectively.
Thus, within the (1;2,0) category, in order to make the
theory healthy in the unitary gauge, we obtain three special
combinations that cancel both dangerous terms [aK£K]| and

[FKVK], such as F{"*? —2f{'20 4 4p(120  p120)
(1;2,0) (12,0

Ff‘lgz'o) - 2Fé];2’0> and Fj + Fg 7. These combina-
tions are totally healthy in the unitary gauge with any
coefficient functions of ¢ and X.

There are in total 5 monomials of the (2;0, 0) category. It
is easy to show that all the monomials in this category
would produce dangerous terms of the [£KVK]| form. We

have

FP0=516¢,,, (D@D KY) + a“a’D K} + *RU“DCK},
+ KaK9“DeKL — K% KD, K¢,
_ hdaDCKebqude), (38)
F0% =5 8e,,. (D“a’D K} + a“a’D K’ + K4K*“DK?
— WD £ K ), (39)
FO =E= 4, (~Da?DEKY = 3RUDCKY — a“a"DEK?,
_ KdaKdeDch + KdaKebDech
=+ hdaDCKebqude)’ (40)
FPOO =226, (~DaDKY 4 3RUDEKE — aa’DeK?
— 2K9K4“DK? + KK*““DK?
+ hdaDCKeb£uKde)’ (41)
F(2§0~O)i2 a dryc gb a dryc b a deyc Kb
§ Eape(DUaDKY + aa?D Kb + K4K4DK?
— hDKPL K ). (42)

Again, (38)—(42) can be recast as linear combinations of
monomials in the complete basis through integrations by
parts, which are given in (B6)-(B10), respectively.
Thus, within the (2;0,0) category, it is easy to find some
special combinations without the [£KVK] term, such as

ng;o,o) 1 F(z 0, 0) (2 0.0) 41 F(z 0 o) (2 0.0) +1 F(z 0 0)
and ngoo) 1F(200)

B. Ghost-free scalar-tensor polynomials

Based on the covariant scalar-tensor terms corresponding
to the SCG terms developed in [87], the covariant corre-
spondence of the SCG monomials, including the parity-
violating monomials, has been shown in [89]. However,
in [89], only the matrices of the linear mapping are shown,
instead of the explicit expressions for the covariant corre-
spondence. Moreover, the higher-order Lie derivatives have
not been taken into account in [87]. In the following, we will
show the explicit expressions for the covariant correspon-
dence of the parity-violating SCG monomials up to d = 4.

For d = 3, the only parity-violating SCG monomial is
given in (23), of which the covariant correspondence is
[54,87,89]

iN7Jj Kkl abed e
e K VK" — ey, KiD K 4

1:10)

:W cdef¢a¢ ¢f__F

(43)
Here and in what follows, we use shorthands ¢, = V¢,
Gy =V, V¢ and X = —%cpa(p“, which is the canonical

kinetic term of the scalar field. (43) can be compared
with (25).
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For d = 4, the first 6 monomials in the complete basis (24) do not involve F or £,K;;, the covariant correspondence of
which is

eij RiKat — eluga, KR og
1
= =5z " Ra ot Peadse = 55z € Remer a9 & Plcbin

1;2,0 1;2,0
_ 120 _ p120 (44)

e K" K"V,, Kk — eedy, KSKID Ky,
— _L abcd e(—_2XR f oam R m pn f
8X3€ ¢a¢ ( efcm¢b¢d + efcm¢ ¢ ¢nb¢d>
1;2,0 1;2,0
= Fg ) Fé ), (45)
e K" KL, VIK, — ey, K[ KSD K ,

1
= 16X3 ab6d¢a¢e<2XRefcd¢Zl¢m + Rcdef¢n¢m¢m¢nb)

1

1;2,0 ;2,0
= -5 (F20 1 720, (46)

epKia'Vha' — ey, Kb a‘Da"

1 )
=730 el P Py Pidpars

1
— _F(O 2,1) E F71 ;2,0) vd (_ eabcd¢e¢f¢a¢b¢cm¢an) (47)
where we have used (C19),

e’ RIVIKH — gabedy SRYD K 4,

abcd{ 4X2Re cdef¢f¢b - 2X¢b¢m¢f¢nRam nNedef + 2X¢a¢e (Rcdef(ﬁzfﬁtr‘ - Rcdef¢zn¢’]:1)

T 1lex3 ¢
+ Rcdef-¢a¢e¢"¢m(—¢fn¢nb + Ghbn)}
= _ (F 200 + Fg-Z;O'O) + Fgl;Z,O) + F(71;2,0) _ Fgl;Z,O) _ F%;Z,O))’ (48)

and
siijKijK“ — g“deuaKKZDCKde

1 ) '
= 157 & bt CReacs XG0 + Rears ' bibey)

L
=——(F
5

0>+ Fig™?). (49)

The last 2 monomials in the complete basis (24) involve F or £,K;;, which were not considered previously. Their
covariant correspondences are

e FKIVIKH — gabedy FK D K/,
1
= 16X3 adeRcdrs¢a¢ ¢S¢f @° ¢f

I 20
=—5Fi". (50)
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TABLE III.  Parity-violating GST monomials.
d Category Unfactorizable Factorizable Number
3 {1;1,0} F{L0 1
4 {0;2,1} Féo;z,l) 1
{1;2,0} F(ll;z,()) 10
F;I;Z,O)’ Fg1;2,0>’ Fgl;z.o), Fgl;z.o)’ Fél;z,o) F(91;2.0> _ F(ll;l,O)E(IO;l,O)
F(71;2’0),Fé1;2'0) F(I%);ZO) _ Fgl;l.O)EgO;l,O)
{2;0,0} F§2;0’0) 5
ng;o,o)’ F;z;o.O)’ Fiz;o,o)
ng;0.0)
{1;0,1} Fgl;o,l) |

and

Eijkainl;Equ i EadeMaCle{vhgquef

1
=233 DV Peb(Pary b+ Raprsdd2)

8X3
_ (0:2,1) (1;2,0)
I (120 1:2.0
= —§F§ ) {0

1
+ vd (;Eabcd¢e¢f¢a¢lg¢cm¢mf> ’ (51)

where ¢ = \/—¢,¢* and again we have used (C19). We
emphasize that the [FKVK] term and [aK£K] are inde-
pendent in the sense that they cannot be reduced or related
to each other by integration by parts.

To summarize, we find 7 combinations of GST mono-
mials, given in (43) and (44)—(49), which are free of the
Ostrogradsky ghost in the unitary gauge. On the other hand,
the 2 combinations (50) and (51) contain linear terms in
either £,K;; or F, which are thus potentially risky even in
the unitary gauge.

It is convenient to further combine (43)—(49) to obtain
a set of 7 independent, ghost-free parity-violating
Lagrangians. For d = 3, we choose

. 1
L= Fﬁl"'o) = ;gabcdRede¢a¢e¢bf’ (52)

which is, in fact, the single GST monomial of the (1;1,0)
category, i.e., linear in both the curvature tensor and the
second-order derivative of the scalar field. For d = 4, there
are 5 combinations of the (1;2,0) category, i.e., linear in
the curvature tensor and quadratic in the second derivative
of the scalar field, which we choose to be

. 1 )
Ly =P = SeanaReg PO O (53)

1;2,0 1 cd pm pn pe ha
;= Fy2Y = —g€abcaRes WP bndn. (54)

[:4 - Fél;Z.O) + Fél;Z,O)

1 1
=z SabcdRamen¢b¢f¢g¢;i 9mn + ) ¢n¢m ’ (55)
o (o2

»CS = F(51;2,0) _ Fél :2,0)
1 cm pa pe pbf pdn 1
= 78abcdRef' ¢ ¢ ¢ ¢ Gmn + 7¢m¢n ’ (56)
o O

£6 = F(91;2,0) + F(IB;Z.O)

1 1
= eabcdRede(ﬁa(ﬁed)bf(ﬁmn Gmn T ) D |- (57)
(o2 O

There is also a combination of the (2;0,0) category, i.e.,
quadratic in the curvature tensor and without higher order
derivatives of the scalar field, which we choose to be

£7 = FL(‘Z;O.O) + FgZ;O,O)

1 1
= SabcdRedeRamen(ﬁbd)f Gmn T ) ¢m¢n . (58)
O O

The 7 Lagrangians (52)—(58) are the main results in this
work. Due to their generality and importance, we dub them
the “Qi-Xiu” Lagrangians for the sake of brevity.12

Recall that we have in total 17 GST monomials of d = 4

(see Table ITI). According to (C19) and (C22), F"*" and

12“Qi—Xiu” stands for “Seven Constellations” in Classical
Chinese.
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F f‘l 1) can be reduced by integrations by parts. Moreover,

there are 7 identities in the unitary gauge among the rest 15
GST monomials of categories (1;2,0) and (2;0,0), which
are shown in (C23)—(C29). As a result, besides the 2
potentially dangerous terms, we are left with exactly 7
independent GST terms (6 of d = 4 together 1 of d = 3)
that are ghost-free in the unitary gauge. We thus conclude
that up to d = 4, any parity-violating scalar-tensor theory
that is ghost-free in the unitary gauge can be expressed as

7

S Culg X)L, (59)

a=1

L

that is, linear combinations of the “Qi-Xiu” Lagrangians
with coefficients C, being general functions of ¢ and X.

C. Comparing with the existing theories

According to the previous section, up to d = 4, there are,
in total, 9 independent SCG monomials, of which 7 contain
no F or £,K;; terms and thus are automatically healthy, and
2 are linear i 1n F or £,K;; and thus are dangerous. Their
generally covariant correspondence is 9 GST polynomials.
Any parity-violating GST polynomial up to d = 4 can be
expressed as a linear combination of these 9 combinations
up to the identities in the unitary gauge (C23)—(C29).

Let us take Chern-Simons gravity as an example. The
usual Chern-Simons term corresponds to the monomial

F 52;0'0) in our classification of GST monomials. The
“covariant” 3 + 1 decomposition of Chern-Simons gravity
with coefficient f(¢, X) is given by

= fp. X)F7
= f(. X)n“e pca(—2D°a?D K¢ + 2D KIP KK Y
— 2DPK/°K7KY 4R ;“'D°K/*
+ 2hPIDPKI£,K ), (60)

where the covariant 3 + 1 decomposition is performed with
respect to an arbitrary normal vector n¢ (with no relation to
¢), i.e., no specific gauge is taken. Ostrogradsky ghosts
would appear in this case since the second-order time
derivative of h;;, namely £, K;;, is kinetically mixed with
the dynamical scalar field through the function of X, which
cannot be reduced by integration by parts. Even in the
unitary gauge with n, = u, = —NV ¢, the risky term
£, K;; will still be present, although it only appears linearly
in the Lagrangian. This is consistent with the previous
analysis since F (12;0’0) is not ghost-free by itself.

As a special case, if the coefficient f is a function of ¢
only, the term linear in £, K;; can be reduced by integration

by parts, which yields [82]

Fp) PO =E=geiik f ( K"V Ky + KUKV, Ky

- KK!V,Ky, (61)
- 2RIV,Ky - ;/§K§v iKu
2

- NV,-KJ-,V,(V’N), (62)

in the unitary gauge after fixing the spatial coordinates. It is
transparent that in the unitary gauge, Chern-Simons gravity
with coefficient f(¢) reduces to the form of a ghost-free
SCG (i.e., with 3 DoFs). In particular, it takes the form of a
linear combination of 6 monomials in (23) and (24).

Similar analysis can be performed for chiral scalar-tensor
theories proposed in [54], in which three classes of
Lagrangians without the Ostrogradsky ghosts in the unitary
gauge were identified. The first class of Lagrangian is a
linear combination of the following four terms:

4
Ly = Zan(¢7 X)A,, (63)
n=1
where A, ..., A, correspond to (2;0,0) category in our
notation,13

Al = SabEdRcdefRahegqﬁfqﬁy = _02F<22;0’0)7 (64)
-/42 — adeR defh¢e¢ — 2F(200) (65)
A3 = adeRcdefRag f¢b¢g = 62F(200)’ (66)

2;0,0
-’44 = gadeRcdefRefabd)gd’g = _GZFE )v (67)

where ayp,...,ay; are general functions of ¢ and
2X = —(0¢)*> =06>. In the above we have explicitly

denoted these terms in the notation of GST monomials

(2 0.0) . According to (38)—(42), in the unitary gauge, there

are terms linear in £,K;;, which may be dangerous due
to the second order time derivative encoded in £,K;;.
The coefficient of the combination of such terms is
proportional to 4a; + 2a, + a; + 8a4. Therefore, the
degenerate condition

4(11 —+ a) + 2(13 + 8(14 = 0, (68)

“Here the correspondences between A, , ..., Agand L, ..., Ly
in [54] are A, =L, Ay =Ls, A; =1L, and Ay = L,. Note
there are in total 5 linearly independent monomials in (2;,0,0)

category [see (C13)—~(C17)]. F gz;o.o) is not considered in [54].
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identified in [54] can be regarded as requiring the vanishing

of the dangerous term [£KVK] in the unitary gauge.
Since the four coefficients ay,...,a, are subject to a

single constraint (68), we have three combinations of terms

1 , 1
O,=A,- §A4 = PR yor (Ruheg¢'f¢g - 2Refub¢g¢g> ,
(69)

1 1
02 = A2 - g A4 = SadeRcdef (be¢e¢a - gRefab¢g¢g> ’
(70)

1 1
Os=A;— A_LA4 = e"“IR 4 (Ragef¢b¢g - ZRefab¢g¢g> ,
(71)

which are free of the Ostrogradsky ghost in the unitary
gauge. Indeed, in the unitary gauge one finds that [82]

OV = _ e KUK™V, K 4+ — e, 3RIVEK],  (72)

2 oo
Oéu.g.) _ _ m 8iijllejvalk

2
8le (Kl Klm

~ 32 KK")V*K/JK]

4 ) ;
+ ngjk::)Rllkaf? (73)

and Ogu'g') = 0." Therefore, when restricted to the 4 GST
monomials in (64)—(67), there are 2 independent ghost-free
combinations, given in (69) and (70).

The second class of Lagrangian is composed of a single
term belonging to the (1;1,0) category,

EPVZ = b(¢, X)B, with

B = gabcdRcdef¢a¢e¢J; = 63F(11;l.0) ’ (74)

which is healthy in the unitary gauge since

B<u'g‘) = —3€iijliij§. (75)

The third class of Lagrangian is the linear combination of
6 monomials belonging to the (1;2,0) category,

6

=Y cl@.X)C,, (76)

n=1

Lpy3

“Note £ in (71) is nothing but Eq. (3.5) in [54], which has
been pointed out to be vanishing in the unitary gauge.

with"
Ci = ePIR gop iy’ = —o*F\"20 . (77)
Cr = eV IR il §, = o' FL20, (78)
Cy = abcdRcefg¢f¢g¢e¢ — F(l 20) (79)
Cy = athRcdef¢a¢f¢b¢g =-0 (1 20), (80)
Cs = eV IRyl pepy = —0*F 20, (81)
Cs = eReyes* pubfOp = o >0, (82)
where ¢y, ..., cg are general functions of ¢ and X. After

some manipulations, one can show that the coefficients of
£,K;; and £,N are proportional to 4c; + 2¢; + 2¢3 — ¢5
and 2¢; + ¢, + ¢4 + ¢, respectively. In [54], ¢g is set to be
vanishing.'® Thus one requires

4C1 +2C2+2C3—C5 :0, (83)
26’1 +Crt ey = 0, (84)

in order to evade the Ostrogradsky ghost. Now there are
five coefficients cy,...,c5 subject to two constraints.
Therefore, we have three combinations of terms that are
free of Ostrogradsky ghosts in the unitary gauge:

O] ECI —264 +4CS

= e Reaer (D) by = 205 bp?) + 4R acbl besp 1.
(85)

OzECz—C4+205

= eDAR o (HL by — Dhbsd?) + 2R auBlabeth 1
(86)

and

O3 = C3 +2Cs = e4(Rego b + 2R e peb ) Psbh.
(87)

This can be checked explicitly. In the unitary gauge [82],

Here the correspondences between Cy, ...,Cg and L,, ..., L;
in Eq. (3.13) of [54] are C, = —6°L,, C, = L;, C3 = Ls,
Cy =Ly, Cs=Ls, Cs=L; Recall that there are in total
10 linearly independent monomials in (1;2,0) category
[see (C3)—(C12)]. Only six of them were considered in [54].

"This is to get rid of the dangerous term without fixing the
unitary gauge.
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u.g. igmj ! j i
Oi g) _ msi/’k <K1 K™V, K ¥ _NKlekv N), (88)

while (’)gu'g') =0 and Ogu'g') = %EE“'gJ, Therefore, when
restricted to the six GST monomials in (77)—(82), there is
only one independent ghost-free combination given in (85).

V. CONCLUSIONS

Recently, there has been an increasing interest in study-
ing gravitational theories with parity violation. In this work,
we have investigated the scalar-tensor theory with parity
violation. In particular, we are looking for the special
combinations of the scalar-tensor monomials that are free
of the Ostrogradsky ghost in the unitary gauge, i.e., when
the scalar field possesses a timelike gradient.

Since the generally covariant scalar-tensor theory (GST)
in the unitary gauge takes the form of spatially covariant
gravity (SCGQG), in Sec. II, we describe the general frame-
work of SCG theory and the classification of SCG mono-
mials. We extend the SCG theory by introducing Lie
derivatives of the lapse function F=£,InN and the
extrinsic curvature £,K;;. This is not only because they
are the natural building blocks of SCG, but also because
they necessarily arise in the decomposition of scalar-tensor
theory in the unitary gauge up to d = 4 with d the total
number of derivatives.

In Sec. III, by including F and £,K;; as the building
blocks of SCG, we exhausted the SCG monomials up to
d = 4, which are classified and summarized in Table II.
Based on this classification, we obtain the complete basis
for the parity-violating SCG polynomials of d =3 and
d = 4, which are given in (23) and (24), respectively. In
total, there are 9 independent SCG monomials with parity
violation, of which 7 contain no higher temporal derivatives
and are thus automatically free of ghosts, while 2 involve
Lie derivatives of the extrinsic curvature and the lapse
function and are thus potentially risky. Our analysis thus
generalizes the previous result presented in [87].

Our final goal is to find the ghost-free combinations of
GST monomials, which is performed in Sec. IV. To this
end, in Sec. IV A we derive the decomposition of the GST
monomials in the unitary gauge. The resulting expressions
show the dangerous temporal derivative terms explicitly
and thus give us guidance on finding the ghost-free
combinations. The main results in this work are presented
in Sec. IV B, where we derive the generally covariant
correspondence of the 9 parity-violating SCG monomials
in the complete basis (23) and (24). Since 7 out of the 9
SCG monomials are ghost-free, there must be 7 scalar-
tensor Lagrangians that are ghost-free in the unitary gauge,
which we choose to be (52)—(58) and dub them the
“Qi-Xiu” Lagrangians for short. Up to d = 4, since any
parity-violating GST polynomial in the unitary gauge takes
the form of a linear combination of the 9 parity-violating

SCG monomials in the complete basis, we conclude that,
up to 7 identities in the unitary gauge (C23)—(C29), the
“Qi-Xiu” Lagrangians (52)—(58) are the most general
parity-violating scalar-tensor theories that are ghost-free
in the unitary gauge up to d = 4. As shownin Sec. IV C, our
results have included the Chern-Simons term as well as the
chiral scalar-tensor theory proposed in [54] as special cases.
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APPENDIX A: REDUCTION OF [£KVK] TERM

In this appendix, we will show that ¢, £, K/V/K* can be
reduced by integration by parts. When performing integra-
tion by parts regarding the SCG terms, it is more convenient
to use the generally covariant corresponding expressions. In
our case, it is given by

ek £,K VKl — fe*? nel £,K,, DKy =0, (Al)
where we define &% =u,h?hh% e for later
convenience.

There are two equivalent approaches to performing the
integrations by parts: either using the Lie derivative and
intrinsic derivative directly, or using the 4-dimensional
covariant derivative V, by expanding Lie/intrinsic deriv-
atives in terms of the covariant derivative. Here we choose
the former. We have

O = fehedpel£,K,,D K 4
= £,(fe"  heT Ky, D K ) — Kpey (fECThID K 4p)
~ —Kfeh UKD K g — Koy (fe*?20hN D K 4
— Kpe [P UnT£,D K 4
= —fS”i’éaKKﬁDchf - Kbeéeu(fgu};éahef)Dchf
— K}, fe"4[£,, D |K 4 = D (K}, fe" ¢ O£, K 4)
+ D (fe*P e KT £,K o + DK fe*P20£, Ky, (A2)

where we have used that for a scalar field @,
£, = u*V,® ~ —K®, and the commutator is defined by

[£u, Dc]de = £u(Dchf) - Dc(qudf)' (A3)
For the second term in (A2), by using

0 0
£uf—££u¢+N£F,
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with F = ﬁf,,N,

£,h = 2K 4 2ulaP),

and
£u8nai;z~ _ aded&faé _ (Kg _ Maae)eueBE _ (Kf _ uhae)eu&eé _ (Kg _ ucae)gu&l;e’
we find
wbedpe of Of o\ wbeagf wbed gl gm wbed gf e
Ky £y (fe*"h)D Ky = ( ¢£ P —|—N F) KyD K g5 — 3fe"" K KyD K 45 — fe*7 Ky K{DK g5 (A4)

For the third term in (A2), the commutator is given by
[£uch]de = acqudf + Ecde}n =+ chnglv

with

[1]

cim = —(acKgm + aqKype — anKeq) = (DK gm + DK e = DK og),
and By, is given accordingly. Thus
K} febd[£, DK = —febeda, Kl £,K - 2f e IKI KD K 4. (A5)
For the fourth term in (A2), we have
D (K} fe*? 2, K ) = feP?da, KL £,K 4, (A6)

where we have used that for a tangent vector A, D,A% = VA% — a,A“.
For the fifth term in (A2), we have

ubéd ubed af
D (fe K} £,K 4 = —€" dNWabK{;f,,de, (A7)

where we have used D, e*0¢d = K ebed,
Putting all the above together, and noting that the last term in (A2) is nothing but —O, we get

O —%fe"WKK{DCde + %fe"f’ SR KD Kyp + - fe”b‘dKfKeD Kar— = <a££ p+N a]]; ) Pt KD K 4
_ %Eui;eaN % ayKLEK . (A8)
In terms of spatial indices with t = ¢,
O~-— % FERKKIN Ky + = fg’kaanmv Ky+= feukK,lK;"vak, —% (a_]: +N ;)]{/ ) e KV Ky
—; ’/kN%a K'£,Ky. (A9)

To conclude, we have explicitly shown that /% £, K,V ij( is not independent, which can be reduced to a linear
combination of [KKVK], [KVK], and [aK£K] terms by integrations by parts.
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APPENDIX B: INTEGRATIONS BY PARTS

For the (1;2,0) category, the decomposition of the following GST monomials can be recast by integration by parts

F{P =224, (SR4K Pt — 2K4aPDeal — FK“DPKG — K“KPD,KG — a®Kh* £,K 3,) — 4V° (egpcaa’K?), (B1)

1:2,0) _u.g

FP0 =E2 2, (K9aPDeat + KGK¥DPKS) — 2V (epeaatk?h), (B2)
F20 25 0e (2K 9a"Dea + FK“DPKG + a KPh*“ £,K 1) + 2V° (e peaa’KD). (B3)
F{PO =5 e, (K4aPDa® + R4KPa¢ + FK“DPKG) — 2V° (e,p.a%a’K5), (B4)
and
F(71‘2‘0) _ug. 2, Kla?DCa’ + 2VC(8ubca“adKZ)- (B5)

For the (2;0,0) category, the decomposition of the following GST monomials can be recast by integration by parts:

FEOOZ228e,, (22R™Khac — 22RUDPKG + K4KYDPKE + K4KD K — KK{DPK) + 8D, (B6)
FEOO =2 de,, (2°RYKDaC + K4K“DPKS + 3K KD, K — KKDP K<) + 4D, (B7)
FEOO=220¢,, (23R™Khac + 2RUDPKG — KSK¥“DPKS — K“K**D, K5 + KKD’K®) —2D,  (BS)
FPOO=22e , (~23R9Kba¢ — PRUDPKS + K4K“DPKS — 3K KD, K — KK““DK?) — D, (B9)

and
FPOO 2 e (23RUKDa¢ 4 KAK“DPKS + 3K KD K¢ — KK““DPK¢) + D, (B10)

where in (B6)-(B10), D stands for the total derivative

D = 2V (egp(D*a’ 4 a“a®)K) + V., (ueapequ KV KT ) + VP (u®e o K uV K }). (B11)
In deriving the decomposition in the unitary gauge, we frequently make use of the following integrations by parts
eapcD a'DKG = —¢,,.(Kda’Da® — 3RIK a®) + V¢ (e, Da’Kb), (B12)
€ape@*a’DKY = £, Kéa"Da® + V¢ (egp.a'a’K}), (B13)
and
ebedy  £,K,,D K4 = %sabc(_’;K‘;KthK"f +3K“K""D,K; — KK{D K/ + %Ve(eabcufK;V”be )

4 %va(ga,,chf uV,KS). (B14)

In the above, ¢, is defined in (29). The purpose of extracting the total derivatives is to recast the expressions in terms of
monomials in the SCG basis. One can also show that

Ve(egpea®a’kl) = e, (-K2aPDCa® + a“a’DCKY), (B15)

Ve (eapDa?K?) = £, (K9aP D a® —3RIK 0 + £,,.D*a’DK?). (B16)
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APPENDIX C: PARITY-VIOLATING GST
MONOMIALS

The linearly independent GST monomials up to d = 4
have been exhausted and classified in [86] (see also [87]).
In this appendix, we list the parity-violating monomials in
the cases of d = 3 and d = 4 for convenience, which are
summarized in Table III.

For the (1;1,0) category, there is one monomial

FUMY = e R et (C1)

Here and in what follows, the factor ¢ is a shorthand

for 6 = /=¢,¢° = V2X.

For the (0;2, 1) category, there is one monomial,
F(OZ l) e a pb AV df C2
6 €abcd¢ ¢f¢ PPNV HY . ( )

For the (1;2,0) category, there are 10 linearly independent
monomials,

. 1 i

F(11,2.,0) — ; 5ahcdRede¢ae¢bf» (CS)

1
Fg] . 0) O' EabcdRede¢a¢e¢b ¢fm <C4)

. 1 i

F2Y = e peaRos g i, (CS)

1
FE;I 20— €adeRede¢a¢m¢be¢f (Co)

. 1
Fgl’l()) - abcdRefcm¢a¢e¢bf¢m’ (C7)

. 1 i
Fo2Y = —eapeaRd ¢! piapd. (C8)
o .
1
FY20 = e aR o " " by, (C9)
. 1
F* = —eupeaRef "¢ 0 " bop” . (C10)
. . . 1
Fo 0 = OB = e iR 9 6

(C11)
F(I%);Z,O) _ F(ll;l,O)EéO;l,O) =~ f'ahcdRede¢a¢e¢hf¢m¢n¢mn’
(C12)
where the 2 factorizable monomials Fg (29 and F 182 9 are

also shown explicitly. For the (2;0,0) category, there are 5

linearly independent monomials,

FEOO = €abeaRef "R, (C13)

FE00) _ iz EapeaRor RS e, (C14)
ng;o,O) _ iz 8abcdRefcdRefam¢b¢m’ (C15)
ngo.o) _ iz EapedRef“ R PP (C16)

ng 00) _ 1 — Cabes R, (IR gb I b . (C17)

For the (1;0,1) category, there is a single independent
monomial

1
F™ = iRy 0°d° 4"V dh. (C18)
The above complete sets of GST monomials derived

in [86] are independent in the sense of linear algebra. Some

of the monomials are related to each other up to total

(0:2,1)

derivatives. For Fg , after some manipulations, we find

02,1 L 20 1 apb pe
Fgt! =2 F; >+Vd(;eahcd¢e¢f¢ 0 mfﬁmf)-
(C19)
It is interesting to note that the total derivative has

effectively vanishing contribution if the coefficients are
functions of ¢ and X, since

1
f((ﬁ’ X)vd <g Eabcd¢e¢f¢a¢g¢cm¢mf)
1
=V,f —6€ahcd¢e¢f ¢a¢eb)¢cm¢mf
1
= (20 28 =it ) (g 00 4y )
=0.

As a result, (C19) implies that

(02,1 1 1:2.0
F@X)FG = =2 f(p. )P0 (C20)
For Fil;o'l), we have
Fg1;0.1) _ _Fg1;2.0) 3 F‘(11;2,0) 3 4Fg1;2.0)

+ v ( udeRede¢a¢e¢m¢m) (CZ])
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For coefficients that are functions of ¢ and X, we have

) . X0
(1:0.1) (1:2.0) f> F71 2.0)

TF ==

(1;2,0)
FU20 g
- —a(r- 3

(C22)

As aresult, according to Table III, since F 02 and F gl 01

can be reduced by integrations by parts, we are left with 15

GST monomials F\'*% . F{{*% and F*°0 00

It is also 1nterest1ng to Verlfy that these 15 GST monomials
satisfy seven identities in the unitary gauge, which we
choose to be

FEO 4 4p(on 2y, (23)
FéZ;OVO) _ 4F2230-0) e 0’ (C24)
F“ 2.0) 4 F‘<11 20) 2Fél;2.0) =£, (C25)

(1;2,0) (1;2,0) (12,0 _u-g

FUI20 (120 _4p(20 28 6 (o6
Fg1;2.o) 3 F<1 20) 2Fél 20) F(li)z 0L (c27)
F(2:00) 8F(2 0.0) (1:2.0) (1:2.0) (12.0)
(200 _ 1+ 8FU20 _ (120 | 3opl
(C28)
F(200)+3F(120 +2F§1;20 +6F(120 2F§1;2,0)
— 2P =% _4p, (C29)

where D in the last two identities is the total derivative term
defined in (B11). Therefore, in the sense of the unitary
gauge, there are only eight independent GST monomials of
d = 4, which is exactly the same number of SCG mono-
mials of the complete basis.
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