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We test deep-learning (DL) techniques for the analysis of rotational core-collapse supernovae (CCSN)
gravitational-wave (GW) signals by performing classification and parameter inference of the maximum
(peak) frequency and the GW strain amplitude (Δh) multiplied by the luminosity distance (D) attained at
core bounce, respectively, ðfpeakÞ and ðD · ΔhÞ. Our datasets are built from a catalog of numerically
generated CCSN waveforms assembled by Richers et al. 2017. Those waveforms are injected into noise
from the Advanced Laser Interferometer Gravitational Wave Observatory and Advanced Virgo detectors
corresponding to the O2 and O3a observing runs. For a network signal-to-noise ratio (SNR) above 5, our
classification network using time series detects Galactic CCSN GW signals buried in detector noise with a
false positive rate of 0.10% and a 98% accuracy, being able to detect all signals with SNR > 10. The
inference of fpeak is more accurate than for D · Δh, particularly for our datasets with the shortest time
window (0.25 s) and for a minimum SNR ¼ 15. From the calibration plots of predicted versus true values
of the two parameters, the standard deviation (σ) and the slope deviation with respect to the ideal value are
computed. We find σD·Δh ¼ 52.6 cm and σfpeak ¼ 18.3 Hz, with respective slope deviations of 11.6% and

8.3%. Our best model is also tested on waveforms from a recent CCSN catalog built by Mitra et al. 2023,
different from the one used for the training. For these new waveforms, the true values of the two parameters
are mostly within the 1σ band around the network’s predicted values. Our results show that DL techniques
hold promise to infer physical parameters of Galactic rotational CCSN events.

DOI: 10.1103/PhysRevD.110.064037

I. INTRODUCTION

The gravitational collapse of the core of massive stars
and the subsequent explosion as a supernova (a core-
collapse supernova event, or CCSN event hereafter) is one
of the most interesting sources of gravitational waves
(GWs) to be detected in the coming years (see [1] for a
recent review). CCSN events are thought to be the end
result of stars with a zero age main sequence mass larger

than about 8M⊙. The core of these stars, consisting of
iron-group nuclei, can no longer sustain nuclear burning
and collapses. As the core reaches densities above nuclear
saturation density and the equation of state (EOS) stiffens,
the infalling material bounces back launching an outward-
moving shock wave. Numerical simulations have long
helped understand the processes by which the shock wave
can gain sufficient energy to power a supernova explosion.
Two main mechanisms have been proposed, neutrino-
driven explosions and magneto-rotational explosions (see
[1,2] and references therein). Rotation strongly affects the
dynamics of CCSN events and, in turn, its GW emission.
Most CCSN events are nonrotating or slowly rotating [3].
In these models, the GWemission is largely stochastic as it
is triggered by convection and by the standing accretion
shock instability. In rapidly rotating stars, however, the
early part of the GW signal is well determined. In these
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models the explosion is powered by the rotational kinetic
energy (see [4] and references therein), leading to a bounce
GW signal that is well understood. The GW strain of
rapidly-rotating cores reaches its maximum right before
bounce, and its value depends on the corresponding degree
of oblateness of the core. Numerical simulations have
shown that for about 10 ms after core bounce the newly
formed proto-neutron star (PNS) undergoes a series of
oscillations driven by the excitation of axisymmetric fluid
modes. Shortly after, the GW signal becomes stochastic as
a result of the growth of nonaxisymmetric hydrodynamical
instabilities. One to three CCSN events are expected to
occur in the MilkyWay per century [5,6] and less than 10%
are likely to be from fast-rotating progenitors [7].
To date, all confident GW signals observed by

the Advanced Laser Interferometer Gravitational Wave
Observatory (LIGO) and Advanced Virgo detectors corre-
spond to coalescing compact binaries (CBCs) [8–11]. The
most recent optically-targeted searches for GWs from CCSN
events, using data from the first three observing runs of LIGO
andVirgo, found no evidence of significant candidates [5,12].
As the sensitivity of the detectors increases, the probability of
detecting GW signals from CCSN events will also increase,
especially within our Galaxy and nearby satellite galaxies
[5,12–17]. The successful detection of GW signals from
CCSN events may help clarify the underlying physical
processes occurring in the cores of massive stars during their
gravitational collapse along with providing a brand new
channel to infer properties of the source, allowing to probe the
properties of the PNS, the nuclear EOS, the rotation of the
core, and the explosion mechanism [17–32].
The detection of GW signals from CBCs is achieved

through matched filtering [33]. This requires template
waveform models to be precomputed with a faithful repre-
sentation of true GWs. On the contrary, by their stochastic
nature, CCSN GW signals are unmodeled, requiring a
completely different approach for their detection. In this
case, a coherent time-frequency analysis of the data in a
network of detectors is used [12,34]. Correspondingly, the
estimation of the source parameters in the case of CBC
signals is done through Bayesian inference. This method
uses a large number of waveforms (or “approximants”) that
cover a wide parameter space and applies stochastic sam-
pling techniques to evaluate their likelihood functions.
Being computationally expensive, the Bayesian approach
is, in general, not the optimal method to perform parameter
inference of CCSN GW signals for several reasons. On the
one hand, postbounce signals rapidly become stochastic a
few milliseconds after core bounce. On the other hand, the
amount of CCSNwaveforms available is severely limited by
the computational cost of the simulations and by the
impossibility to build the waveforms using the same
standard approximations employed for compact binaries.
For the fairly brief “deterministic” part of the early bounce
signal, matched-filtering analysis or Bayesian model

selection can be used to infer source properties (see, e.g.,
[18,29]). We also note that the dominant features of CCSN
waveforms can be extracted with principal component
analysis (PCA), where a mapping between their measured
eigenvectors and the physical parameters of the progenitor
star can be created for third-generation detectors [24].
Moreover, for close enough sources, it is also possible to
distinguish neutrino-driven CCSN events from magneto-
rotational CCSN events using PCA [19,30,35–37].
An alternative to the methods mentioned before are

machine learning (ML) techniques which have been shown
to be significantly less time-consuming than Bayesian
approaches in performing parameter estimation of CBC
signals [38–44]. The potential of ML for GW data analysis
is becoming increasingly relevant, and the number and
scope of applications are already important (see [45–48] for
recent reviews). Those include, e.g., detection methods for
CBC signals [49–51], signal quality improvements [52,53],
waveform generation [54–56], and noise transient simu-
lations in detectors [57,58]. In the context of CCSN GW
signals the application of ML techniques is also an active
field of research [28,30,32,59–63]. The potential of con-
volutional neural networks (CNNs) to detect CCSN GW
signals was first shown by [59] using phenomenological
waveforms injected in Gaussian noise. CNNs were also
employed by [60] with CCSN GW signals injected in
detector noise. At a false alarm probability of 10%,
neutrino-driven explosions at 10 kpc yield an expected
true alarm probability of 55% (76%) for current (future)
LIGO-Virgo-KAGRA (LVK) detectors, while for magneto-
rotational explosions at 50 kpc the corresponding values
increase to 84% (92%). Approaches based on learned
dictionaries were first applied in [28] for CCSN signal
classification, obtaining 85% true classifications on signals
with a SNR from 15 to 20 (see also [30]). In [61] a mini-
inception residual network (ResNet) for time-frequency
images (also implementing convolutional layers) was used
to improve the detectability of CCSN GW signals with the
LVK pipeline coherent wave burst [34]. For a dataset
comprising phenomenological CCSN waveforms in back-
ground noise from O2, an efficiency of around 80% was
obtained for SNR ∼ 16. Recently [32] have used ML to
investigate if it is possible to infer the iron core mass from
the bounce and early ring-down GW signal of rapidly
rotating CCSN models, and [62] have compared the
performance of different CNNs and long short-term
memory networks for multilabel classification of CCSN
simulated signals and noise transients using real data.
CNNs have also been used by [63] to classify GW from
CCSN events using spectrograms from numerical simu-
lations injected onto real noise data from O3. We also note
the recent work by [30] which presents a comprehensive
comparison of different methods (Bayesian model selec-
tion, dictionary learning, and CNNs) to determine the
explosion mechanism from a GW CCSN detection using
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up-to-date waveforms from simulations (including, in
particular, new three-dimensional (3D) long-duration
magneto-rotational CCSN waveforms that cover the full
explosion phase).
In this work, we present a deep learning (DL) approach

for classification and parameter estimation using GWs from
rapidly rotating CCSN events. We test residual CNN
algorithms [64,65] using datasets built from the numeri-
cally generated CCSNwaveforms computed by [20], which
are injected into noise from the Advanced LIGO and
Advanced Virgo detectors. We initially test these algo-
rithms with spectrograms for classification as a proof of
concept, building on previous group results on CBCs [49].
Additionally, we also test the same algorithms for classi-
fication and parameter estimation using time series. A
different set of waveforms for rapidly rotating CCSN
events, developed by [32], is used to assess the generality
of our approach. The tests in the time domain follow
closely the recent work of [29] and perform our inference
on two key parameters, the GW strain amplitude (Δh)
multiplied by the luminosity distance (D), D · Δh, and the
maximum (peak) frequency, fpeak, attained at core bounce.
As discussed in [29], the results from [20] for a 12M⊙
progenitor and a large group of equations of state show that
when the ratio of rotational-kinetic energy to gravitational
potential energy, T=jWj, is below 0.06 (i.e., for slowly
rotating cores), the first parameter is proportional to T=jWj,
and the second one is proportional to the square root of
the central density,

ffiffiffiffiffi
ρc

p
. These relationships allow, in

principle, the inference of PNS properties from the GW
detection of a rotating CCSN event. In [29] inference on
these two parameters was conducted using Bayesian
model selection employing a master waveform template
built from the waveform catalog of [20]. Our approach,
based on DL, can thus be regarded as complementary to
the Bayesian approach of [29]. As we show in this work,
for rotating Galactic CCSN events, the inference of these
two parameters using neural networks can be successfully
achieved, yielding results within the 1σ band from the
expected (true) values.
This paper is organized as follows: In Sec. II we describe

the CCSN waveforms we select to train our models. In
Sec. III we discuss a first method in which the analysis of
the signals is performed using spectrograms, focusing on
signal classification only. Section IV presents a second,
more complete, method. Here, DL methods are applied to
time series, and we discuss results for both signal classi-
fication and parameter inference. Finally, our conclusions
are outlined in Sec. V.

II. WAVEFORM SELECTION

Our models are trained with waveforms from the Richers
et al. catalog [20]. This catalog is composed of 1824
numerical waveforms obtained from the collapse of a
12M⊙ progenitor, using 18 different equations of state

and covering a parameter space of 98 rotation profiles. The
simulations from [20] focus on the bounce signal, including
the collapse phase and the postbounce evolution up to
∼50 ms after bounce. The bounce signal has been exten-
sively studied in previous works [18,20,66–71], and it is
considered the key signature for the presence of rotation in
CCSN events. As mentioned before, our study will focus
only on the part of the signal corresponding to the bounce
and the following 10 ms.
The waveforms were obtained through a combination of

1D simulations of the collapse-phase deleptonization with
the code GR1D [72] and 2D core-collapse simulations with
the CoCoNuT Code [73]. To produce the collapse-phase
deleptonization, Richers et al. used an approximation
proposed by Liebendörfer [74] where the electron fraction
(Ye) is parametrized as a function of density (ρ) only from
spherically symmetric (1D) nonrotating general relativity
hydrodynamic simulations. This approximation was also
used for the rotating case, as electron captures and neutrino
interactions with matter are local and depend on the density
in the collapse phase. In this case, the rotational flattening
of the collapsing core can be considered relatively small.
The axisymmetric (2D) CCSN simulations were performed
assuming the conformal flat condition approximation for
the spacetime metric, and by forcing the initial model to
rotate with constant angular velocity according to the
rotation law

ΩðrÞ ¼ Ω0

�
1þ

�
r
A

�
2
�
−1
; ð1Þ

where ΩðrÞ is the angular velocity, r is the distance from
the axis of rotation, and Ω0 and A are free parameters that
determine the rotational speed/energy of the model and the
distribution of angular momentum.
Following [29], from the Richers et al. catalog [20] we

only consider waveforms with Ω0 ≥ 3.0 rad s−1. This is
done to avoid the numerical noise present in models with
slow rotation rates, which gets amplified when performing
the normalization of the signals. Moreover, we do not use
any of the simulations that do not collapse within the first
second (see Table III of [20]). Considering the above
constraints only 999 waveforms remain from the catalog.
While the injections on the datasets used for the analyses
with spectrograms employ the full catalog of 1824 wave-
forms, datasets created for the analyses with time series
only apply the selected 999 waveforms.
The waveforms assume an optimally oriented source.

Therefore, for an axisymmetric system there is no cross-
polarization (h×), and only the plus-polarization compo-
nent (hþ) is different from zero, i.e., h× ¼ 0 and
hþ ¼ hoptþ sin2 θ. Here, θ is the inclination angle between
the rotational axis of the core and the line of sight of
the observer. We fix this angle to π=2 rad, simplifying the
expression above to hþ ¼ hoptþ . Each waveform on the
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catalog provides several physical parameters, from which
we used the strain in units of distance (D · hoptþ ), the
timestamps ðt − tbÞ, the peak frequency (fpeak), the maxi-
mum rotational velocity Ω0, and the GW strain amplitude
(Δh) multiplied by the luminosity distance (D), (D · Δh).

III. ANALYSIS WITH SPECTROGRAMS

A. Dataset generation and neural network details

Our first analysis of the waveforms is based on time-
frequency representations of the signals or spectrograms.
These diagrams represent the signal amplitude in pixel
intensity, with time on the x axis and frequency on the
y axis. The use of spectrograms is not arbitrary. Since the
bounce and postbounce phases of CCSN events involve
many frequencies, different patterns may be found in the
time-frequency representation (produced by splitting the
input time series into shorter sections and taking Fourier/
wavelet transforms of these sections) when compared with
the time-strain representation. These patterns, being con-
tained in a short time interval and having many frequencies,
are seen in a spectrogram as an intense narrow vertical
band, as shown in Fig. 1 (right).
In order to train and validate a neural network (NN) it is

necessary to have a large enough data bank. To perform the
classification test, we created a dataset consisting of images
of only noise and others with injected signals. For both
signal and noise spectrograms, we randomly selected time
series segments of actual detector noise from O2 (corre-
sponding to August 2017), with a duration of 4096 ms,
without any specific criteria. We normalized the intensity of
each frequency using a whitening procedure to account for
variations in detector sensitivity across the frequency range.
Our analysis considers frequencies between 20 and
1000 Hz, where the LIGO and Virgo detectors are most
sensitive. We also notched out fixed frequencies affected by
known artifacts, specifically 60, 120, and 240 Hz for the
LIGO detectors and 50, 100, and 200 Hz for the Virgo
detector, corresponding to the U.S. and European power
grid frequency and their first harmonics, respectively. The

sampling frequency was set to 16384 Hz. High-resolution
time-frequency maps with a final time duration of 200 ms
were constructed using the Q-transform method from
GWpy [75], with its default parameters. For the signal
spectrograms, the only difference was the injection of a
waveform at a random time position into a section of actual
detector noise before whitening. We utilize all the 1824
waveforms from the Richers et al. catalog [20], described
in Sec. II, assuming a constant sky position, fixing the
distance to the source to 20 kpc and the right ascension,
declination, and polarization angle to zero.
The resulting images have dimensions of 256×

256 pixels, where the frequencies and time are distributed
linearly on their respective axis. Since we use three
detectors, the images are coded with RGB colors where
red, green, and blue correspond to the spectrograms of
LIGO-Hanford, LIGO-Livingston, and Virgo detectors,
respectively. In addition, the intensity of each color varies
between 0 and 255, so that when injecting a very intense
signal, the normalization makes the noise almost imper-
ceptible. In the left panel of Fig. 1 a RGB image of only
real background noise is shown, while the right panel
displays a RGB image with an injected CCSN GW signal.
In the latter, the signal stands out over the LIGO-Hanford
and LIGO-Livingston noise. It shows two narrow stripes
with a rapid variation in frequency, associated with the
burst, and two subsequent features appearing shortly after,
connected with the oscillations of the PNS. The noise is
barely noticeable in the green and red channels, due to the
normalization, while in the blue channel, the intensity of
the injections is much lower than the noise (hence, the
normalization makes the noise stand out). Moreover, a
delay can be observed between the detection of the two
interferometers.
A bank of 104 images was generated, where half of them

are only noise (labeled as “background”) and the other half
have CCSN GW signals injected into noise (labeled as
“signal”). This dataset was divided into two: a training set
(85%) and a validation set (15%). In addition, the SNR of
each signal was evaluated, serving as a filter to eliminate
weak signals (SNR < 5) that would otherwise only confuse
our NN. We always consider the network SNR amplitude
of the signals, which combines the individual SNR for
each GW interferometer in the network, LIGO-Hanford,
LIGO-Livingston, and Virgo, defined as

network SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼1

SNRi
2

vuut : ð2Þ

The individual SNRi is found by calculating the cross-
correlation matrix between the postinjected strain and the
injected template after projecting into the corresponding
detector. Both strains are treated with whitening, bandpass,
and notch filtering, as explained before. The maximum

FIG. 1. RGB images of only real noise (left) and with an
injected GW into real noise conditions (right) where the Hanford,
Livingston, and Virgo interferometer spectrograms are repre-
sented in red, green, and blue, respectively.
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value of this cross-correlation matrix is considered as
the SNRi.
As our study is based on images, we work with CNNs.

These must be capable of differentiating between back-
ground and signal. We use a pretrained ResNet101 model
which implements an architecture with a residual CNN 101
layers deep [76]. We load the ResNet101 model pretrained
with over one million images from the ImageNet database
[77]. The pretrained network can classify images into 1000
object categories. As a result, the network has learned
feature-rich representations for a wide range of images,
although we will only need it to distinguish between two
classes, background and signal. To accomplish this, we
need to adapt the network by changing its last layer of 1000
neurons to one with only 2 of them. For the generation of
the datasets, functions from the PYTHON [78] libraries SciPy

[79], PyCBC [80], and GWpy [75] were used. We also used
the libraries FAST.AI [81] for the classification tests.

B. Classification results with spectrograms

Our classification test aims at distinguishing the dataset
elements where a CCSN GW signal has been injected from
those where only detector background noise is present. For
a training of 25 epochs, the network found the minimum
error in the 13th epoch. The model obtained had an
accuracy1 of 82%, providing the confusion matrix dis-
played in Fig. 2. This figure shows that 92% of the
background images are correctly classified, with a false

positive rate (FPR) of 8%. While the model only classifies
69% of the signals correctly, a precision of 90% is obtained.
These results show that our model detects signals with
high confidence, even if it only detects a modest amount of
GW signals.

C. Testing the classification model

We further tested our model by performing additional
studies with two different datasets sorted by SNR and by
distance to the source. One dataset consists of 1500 images
arranged in groups differentiated by five SNR units, with
fixed distance and sky position, similar to the datasets used
for training. The other dataset consists of 4000 images with
distances ranging between 5 and 40 kpc, keeping a fixed
sky position and without any limits on the SNR. Figure 3(a)
shows the relationship between the percentage of success of
the network in detecting signals and the SNR of the injected
GW. It is interesting to highlight that an accuracy of 95%
and a precision of 93% is reached for SNR > 30. Although
the network was trained to detect a GW generated at a
distance of 20 kpc, it can also be used to infer GW signals at
different distances. In Fig. 3(b), we observe that at shorter
distances, the percentage of success is higher, as expected,
decreasing as the source gets farther away. We observe a
discrepancy for a distance of 20 kpc with respect to the
value obtained previously during validation. This is due to
the fact that when generating images for training and

FIG. 3. Percentage of success in the validation of our network
to detect a CCSN GW signal as a function of SNR (a) and
distance (b).

FIG. 2. Confusion matrix for the classification test with the
13th epoch weights showing the fractions of strains predicted as
background noise or signal versus their actual labels.

1The accuracy is defined as TPþTN
TPþTNþFPþFN, where TP (TN)

corresponds to the correctly classified signals (background) and
FP (FN) corresponds to the backgrounds (signals) that are
misclassified.
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validation, those with SNR < 5 were eliminated, as men-
tioned above, a condition that we did not apply here.

IV. ANALYSIS WITH TIME SERIES

A. Dataset generation

In our second method, we apply DL techniques in the
time domain. While significant patterns may be more easily
recognized in the time-frequency representation, some
information might be lost during the Q-transform process,
which would not occur when using time series directly. In
this case, we only use the 999 selected waveforms from
the Richers et al. catalog, described in Sec. II. For each of
the selected waveforms, we scale the strain D · hoptþ to a
randomly chosen distance of the source between 5 and
20 kpc (i.e., a CCSN that occurs in our Galaxy). For the
background noise we use publicly available data from
both LIGO (Hanford and Livingston) and Virgo, with
an initial Global Positioning System (GPS) time
tGPS ¼ 1253326755 s, which corresponds to the end of
September 2019, i.e., around the middle of the O3 run. We
define a random time t0 ∈ ½6; 1750� s and select a segment
of the noise time series with a window ½t0 − 5;
t0 þ 10� s for the background sample. The waveforms
were down-sampled to match the noise sampling fre-
quency. In this analysis we used a sampling frequency
of 4096 Hz, allowing faster performance without losing
information. Each waveform was projected into each
detector with random values for the angles defining the
sky position (declination, right ascension, and polarization
angle). Then, the projected waveforms are injected into
noise samples for each detector, having the time of bounce
of the signal (tb) randomly set in the interval
½t0; t0 þ 0.80� s, for the specific case of datasets with
one-second time window. For completeness, we also
consider datasets of 0.50 and 0.25 s with tb in the range
½t0; t0 þ 0.40� s and ½t0; t0 þ 0.20� s, respectively.
We perform whitening on the resulting strains (both for

the background and signal classes) through inverse spec-
trum truncation using the amplitude spectral density of the
three detectors’ noise. We then apply a bandpass filter from
20 to 1000 Hz and notch filters at the individual frequencies
of 60, 120, and 240 Hz for the two LIGO strains and 50,
100, and 200 Hz for the Virgo strains. We finally apply a
crop on the strains to get the expected time window (1.00,
0.50, and 0.25 s). At this point, a selection is made on the
resulting whitened background section to exclude high-
intensity glitches (such as blips). After whitening, the
maximum absolute amplitude is around 1.5 × 10−21, so
we only allow segments with a maximum absolute ampli-
tude below 2.7 × 10−21.
For the classification and parameter estimation tests in

the time domain, we use datasets of 104 elements, where
each element is composed of three time series, one for each
detector. Examples of these time series are given in Figs. 4

and 5, corresponding to one element of the signal and
background samples, respectively. Table I characterizes the
datasets used for classification and parameter estimation
with time series. For the generation of the datasets,
functions from the PYTHON [78] libraries SciPy [79],
PyCBC [80], and GWpy [75] were used. We also used the
libraries FAST.AI [81] and TSAI [82] for the classification
and parameter estimation tests, described in the next
sections.

B. Deep neural network:
Architecture and methodology

Time-domain GW signals of CCSN events are tested,
both for classification and parameter estimation, using a
residual convolutional neural network (ResCNN). This
network is an implementation of the CNN with residual
learning blocks, proposed in [65]. It has six convolutional
layers and uses batch normalization techniques and differ-
ent activation functions. The most used activation function
is the rectified linear unit (ReLU). Other versions of this
activation function are also used in the architecture, i.e.,
leaky ReLU (LReLU), parametric ReLU (PReLU), and

(a)

(b)

FIG. 4. Example of a dataset’s element labeled as signal, with a
waveform injected into noise from O3a, with a time window of
1 s (a) and 0.04 s (b).
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exponential linear unit (ELU). It is desirable to use different
activation functions in different layers to achieve better
performance [65]. As the analysis of the time series needs
the precise location of the signal features, the pooling
operation was removed. Another reason for this choice is
the fact that pooling reduces the number of inputs given to
the next layer, limiting the information available. For this

architecture, the usual fully connected layer at the end of
the network was replaced by a global average pooling and a
final softmax layer, so that the output of the network is a
probability distribution of its own predictions. The archi-
tecture of this network is represented in Fig. 6.
We use the function fit_one_cycle to perform the

training of the network, defining the maximum learning
rate (LR) and the weight decay. This function of FASTAI

internally uses the usual fit function but applies the
1cycle policy for better results [83]. The maximum LR and
weight decay used should be adapted to each dataset and
architecture [84]. In our case, to find the best values for our
datasets we used another FASTAI function called lr_find
based on the LR range test [85]. We verified that for our
datasets the best results obtained were for weight decays
and maximum LR of the order of 10−3.
For our parameter estimation computations, before giv-

ing any dataset to the network, we perform a standard
normalization of the signals’ parameters. To find the
predictions of the network in both classification and
parameter estimation, we use Monte Carlo (MC) dropout
[86], passing each signal through the network 100 times.
The prediction of the network is the mean value of all the
100 evaluations. Finally, we apply PYTHON’s PCA function
from SCIKIT-LEARN [87] on the two-dimensional distribu-
tions of predicted versus true values, obtained on the
parameter estimation tests, according to what follows.
Although PCA is typically used for dimensionality reduc-
tion by identifying the most relevant features in datasets, we
do not use this capability of PCA here. Instead, we use the
PYTHON function solely to perform singular value decom-
position (SVD) on the calibration plots, comparing pre-
dicted values to true values of D · Δh and fpeak. We extract
the two orthogonal eigenvectors to calculate the slope, and
with the singular values we obtain the standard deviation of
the distributions, σ.

C. Classification results with time series

A classification test aims at obtaining a model that
best allows to distinguish elements of a dataset where a
CCSN GW signal has been injected from those of only
background noise. Our best results are achieved

(a)

(b)

FIG. 5. Example of a dataset’s element labeled as background,
with only noise from O3a, with a time window of 1 s (a) and
0.04 s (b).

FIG. 6. Representation of the ResCNN’s architecture as pre-
sented in [65].

TABLE I. Description of the datasets used to perform classi-
fication using time series and parameter estimation.

Parameters Classification
Parameter
estimation

SNR > 5 Training set: 80%
Validation set: 20%

Training set: 70%
Validation set: 30%progenitor’s mass ¼ 12M⊙

distance∈ ½5; 20� kpc
inclination ¼ π

2

declination∈ ½−π; π�
right ascension∈ ½0; 2π�
polarization∈ ½0; 2π�
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for a 12-epoch training and considering a 0.50 threshold,
which led to a 0.09 minimum validation loss. This
model has an accuracy of 98%, providing the confusion
matrix shown in Fig. 7. Only 45 actual signals were
predicted as background, which corresponds to 4.5%
of all GW signals present in the validation set. In
addition, only one element labeled as background was
misclassified as a signal, giving a FPR of 0.10%. Figure 8
displays the receiver operating characteristic (ROC) curve
of this classification model, with a 0.99 area under
the curve.
To better understand the results of the misclassified 45

signals (false negatives), Fig. 9 shows the distribution of the
model’s scores for each of those signals. In this plot we
show our two key CCSN parameters, D · Δh (top panel)

and fpeak (bottom panel), as a function of the SNR. The
different colors of the points represent the prediction scores
given by the model. All misclassified signals have
SNR ≤ 10, which is expected since in those cases it is
difficult to distinguish the signal from the random peaks of
the noise.
For completeness we have built a spectrograms dataset

corresponding to the O3a data used here, to test the
network applied in Sec. III B to spectrograms. As
expected, when changing the background noise of the
spectrograms to O3a, the accuracy of the network goes up
to 95%, reflecting the better noise conditions of O3a when
compared to O2.

D. Parameter inference results with time series

A parameter inference test was performed to predict the
values of the GW strain amplitude (Δh) multiplied by the
luminosity distance (D), D · Δh (the difference between
the highest and lowest points in the bounce signal nor-
malized to the distance) and the peak frequency, fpeak (the

FIG. 7. Confusion matrix for the classification test with 12
epochs giving the number of strains predicted as background or
signal versus their assigned labels.

FIG. 8. ROC curve of the classification test with 12 epochs.

FIG. 9. Values ofD · Δh (top panel) and fpeak (bottom panel) as
a function of the SNR for the 45 misclassified signals on the
validation set. The color bar represents the score given by the
model to each element.
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highest frequency measured in the first 6 ms after bounce).
As discussed above (see also [29]) these two parameters are
the most relevant ones to characterize the waveform at
bounce when T=jWj < 0.06, as D · Δh ∝ T=jWj and
fpeak ∝

ffiffiffiffiffi
ρc

p
for a large group of equations of state [20].

Three datasets of 104 elements each were analyzed for
different choices of time windows, i.e. 1.00, 0.50, and
0.25 s, as mentioned previously. For all the parameter
estimation tests, we trained the network for 30 epochs
setting the LR to 2 × 10−3 and the weight decay to 10−3.
As expected, there is a relation between the size of the
time window used and the training time needed for each
epoch. For the 1.00 s dataset, each epoch took around 90 s
to complete. By decreasing the window to 0.50 s, the time
needed for each epoch also decreased to around 50 s. And
lastly, for the 0.25 s dataset, each epoch took around 27 s
to complete. As we decrease the time window of the
dataset, the training time also decreases, almost in a
linear way.
Figure 10 shows the calibration plots for the three

datasets, considering SNR ≥ 5. These plots represent

predicted values versus true values for D · Δh (left) and
fpeak (right). Two white lines are present in each plot. The
dotted lines represent the slope of each distribution, which
should be close to the ideal slope, 1.00, represented by
the white dashed line. The best results are obtained for the
0.50 s dataset (middle panel in the figure). Comparing
the calibration plots for the two parameters, our models
yield more precise predictions for fpeak than for D · Δh.
Moreover, low values of D · Δh and fpeak generally tend to
be overestimated.
It is worth noticing that horizontal scattered lines are

visible in Fig. 10 for all the distributions of the calibration
plots. In order to understand this feature we generated new
datasets with a minimum SNR of 15, consistent with other
studies which place constraints on the minimum SNR
estimated to detect GW signals from CCSN events [14].
The new results for the parameter estimation of D · Δh and
fpeak on the three different datasets are shown in Fig. 11.
With this choice of minimum SNR the horizontal scattered
lines disappear. We also see an improvement in the values
of the slopes, with the best results corresponding to the
0.25 s dataset. In this case, for the D · Δh distribution, the
slope is 0.884� 0.008, and the standard deviation is
σD·Δh ¼ ð52.6� 10.7Þ cm. For the fpeak distribution, the

FIG. 10. Calibration plots of predicted vs true D · Δh (left) and
predicted vs true fpeak (right) with SNR ≥ 5 for the different
datasets (corresponding to different time windows). The white
dashed line represents the ideal case, where the prediction value is
equal to the true value (slope is 1), and the white dotted line
represents the slope of the distribution calculated with the PCA
function. The specific values of the slopes are indicated in the
legends.

FIG. 11. Calibration plots of predicted vs true D · Δh (left) and
predicted vs true fpeak (right) with SNR ≥ 15 for the different
datasets. As in Fig. 10 the white dashed line represents the ideal
case (slope 1), and the white dotted line represents the slope of the
distribution calculated with the PCA function.
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results yield a slope of 0.917� 0.006 and a standard
deviation of σfpeak ¼ ð18.3� 3.9Þ Hz.
The probability distributions of the difference

between true and predicted values of D · Δh and fpeak
are shown in the two plots of Fig. 12 for the 0.25 s dataset
with minimum SNR of 15. For D · Δh, a mean value of
μ½D·Δhtrue−D·Δhpred� ¼ 0.5� 76.6 cm is obtained. As for the
fpeak case, the mean value obtained is μ½fpeak;true−fpeak;pred� ¼
−0.2� 26.4 (Hz). We can clearly see that the inference of
fpeak is much more accurate than D · Δh. Taking into
account that in our datasets D ·Δh∈ ½100;850� cm and
fpeak ∈ ½650; 950� Hz, we can consider the mean values
and standard deviations obtained quite reasonable.

E. Testing the network with a different catalog

We now discuss the performance of our network with a
different set of CCSN signals. In the absence of an actual
discovery of a CCSN GW signal to test our best model, we
resort to employing waveforms from a different catalog
within the same parameter space of the datasets used for

training. The new waveforms were selected from the
catalog created recently by Mitra et al. [32,88]. This
catalog contains 404 waveforms of progenitors with masses
ranging from 12 to 40M⊙, albeit only for a single EOS,
SFHo [89]. While training our network with the Richers
et al. catalog [20] we only considered 12M⊙ progenitors.
Therefore, we do the same for this additional test. The
CCSN simulations of [32,88] also employ the general
relativistic hydrodynamics code CoCoNuT [73], as in
Richers’ simulations. While the simulations extend up to
25 ms after bounce, we only consider the part of the signals
in the first 10 s after bounce in order to keep consistency
between training and testing.
We selected 30 waveforms of this new catalog and, for

each one of them, generated a dataset with 100 elements
as we did before. We fixed the time window to 0.25 s and
the minimum SNR to 15, which corresponds to the
conditions that led to our best model. Moreover, we
allowed the model to vary its response by using MC
dropout. By performing signal injections in different noise
conditions as well as changes in the model response, we
obtain a more realistic implementation of a true GW
detection. For a given dataset, prediction values were
determined for each element and, with the collection of
the 100 predicted values, the mean value μ and the
standard deviation σ were calculated for both parameters,
D · Δh and fpeak.
The results of the parameter estimation test with this

new catalog are reported in Table II. The name of the
waveforms in this table encodes the characteristics of the
signal: s12 signifies that the mass of the progenitor star is
12M⊙; A1, A3, A4, and A5 correspond to the degree of
differential rotation of the precollapse star [see Eq. (1)] of
300, 634, 1268, and 10000 km, respectively, and the
remainder of the string name gives the central angular
velocity in rad s−1. Most of our predictions are within 1σ
from the true values, confirming that our model would be
able to infer physical parameters of a Galactic CCSN GW
signal in more realistic conditions. For D · Δh only four
waveforms are outside of this interval but all are covered
by the 2σ band. In the case of the fpeak predictions, only
seven waveforms have true values outside of the 1σ
interval, but all are within 2σ.

V. CONCLUSIONS

The first detection of a GW signal from a CCSN is highly
anticipated as it can provide important information about
the physical processes occurring during the gravitational
collapse of massive stars. In this paper we have discussed a
method to extract information through the analysis of
simulated CCSN waveforms. In particular, we have devel-
oped DL techniques to perform classification and param-
eter inference of rapidly rotating CCSN events using the
information encoded in the early (nonstochastic) part of
their gravitational waveforms. To do so we have trained

FIG. 12. Probability distribution of the deviations of D · Δh
(top panel) and fpeak (bottom panel), i.e., the difference between
the labeled value and the predicted value, for the 0.25 s dataset
and a minimum SNR of 15.
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NNs on a catalog of numerically generated signals [20]
injected into real LIGO-Virgo background noise from O2
and O3a, both in the form of spectrograms (time-frequency
diagrams) and time series. The results presented in this
work provide further support to the usefulness of DL
methods for GW data analysis. In the specific context of
CCSN, the methods discussed here seem worthy of being
implemented in CCSN detection (classification) and
parameter estimation pipelines.
Following previous work on CBC GW signals [49], we

have first presented a classification test using a ResNet101
on a dataset composed of 104 spectrograms. CCSN GW
signals were injected into real noise from O2 of the LIGO
Hanford, LIGO Livingston, and Virgo detectors making up
half of the dataset. All signals have a fixed distance of
20 kpc, a fixed sky position, and a duration of 200 ms. The
other half of the dataset contained only background noise
spectrograms, which had to be separated by the network’s
model. The model obtained after training accomplished an
accuracy of 82% and a precision of 90%. We have also
analyzed the influence of SNR and distance to the source
on the network’s performance. For SNR > 30 the accuracy
of the model becomes 95%. In addition, we attain more
than 50% of success on the classification only for distances
below 20 kpc. While there is room for improvement, we see
that using spectrograms in DL shows great promise, with
results aligning with the values achieved in [49] for CBCs
in O2 noise. The percentage of false positives (and false
negatives) is increased due to the numerous glitches in O2
and the lower sensitivity of the detectors at that time. This
issue can be minimized using background noise from more
recent observing runs. As expected, when changing the
background noise of the spectrograms to O3a, the accuracy
of the network goes up to 95%, reflecting the better noise
conditions of O3a when compared to O2.
For the second and main part of our study, we have

considered time series. This classification test was per-
formed with a ResCNN on a dataset composed of 104 time
series where CCSN GW signals had been injected into
1-second-long sections of real noise from O3a of the two
LIGO detectors and the Virgo detector. For this method, we
have variable distance, from 5 to 20 kpc, and random sky
position. All the tests performed with time series have been
done with residual CNNs applied to datasets composed of
numerically generated signals from different waveforms.
The classification test was accomplished with a 104 dataset
consisting of equal parts of elements with only background
noise from O3a and elements of injected signals. The
network has provided a model with an accuracy of 98%
with only one false positive. These results confirm the
efficiency of these networks regarding classification and
show that, even with a small dataset, high values of
accuracy can be obtained. By further inspecting the false
negatives we noticed a correlation with the SNR of the
signals, as all of the misclassifications occurred for

elements with SNR < 10. These results show the excellent
performance of deep learning techniques for detection, with
the time series method reflecting slightly better results than
the values achieved with spectrograms in O3a.
To perform parameter estimation we have used three

datasets composed only of injected signals from the catalog
of [20]. These datasets differ in their time duration: 1.00,
0.50, and 0.25 s. Considering a minimum SNR value of 15,
the best results are obtained with the 0.25 s dataset. By
performing SVD, we have found that the slope of the
distribution of the D · Δh calibration plot is 0.884� 0.008
and the standard deviation σD·Δh;15 ¼ ð52.6� 10.7Þ cm.
For the peak frequency, the value of the slope obtained is
0.917� 0.006 with σfpeak;15 ¼ ð18.3� 3.9Þ Hz standard
deviation. As a final test, we have assessed our best model
with 30 additional waveforms from a new catalog of rapidly
rotating CCSN models, computed recently by [32]. For
each waveform, we have created a dataset composed of 100
elements with 0.25 s duration and SNR ≥ 15. The results
obtained have shown that most of the true values are within
1σ of the prediction distribution, confirming that our model
might be able to infer parameters of fast-rotating Galactic
CCSN GW signals.
While the results reported in this work show the potential

of deep learning for inferring properties of rotational CCSN
events, they can nonetheless be improved. An obvious
improvement would be accomplished by enlarging the
datasets. The datasets used for the training of our models
only have 104 elements, which is considered a small size
for the kind of classification and regression tests with
neural networks. However, enlarging the datasets would
require having available more waveforms from CCSN
simulations, which are computationally costly. We note
that we are currently working on the computation of new
fast-rotating models for different progenitor masses and
expect to present an updated study of our findings
elsewhere. In addition, in this study, we have used back-
ground noise from the existing network of GW detectors
(namely Advanced LIGO and Advanced Virgo). As current
detectors are improved and third-generation detectors
become operational, the sensitivity will improve and the
background noise will be reduced, which will lead to
higher SNR values and easier recognition of CCSN GW
signals.
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B. Müller, A. Torres-Forné, E. Cuoco, and J. A. Font, Phys.
Rev. D 109, 063019 (2024).

[31] N. E. Wolfe, C. Fröhlich, J. M. Miller, A. Torres-Forné, and
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