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It has recently been conjectured [ A. Ianniccari, A. J. Iovino, A.Kehagias, D. Perrone, andA.Riotto, Phys. Rev.
Lett. 133, 081401 (2024)] that there exists a correspondence between the critical threshold of black-hole
formation and the stability properties of null circular geodesics in the curved spacetime of the collapsing
matter configuration. In the present compact paper we provide a nontrivial test of this intriguing conjecture.
In particular, using analytical techniques we study the physical and mathematical properties of self-
gravitating scalar field configurations that possess marginally stable (degenerate) null circular geodesics.
We reveal the interesting fact that the analytically calculated critical compactness parameter
Canalytical ≡maxrfmðrÞ=rg ¼ 6=25, which signals the appearance of the first (marginally stable) null
circular geodesic in the curved spacetime of the self-gravitating scalar fields, agrees quite well (to within
∼10%) with the exact compactness parameter Cnumerical ≡maxtfmaxrfmðrÞ=rgg ≃ 0.265 which is
computed numerically using fully nonlinear numerical simulations of the gravitational collapse of scalar
fields at the threshold of black-hole formation [here mðrÞ is the gravitational mass contained within a
sphere of radius r].
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I. INTRODUCTION

Curved spacetimes of highly compact matter configu-
rations may possess closed light rings (null circular
geodesics) [1–3] on which massless particles can orbit
the central compact object. These null geodesics are of
fundamental physical importance in theoretical and obser-
vational studies of highly curved spacetimes (see [1–15]
and references therein).
In particular, it has been shown that the optical appear-

ance of a highly compact collapsing star is determined by
the physical properties of its external light rings [4,5].
Likewise, the physically important phenomenon of strong
gravitational lensing is closely related to the existence of
closed null circular geodesics in the curved spacetimes of
the central compact objects [6]. In addition, it is well
established that the eikonal quasinormal resonance spectra
that characterize the relaxation dynamics of highly compact
self-gravitating objects (black holes and spatially regular
ultracompact objects that possess light rings) are deter-
mined by the physical properties of these closed null
circular geodesics (see [7–11] and references therein).
Intriguingly, Ianniccari et al. [16] have recently pro-

vided evidence that null circular geodesics may also be
related to the formation of primordial black holes. In
particular, it has been demonstrated in the physically
important work [16] that there is a correspondence between
the critical threshold of primordial black-hole formation

and the appearance of the first (marginally stable) null
circular geodesic in the curved spacetime of the collapsing
matter configuration.
The main goal of the present compact paper is to test,

using analytical techniques, the validity of the black-hole
formation–null geodesic correspondence proposed in the
physically interesting work [16]. To this end, we shall
analyze the physical and mathematical properties of self-
gravitating scalar field configurations that possess light
rings. In particular, we shall determine the critical value,

Canalytical ≡maxr

�
mðrÞ
r

�
; ð1Þ

of the dimensionless compactness parameter which signals
the appearance of the first null circular geodesic in the
curved spacetime of the self-gravitating field configuration.
Interestingly, below we shall reveal the fact that the

analytically derived value Canalytical of the dimensionless
compactness parameter, which signals the critical forma-
tion of a marginally stable null circular geodesic in the
curved spacetime of the self-gravitating scalar configura-
tion, agrees quite well (to within ∼10%) with the corre-
sponding exact value Cnumerical of the compactness
parameter as determined from fully nonlinear numerical
simulations [17] of the gravitational collapse of scalar fields
at the critical threshold of black-hole formation (see
also [18,19] and references therein).
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II. DESCRIPTION OF THE SYSTEM

We consider self-gravitating scalar field configurations
which are characterized by the spherically symmetric
curved line element [2,20]

ds2¼−α2ðr;tÞdt2þa2ðr;tÞdr2þr2ðdθ2þsin2θdϕ2Þ: ð2Þ

The Einstein equations yield the dimensionless functional
relations [17,21]

rα0

α
−
ra0

a
þ 1 − a2 ¼ 0 ð3Þ

and

aðrÞ ¼
�
1 −

2mðrÞ
r

�
−1=2

ð4Þ

for the metric functions, where [22]

mðrÞ ¼
Z

r

0

4πx2ρðxÞdx ð5Þ

is the gravitational mass contained within a sphere of
radius r.
It is convenient to define the dimensionless compactness

function

CðrÞ ¼ mðrÞ
r

; ð6Þ

which is characterized by the physically motivated boun-
dary condition

Cðr ¼ 0Þ ¼ 0 ð7Þ

of a regular origin.

III. TESTING THE CONJECTURED CRITICAL
BLACK-HOLE FORMATION–NULL
GEODESIC CORRESPONDENCE

In the present section we shall test the validity of the
physically intriguing correspondence suggested in [16]
between the threshold of black-hole formation and the
appearance of the first (marginally stable) circular geodesic
in the corresponding curved spacetime of the self-gravitating
matter configuration.
Following [16] we shall consider a physical situation in

which the curved spacetime is temporarily stationary. It is
interesting to note that this assumption is particularly
suitable for the present model of a self-gravitating scalar
field whose critical solution at the threshold of black-hole
formation has a discrete self-similar character [17–19].
Thus, the critical solution of the scalar field model at the
threshold of black-hole formation is characterized by a

discrete set of stationary times ftngn¼∞
n¼1 for which physi-

cally measurable quantities, such as the dimensionless
compactness parameter CmaxðtÞ≡maxrfCðrÞg, are tempo-
rarily stationary. In particular, below we shall use analytical
techniques in order to estimate the maximum value,

C�max ≡maxtfmaxrfCðr; tÞgg; ð8Þ

of the compactness parameter which is defined by the
relation

dCmax

dt
¼ 0 for t∈ ftngn¼∞

n¼1 : ð9Þ

The condition for the existence of light ring(s) in the
curved spacetime is given by the compact functional
relation [16,23–25]

F ðrÞ≡ rα0

α
− 1 ¼ 0 for r ¼ rc: ð10Þ

It is well established [23–25] that spatially regular curved
spacetimes generally possess an even (or zero) number of
null circular geodesics (closed light rings). In particular, the
first appearance of a marginally stable light ring in the
curved spacetime is characterized by the degenerate func-
tional relation [16,23–25]

F ðrcÞ ¼ F 0ðrcÞ ¼ 0: ð11Þ

From Eqs. (10) and (11) one obtains the characteristic
relation

α00 ¼ 0 for r ¼ r�c ð12Þ

for the radial location, r ¼ r�c , of the marginally stable
(degenerate) null circular geodesic in the curved spacetime.
Taking cognizance of Eqs. (3), (4), (10), and (12) one

obtains the two coupled equations

ra0 − ð2 − a2Þa ¼ 0 for r ¼ r�c ð13Þ

and

ða0 þ ra00Þa − ra02 þ 2a3a0 ¼ 0 for r ¼ r�c ; ð14Þ

which yield the functional relations [seeEqs. (1) and (4)] [26]

4Cc þ r�cC0c ¼ 1 ð15Þ

and

20Cc − r�c2C00c ¼ 5 ð16Þ

for the marginally stable null circular geodesic. [The sub-
script cmeans that the physical quantities are evaluated at the
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critical radius r ¼ r�c of the marginally stable (degenerate)
null circular geodesic].
To determine analytically the values of the dimensionless

physical quantities fCc; r�cC0c; r�c2C00cg we shall use the
functional expansion

Cðr ≃ r�cÞ ¼ Cc þ C0c · ðr − r�cÞ þ
1

2
C00c · ðr − r�cÞ2

þOf½ðr − r�cÞ=r�c �3g ð17Þ

of the compactness function. Taking cognizance of
Eqs. (7), (15), (16), and (17) one finds the dimensionless
relations [27]

Cc ¼
7

30
; r�cC0c ¼

1

15
; r�c2C00c ¼ −

1

3
: ð18Þ

The peak (maximum value) of the characteristic com-
pactness function is determined by the gradient relation

C0ðr ¼ rpÞ ¼ 0; ð19Þ

which, using Eqs. (17) and (18), yields the dimensionless
relations

rp − r�c
r�c

¼ 1

5
ð20Þ

and

Canalytical ≡ Cðr ¼ rpÞ ¼
6

25
: ð21Þ

IV. SUMMARY AND DISCUSSION

Motivated by the important results recently presented
in [16], which provide compelling evidence for an inter-
esting relation between the critical threshold of black-hole
formation and the stability properties of closed light rings
(null circular geodesics) in the curved spacetime of the
collapsing matter configurations, we have analyzed the
physical and mathematical properties of self-gravitating
scalar field configurations.

In particular, using analytical techniques we have proved
that the critical compactness parameter, which signals the
appearance of the first (marginally stable) light ring in the
curved spacetime of the field configuration, is given by the
compact relation [see Eqs. (1), (6), and (21)]

Canalytical ≡maxr

�
mðrÞ
r

�
¼ 6

25
: ð22Þ

To test the validity of the conjectured critical black-hole
formation–null geodesic correspondence suggested in [16],
one should compare the analytically derived value (22) of the
critical compactness parameter with the corresponding exact
(numerically computed) value Cnumerical

max of the compactness
parameter as determined from fully nonlinear numerical
simulations of the gravitational collapse of scalar fields at the
critical threshold of black-hole formation [17–19]. In par-
ticular, from Figs. 3 and 4 of [18] one finds the numerically
computed value [see Eq. (8)]

Cnumerical
max ≃ 0.265: ð23Þ

From Eqs. (22) and (23) one learns that the analytically
determined value of the critical compactness parameter,
whose derivation in the present compact paper is based
on the conjectured black-hole formation–null geodesic
correspondence of [16], agrees to within ∼10% with the
corresponding exact value of the compactness parameter as
determined numerically [17–19] using fully nonlinear
simulations of the collapse of self-gravitating scalar fields
at the threshold of black-hole formation.
Thus, our analytical results indicate that, in accord with

the physically interesting conjecture made in [16], there
may be a nontrivial relation between the critical threshold
of black-hole formation and the appearance of the first light
ring (marginally stable null circular geodesic) in the curved
spacetime of the collapsing matter configuration.
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