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It has been suggested to use seismic detectors on the Moon as a tool to search for gravitational waves in
an intermediate frequency range between mHz and Hz. Employing three different spherically symmetric
models for the lunar interior, we investigate the response of the Moon to gravitational waves in Einstein and
Jordan-Brans-Dicke gravity. We find that the first eigenfrequencies of the different models depend only
weakly on the model details, with the fundamental frequency v; close to 1 ms both for spheroidal and
toroidal oscillations. In contrast, the resulting displacement varies up to a factor 5, being in the range
(3.6 x 10'2-1.9 x 10'3) /hy cm for spheroidal oscillations with amplitude 4, and assuming a quality factor
Q,, = 3300. Toroidal oscillations are suppressed by a factor 2zvR/ ¢, both in Einstein gravity and in general

scalar-tensor theories.
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I. INTRODUCTION

Historically, the excitation of vibrational eigenmodes in
an elastic body was one of the first signatures suggested as
proof for the existence of gravitational waves (GWs). In
addition to the use of resonant bars on the laboratory scale,
Weber also pointed out that GWs could be searched for
monitoring the vibrations of the Earth or Moon [1]. The
first calculation of the response of the Earth to a GW was
performed soon later by Dyson, assuming a flat homo-
geneous Earth model [2]. The response of the Earth to a
GW for a spherically, heterogeneous Earth model was first
determined by Ben-Menahem [3], who followed the
approach developed by Alterman et al. [4] for the study
of seismic waves in the Earth.

Searches for GW using seismographs on Earth started
already in the 1970s [5,6]. More recently, seismic data were
used to derive stringent limits on the stochastic GW back-
ground in the frequency range 0.05—1 Hz [7]. In Ref. [8], the
response of a nonrotating anelastic Earth model to a GW
was revisited. On the Moon, the Lunar Surface Gravimeter
experiment was deployed by Apollo 17, but technical
problems prevented the usage of its data. In the last few
years, the idea to use the Moon as GW detector has been
revived and several new concepts were proposed: One type
of experiments proposes constructing long-baseline inter-
ferometers similar to the successful LIGO setup, as e.g., the
LION proposal [9] or the Gravitational-Wave Lunar
Observatory for Cosmology GLOC [10]. Another type of
proposal aims to exploit the response of the Moon to GWs
similar to the original Weber suggestion, as, e.g., the Lunar
Gravitational-Wave Antenna (LGWA) experiment [11] or
the Lunar Seismic and Gravitational-Wave Antenna [12].
These lunar GW experiments could become an important
partner observatory for joint observations with the
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space-borne, laser-interferometric detector LISA [13] and
the planned underground Einstein observatory [14], exploit-
ing the weak seismic activity of the Moon [15]. In particular,
they could complement these observatories in the mHz
range where their sensitivity has been estimated to be
superior [11]. For instance, GWs from binary white-dwarf
systems could be searched for by matching the frequencies
of Moon’s normal modes with the waveforms expected
for these binaries [16]. For such searches, a precise under-
standing of the response of the Moon to GWs is a
prerequisite.

In this work, we study the response of the Moon to
gravitational perturbations employing and extending the
approach of Ref. [3]. We derive a set of first-order differ-
ential equations which determine the eigenfunctions and
eigenfrequencies of the Moon coupled to a GW for a given
spherically, heterogeneous Moon model. We account for a
potentially scalar polarization state in the GW, so that our
results are also valid for general scalar-tensor theories of
gravity like, e.g., Jordan-Brans-Dicke theories [17,18]. We
determine the displacement and the eigenfrequencies of the
first eigenmodes numerically for a set of three different
Moon models. We find that there is very good agreement on
the eigenfrequencies in all three models, while the magni-
tude of the displacement varies up to factor 2. Using the
predicted capability to measure ground displacement in the
LGWA experiment from Ref. [19], we find a nominal
sensitivity to GWs with amplitude & ~ 107?° in the mHz
range assuming as quality factors Q, ~ 3300.

This work is structured as follows. In Sec. II, we recall
the response of an elastic body to a GW in a general
metric theory of gravity. We derive in Sec. III the normal
modes of the Moon and summarize how its eigenfrequen-
cies and displacements can be numerically calculated; most
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technical details of this derivation are deferred into two
Appendixes. Section IV introduces the models used to
describe the Moon and presents our numerical results.
Finally, we make concluding remarks in Sec. V.

II. RESPONSE OF AN ELASTIC BODY
TO A GW

An elastic isotropic body with density p can be described
in the nonrelativistic limit by the Lagrange density

... 1 .
fzipuiu’—isija”, (1)
where u' denotes the displacement of a body element. Its
strain tensor &;; and stress tensor ¢;; are connected by the
Cauchy relation,

Uij :ﬂél]vkuk ‘I’,M(Vﬂzl, +VJM1) :ﬂél]v;{uk“i‘zﬂé'lj (2)

Both tensors depend on the two Lamé parameters A and p
which determine the response of the body to bulk and shear
forces.

The coupling of matter to an external gravitational
perturbation 4, is at lowest-order perturbation theory
given by &, = «T, h* with T, as the (relativistic)
stress energy-momentum tensor and x = 8zGy as the
gravitational coupling. In the following, we do not impose
the transverse-traceless (TT) gauge condition on h**.
Instead, we assume only that gravitational waves (GW)
satisty hg, = h,o = 0. Thus, we allow in particular for the
possible presence of a scalar polarization state which might
arise in theories of modified gravity. Then, the Lagrange
density describing the elastic body under the influence of a
GW is given by

1 i
L =2Ly+ Ly =5 puil _E(gij + hij)et. (3)
Thus, the GW acts, as expected, as an additional strain on
the body. The equation of motion of the body follows as

3,(pu’) = V01 — ¥, (uhil) - % ViGh).  (4)

The last two terms represent the driving force density f;
exerted by the GW on the body,

fi = =, (uhd) 5,0, 5

In Einstein gravity, where 7 = h;/ = 0 is valid in a physical
gauge, the last term is absent. The corresponding stress is
given by

1

The GW in Eq. (4) can be represented as a superposition
of monochromatic polarization states,

hij(1) = g(t)ho&ij sin(wr), (7)

with amplitude %, and a time-dependent modulation given
by 0 < g(t) < 1. The polarization tensor &;; contains in a
general scalar-vector-tensor theory of gravity six indepen-
dent components, Ag, Ay, Ay ,Ay,, A, and A,; see for an
extended discussion, e.g., Ref. [20]. If the GW travels in the
z direction, the polarization tensor has the form

As+A,. A, Ay
gi': A><
Ay

1
As—A, Ay |. (8)
Ay AL

1 2

In addition to the two polarization states A, and A, present
in Einstein gravity, two transverse (Ay ,Ay,) and one
longitudinal A; vector components as well as the scalar
component A; may enter &;;. As scalar extensions of
Einstein gravity are far more popular than vector ones,
we will neglect for simplicity the vector components in the
following.

III. NORMAL MODES OF A SPHERICAL
SELF-GRAVITATING BODY

A. Normal modes of a spherical body

The perturbations of a spherically symmetric body
factorize in the variables ¢, r, and 9, ¢. They are charac-
terized by a set of eigenfunctions and eigenfrequencies
which are specified by the three ‘“quantum numbers”
{n,m,l}. In a spherically symmetric body, the modes
are degenerate in m. Neglecting for the moment the time
dependence, the displacement vector for a given mode
{n, m, I} can be written as a linear combination of the three
Hansen vectors, or equivalently as a sum of the vector
surface harmonics C") P(m)) and B(m),

u(r) = UM (r)P")(8, ) + VI (r)y/I(1+ 1)B™D (9, )
+ W (r)\/1(1 + 1)C™D (9, p). 9)

In spherical coordinates, the vector surface harmonics are
given by

T+ 1™ (9, ¢) = (é@ 19 _ @ i) o),

" sindop ' 09
(10a)
P (9.9) = & Y (9. ). (10b)
11+ 1B (9.4) = e ™, (10c)
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where éV) = {&(") ¢#) ()} are orthonormal unit base
Vectors, &;j; denotes the Levi-Civita symbol, P") (8, ¢)
is the associated Legendre polynomial, and the spherical
harmonics Y (8, ¢) are defined in Eq. (BS). In order to
distinguish the indices labeling eigenmodes from coordi-
nate indices, we set the former in parentheses. Since we use
unit base vectors, we do not need to distinguish between
upper and lower indices.

The eigenmodes can be split into two independent sets of
modes: spheroidal oscillations (with W) = 0) which
modify the shape of the body and t0r01dal oscillations
(with U™ = V(") = 0) which do not.

The time dependence of small oscillations u(r,t) =
u(r)g(t) of an elastic body are naturally modeled as a
damped harmonic oscillator. Thus, the time-dependent
effect of a monochromatic GW with frequency @, on a
elastic body follows as a Fourier integral of the Green’s
function G, (@) of a forced damped harmonic oscillator
with eigenfrequency w, weighted by g(w),

1) = [ S2a@en G, o) (1

— dw g(w)eiw()t (1 lb)
) 2102 -0 +iw,0/0,

Here, g(w) is the Fourier transform of ¢(t), while Q,, is
the damping (or quality) factor of the mode n. Note that
other choices for the Green’s function are in use, which
should differ mainly in how anharmonic terms in the
response to the GW are parametrized. Our default choice
of a forced damped harmonic oscillator is the one often
employed in seismology, but we will present later results
also for another Green’s function.

As a simple model for g(¢), we consider for illustration a
finite monochromatic GW of duration 27,

g(1) = [8(t +7) = 8t — )], (12)
with 9(¢) as the Heaviside step function. Then, g,(7)
follows as

o 9(1)
W= o +atagy Y

in the limit Q, > 1.

B. Linearization of Euler and Poisson equations

In Fourier space, the Euler equation becomes in spherical
coordinates

0 10 1

P
Lot ot pFi 4 paPu, —0. (14
o T 99%9 T rgingag e TP PO (14)

We simplify this equation using the following assumptions:
First of all, we restrict ourselves to linear perturbations.
Then, we assume that the self-gravitating body is initially in
equilibrium between the hydrostatic pressure gradient
VPO and internal gravitational forces, F(© =0 /p =
V¥, Here, we introduced the gravitational (anti)potential
¥, and we denote unperturbed quantities with the sub-
script zero. Being strained, a volume element carries its
initial stress ¢ (r(9)) to its new position 7©) 4 u. Thus,

o?}” (r) = a,(f) (r—u)=-PO(r—u)s;(r) (15a)
=—POr) —u(r)VPO(r)s;(r) (15b)
= —(P(O) + 9(0)P<0)”r>5i/’(")7 (15¢)

where ¢() is the unperturbed gravitational acceleration. In
addition, the volume element acquires an additional stress
o0c;; after displacement due to distortions, given by the
usual Cauchy relation. Thus,

8oy = 25,V + 2pey;. (16)

We can now insert the total stress o;; = fj)) + 6o;; into

Eq. (14). The divergence of the initial stress becomes

Vi(oy) = =Vi(PO + g0pOu,)
(0) ,(0) 57 dp'”) (0) 0 0
=g P — g =y Vi(g'u,),  (17)

while the force term can be written as

0

dp
pFi = <p<°’ ———u,—p

=% ) (T =42

dp©
=p OV, + ¢ (%M,‘F[)(O)vk”k_p(o))é;’ (18)

where the continuity equation p —p© = V- (p(Ou) was
used in the first step to expand p. Including the remaining
part of Eq. (14), we arrive at the following differential
equation

Vi(AViu) + p[Auy + Vi (V)]
o (2%+[ X (Vxu)], )

OV, (=g Ou,) +p0 2 Vi + 0?pOu =0, (19)

+

In addition, the potential ¥ = ¥(©) 4 y obeys the Poisson
equation, implying for the perturbation

w = —42G(p — pV) = 42GV;(pVu;).  (20)
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Equations (19) and (20) are the two coupled differential
equations which we have to solve numerically under
appropriate boundary conditions. We assume that the
Moon, similar to the Earth, can be divided into a liquid
core and a solid mantle. In this case, one can follow the
procedure developed for the study of seismic waves in
the Earth, as described in detail, e.g., in Ref. [21]. For the
convenience of the reader, the transformation of Eqs. (19)
and (20) to a set of linear differential equation for
{¥1s.--,¥6} is summarized in Appendix A.

C. Normal modes of a spherical
self-gravitating body

As a consequence of our linearization, the Fourier modes
{nml} decouple, and we can consider the evolution of a
single mode. Moreover, our assumption of spherical
symmetry implies that the Euler and Poisson equations
reduce to ordinary differential equation in the radial
coordinate, while the angular dependence can be expressed
as Fourier transforms of the vector surface harmonics on S2,
which we define as

Im 2 z . A(r) v (Im) _ikr
v )(kr)EA d¢A d9sin 92! v{"Me-kr  (21)

for the three cases V(") = {C(™), pim) BUm)1
The dlsplacement of the mode {nml} induced by the

force distribution f S")( 9)) and the surface stresses ‘7;(?) (u)

to a radially heterogeneous, anelastic self-gravitating Moon
model can be derived from'

nml /gj:tml r|r (
+ [ g

knowing the Green’s function Gmml) The Green’s function

)dﬂ)

Ow)dser)  (22)

nml *(nlm nlm —(n nml)y _
G . ) = " (1) Q)" (g (1) (AT

(23)

is in turn constructed out of the tensor product over the

(nl.
eigenvectors Q; (nlm)

Respectively, thelr normalizations are

for toroidal and spheroidal oscillations.

A(nml) 4z

R
e L WA CIGIS T

'For a textbook discussion, see Ref. [3].

(nml)

§ 21+1

P+1l+1 )[y3n] )P (0)(r)r2dr,

(25)

and the time dependence given by g(¢). Inserting the driving
force (5) and the surface stress (6) induced by a GW, we can
rewrite Eq. (22) as

)=~ [ S e el oo

+u(R /g"’"’ (r|R.1)2\" h*idSO)(R)

1
‘5/ TG
r

4= /1 /gnml

To proceed, we have to distinguish between toroidal and
spheroidal modes, using the results for the parameter
functions y; obtained in the Appendix. We will start with
the simpler case of toroidal oscillations, checking explicitly
that also the new contributions induced by the scalar
polarization state in the GW are suppressed.

124 hd3rl©)

(r hdS( J(R). (26)

1. GW induced toroidal motion

In the toroidal case, we can simplify the displacement of
the mode {nml} using Eq. (A7) to

u™ (r.6) = 10+ Dhog(0) (A™) 7y, (A€ (8. 4) Py
(27)

with
| ~(Im
Fr = R (R) (R + 32013, | &7 k)

K du(r) oy 1dA(r) (Im)
_A drrzyln(r)[ &+ 2 dr 0ij CJ (kr),

(28)

where we introduced the Fourier transform of the vector
surface harmonics defined in Eq. (21).

Following Ben-Menahem [3], we take now advantage of
the low-frequency limit: Since the fundamental frequency
vy of the Moon is in the mHz range, it holds that
¢/2nv; > R. This implies that the arguments kr and kR
of the exponential functions in C are slowly varying.
Performing then a partial-wave expansion of C, only the
partial waves with the lowest angular momentum have to be
kept. We split the calculation into a ¢ and a 4 dependent
part; the latter is absent in Einstein gravity. In the
Appendix, we elucidate the details of the partial-wave
expansion of C, which results for the term including y and
its derivative in

064034-4



LUNAR RESPONSE TO GRAVITATIONAL WAVES

PHYS. REV. D 110, 064034 (2024)

VIO ) _

8ri T

R (R Z Z (2 +1)

=0 m;=-1,

—i Z (21, + 1)i™"y;™(0,0)

=0 m;=-1,

and A%
A term and are given by

I(l+1 -
VIO )~ amyReyT, (8 D3 3+

=0 m;=-1,

where T*)

L e S

0 0 O

[ [
1, <kR>Y7f"l<o,0>( | )6’/ S 7l

000/ &

/ L k)P, (29)

k==2

A®(1,,my, 1, m) are given in the Appendix. The terms including A and its derivative involve only the

. . *m ll l 1
1)1_lljll(kR)Y11‘(e,/1)(O 0 O>A<0>

© L 11 di
> > e vrren(t L a0 [ onera e
O mi—, 0 0 O o dr
|

For the case of F <Tﬁ ), the mode of particular interest is the 2. o i
case [=m =2, as it is the lowest mode capable of  &ij TIRHA® = 2\—@\/(1 +m)(l=m+1)
oscillations. Taking the sum over [;, we observe that k==2
A©) vanishes for all /,. Therefore, we need to consider « < l l 1 ) (31)
only F (T" JInF 7, we have introduced Wigner’s 65 symbols m m—-1 -1/}
(4% <) which are defined in Eq. (B1). Assuming a spherical
body, we are free to rotate the coordinate system in such a Since the Bessel function j;(x) satisfies
way to align the momentum vector of the gravitational
wave with the z axis of our coordinate system, k; = coé,(»Z).
The choice of coordinate system is also the reason for why Ji(x) = _ 1 (x)! (32)
YZ’”‘ (y,x) which depends in general on the angles of the @r+1nn

incoming GW wave simplifies to ¥;"'(0,0) in (29). The
contraction of the polarization tensor with the 7' matrix
given in the Appendix results in

for x — 0, we have a series which very quickly converges
given that x < 1. Inserting for (32) and (31) in (29) gives

8ri < 2L+

\/1(7 i";z o @L+1)
d

W(R)RYT, (R)(kR)! — /

dr Y1 \I

Together with the time dependence (11b) and the
normalization (24), we now have all the required ingre-
dients to calculate the toroidal displacement after having
determined numerically the parameter function y;,(r).

2. GW induced spheroidal motion

Following the same strategy as in the toroidal case, we
obtain using (A13) for the induced displacement in the case
of spheroidal oscillations

W or () (k) r2dr] .

)W“’")(l""*) 8: Zi;.’)ﬁ”@ (l) c1>><nl¢11 ml—l —11)

+

(33a)
"™ r.1) = hog(e) (A~ [P (),
+1(1+ 1B () Fy). (34)
where Fg and Fg, are given by
VI 1)Fs, = Ru(R)y;,(R)ETPI™ (kR)
Rd 2 g..cij plim)
- E)’ln(”)r dréVP; " (kr),  (35)
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VII+ 1)Fg, = R?u(R

Rdu 2 ij p(Im)
~ )y dr yln( r)r-dréV B (k). (36)

)y1n(R)EVBL™ (KR)

Note that the terms including the first Lamé parameter 4 do
not contribute to spheroidal oscillations; see the Appendix
for further details. In order to simplify the expressions for
Fg and Fg,, we will study the (reducible) quadrupole
moment D,»j of the Moon,

D;; = 3//r,-rjpd\/. (37)

Here, we kept the trace D; which can couple to the
scalar polarization state of the GW. For a displacement
r; = r; + u;, the change of quadrupole moment to first
order is

6D;; = 3/(r u;j +u;r;)pdv. (38)

If we consider only a single spheroidal mode, then we can
represent the displacement contribution to 6D, by

" =y, Py, I DB (39)

Inserting (39) into (38), we can split the total quadruple
moment into

R -
5Dy =3 / Vin(P)pO (r)2dr(BY (r) + P (1),
0

(40a)
5D =3/ / Vau(r 2dr( B >(r)
+ B}i D(r)). (40b)
|
5m,2 + 5m,—2 - \/%5m0
A= 16,0 — 16, -2
6m,l + 5m,—1

The quadrupole tensor has to be contracted with the
polarization tensor of the GW. Because of the Kronecker
delta o;,, only spheroidal oscillations with [ =2 will
contribute in this approximation. The contribution of the
scalar polarization state is given by

10,00 — 10,

=16, _1 + 16,1

Neglecting the phase factor, we can express Fg, and Fy,
via the changes of the quadruple moment as

po BB (R) = [§ pyin(r)rdr o)y
Sl — R > lj ’ ( )
3 [ poyin(r)redr
R2u(R)ys,(R) — [ 2dr
Fy, — H( >J’3n1g ) = Jo fysa(r)r rgz/(spgf), (42)
3[R poysn(r)ridr

Thus, these functions are proportional to the interaction
between the GW and the reducible quadrupole moment of
the spherical body.

We employ as in the toroidal case the low-frequency
approximation. Starting from Egs. (B18) and (B22) for
the Fourier transformed surface harmonics derived in the
Appendix, we consider the limit kr — 0. Then, the Bessel
function simplifies to j, (0) = &, o. Forcing [; =0 for a
nonzero result puts strict restrictions on the Wigner
symbols in D), and the integrals simplify to

~(lm 4z
P (0) =812 80 =T 81 +T5 00

A T8, 2 +T768,0), (43a)
o (Im) 127 0O (1)
I(I+1)B;;7(0) = ?512( Omo — 1 0m—1
- 2 -2
T8, 4108, 5 +T575,,).
(43b)

If we insert this into the equations (40) for the change in
the quadrupole moment, we obtain

24rn

T R<y1n+3y3n>po<r>r2dr (44)

5Dp + 6DB - 51 2A

with

6m.1 + ém,—l

_5m,2 - 5m,—2 - \/%5”;,0 _iém‘_l + 15m1

2y/Bno

2 2
hs <6m.2 + 5m,—2 - \/—3;5m.0> + h.\' <_§m.2 - 6m,—2 - \/;iém.0>
2
— 2h /2, 45
A\ )
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while the standard TT polarizations from Einstein gravity
result in

2h+ (5m.2 + 5m,—2) and 2ih>< (5m,2

—0Om-2).  (46)

D. Numerical determination of y;(r)

The last ingredient needed to calculate the displacement
of the Moon surface are the parameter functions y;,(r). For
their numerical determination, we follow the procedure
described in Chap. 6.7 of Ref. [3]. In the toroidal case, we
impose the boundary conditions (All) on the system of
differential equations (A12). A guess for y; at the core-
mantle boundary r = a and for the eigenfrequency w is
used to begin the integration. The eigenfrequency is then
adjusted after the integration until the second boundary
condition for y, is satisfied. Lastly, y; is normalized. In the
spheroidal case, the numerical procedure for solving the
system of differential equation system is more complicated,
since we have to consider also the liquid core. The
integration is therefore split into two systems: One differ-
ential equation system for the core (A27) and one system
for the mantle (A25). More specifically, two initial con-
ditions are chosen for y, and ys at r =0, while the
remaining initial conditions are set to zero. We use a
Runge-Kutta solver to integrate the system (A27) over
the core. The end values are used as initial values for the
second integration over the mantle, except for y;, where the
initial condition is chosen similarly to y, and yg at the start.
Integration is then done from r = a to r = R. We perform
this integration three times with differently chosen initial
conditions for y,, yg, and y;. Then, we construct the matrix

1 2 3
R ! 5
) (1 2) 4 e+ (2) (3) 4 1041 (3)

vo! H Uy H Gy 1Ry r:R
The eigenfrequency is varied until the determinant of the
matrix changes sign. The zero determinant of the matrix
signals that all boundary conditions are satisfied and the
eigenfrequency is found.

In order to test our numerical procedure, we applied it to
the Jeffreys-Bullen A’ model and found good agreement
with the eigenfrequencies and y; functions described in
Ref. [21]; for more details on the numerical implementation
and the tests, see Ref. [22].

IV. LUNAR RESPONSE
TO GRAVITATIONAL WAVES

A. Moon models

We use the three different models for the interior of the
Moon presented in Ref. [23] to analyze its response to
GWs. The key characteristics of each model, the density

p(r), the Lamé parameters A(r) and p(r), and the gravi-
tational acceleration ¢(r), are shown in Fig. 1. The three
models agree well with each other in most of the mantle,
while in the core, deviations are stronger. Moreover, the
models slightly disagree on the value of the core radius a.
The deviations are largest for the first Lamé parameter A(r)
in the core.

B. Eigenfrequencies and displacement

1. Eigenfrequencies and normal modes

The first four eigenfrequencies v; = w;/2x of the three
models are shown in Table I, for toroidal oscillations on the
top and spheroidal oscillations on the bottom. The funda-
mental eigenfrequencies of all three models agree very
well, with deviations in the pro mille range, despite rather
large model differences especially in the core. The variation
of the eigenfrequencies between the three models increases
with n, reaching already 20% for n = 4. Similarly, the
differences in the eigenfrequencies between toroidal and
spheroidal oscillations are small for n = 1, and increase
with n.

In the case of spheroidal oscillations ,,S;, the leading
contribution in the long-wavelength limit kr — O is given
by [; =0. Taking into account the condition (43) in
Eq. (44), we have seen that then only [/ = 4+2 modes
contribute to spheroidal oscillations. Thus, we have to
consider only the ,S, mode for the cross- and plus
polarization, and the (S, mode for the scalar polarization
state. In the case of toroidal oscillations, the /; = 0 term
vanishes, and the leading contribution is thus given by
[} = 1. In this case, we have to consider only the ,7’, mode
for the possible three polarization states of the GW.

2. Displacement

Since the perturbations of a spherically symmetric body
factorize in an angular and a radial dependent part, it is
useful to split the displacement into a part characterizing
the overall magnitude of the mode,

&r(1) = ho(AF?) 7' Fryg(t), (47)
Es(1) = ho(A$?) ™ (Fs, + Fs,)5(1), (48)

neglecting the angular-dependent modulation determined
by the V functions. For the time dependence 7, (¢), we use
Eq. (13) where we assume as quality factor Q; = 3300 for
the first eigenfrequency for all Moon models, following
Ref. [23]. Moreover, we consider first the displacement of
the models at resonance, i.e., when w, = @, where ® is
the frequency of the GW.

We begin with the toroidal response. In Fig. 2, we show
the toroidal displacement &7 for the ,7, mode using the
Moon model 1 and setting 4, = 1. Moreover, we have here
assumed A, = A, = 1. The shape of the oscillation pattern
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FIG. 1. The parameters p(r), u(r), A(r), and g(r) of the
three Moon models. Model 1 in red, model 2 in blue, and
model 3 in green.

TABLE I. The first four toroidal (top) and spheroidal (bottom)
eigenfrequencies v; in ms™! of the three Moon models.

n Model 1 Model 2 Model 3
1 0.993 1.014 1.011
2 2.901 2.950 2918
3 4.266 4.388 4.079
4 5.635 5.869 4.929
1 1.020 1.050 1.047
2 1.848 1.890 1.892
3 2.932 2.881 2.686
4 3.976 3.993 3.412

is independent of the specific model, and only the magni-
tude & varies. The values of &7 determined by our
numerical integrations are summarized in Table II. The
toroidal displacement of the Moon is typically 2 orders of
magnitude larger than for the Earth. There is only a minor
difference between model 1 and 3, while the response in
model 2 is a factor 5 smaller. Looking back at Fig. 1, we do
observe that model 2 differs from the other two models

& displacement

30°
15°

-15°
-30°

5.0
25
0.0
=25
-5.0

FIG. 2. The ,T, displacement per unit strain 4, = 1 of Moon
model 1 to a plus and cross-polarized GW in units of cm. The top
figure is the displacement in the (") direction, the middle figure is
in the 2(¥) direction, and the bottom figure is in the 2(#) direction.
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TABLEII. The displacement &;/h and &g/ b for the different
Moon models and the ,T,, ,S,, and S, mode for wy = w;.

Model 2 Model 3

9.612x 107 cm  4.722 x 107 cm
1.900 x 1013 cm  3.636 x 10'2 cm
1.549 x 10 cm  2.969 x 10'? cm

Mode

T, 4.478 x 10" cm
»S, 1.288 x 103 cm
05, 1.051 x 103 cm

Model 1

close to the surface, particularly in the second Lamé
parameter x(r): This parameter is in model 2 two orders
lower than in models 1 and 3.

We proceed to the displacement from the spheroidal
oscillations. In Fig. 3, we show the displacement for the , S,
mode in model 1. Comparing the values for £ given for the
three Moon models in Table II, we do observe the opposite
trend as for the toroidal mode in that the response of
model 2 is larger than in the other models. Also, the three
models agree better than in the toroidal case. This different
behavior may arise from the spheroidal response depending
also on the parameter values of the core and not just the
mantle as in the toroidal case.

FIG. 3. The ,S, displacement of Moon model 1 to a plus- and
cross-polarized gravitational wave in units of cm. The top figure
shows the displacement in the ¢(") direction, the middle figure
shows the displacement in the 2®) direction, and the bottom
figure shows the displacement in the &) direction.

& displacement

-1.0

é® displacement
1x 1013

0.0075
0.0050
0.0025
0.0000
—0.0025
—0.0050

FIG. 4. The ,S, displacement of Moon model 1 to a scalar
polarized gravitational wave in cm. The top model shows the
displacement in the ¢ direction, the middle model shows the
displacement in the 2 direction, and the bottom model shows
the displacement in the 2(#) direction.

The last mode for discussion is the mode excited by the
scalar polarized gravitational wave ,S,. The response for
the first model is plotted in spherical coordinates in Fig. 4.
The values of &g follow a similar pattern, with the largest
response in model 2, while the weakest response happens in
model 1. For all models, the response to the scalar mode
05, is smaller than for the ,S, modes. The ratio of the
displacement for S, and ,S, modes is in agreement with

the factor /2/3 difference found in Egs. (45) and (46).

In addition to the resonance case, we report in Table I1I
the response at a frequency in between the two first
eigenfrequencies, which we choose as wy=(w;+,)/2.
At such an intermediate frequency, where the response

TABLE III.
Moon models and the ,7,, ,S,,
wy = (0) + @,)/2,.

The displacement &7/ hq and &g/ hy for the different
and (S, mode for

Model 3

0.857 x 10* cm
3.369 x 10'° ¢cm
2.751 x 10'9 cm

Mode Model 1 Model 2

1.774 x 10* cm
4574 x 109 cm
3.735 x 10'° cm

2T2 0.803 x 104 cm
58, 3.529 x 10'% cm
0S5, 2.881 x 10'° cm
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FIG. 5. The gravitational wave response in Moon model 1
including the first 37 eigenfrequencies with Q,, = const using the
response function given in Eq. (13).

should be less dependent on the specific choice of the
Green’s function G, (@), the response is reduced, which can
also be seen clearly from Fig. 5.

We can make a crude estimate of the magnitude of the
scalar amplitude expected for the GW signal from a
Galactic neutron star. Following Ref. [24], the amplitude
of a plus-polarized gravitational wave from a slightly
perturbed rotating neutron star can be expressed as

n) =200 — g0 leosap. o)

where { is the Brans-Dicke parameter, Q is the quadrupol
moment, and f, and ¢ are the rotational frequency and
angle of the star. Still following Ref. [24], the scalar
polarization can be expressed as

hs(t):—4:—3G§<D]%sin¢(t)—4§Qf7(2)0052¢(t)) (50)

with D as the stellar dipole moment. Choosing ¢(t) = 7/2,
we obtain as estimate for the ratio of the scalar and plus-
polarized response

hy ¢ ¢ D
LR “ ). 51
h, 1—C<4ﬂfoQ+ ) G

Reference [25] reports the bound ¢ < 1.25 x 1075, We can
make a crude estimate of the ratio h,/h, by considering
fo = 100 Hz and Q = 10*} kg m?. Moreover, we choose
D =10% kgm and D =0 to bracket the range for the
stellar dipole moment. With these values, we arrive at the
following estimates,

h h
2 <3x10* and -><1x1075, (52)
h. h,

for a nonzero and zero dipole moment, respectively.

3. Total response over frequency

We have up to this point kept our focus mainly on the
first eigenfrequency of the Moon models, having presented
the response of the Moon only for this frequency. Since the
frequency of the GW will in general not match the
eigenfrequency of the Moon, or may cover a broad range
of frequencies, it is necessary to study how the response
changes as we move to other frequencies for the incoming
GW. If we again assume a GW with the momentum vector
k = (0,0, ), then the expression for the main contribu-
tion from spheroidal oscillations is
"™ (r.1) = ho (MDY 1 5(1) ;" (1) (Fs, + Fs,).  (53)
We set now hy = 1, considering the response per unit
strain, and neglect the angular dependence as well, defining
gml(r) = (AmD)=1g(1)(Fs, + Fs,). We are interested in
the total response, and we must therefore sum over
eigenfrequencies. We restrict the analysis to the / = 2 and
m = 2 modes,

Eal) = E2(1) (54)

We choose the time # such that the response is maximal and
assume that the response from all the eigenfrequencies adds
constructively. Moreover, we consider as a signal a finite
monochromatic wave with duration 7 = T, where T| =
27/, is the eigenperiod of the first eigenfrequency.

We show the gravitational response per unit strain as a
function of the frequency of the incoming GW in Fig. 5. We
choose again as quality factor Qy = 3300 for the first
eigenfrequency. The frequency dependence of the quality
factors Q, for higher eigenmodes of the Moon is rather
uncertain: The authors of Ref. [26] found Q, « @®” in the
range 3-8 Hz for S waves, while for P waves, no significant
frequency dependence was found. As there are no deter-
minations of the frequency dependence of Q in the most
interesting range mHz-Hz range, we choose Q, as a
constant, O, = O, = 3300.

We observe a general trend of decreasing response at
higher resonances, its degree being dependent on the
frequency dependence of the quality factor Q,. At the
same time, the distance between resonance frequencies
decreases as we move to higher frequencies in Fig. 5,
indicating that the Moon becomes a broadband detector for
@ > w;. At frequencies smaller than the first eigenfre-
quency, we observe a strong suppression of the response.
This implies that the detectability of GWs with frequencies
less than mHz is unlikely.
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FIG. 6. Sensitivity of the LGWA experiment for the most recent
detector concept [19] as function of frequency v with Q,, = const
using the response function given in Eq. (13).

We can summarize our results in the sensitivity plot
shown in Fig. 6. Using the minimal acceleration predicted
for two different detector concepts proposed for the LGWA
experiment, we show the detection capabilities of the
proposed LGWA experiment for ,S, modes in the Moon
model 1. Using the values from Table II, the sensitivity
curves for other models can be obtained performing a
simple overall shift of the curves for model 1.

Finally, we want to compare our results with earlier ones,
in particular with those shown by the LGWA Collaboration
in Fig. 1 from Ref. [11]. In order to compare more easily to
our results we choose now the same quality factor of Q,, =
200 for all eigenfrequencies. Moreover, we use now instead
of Eq. (13) the Green’s function employed in Ref. [11],

1

wp = wp + 05/ 0,

9(1) (55)
The resulting gravitational response per unit strain as a
function of the frequency of the incoming GW is shown in
Fig. 7. Compared to Fig. 1 Ref. [11], we note that the
positions of the first resonance as well as the overall shape
agree well, while the asymptotic value for large frequencies
in our case is a factor of a few higher.

Note that, while the response for our default Green’s
function is real, we have to take the real part of the complex
response obtained using Eq. (55). Consequently, the strain
in Fig. 7 oscillates around the asymptotic value, while the
strain in Fig. 5 approaches the asymptotic value from
above. Taking into account this difference, our results for
the two different Green’s functions agree for large frequen-
cies (and the same value for the quality factor Q,,). On the
other hand, the larger value of quality factor Q, = 3300
used by us in the main part of our analysis explains the
larger sensitivities found by us. This difference in the used
quality factor explains also the difference in the overall
scale seen in the sensitivity plot 7, while the variation in
shape is caused by the differences in the Green’s function
used. In addition, we show in Fig. 8 the expected sensitivity

108

1071

106 1

10°

GW response per unit strain [m]

1073 102
Frequency [HZ]

FIG. 7. The gravitational wave response in Moon model 1
including the first 37 eigenfrequencies with Q,, = const using the
response function given in Eq. (55).
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FIG. 8. Sensitivity of the LGWA experiment for the most recent
detector concept [19] as function of frequency v with Q,, = const
using the response function given in Eq. (55).

of the LGWA experiment using the response function given
in Eq. (55). This sensitivity curve can be compared to the
one shown in Fig. 3, which shows qualitatively a similar
behavior.

V. CONCLUSIONS

We have studied the response of the Moon to gravita-
tional perturbations in general scalar-tensor theories of
gravity. Our semianalytic study was based on the approach
developed by Alterman et al. [4] for the study of seismic
waves in the Earth. Its main limitation is the restriction to
heterogeneous but spherically symmetric Moon models.

We have analyzed three sets of Moon models which are
based on different methodologies to determine the Moon
interior. The variation of these models is largest in the first
Lamé parameter 4 which determines the response to bulk
forces and therefore does not contribute to spheroidal
oscillations. As a result, the displacement and the
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eigenfrequencies of the first eigenmodes determined by us
numerically agree relatively well for the three different
Moon models; the variations between the different models
are, however, increasing for larger n. Using the reach in
measuring accelerations predicted for the LGWA experi-
ment from Ref. [11], we found a nominal sensitivity of this
experiment to GWs with amplitude 4 ~ 1072° for quality
factors Q,, ~ 3300 in the mHz range.
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APPENDIX A: REDUCTION TO
FIRST-ORDER EQUATIONS

In this Appendix, we will transform the Euler and
Poisson equation to a system of first-order equations,
which is more suitable both for numerical integration
and for imposing the appropriate boundary conditions,
following the approach of Ref. [21].

1. Boundary conditions

We have to impose the following four boundary

conditions:

(1) The solution is well defined at the origin.

(2) The stresses vanish at the deformed surfaces and stay
continuous at an internal deformed surface of dis-
continuity.

(3) The displacements are continuous at an internal
surface of discontinuity, with the exception of a
solid-liquid interface where only the radial displace-
ment is continuous.

(4) The gravitational potential and its radial derivative
are continuous at the deformed surface of the Earth
at an internal deformed surface of discontinuity.

In order to implement these boundary conditions math-
ematically, we consider the stresses close to a surface of
discontinuity at r = ¢ in a strained state,

Jo;
op(c+u,) =op(c) +u, <a—;k>

= o) (c) = PO ()3 (A1)
The additional elastic stresses at ¢ and at ¢ + u, are equal to
first order in u,. We also see that a small element of the
medium carries its initial stress with it when it moves from
one place to another. The boundary condition 4 regards
only the gravitational potential. Mathematically, it says that

d¥ d¥
Y_=%_ and dr< = dr>

atr=c+u, (A2)
where the indices < and > indicate that ¥ and ¥’ are
evaluated at opposite sides of the surface of discontinuity.
Expanding ¥ around its equilibrium value and using the
Poisson equation, it follows that

d9©  24¢©
I = _AnGpl A3
dr? + r o dr wop (A3)
and
V=V, W<—4”GP(<())”r:l/7>—4”GP(>())Mr- (A4)

At the surface of the Moon, we then must have that

w =yl W — 4nGpOu, = yrl©), (A5)

where v, is the gravitational potential outside the spheri-
cal model.

2. Toroidal oscillations

For purely toroidal oscillations, u, and u; ; both vanish.
The Euler equation (19) then simplifies to

du (. ou; (r
,uAuj + 5 (20—; + ejabegl )GdevCMd> + wzp(o)uj = 0.

(A6)

Setting U") = V(") = 0 in Eq. (9) appropriate for toroidal
oscillations, we can write the displacement as

u;(r)=>_0""(r)

o,.m,l

= Z)’l (M I(1+ 1)C§ﬂml> (9,¢), o=c,s.

o.m,l

(A7)

Here, we have split the displacement into a sum over the
core and mantle contributions, ¢ = {c, s}, to make sure
that the solution is well defined at both the origin and in all
parts of the mantle. We insert our ansatz into (19) and arrive
at a new differential equation for yj,

d?y; | 2dy;\ | du (dy; y s
s bl S TS S (0)
M(dr2+rdr +dr dr r T

(I+1
- ( 2 )H)’1 =0. (A8)

By boundary condition 2, we must have that the stresses
vanish at the core-mantle boundary. We therefore define a
function y, such that this function is zero at the boundary.
We write the stress in the radial direction and define y, as
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oc=c,Ss.

é,(r)dij = ZYz(r) \/l(lTl)Cﬁml) (8.9),

o.m,l

(A9)
We find y, more explicitly inserting Eq. (A7) into o;;(u),

2 dr r)’

Boundary condition 2 requires then the following con-
ditions on y,,

(A10)

yv»=0 atr=r. and r=R. (A11)
In order to avoid numerical problems caused by the
derivative du/dr in Eq. (AS8), it is more convenient to

use the equivalent system of differential equations

dyi _yi »

A Al2

dr r + u’ ( 2)

dy P4+1-2 3

d—2 = (—,u w p( >)yl — =5 (A12b)
r r? r

3. Spheroidal oscillations

Spheroidal oscillations were defined as displacements
involving the vector surface harmonics P and B only. Thus,
a spheroidal displacement can be written as

=> 0"

o,m,l

=" (i ()P (9. 9)
o.m,l
(VI DB (0.0).  (A13)
We decompose the gravitational perturbation as
= s ()Y (9. ). (A14)

o.m,l

Inserting Eqs. (22) and (A14) into the Euler and Poisson
equations results in a system of differential equations for y/,
v3, and ys. A lengthy, but not too complicated, calculation
of inserting Eq. (22) into (19) and setting the coefficients of

Pgml) and B§’"” to zero leads to the system

dX 1+ 1 aX)  _d d dy, 2
ﬂ(zd—— U+ )Z>+ (d ) 42 ﬂ+p<>{ﬂ—4n6p<°>y1+g<°><)(—ﬂ+ yl—i-wyl)] =0, (Al5)
r r

d dr

X d Z (dy 1
(+20) = = (u2) —;47+2u<d—:+2> +po(;(ys - g%y) +w2y3> =0

with
dy, 2 I(I+1
x=y 2y, D,
r r r
1 dy
and  Z=—(y; = y3) - d: (A17)

To accommodate the boundary conditions and to obtain a
system of first-order differential equations, we evaluate the
elastic stress. Setting

S (2P (8. 4)

o,m,l

5(1) i
€ %) T

(VT DB (9.4)). (AI8)
we find y, and y, as
d d 24 (141
Vo= AX 4 2 = (A 2p) L Ty - ( )ys,
dr dr r r
(A19)

d

(A16)

[

d 1 d
w=n(z428) =u(G00 -39+ D). (a0

We now insert (Al4) into (20) to obtain a differential
equation for ys,

szs 2dys
dr?

I+ 1
+n

rdr 72 = 4nG(p VX + pOy,).

(A21)

With Ay, = 0 outside the boundary of the spherical model,
the boundary condition becomes

d I+1
D5 4nGp0y, = -1y ar=Rr (A22)
dr r
Defining a new function yq as
dys
Yo = dr 4”Gﬂ( )yh (A23)
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the boundary conditions at »r = R become

y2:0’

y4:0’

I+1

We now treat y;,y,, ..., V¢ as independent variables, obtaining a system of first-order differential equations valid in the

mantle,
dy, 2 | 11+ 1)2
dn _ _ , A25
T /T PR B PR VT Pt (A252)
(0)
D _ [0 _ g 9700 3+ o] . - W) ] 0,0 _ 2B +24)]
dr r (A4 2u)r (A+2u)r r (A4 2u)r
(1+1
+ ( p ) 4= P%ys (A25b)
dy I B
—d3:——)’1 t-y3+ -y (A25¢)
r r r Y24
dy,  [¢9p  2u(32+2u) A
_ _ _ A25d
dr [ r (A +2u)r? N (A+ 2,u)ry2 ( )
(=290 + (28 + 20 = 14+ 202 + 1= D) —F )3y =23y =20 (A25¢)
(A+2u)r? r r
d
s — 4Gy, + v, (a251)
dy I(1+1 M+1 2
4 6= —47r7< )Gp(o)y3 + ( 3 )ys ——Ye- (A25g)
r r r r

In the core, on the other hand, we have

u=0, 2 = AX, 4 =0, (A26)

resulting in a simpler system of differential equations,

dy, 2 1 I(i+1
L 0, oy
dy 449 p0) I(1+1
i <w2p<°> L0y D o0y,

r r r

—Pys, (A27b)

d
% = 42Gpy; + yg (A27c)
dy 1(1+1 (+1) 2
4 = —ant D g0, (72)% ==Y (A27d)

r r r r

The parameter function y, is zero in the core. We find an
expression for y; using (A25e) and (A26),

1 1
V3 =5~ <QOY1 —— Y2~ )’5>- (A28)
wr Po

APPENDIX B: EXPANSION OF THE
FOURIER TRANSFORMS Vg"”

In this Appendix, we will express the Fourier transforms

ngl.m) (x) of the three vector surface harmonics in terms of

spherical Bessel functions j;(x) with Wigner’s 6; symbols
as expansion coefficients. For the later, we use the follow-
ing convention:
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(e )™
myp  mp Mz

with

_ I, (2p - 21;)!
W= \/(W) 6m1+m2—m (B2)

and 2p = [; + [, + I3. The sum goes over positive values
of n until the denominator of the expression becomes
negative. The symbols are nonzero only, when

=0, and |l,-1[,|<I.<

my +my +ms (B3)
with a,b,c = {1,2,3}. These two relations allow one to
quickly determine if the Wigner symbols are zero.

Our aim is to evaluate the Fourier transforms V( (kr)
defined by Eq. (21) for the three -cases V(’"l) =
{ctm) pimh) BmDY We begin with the C function, writing
it in spherlcal coordinates,

o\?) (m)
| ag> v,

In order to unclutter the notation, we will omit the
parentheses around m and [ in the spherical harmonics
Y", which we define as

(m R 1
(I +1)C} ”_(ef” dy— (B4)

sin 9

(I—m)!
(I 4 m)!

Y (9, ¢) = P (cos 9)el™?. (BS)

We can write this vector in Cartesian components as

TG = a7 a7 a1, (86

0,
j 4
unit vectors given by

,and a§_>

where a; are combinations of the Cartesian

Y = —iméﬁz) (B7)
o i A(X) s
a >:§¢(z¢m)(zim+1)(e§) Fiel).  (BS)
Assuming a general momentum vector,
k; = w(siny cosy, siny siny, cosy), (B9)

we perform next a partial-wave expansion of the exponential,

Z( h—h- mﬁ"( I, (4 + m)\(l; = my)! >
(ll +12 - l3 —I’l)!(ll —my —I/l)!(lz +I712 —n)!
X(l3—12+m| +n)'(l3—l]

—my +n)!, (B1)
[
i Z (20 + )iy, (k)Y (8, 4) Y, (. 1),
=0 my=-1,

(B10)

and inserting (B6) and (B10) into C (kr) we obtain

101+ ) ) (k)
) In

=33 @+ )it (kr)
1,=0 m,=—1,

(B11)

*m‘ (9, )Y (w, x) sin 9d9d¢p.

A

(B12)
Using the identity
2z n
/ d¢/ d&sin&Y?}“YZ‘ZYZL3
0 0 ’
L 1 1 l [ [
:47[(1 2 3)(1 2 3) (B13)
0 0 O m; mp, ms
in (B11), we arrive at the result
I+ 1l _4nz Z (24, + V)i, (kr)
=0 m=-1,
><Y*ml , Ak
woly . O)Z
(B14)
with
0 0 0 0 0 =Fi
TO =0 0 0], T(i”—% 0 0 :
0 0 i Fi 0
Fi 1 O
TE) =] 1 4 0], (B15)
0O 0 O
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and

Lol

m m 0

A<0):—m( >—i§\/(l+m)(1—m+l)<ll : 1) (B16a)

m m-—1 1

1 I I 1
+2—\/§\/(l—m)(1+m+1)<ml _ _1), (B16b)

l l 1 l l 1
A<i‘>:—\/§m< : >:F \/(lj:m)(l:Ferl)( ! ) (B16c)
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Next, we consider the case of the P integral. Using that in spherical coordinates Pg-ml) = é;r) Y7'(8, ¢), we apply again the

partial-wave expansion (B10). The resulting product &7¢; can be written in terms of Cartesian unit coordinates and the
associated Legendre polynomial as
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where the I'/) symbols are defined as combinations of the Cartesian unit vectors,
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Finally, we have to evaluate the Fourier transform of the vector surface harmonics B. Inserting into

1+ DB = ¢y;e) ™ (B20)

the expansion (B6) for Cfcm”, we obtain
VIT+ 12 B = o (e el ay) ) vy + & (eweday ) Yt + o (e el ay vy, (B21)
Next, we represent the products égr)eab jégpa(o’i) by the I" symbols defined previously, dropping all antisymmetric parts,

obtaining
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where the DV) are given by
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