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It has been suggested to use seismic detectors on the Moon as a tool to search for gravitational waves in
an intermediate frequency range between mHz and Hz. Employing three different spherically symmetric
models for the lunar interior, we investigate the response of the Moon to gravitational waves in Einstein and
Jordan-Brans-Dicke gravity. We find that the first eigenfrequencies of the different models depend only
weakly on the model details, with the fundamental frequency ν1 close to 1 ms both for spheroidal and
toroidal oscillations. In contrast, the resulting displacement varies up to a factor 5, being in the range
ð3.6 × 1012–1.9 × 1013Þ=h0 cm for spheroidal oscillations with amplitude h0 and assuming a quality factor
Qn ¼ 3300. Toroidal oscillations are suppressed by a factor 2πνR=c, both in Einstein gravity and in general
scalar-tensor theories.
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I. INTRODUCTION

Historically, the excitation of vibrational eigenmodes in
an elastic body was one of the first signatures suggested as
proof for the existence of gravitational waves (GWs). In
addition to the use of resonant bars on the laboratory scale,
Weber also pointed out that GWs could be searched for
monitoring the vibrations of the Earth or Moon [1]. The
first calculation of the response of the Earth to a GW was
performed soon later by Dyson, assuming a flat homo-
geneous Earth model [2]. The response of the Earth to a
GW for a spherically, heterogeneous Earth model was first
determined by Ben-Menahem [3], who followed the
approach developed by Alterman et al. [4] for the study
of seismic waves in the Earth.
Searches for GW using seismographs on Earth started

already in the 1970s [5,6]. More recently, seismic data were
used to derive stringent limits on the stochastic GW back-
ground in the frequency range 0.05–1 Hz [7]. In Ref. [8], the
response of a nonrotating anelastic Earth model to a GW
was revisited. On the Moon, the Lunar Surface Gravimeter
experiment was deployed by Apollo 17, but technical
problems prevented the usage of its data. In the last few
years, the idea to use the Moon as GW detector has been
revived and several new concepts were proposed: One type
of experiments proposes constructing long-baseline inter-
ferometers similar to the successful LIGO setup, as e.g., the
LION proposal [9] or the Gravitational-Wave Lunar
Observatory for Cosmology GLOC [10]. Another type of
proposal aims to exploit the response of the Moon to GWs
similar to the original Weber suggestion, as, e.g., the Lunar
Gravitational-Wave Antenna (LGWA) experiment [11] or
the Lunar Seismic and Gravitational-Wave Antenna [12].
These lunar GW experiments could become an important
partner observatory for joint observations with the

space-borne, laser-interferometric detector LISA [13] and
the planned underground Einstein observatory [14], exploit-
ing theweak seismic activity of theMoon [15]. In particular,
they could complement these observatories in the mHz
range where their sensitivity has been estimated to be
superior [11]. For instance, GWs from binary white-dwarf
systems could be searched for by matching the frequencies
of Moon’s normal modes with the waveforms expected
for these binaries [16]. For such searches, a precise under-
standing of the response of the Moon to GWs is a
prerequisite.
In this work, we study the response of the Moon to

gravitational perturbations employing and extending the
approach of Ref. [3]. We derive a set of first-order differ-
ential equations which determine the eigenfunctions and
eigenfrequencies of the Moon coupled to a GW for a given
spherically, heterogeneous Moon model. We account for a
potentially scalar polarization state in the GW, so that our
results are also valid for general scalar-tensor theories of
gravity like, e.g., Jordan-Brans-Dicke theories [17,18]. We
determine the displacement and the eigenfrequencies of the
first eigenmodes numerically for a set of three different
Moon models. We find that there is very good agreement on
the eigenfrequencies in all three models, while the magni-
tude of the displacement varies up to factor 2. Using the
predicted capability to measure ground displacement in the
LGWA experiment from Ref. [19], we find a nominal
sensitivity to GWs with amplitude h ≃ 10−20 in the mHz
range assuming as quality factors Qn ≃ 3300.
This work is structured as follows. In Sec. II, we recall

the response of an elastic body to a GW in a general
metric theory of gravity. We derive in Sec. III the normal
modes of the Moon and summarize how its eigenfrequen-
cies and displacements can be numerically calculated; most
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technical details of this derivation are deferred into two
Appendixes. Section IV introduces the models used to
describe the Moon and presents our numerical results.
Finally, we make concluding remarks in Sec. V.

II. RESPONSE OF AN ELASTIC BODY
TO A GW

An elastic isotropic body with density ρ can be described
in the nonrelativistic limit by the Lagrange density

L ¼ 1

2
ρu̇iu̇i −

1

2
εijσ

ij; ð1Þ

where ui denotes the displacement of a body element. Its
strain tensor εij and stress tensor σij are connected by the
Cauchy relation,

σij¼ λδij∇kukþμð∇iujþ∇juiÞ¼ λδij∇kukþ2μεij: ð2Þ

Both tensors depend on the two Lamé parameters λ and μ
which determine the response of the body to bulk and shear
forces.
The coupling of matter to an external gravitational

perturbation hμν is at lowest-order perturbation theory
given by L int ¼ κTμνhμν with Tμν as the (relativistic)
stress energy-momentum tensor and κ ¼ 8πGN as the
gravitational coupling. In the following, we do not impose
the transverse-traceless (TT) gauge condition on hμν.
Instead, we assume only that gravitational waves (GW)
satisfy h0μ ¼ hμ0 ¼ 0. Thus, we allow in particular for the
possible presence of a scalar polarization state which might
arise in theories of modified gravity. Then, the Lagrange
density describing the elastic body under the influence of a
GW is given by

L ¼ L 0 þL int ¼
1

2
ρu̇iu̇i −

1

2
ðεij þ hijÞσij: ð3Þ

Thus, the GW acts, as expected, as an additional strain on
the body. The equation of motion of the body follows as

∂tðρuiÞ ¼ ∇jσ
ij −∇jðμhijÞ −

1

2
∇iðλhÞ: ð4Þ

The last two terms represent the driving force density fi
exerted by the GW on the body,

fi ¼ −∇jðμhijÞ −
1

2
∇iðλhÞ: ð5Þ

In Einstein gravity, where h≡ hii ¼ 0 is valid in a physical
gauge, the last term is absent. The corresponding stress is
given by

σij ¼ −μhij −
1

2
λhδij: ð6Þ

The GW in Eq. (4) can be represented as a superposition
of monochromatic polarization states,

hijðtÞ ¼ gðtÞh0Eij sinðωtÞ; ð7Þ

with amplitude h0 and a time-dependent modulation given
by 0 ≤ gðtÞ ≤ 1. The polarization tensor Eij contains in a
general scalar-vector-tensor theory of gravity six indepen-
dent components, AS; AL; AV1

; AV2
; Aþ, and A×; see for an

extended discussion, e.g., Ref. [20]. If the GW travels in the
z direction, the polarization tensor has the form

Eij ¼

2
64
AS þ Aþ A× AV1

A× AS − Aþ AV2

AV1
AV2

AL

3
75: ð8Þ

In addition to the two polarization states Aþ and A× present
in Einstein gravity, two transverse ðAV1

; AV2
Þ and one

longitudinal AL vector components as well as the scalar
component As may enter Eij. As scalar extensions of
Einstein gravity are far more popular than vector ones,
we will neglect for simplicity the vector components in the
following.

III. NORMAL MODES OF A SPHERICAL
SELF-GRAVITATING BODY

A. Normal modes of a spherical body

The perturbations of a spherically symmetric body
factorize in the variables t, r, and ϑ;ϕ. They are charac-
terized by a set of eigenfunctions and eigenfrequencies
which are specified by the three “quantum numbers”
fn;m; lg. In a spherically symmetric body, the modes
are degenerate in m. Neglecting for the moment the time
dependence, the displacement vector for a given mode
fn;m; lg can be written as a linear combination of the three
Hansen vectors, or equivalently as a sum of the vector
surface harmonics CðmlÞ;PðmlÞ, and BðmlÞ,

uðrÞ ¼ UðnÞðrÞPðmlÞðϑ;ϕÞ þ VðnÞðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
BðmlÞðϑ;ϕÞ

þWðnÞðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
CðmlÞðϑ;ϕÞ: ð9Þ

In spherical coordinates, the vector surface harmonics are
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
CðmlÞ
i ðϑ;ϕÞ ¼

�
êðϑÞi

1

sinϑ
∂

∂ϕ
− êðϕÞi

∂

∂ϑ

�
YðmlÞ;

ð10aÞ

PðmlÞ
i ðϑ;ϕÞ ¼ êðrÞi YðmlÞðϑ;ϕÞ; ð10bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
BðmlÞ
i ðϑ;ϕÞ ¼ εijkê

ðrÞ
j CðmlÞ

k ; ð10cÞ
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where êðjÞ ¼ fêðrÞ; êðϕÞ; êðϑÞg are orthonormal unit base
vectors, εijk denotes the Levi-Civita symbol, PðmlÞðϑ;ϕÞ
is the associated Legendre polynomial, and the spherical
harmonics YðmlÞðϑ;ϕÞ are defined in Eq. (B5). In order to
distinguish the indices labeling eigenmodes from coordi-
nate indices, we set the former in parentheses. Since we use
unit base vectors, we do not need to distinguish between
upper and lower indices.
The eigenmodes can be split into two independent sets of

modes: spheroidal oscillations (with WðnÞ ¼ 0) which
modify the shape of the body and toroidal oscillations
(with UðnÞ ¼ VðnÞ ¼ 0) which do not.
The time dependence of small oscillations uðr; tÞ ¼

uðrÞḡðtÞ of an elastic body are naturally modeled as a
damped harmonic oscillator. Thus, the time-dependent
effect of a monochromatic GW with frequency ω0 on a
elastic body follows as a Fourier integral of the Green’s
function GnðωÞ of a forced damped harmonic oscillator
with eigenfrequency ωn weighted by gðωÞ,

ḡnðtÞ ¼
Z

dω
2π

gðωÞeiω0tGnðωÞ ð11aÞ

¼
Z

dω
2π

gðωÞeiω0t

ω2
n − ω2 þ iωnω=Qn

: ð11bÞ

Here, gðωÞ is the Fourier transform of gðtÞ, while Qn is
the damping (or quality) factor of the mode n. Note that
other choices for the Green’s function are in use, which
should differ mainly in how anharmonic terms in the
response to the GW are parametrized. Our default choice
of a forced damped harmonic oscillator is the one often
employed in seismology, but we will present later results
also for another Green’s function.
As a simple model for gðtÞ, we consider for illustration a

finite monochromatic GW of duration 2τ,

gðtÞ ¼ ½ϑðtþ τÞ − ϑðt − τÞ�eiω0t; ð12Þ

with ϑðtÞ as the Heaviside step function. Then, ḡnðtÞ
follows as

ḡnðtÞ ≃
gðtÞ

ðω0 − ωnÞ2 þ ω2
n=ð4QnÞ

ð13Þ

in the limit Qn ≫ 1.

B. Linearization of Euler and Poisson equations

In Fourier space, the Euler equation becomes in spherical
coordinates

∂

∂r
σirþ

1

r
∂

∂ϑ
σiϑþ

1

rsinϑ
∂

∂ϕ
σiϕþ ρFiþ ρω2ui ¼ 0: ð14Þ

We simplify this equation using the following assumptions:
First of all, we restrict ourselves to linear perturbations.
Then, we assume that the self-gravitating body is initially in
equilibrium between the hydrostatic pressure gradient
∇Pð0Þ and internal gravitational forces, Fð0Þ ¼ f ð0Þ=ρ ¼
∇Ψð0Þ. Here, we introduced the gravitational (anti)potential
Ψð0Þ, and we denote unperturbed quantities with the sub-
script zero. Being strained, a volume element carries its
initial stress σð0Þðrð0ÞÞ to its new position rð0Þ þ u. Thus,

σð0Þij ðrð0ÞÞ ¼ σð0Þij ðr − uÞ ¼ −Pð0Þðr − uÞδijðrÞ ð15aÞ

¼ −Pð0ÞðrÞ − uðrÞ∇Pð0ÞðrÞδijðrÞ ð15bÞ

¼ −ðPð0Þ þ gð0Þρð0ÞurÞδijðrÞ; ð15cÞ

where gð0Þ is the unperturbed gravitational acceleration. In
addition, the volume element acquires an additional stress
δσij after displacement due to distortions, given by the
usual Cauchy relation. Thus,

δσij ¼ λδij∇kuk þ 2μεij: ð16Þ

We can now insert the total stress σij ¼ σð0Þij þ δσij into
Eq. (14). The divergence of the initial stress becomes

∇kðσð0Þik Þ ¼ −∇kðPð0Þ þ gð0Þρð0ÞurÞ

¼ gð0Þρð0Þêrk −
dρð0Þ

dr
gð0Þur − ρ0∇kðg0urÞ; ð17Þ

while the force term can be written as

ρFk¼
�
ρð0Þ−

dρ0

dr
ur−ρð0Þ∇iui

�
ð∇kψ −gð0ÞêrkÞ

¼ρð0Þ∇kψþgð0Þ
�
dρð0Þ

dr
urþρð0Þ∇kuk−ρð0Þ

�
êrj; ð18Þ

where the continuity equation ρ − ρð0Þ ¼ ∇ · ðρð0ÞuÞ was
used in the first step to expand ρ. Including the remaining
part of Eq. (14), we arrive at the following differential
equation

∇kðλ∇iuiÞþμ½Δukþ∇kð∇iuiÞ�

þdμ
dr

�
2
∂uk
∂r

þ½êðrÞ×ð∇×uÞ�k
�

þρð0Þ∇kðψ−gð0ÞurÞþρð0ÞêðrÞk ∇iuiþω2ρð0Þuk¼0: ð19Þ

In addition, the potential Ψ ¼ Ψð0Þ þ ψ obeys the Poisson
equation, implying for the perturbation

Δψ ¼ −4πGðρ − ρð0ÞÞ ¼ 4πG∇jðρð0ÞujÞ: ð20Þ
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Equations (19) and (20) are the two coupled differential
equations which we have to solve numerically under
appropriate boundary conditions. We assume that the
Moon, similar to the Earth, can be divided into a liquid
core and a solid mantle. In this case, one can follow the
procedure developed for the study of seismic waves in
the Earth, as described in detail, e.g., in Ref. [21]. For the
convenience of the reader, the transformation of Eqs. (19)
and (20) to a set of linear differential equation for
fy1;…; y6g is summarized in Appendix A.

C. Normal modes of a spherical
self-gravitating body

As a consequence of our linearization, the Fourier modes
fnmlg decouple, and we can consider the evolution of a
single mode. Moreover, our assumption of spherical
symmetry implies that the Euler and Poisson equations
reduce to ordinary differential equation in the radial
coordinate, while the angular dependence can be expressed
as Fourier transforms of the vector surface harmonics on S2,
which we define as

ṼðlmÞ
ij ðkrÞ≡

Z
2π

0

dϕ
Z

π

0

dϑ sin ϑêðrÞi VðlmÞ
j e−ikr ð21Þ

for the three cases VðlmÞ ¼ fCðlmÞ;PðlmÞ;BðlmÞg.
The displacement of the mode fnmlg induced by the

force distribution fðnÞi ðrð0ÞÞ and the surface stresses σð0Þij ðuÞ
to a radially heterogeneous, anelastic self-gravitating Moon
model can be derived from1

uðnmlÞ
i ðr; tÞ¼

Z
V
GðnmlÞ
ji ðrjrð0Þ; tÞfðnÞj ðrð0ÞÞd3rð0Þ

þ
Z
S
GðnmlÞ
ji ðrjrð0Þ; tÞêðr;0Þk σð0Þkj ðuÞdSðrð0ÞÞ ð22Þ

knowing the Green’s function GðnmlÞ. The Green’s function

GðnmlÞ
ij ðrjrð0Þ; tÞ ¼ Q�ðnlmÞ

i ðrÞQðnlmÞ
j ðrð0ÞÞḡðnÞðtÞðΛðnmlÞ

T Þ−1
ð23Þ

is in turn constructed out of the tensor product over the

eigenvectorsQðnlmÞ
j for toroidal and spheroidal oscillations.

Respectively, their normalizations are

ΛðnmlÞ
T ¼ 4π

2lþ 1
lðlþ 1Þ

Z
R

0

½yT1n�2ρð0ÞðrÞr2dr; ð24Þ

ΛðnmlÞ
S ¼ 4π

2lþ 1

Z
R

0

ð½yS1n�2 þ lðlþ 1Þ½yS3n�2Þρð0ÞðrÞr2dr;

ð25Þ

and the time dependence given by ḡðtÞ. Inserting the driving
force (5) and the surface stress (6) induced by a GW, we can
rewrite Eq. (22) as

uðnmlÞ
i ðr; tÞ ¼−

Z
V

dμ
dr

ðrÞGðnmlÞ
ij ðrjrð0Þ; tÞêðrÞk hkjd3rð0Þ

þ μðRÞ
Z
S
GðnmlÞ
ij ðrjR; tÞêðrÞk hkjdSð0ÞðRÞ

−
1

2

Z
V

dλ
dr

ðrÞGðnmlÞ
ij ðrjrð0Þ; tÞêðrÞj hd3rð0Þ

þ 1

2
λðRÞ

Z
S
GðnmlÞ
ij ðrjR; tÞêðrÞj hdSð0ÞðRÞ: ð26Þ

To proceed, we have to distinguish between toroidal and
spheroidal modes, using the results for the parameter
functions yi obtained in the Appendix. We will start with
the simpler case of toroidal oscillations, checking explicitly
that also the new contributions induced by the scalar
polarization state in the GW are suppressed.

1. GW induced toroidal motion

In the toroidal case, we can simplify the displacement of
the mode fnmlg using Eq. (A7) to

uðnmlÞ
j ðr; tÞ ¼ lðlþ 1Þh0ḡðtÞðΛðnmlÞÞ−1y1nðrÞC�ðlmÞ

j ðϑ;ϕÞFT

ð27Þ
with

FT ¼ R2y1nðRÞ
�
μðRÞEij þ 1

2
λðRÞδij

�
C̃ðlmÞ
ij ðkRÞ

−
Z

R

0

drr2y1nðrÞ
�
dμðrÞ
dr

Eij þ 1

2

dλðrÞ
dr

δij

�
C̃ðlmÞ
ij ðkrÞ;

ð28Þ
where we introduced the Fourier transform of the vector
surface harmonics defined in Eq. (21).
Following Ben-Menahem [3], we take now advantage of

the low-frequency limit: Since the fundamental frequency
ν1 of the Moon is in the mHz range, it holds that
c=2πν1 ≫ R. This implies that the arguments kr and kR
of the exponential functions in C̃ are slowly varying.
Performing then a partial-wave expansion of C̃, only the
partial waves with the lowest angular momentum have to be
kept. We split the calculation into a μ and a λ dependent
part; the latter is absent in Einstein gravity. In the
Appendix, we elucidate the details of the partial-wave
expansion of C̃, which results for the term including μ and
its derivative in1For a textbook discussion, see Ref. [3].
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
8πi

FðμÞ
T ¼ μðRÞR2yT1nðRÞ

X∞
l1¼0

Xl1
ml¼−l1

ð2l1 þ 1Þi−l1jl1ðkRÞY�m1

l1
ð0; 0Þ

�
l1 l 1

0 0 0

�
Eij

X2
k¼−2

TðkÞ
ij A

ðkÞ

−
X∞
l1¼0

Xl1
ml¼−l1

ð2l1 þ 1Þi−l1Y�ml
l1

ð0; 0Þ
�
l1 l 1

0 0 0

�
Eij

X2
k¼−2

TðkÞ
ij A

ðkÞ
Z

R

0

dμ
dr

yT1nðrÞjl1ðkrÞr2dr; ð29Þ

where TðkÞ and AðkÞ ¼ AðkÞðl1; m1; l; mÞ are given in the Appendix. The terms including λ and its derivative involve only the
Að0Þ term and are given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
4π

FðλÞ
T ¼ λðRÞR2yT1nðRÞ

X∞
l1¼0

Xl1
ml¼−l1

ð2l1 þ 1Þi−l1jl1ðkRÞY�m1

l1
ðe; λÞ

�
l1 l 1

0 0 0

�
Að0Þ

þ
X∞
l1¼0

Xl1
ml¼−l1

ð2l1 þ 1Þi−l1Y�ml
l1

ðe; λÞ
�
l1 l 1

0 0 0

�
Að0Þ

Z
R

0

dλ
dr

yT1nðrÞjl1ðkrÞr2dr: ð30Þ

For the case of FðλÞ
T , the mode of particular interest is the

case l ¼ m ¼ 2, as it is the lowest mode capable of
oscillations. Taking the sum over l1, we observe that
Að0Þ vanishes for all l1. Therefore, we need to consider

only FðμÞ
T . In FT , we have introduced Wigner’s 6j symbols

ðac b
d
c
eÞ which are defined in Eq. (B1). Assuming a spherical

body, we are free to rotate the coordinate system in such a
way to align the momentum vector of the gravitational

wave with the z axis of our coordinate system, ki ¼ ωêðzÞi .
The choice of coordinate system is also the reason for why
Y�m1

l1
ðψ ; χÞ which depends in general on the angles of the

incoming GW wave simplifies to Y�m1

l1
ð0; 0Þ in (29). The

contraction of the polarization tensor with the T matrix
given in the Appendix results in

Eij

X2
k¼−2

TijðkÞAðkÞ ¼ i

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p

×

�
l1 l 1

m1 m − 1 −1

�
: ð31Þ

Since the Bessel function jlðxÞ satisfies

jlðxÞ ≃
1

ð2lþ 1Þ!! ðxÞ
l ð32Þ

for x → 0, we have a series which very quickly converges
given that x ≪ 1. Inserting for (32) and (31) in (29) gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
8πi

FðμÞ
T ¼

X∞
l1¼0

Xl1
ml¼−l1

i−l1
ð2l1 þ 1Þ
ð2l1 þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 −m1Þ!
ðl1 þm1Þ!

s
Pm1

l1
ð1Þ

�
l1 l 1

0 0 0

��
l1 l 1

m1 m − 1 −1

�

×

�
μðRÞR2yT1nðRÞðkRÞl1 −

Z
R

0

dμ
dr

yT1nðrÞðkrÞl1r2dr
�
: ð33aÞ

Together with the time dependence (11b) and the
normalization (24), we now have all the required ingre-
dients to calculate the toroidal displacement after having
determined numerically the parameter function y1nðrÞ.

2. GW induced spheroidal motion

Following the same strategy as in the toroidal case, we
obtain using (A13) for the induced displacement in the case
of spheroidal oscillations

uðnmlÞ
j ðr; tÞ ¼ h0ḡðtÞðΛnml

S Þ−1�P�ðnmlÞ
j ðrÞFS1

þ lðlþ 1ÞB�ðnmlÞ
j ðrÞFS2

�
; ð34Þ

where FS1 and FS2 are given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
FS1 ¼ R2μðRÞy1nðRÞEijP̃ðlmÞ

ij ðkRÞ

−
Z

R

0

dμ
dr

y1nðrÞr2drEijP̃ðlmÞ
ij ðkrÞ; ð35Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
FS2 ¼ R2μðRÞy1nðRÞEijB̃ðlmÞ

ij ðkRÞ

−
Z

R

0

dμ
dr

y1nðrÞr2drEijB̃ðlmÞ
ij ðkrÞ: ð36Þ

Note that the terms including the first Lamé parameter λ do
not contribute to spheroidal oscillations; see the Appendix
for further details. In order to simplify the expressions for
FS1 and FS2 , we will study the (reducible) quadrupole
moment Dij of the Moon,

Dij ¼ 3

Z
V
rirjρdV: ð37Þ

Here, we kept the trace Dii which can couple to the
scalar polarization state of the GW. For a displacement
ri → ri þ ui, the change of quadrupole moment to first
order is

δDij ¼ 3

Z
V
ðriuj þ uirjÞρdV: ð38Þ

If we consider only a single spheroidal mode, then we can
represent the displacement contribution to δDμν by

uðnmlÞ
j ¼ y1nPml

j þ y3n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Bml
j : ð39Þ

Inserting (39) into (38), we can split the total quadruple
moment into

δDðPÞ
ij ¼ 3

Z
R

0

y1nðrÞρð0ÞðrÞr2drðP̃ðmlÞ
ij ðrÞ þ P̃ðmlÞ

ji ðrÞÞ;

ð40aÞ

δDðBÞ
ij ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
R

0

y3nðrÞρð0ÞðrÞr2drðB̃ðmlÞ
ij ðrÞ

þ B̃ðmlÞ
ji ðrÞÞ: ð40bÞ

Neglecting the phase factor, we can express FS1 and FS2
via the changes of the quadruple moment as

FS1 ¼
R2μðRÞy1nðRÞ −

R
R
0 μ̇y1nðrÞr2dr

3
R
R
0 ρ0y1nðrÞr2dr

EijδDðPÞ
ij ; ð41Þ

FS2 ¼
R2μðRÞy3nðRÞ −

R
R
0 μ̇y3nðrÞr2dr

3
R
R
0 ρ0y3nðrÞr2dr

EijδDðBÞ
ij : ð42Þ

Thus, these functions are proportional to the interaction
between the GW and the reducible quadrupole moment of
the spherical body.
We employ as in the toroidal case the low-frequency

approximation. Starting from Eqs. (B18) and (B22) for
the Fourier transformed surface harmonics derived in the
Appendix, we consider the limit kr → 0. Then, the Bessel
function simplifies to jl1ð0Þ ¼ δl1;0. Forcing l1 ¼ 0 for a
nonzero result puts strict restrictions on the Wigner
symbols in DðjÞ, and the integrals simplify to

P̃ðlmÞ
ij ð0Þ¼4π

5
δl;2ðΓð0Þ

ij δm;0−Γð1Þ
ij δm;−1þΓð−1Þ

ij δm;1

þΓð2Þ
ij δm;−2þΓð−2Þ

ij δm;2Þ; ð43aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
B̃ðlmÞ
ij ð0Þ ¼ 12π

5
δl;2ðΓð0Þ

ij δm;0 − Γð1Þ
ij δm;−1

þ Γð−1Þ
ij δm;1 þ Γð2Þ

ij δm;−2 þ Γð−2Þ
ij δm;2Þ:

ð43bÞ

If we insert this into the equations (40) for the change in
the quadrupole moment, we obtain

δDP þ δDB ¼ 24π

5
ffiffiffi
6

p δl;2Δ
Z

R

0

ðy1n þ 3y3nÞρ0ðrÞr2dr ð44Þ

with

Δ ¼

0
BBBBB@

δm;2 þ δm;−2 −
ffiffi
2
3

q
δm;0 iδm;2 − iδm;−2 δm;1 þ δm;−1

iδm;2 − iδm;−2 −δm;2 − δm;−2 −
ffiffi
2
3

q
δm;0 −iδm;−1 þ iδm;1

δm;1 þ δm;−1 −iδm;−1 þ iδm;1 2
ffiffi
2
3

q
δm;0

1
CCCCCA:

The quadrupole tensor has to be contracted with the
polarization tensor of the GW. Because of the Kronecker
delta δl;2, only spheroidal oscillations with l ¼ 2 will
contribute in this approximation. The contribution of the
scalar polarization state is given by

hs

�
δm;2þδm;−2−

ffiffiffi
2

3

r
δm;0

�
þhs

�
−δm;2−δm;−2−

ffiffiffi
2

3

r
δm;0

�

¼−2hs

ffiffiffi
2

3

r
; ð45Þ
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while the standard TT polarizations from Einstein gravity
result in

2hþðδm;2 þ δm;−2Þ and 2ih×ðδm;2 − δm;−2Þ: ð46Þ

D. Numerical determination of yiðrÞ
The last ingredient needed to calculate the displacement

of the Moon surface are the parameter functions y1nðrÞ. For
their numerical determination, we follow the procedure
described in Chap. 6.7 of Ref. [3]. In the toroidal case, we
impose the boundary conditions (A11) on the system of
differential equations (A12). A guess for y1 at the core-
mantle boundary r ¼ a and for the eigenfrequency ω is
used to begin the integration. The eigenfrequency is then
adjusted after the integration until the second boundary
condition for y2 is satisfied. Lastly, y1 is normalized. In the
spheroidal case, the numerical procedure for solving the
system of differential equation system is more complicated,
since we have to consider also the liquid core. The
integration is therefore split into two systems: One differ-
ential equation system for the core (A27) and one system
for the mantle (A25). More specifically, two initial con-
ditions are chosen for y2 and y6 at r ¼ 0, while the
remaining initial conditions are set to zero. We use a
Runge-Kutta solver to integrate the system (A27) over
the core. The end values are used as initial values for the
second integration over the mantle, except for y3, where the
initial condition is chosen similarly to y2 and y6 at the start.
Integration is then done from r ¼ a to r ¼ R. We perform
this integration three times with differently chosen initial
conditions for y2, y6, and y3. Then, we construct the matrix

2
6664

yð1Þ2 yð2Þ2 yð3Þ2

yð1Þ4 yð2Þ4 yð3Þ4

yð1Þ6 þ lðlþ1Þ
R yð1Þ5 yð2Þ6 þ lðlþ1Þ

R yð2Þ5 yð3Þ6 þ lðlþ1Þ
R yð3Þ5

3
7775
r¼R

:

The eigenfrequency is varied until the determinant of the
matrix changes sign. The zero determinant of the matrix
signals that all boundary conditions are satisfied and the
eigenfrequency is found.
In order to test our numerical procedure, we applied it to

the Jeffreys-Bullen A’ model and found good agreement
with the eigenfrequencies and yi functions described in
Ref. [21]; for more details on the numerical implementation
and the tests, see Ref. [22].

IV. LUNAR RESPONSE
TO GRAVITATIONAL WAVES

A. Moon models

We use the three different models for the interior of the
Moon presented in Ref. [23] to analyze its response to
GWs. The key characteristics of each model, the density

ρðrÞ, the Lamé parameters λðrÞ and μðrÞ, and the gravi-
tational acceleration gðrÞ, are shown in Fig. 1. The three
models agree well with each other in most of the mantle,
while in the core, deviations are stronger. Moreover, the
models slightly disagree on the value of the core radius a.
The deviations are largest for the first Lamé parameter λðrÞ
in the core.

B. Eigenfrequencies and displacement

1. Eigenfrequencies and normal modes

The first four eigenfrequencies νi ¼ ωi=2π of the three
models are shown in Table I, for toroidal oscillations on the
top and spheroidal oscillations on the bottom. The funda-
mental eigenfrequencies of all three models agree very
well, with deviations in the pro mille range, despite rather
large model differences especially in the core. The variation
of the eigenfrequencies between the three models increases
with n, reaching already 20% for n ¼ 4. Similarly, the
differences in the eigenfrequencies between toroidal and
spheroidal oscillations are small for n ¼ 1, and increase
with n.
In the case of spheroidal oscillations mSl, the leading

contribution in the long-wavelength limit kr → 0 is given
by l1 ¼ 0. Taking into account the condition (43) in
Eq. (44), we have seen that then only l ¼ �2 modes
contribute to spheroidal oscillations. Thus, we have to
consider only the 2S2 mode for the cross- and plus
polarization, and the 0S2 mode for the scalar polarization
state. In the case of toroidal oscillations, the l1 ¼ 0 term
vanishes, and the leading contribution is thus given by
l1 ¼ 1. In this case, we have to consider only the 2T2 mode
for the possible three polarization states of the GW.

2. Displacement

Since the perturbations of a spherically symmetric body
factorize in an angular and a radial dependent part, it is
useful to split the displacement into a part characterizing
the overall magnitude of the mode,

ξTðtÞ ¼ h0ðΛ022
T Þ−1FTḡðtÞ; ð47Þ

ξSðtÞ ¼ h0ðΛ022
S Þ−1ðFS1 þ FS2ÞḡðtÞ; ð48Þ

neglecting the angular-dependent modulation determined
by the Ṽ functions. For the time dependence ḡnðtÞ, we use
Eq. (13) where we assume as quality factor Q1 ¼ 3300 for
the first eigenfrequency for all Moon models, following
Ref. [23]. Moreover, we consider first the displacement of
the models at resonance, i.e., when ω0 ¼ ω1, where ω0 is
the frequency of the GW.
We begin with the toroidal response. In Fig. 2, we show

the toroidal displacement ξT for the 2T2 mode using the
Moon model 1 and setting h0 ¼ 1. Moreover, we have here
assumed Aþ ¼ A× ¼ 1. The shape of the oscillation pattern
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is independent of the specific model, and only the magni-
tude ξT varies. The values of ξT determined by our
numerical integrations are summarized in Table II. The
toroidal displacement of the Moon is typically 2 orders of
magnitude larger than for the Earth. There is only a minor
difference between model 1 and 3, while the response in
model 2 is a factor 5 smaller. Looking back at Fig. 1, we do
observe that model 2 differs from the other two models

FIG. 1. The parameters ρðrÞ, μðrÞ, λðrÞ, and gðrÞ of the
three Moon models. Model 1 in red, model 2 in blue, and
model 3 in green.

FIG. 2. The 2T2 displacement per unit strain h0 ¼ 1 of Moon
model 1 to a plus and cross-polarized GW in units of cm. The top
figure is the displacement in the êðrÞ direction, the middle figure is
in the êðϑÞ direction, and the bottom figure is in the êðϕÞ direction.

TABLE I. The first four toroidal (top) and spheroidal (bottom)
eigenfrequencies νi in ms−1 of the three Moon models.

n Model 1 Model 2 Model 3

1 0.993 1.014 1.011
2 2.901 2.950 2.918
3 4.266 4.388 4.079
4 5.635 5.869 4.929
1 1.020 1.050 1.047
2 1.848 1.890 1.892
3 2.932 2.881 2.686
4 3.976 3.993 3.412

M. KACHELRIEß and M. P. NØDTVEDT PHYS. REV. D 110, 064034 (2024)

064034-8



close to the surface, particularly in the second Lamé
parameter μðrÞ: This parameter is in model 2 two orders
lower than in models 1 and 3.
We proceed to the displacement from the spheroidal

oscillations. In Fig. 3, we show the displacement for the 2S2
mode in model 1. Comparing the values for ξS given for the
three Moon models in Table II, we do observe the opposite
trend as for the toroidal mode in that the response of
model 2 is larger than in the other models. Also, the three
models agree better than in the toroidal case. This different
behavior may arise from the spheroidal response depending
also on the parameter values of the core and not just the
mantle as in the toroidal case.

The last mode for discussion is the mode excited by the
scalar polarized gravitational wave 0S2. The response for
the first model is plotted in spherical coordinates in Fig. 4.
The values of ξS follow a similar pattern, with the largest
response in model 2, while the weakest response happens in
model 1. For all models, the response to the scalar mode

0S2 is smaller than for the 2S2 modes. The ratio of the
displacement for 0S2 and 2S2 modes is in agreement with
the factor

ffiffiffiffiffiffiffiffi
2=3

p
difference found in Eqs. (45) and (46).

In addition to the resonance case, we report in Table III
the response at a frequency in between the two first
eigenfrequencies, which we choose as ω0¼ðω1þω2Þ=2.
At such an intermediate frequency, where the response

FIG. 4. The 0S2 displacement of Moon model 1 to a scalar
polarized gravitational wave in cm. The top model shows the
displacement in the êðrÞ direction, the middle model shows the
displacement in the êðϑÞ direction, and the bottom model shows
the displacement in the êðϕÞ direction.

TABLE II. The displacement ξT=h0 and ξS=h0 for the different
Moon models and the 2T2, 2S2, and 0S2 mode for ω0 ¼ ω1.

Mode Model 1 Model 2 Model 3

2T2 4.478 × 107 cm 9.612 × 107 cm 4.722 × 107 cm

2S2 1.288 × 1013 cm 1.900 × 1013 cm 3.636 × 1012 cm

0S2 1.051 × 1013 cm 1.549 × 1013 cm 2.969 × 1012 cm

FIG. 3. The 2S2 displacement of Moon model 1 to a plus- and
cross-polarized gravitational wave in units of cm. The top figure
shows the displacement in the êðrÞ direction, the middle figure
shows the displacement in the êðϑÞ direction, and the bottom
figure shows the displacement in the êðϕÞ direction.

TABLE III. The displacement ξT=h0 and ξS=h0 for the different
Moon models and the 2T2, 2S2, and 0S2 mode for
ω0 ¼ ðω1 þ ω2Þ=2,.
Mode Model 1 Model 2 Model 3

2T2 0.803 × 104 cm 1.774 × 104 cm 0.857 × 104 cm

2S2 3.529 × 1010 cm 4.574 × 1010 cm 3.369 × 1010 cm

0S2 2.881 × 1010 cm 3.735 × 1010 cm 2.751 × 1010 cm
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should be less dependent on the specific choice of the
Green’s functionGnðωÞ, the response is reduced, which can
also be seen clearly from Fig. 5.
We can make a crude estimate of the magnitude of the

scalar amplitude expected for the GW signal from a
Galactic neutron star. Following Ref. [24], the amplitude
of a plus-polarized gravitational wave from a slightly
perturbed rotating neutron star can be expressed as

hþðtÞ ¼
16π2G
c4

ð1 − ζÞQf20
r
cos 2ϕðtÞ; ð49Þ

where ζ is the Brans-Dicke parameter, Q is the quadrupol
moment, and f0 and ϕ are the rotational frequency and
angle of the star. Still following Ref. [24], the scalar
polarization can be expressed as

hsðtÞ¼−
4πG
c3

ζ

�
D
f0
r
sinϕðtÞ−4π

c
Q
f20
r
cos2ϕðtÞ

�
ð50Þ

withD as the stellar dipole moment. Choosing ϕðtÞ ¼ π=2,
we obtain as estimate for the ratio of the scalar and plus-
polarized response

hs
hþ

¼ −
ζ

1 − ζ

�
c

4πf0

D
Q
þ 1

�
: ð51Þ

Reference [25] reports the bound ζ < 1.25 × 10−5. We can
make a crude estimate of the ratio hs=hþ by considering
f0 ¼ 100 Hz and Q ¼ 1033 kgm2. Moreover, we choose
D ¼ 1029 kgm and D ¼ 0 to bracket the range for the
stellar dipole moment. With these values, we arrive at the
following estimates,

hs
hþ

≲ 3 × 10−4 and
hs
hþ

≲ 1 × 10−5; ð52Þ

for a nonzero and zero dipole moment, respectively.

3. Total response over frequency

We have up to this point kept our focus mainly on the
first eigenfrequency of the Moon models, having presented
the response of the Moon only for this frequency. Since the
frequency of the GW will in general not match the
eigenfrequency of the Moon, or may cover a broad range
of frequencies, it is necessary to study how the response
changes as we move to other frequencies for the incoming
GW. If we again assume a GW with the momentum vector
k ¼ ð0; 0;ω0Þ, then the expression for the main contribu-
tion from spheroidal oscillations is

uðnmlÞ
i ðr; tÞ¼ h0ðΛðnmlÞÞ−1ḡðtÞQ�ðnmlÞ

i ðrÞðFS1 þFS2Þ: ð53Þ
We set now h0 ¼ 1, considering the response per unit
strain, and neglect the angular dependence as well, defining
ξnmlðtÞ ¼ ðΛðnmlÞÞ−1ḡðtÞðFS1 þ FS2Þ. We are interested in
the total response, and we must therefore sum over
eigenfrequencies. We restrict the analysis to the l ¼ 2 and
m ¼ 2 modes,

ξtotðtÞ ¼
X∞
n¼1

ξn22ðtÞ: ð54Þ

We choose the time t such that the response is maximal and
assume that the response from all the eigenfrequencies adds
constructively. Moreover, we consider as a signal a finite
monochromatic wave with duration τ ¼ T1, where T1 ¼
2π=ω1 is the eigenperiod of the first eigenfrequency.
We show the gravitational response per unit strain as a

function of the frequency of the incoming GW in Fig. 5. We
choose again as quality factor Q0 ¼ 3300 for the first
eigenfrequency. The frequency dependence of the quality
factors Qn for higher eigenmodes of the Moon is rather
uncertain: The authors of Ref. [26] found Qn ∝ ω0.7 in the
range 3–8 Hz for Swaves, while for Pwaves, no significant
frequency dependence was found. As there are no deter-
minations of the frequency dependence of Q in the most
interesting range mHz–Hz range, we choose Qn as a
constant, Qn ¼ Q0 ¼ 3300.
We observe a general trend of decreasing response at

higher resonances, its degree being dependent on the
frequency dependence of the quality factor Qn. At the
same time, the distance between resonance frequencies
decreases as we move to higher frequencies in Fig. 5,
indicating that the Moon becomes a broadband detector for
ω ≫ ω1. At frequencies smaller than the first eigenfre-
quency, we observe a strong suppression of the response.
This implies that the detectability of GWs with frequencies
less than mHz is unlikely.

FIG. 5. The gravitational wave response in Moon model 1
including the first 37 eigenfrequencies withQn ¼ const using the
response function given in Eq. (13).
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We can summarize our results in the sensitivity plot
shown in Fig. 6. Using the minimal acceleration predicted
for two different detector concepts proposed for the LGWA
experiment, we show the detection capabilities of the
proposed LGWA experiment for 2S2 modes in the Moon
model 1. Using the values from Table II, the sensitivity
curves for other models can be obtained performing a
simple overall shift of the curves for model 1.
Finally, we want to compare our results with earlier ones,

in particular with those shown by the LGWACollaboration
in Fig. 1 from Ref. [11]. In order to compare more easily to
our results we choose now the same quality factor of Qn ¼
200 for all eigenfrequencies. Moreover, we use now instead
of Eq. (13) the Green’s function employed in Ref. [11],

ḡðtÞ ¼ 1

ω2
n − ω2

0 þ iω2
n=Qn

: ð55Þ

The resulting gravitational response per unit strain as a
function of the frequency of the incoming GW is shown in
Fig. 7. Compared to Fig. 1 Ref. [11], we note that the
positions of the first resonance as well as the overall shape
agree well, while the asymptotic value for large frequencies
in our case is a factor of a few higher.
Note that, while the response for our default Green’s

function is real, we have to take the real part of the complex
response obtained using Eq. (55). Consequently, the strain
in Fig. 7 oscillates around the asymptotic value, while the
strain in Fig. 5 approaches the asymptotic value from
above. Taking into account this difference, our results for
the two different Green’s functions agree for large frequen-
cies (and the same value for the quality factor Qn). On the
other hand, the larger value of quality factor Qn ¼ 3300
used by us in the main part of our analysis explains the
larger sensitivities found by us. This difference in the used
quality factor explains also the difference in the overall
scale seen in the sensitivity plot 7, while the variation in
shape is caused by the differences in the Green’s function
used. In addition, we show in Fig. 8 the expected sensitivity

of the LGWA experiment using the response function given
in Eq. (55). This sensitivity curve can be compared to the
one shown in Fig. 3, which shows qualitatively a similar
behavior.

V. CONCLUSIONS

We have studied the response of the Moon to gravita-
tional perturbations in general scalar-tensor theories of
gravity. Our semianalytic study was based on the approach
developed by Alterman et al. [4] for the study of seismic
waves in the Earth. Its main limitation is the restriction to
heterogeneous but spherically symmetric Moon models.
We have analyzed three sets of Moon models which are

based on different methodologies to determine the Moon
interior. The variation of these models is largest in the first
Lamé parameter λ which determines the response to bulk
forces and therefore does not contribute to spheroidal
oscillations. As a result, the displacement and the

FIG. 8. Sensitivity of the LGWA experiment for the most recent
detector concept [19] as function of frequency ν with Qn ¼ const
using the response function given in Eq. (55).

FIG. 6. Sensitivity of the LGWA experiment for the most recent
detector concept [19] as function of frequency ν with Qn ¼ const
using the response function given in Eq. (13).

FIG. 7. The gravitational wave response in Moon model 1
including the first 37 eigenfrequencies withQn ¼ const using the
response function given in Eq. (55).
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eigenfrequencies of the first eigenmodes determined by us
numerically agree relatively well for the three different
Moon models; the variations between the different models
are, however, increasing for larger n. Using the reach in
measuring accelerations predicted for the LGWA experi-
ment from Ref. [11], we found a nominal sensitivity of this
experiment to GWs with amplitude h ≃ 10−20 for quality
factors Qn ≃ 3300 in the mHz range.
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APPENDIX A: REDUCTION TO
FIRST-ORDER EQUATIONS

In this Appendix, we will transform the Euler and
Poisson equation to a system of first-order equations,
which is more suitable both for numerical integration
and for imposing the appropriate boundary conditions,
following the approach of Ref. [21].

1. Boundary conditions

We have to impose the following four boundary
conditions:
(1) The solution is well defined at the origin.
(2) The stresses vanish at the deformed surfaces and stay

continuous at an internal deformed surface of dis-
continuity.

(3) The displacements are continuous at an internal
surface of discontinuity, with the exception of a
solid-liquid interface where only the radial displace-
ment is continuous.

(4) The gravitational potential and its radial derivative
are continuous at the deformed surface of the Earth
at an internal deformed surface of discontinuity.

In order to implement these boundary conditions math-
ematically, we consider the stresses close to a surface of
discontinuity at r ¼ c in a strained state,

σjkðcþ urÞ ¼ σjkðcÞ þ ur

�
∂σjk
∂r

�
r¼c

¼ σðeÞjk ðcÞ − Pð0ÞðcÞδjk: ðA1Þ

The additional elastic stresses at c and at cþ ur are equal to
first order in ur. We also see that a small element of the
medium carries its initial stress with it when it moves from
one place to another. The boundary condition 4 regards
only the gravitational potential. Mathematically, it says that

Ψ< ¼ Ψ> and
dΨ<

dr
¼ dΨ>

dr
at r ¼ cþ ur; ðA2Þ

where the indices < and > indicate that Ψ and Ψ0 are
evaluated at opposite sides of the surface of discontinuity.
Expanding Ψ around its equilibrium value and using the
Poisson equation, it follows that

d2Ψð0Þ

dr2
þ 2

r
dΨð0Þ

dr
¼ −4πGρð0Þ ðA3Þ

and

ψ<¼ψ>; ψ̇<−4πGρð0Þ< ur¼ ψ̇>−4πGρð0Þ> ur: ðA4Þ

At the surface of the Moon, we then must have that

ψ ¼ ψ ðeÞ; ψ̇ − 4πGρð0Þur ¼ ψ̇ ðeÞ; ðA5Þ

where ψe is the gravitational potential outside the spheri-
cal model.

2. Toroidal oscillations

For purely toroidal oscillations, ur and uj;j both vanish.
The Euler equation (19) then simplifies to

μΔuj þ
dμ
dr

�
2
∂uj
∂r

þ ϵjabê
ðrÞ
a ϵbcd∇cud

�
þ ω2ρð0Þuj ¼ 0:

ðA6Þ

Setting UðnÞ ¼ VðnÞ ¼ 0 in Eq. (9) appropriate for toroidal
oscillations, we can write the displacement as

ujðrÞ¼
X
σ;m;l

QðnmlÞ
j ðrÞ

¼
X
σ;m;l

y1ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
CðσmlÞ
j ðϑ;ϕÞ; σ¼ c;s: ðA7Þ

Here, we have split the displacement into a sum over the
core and mantle contributions, σ ¼ fc; sg, to make sure
that the solution is well defined at both the origin and in all
parts of the mantle. We insert our ansatz into (19) and arrive
at a new differential equation for y1,

μ

�
d2y1
dr2

þ 2

r
dy1
dr

�
þ dμ

dr

�
dy1
dr

−
y1
r

�
þ ω2ρð0Þy1

−
lðlþ 1Þ

r2
μy1 ¼ 0: ðA8Þ

By boundary condition 2, we must have that the stresses
vanish at the core-mantle boundary. We therefore define a
function y2 such that this function is zero at the boundary.
We write the stress in the radial direction and define y2 as
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êðrÞi σij¼
X
σ;m;l

y2ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
CðσmlÞ
j ðϑ;ϕÞ; σ¼c;s: ðA9Þ

We find y2 more explicitly inserting Eq. (A7) into σijðuÞ,

y2 ¼ μ

�
dy1
dr

−
y1
r

�
: ðA10Þ

Boundary condition 2 requires then the following con-
ditions on y2,

y2 ¼ 0 at r ¼ rc and r ¼ R: ðA11Þ

In order to avoid numerical problems caused by the
derivative dμ=dr in Eq. (A8), it is more convenient to
use the equivalent system of differential equations

dy1
dr

¼ y1
r
þ y2

μ
; ðA12aÞ

dy2
dr

¼
�
l2 þ l − 2

r2
μ − ω2ρð0Þ

�
y1 −

3

r
y2: ðA12bÞ

3. Spheroidal oscillations

Spheroidal oscillations were defined as displacements
involving the vector surface harmonics P and B only. Thus,
a spheroidal displacement can be written as

ujðrÞ ¼
X
σ;m;l

QðnmlÞ
j ðrÞ

¼
X
σ;m;l

	
y1nðrÞPðσmlÞ

j ðϑ;ϕÞ

þ y3nðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
BðσmlÞ
j ðϑ;ϕÞ
: ðA13Þ

We decompose the gravitational perturbation as

ψðrÞ ¼
X
σ;m;l

y5nðrÞYðσÞm
l ðϑ;ϕÞ: ðA14Þ

Inserting Eqs. (22) and (A14) into the Euler and Poisson
equations results in a system of differential equations for y1,
y3, and y5. A lengthy, but not too complicated, calculation
of inserting Eq. (22) into (19) and setting the coefficients of

PðmlÞ
i and BðmlÞ

i to zero leads to the system

μ

�
2
dX
dr

−
lðlþ 1Þ

r
Z

�
þ dðλXÞ

dr
þ 2μ̇

dy1
dr

þ ρð0Þ
�
dy5
dr

− 4πGρð0Þy1 þ gð0Þ
�
X −

dy1
dr

þ 2

r
y1 þ ω2y1

��
¼ 0; ðA15Þ

ðλþ 2μÞX
r
−

d
dr

ðμZÞ − μ
Z
r
þ 2μ̇

�
dy3
dr

þ Z

�
þ ρ0

�
1

r
ðy5 − gð0Þy1Þ þ ω2y3

�
¼ 0 ðA16Þ

with

X ¼ dy1
dr

þ 2

r
y1 −

lðlþ 1Þ
r

y3;

and Z ¼ 1

r
ðy1 − y3Þ −

dy3
dr

: ðA17Þ

To accommodate the boundary conditions and to obtain a
system of first-order differential equations, we evaluate the
elastic stress. Setting

êðrÞi σijðeÞ ¼
X
σ;m;l

	
y2ðrÞPðσmlÞ

j ðϑ;ϕÞ

þ y4ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
BðσmlÞ
j ðϑ;ϕÞ
; ðA18Þ

we find y2 and y4 as

y2 ¼ λX þ 2μ
dy1
dr

¼ ðλþ 2μÞ dy1
dr

þ 2λ

r
y1 − λ

lðlþ 1Þ
r

y3;

ðA19Þ

y4 ¼ μ

�
Z þ 2

dy3
dr

�
¼ μ

�
1

r
ðy1 − y3Þ þ

dy3
dr

�
: ðA20Þ

We now insert (A14) into (20) to obtain a differential
equation for y5,

d2y5
dr2

þ 2

r
dy5
dr

−
lðlþ 1Þ

r2
y5 ¼ 4πGðρð0ÞX þ ρ̇ð0Þy1Þ: ðA21Þ

WithΔψe ¼ 0 outside the boundary of the spherical model,
the boundary condition becomes

dy5
dr

− 4πGρð0Þy1 ¼ −
lþ 1

r
y5 at r ¼ R: ðA22Þ

Defining a new function y6 as

y6 ¼
dy5
dr

− 4πGρð0Þy1; ðA23Þ
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the boundary conditions at r ¼ R become

y2 ¼ 0; y4 ¼ 0; y6 þ
lþ 1

r
y5 ¼ 0: ðA24Þ

We now treat y1; y2;…; y6 as independent variables, obtaining a system of first-order differential equations valid in the
mantle,

dy1
dr

¼ −
2λ

ðλþ 2μÞr y1 þ
1

λþ 2μ
y2 þ

lðlþ 1Þλ
ðλþ 2μÞr y3; ðA25aÞ

dy2
dr

¼
�
−ω2ρð0Þ − 4

gð0Þρ0
r

þ 4μð3λþ 2μÞ
ðλþ 2μÞr2

�
y1 −

4μ

ðλþ 2μÞr y2 þ
lðlþ 1Þ

r

�
gð0Þρð0Þ −

2μð3λþ 2μÞ
ðλþ 2μÞr

�
y3

þ lðlþ 1Þ
r

y4 − ρ0Þy6 ðA25bÞ

dy3
dr

¼ −
1

r
y1 þ

1

r
y3 þ

1

μ
y4 ðA25cÞ

dy4
dr

¼
�
gð0Þρð0Þ

r
−
2μð3λþ 2μÞ
ðλþ 2μÞr2

�
y1 −

λ

ðλþ 2μÞr y2 ðA25dÞ

þ
�
−ω2ρð0Þ þ ðð2l2 þ 2l − 1Þλþ 2ðl2 þ l − 1ÞμÞ 2μ

ðλþ 2μÞr2
�
y3 −

3

r
y4 −

ρ0
r
y5 ðA25eÞ

dy5
dr

¼ 4πGρð0Þy1 þ y6; ðA25fÞ

dy6
dr

¼ −4π
lðlþ 1Þ

r
Gρð0Þy3 þ

lðlþ 1Þ
r2

y5 −
2

r
y6: ðA25gÞ

In the core, on the other hand, we have

μ ¼ 0; y2 ¼ λX; y4 ¼ 0; ðA26Þ

resulting in a simpler system of differential equations,

dy1
dr

¼ −
2

r
y1 þ

1

λ
y2 þ

lðlþ 1Þ
r

y3; ðA27aÞ

dy2
dr

¼ −
�
ω2ρð0Þ þ 4gð0Þρð0Þ

r

�
y1 þ

lðlþ 1Þ
r

gð0Þρð0Þy3

− ρð0Þy6; ðA27bÞ

dy5
dr

¼ 4πGρð0Þy1 þ y6 ðA27cÞ

dy6
dr

¼ −4π
lðlþ 1Þ

r
Gρð0Þy3 þ

lðlþ 1Þ
r2

y5 −
2

r
y6: ðA27dÞ

The parameter function y4 is zero in the core. We find an
expression for y3 using (A25e) and (A26),

y3 ¼
1

ω2r

�
g0y1 −

1

ρ0
y2 − y5

�
: ðA28Þ

APPENDIX B: EXPANSION OF THE
FOURIER TRANSFORMS ṼðlmÞ

ij

In this Appendix, we will express the Fourier transforms

ṼðlmÞ
ij ðxÞ of the three vector surface harmonics in terms of

spherical Bessel functions jlðxÞ with Wigner’s 6j symbols
as expansion coefficients. For the later, we use the follow-
ing convention:
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�
l1 l2 l3
m1 m2 m3

�
¼ W

X
n

ð−1Þl1−l2−m3þn

n!

�
Π3

i¼1ðli þmiÞ!ðli −miÞ!
ðl1 þ l2 − l3 − nÞ!ðl1 −m1 − nÞ!ðl2 þm2 − nÞ!

�

× ðl3 − l2 þm1 þ nÞ!ðl3 − l1 −m2 þ nÞ!; ðB1Þ

with

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Π3

i¼1ð2p − 2liÞ!
ð2pþ 1Þ!

�s
δm1þm2−m3

ðB2Þ

and 2p ¼ l1 þ l2 þ l3. The sum goes over positive values
of n until the denominator of the expression becomes
negative. The symbols are nonzero only, when

m1þm2þm3 ¼ 0; and jla − lbj≤ lc ≤ jlaþ lbj; ðB3Þ

with a; b; c ¼ f1; 2; 3g. These two relations allow one to
quickly determine if the Wigner symbols are zero.
Our aim is to evaluate the Fourier transforms VðmlÞ

ij ðkrÞ
defined by Eq. (21) for the three cases VðmlÞ ¼
fCðmlÞ;PðmlÞ;BðmlÞg. We begin with the C function, writing
it in spherical coordinates,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
CðmlÞ
j ¼

�
êðϑÞj

1

sin ϑ
∂ϕ − êðϕÞj ∂ϑ

�
YðmÞ
ðlÞ : ðB4Þ

In order to unclutter the notation, we will omit the
parentheses around m and l in the spherical harmonics
Ym
l , which we define as

Ym
l ðϑ;ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcosϑÞeimϕ: ðB5Þ

We can write this vector in Cartesian components as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
CðmlÞ
j ¼ að0Þj Ym

l þ aðþÞ
j Ymþ1

l þ að−Þj Ym−1
l ; ðB6Þ

where að0Þj , aðþÞ
j , and að−Þj are combinations of the Cartesian

unit vectors given by

að0Þj ¼ −imêðzÞj ; ðB7Þ

að�Þ
j ¼ i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl ∓ mÞðl�mþ 1Þ

p
ðêðxÞj ∓ iêðyÞj Þ: ðB8Þ

Assuming a general momentum vector,

ki ¼ ωðsinψ cos χ; sinψ sin χ; cosψÞ; ðB9Þ
weperformnext a partial-wave expansion of the exponential,

e−ikr ¼
X∞
l1¼0

Xl1
m1¼−l1

ð2l1 þ 1Þi−l1jl1ðkrÞYm1

l1
ðϑ;ϕÞY�m1

l1
ðψ ; χÞ;

ðB10Þ

and inserting (B6) and (B10) into C̃ðlmÞ
ij ðkrÞ, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
C̃ðmlÞ
jk ðkrÞ

¼
X∞
l1¼0

Xl1
m1¼−l1

ð2l1 þ 1Þi−l1jl1ðkrÞ

× Y�m1

l1
ðψ ; χÞðAð0Þ

j að0Þk þ AðþÞ
j aðþÞ

k þ Að−Þ
j að−Þk Þ ðB11Þ

with

AðnÞ
j ¼

Z
2π

0

Z
π

0

êðrÞα Y�m1

l1
ðϑ;ϕÞYmþn

l ðψ ; χÞ sinϑdϑdϕ:

ðB12Þ

Using the identity

Z
2π

0

dϕ
Z

π

0

dϑ sinϑYm1

l1
Ym2

l2
Ym3

l3

¼ 4π

�
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
ðB13Þ

in (B11), we arrive at the result

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
C̃ðmlÞ
jk ¼ 4π

X∞
l1¼0

Xl1
m1¼−l1

ð2l1 þ 1Þi−l1jl1ðkrÞ

× Y�m1

l1
ðψ ; χÞ

�
l1 l2 1

0 0 0

� X2
k¼−2

AðkÞTðkÞ

ðB14Þ

with

Tð0Þ ¼

0
B@

0 0 0

0 0 0

0 0 i

1
CA; Tð�1Þ ¼ 1

2

0
B@

0 0 ∓ i

0 0 1

∓ i 1 0

1
CA;

Tð�2Þ ¼ ∓
0
B@

∓ i 1 0

1 �i 0

0 0 0

1
CA; ðB15Þ
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and

Að0Þ ¼ −m
�

l1 l 1

m1 m 0

�
−

1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p �
l1 l 1

m1 m − 1 1

�
ðB16aÞ

þ 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmþ 1Þ

p �
l1 l 1

m1 mþ 1 −1

�
; ðB16bÞ

Að�1Þ ¼ −
ffiffiffi
2

p
m
�

l1 l 1

m1 m ∓ 1 ∓ 1

�
∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl�mÞðl ∓ mþ 1Þ
p �

l1 l 1

m1 m ∓ 1 0

�
; ðB16cÞ

Að�2Þ ¼ 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðl ∓ mþ 1Þ

p �
l1 l 1

m1 m ∓ 1 −1

�
: ðB16dÞ

Next, we consider the case of the P integral. Using that in spherical coordinates PðmlÞ
j ¼ êðrÞj Ym

l ðϑ;ϕÞ, we apply again the
partial-wave expansion (B10). The resulting product êrjê

r
k can be written in terms of Cartesian unit coordinates and the

associated Legendre polynomial as

êðrÞj êðrÞk ¼ 1

3
δjk þ

1

3
Y0
2ðêðxÞj êðxÞk − êðyÞj êðyÞk þ 2êðzÞj êðzÞk Þ þ 1ffiffiffi

6
p Y1

2ðêðzÞj êð−Þk þ êðzÞk êð−Þj Þ

−
1ffiffiffi
6

p Y−1
2 ðêðzÞj êðþÞ

k þ êðzÞk êðþÞ
j Þ þ 1ffiffiffi

6
p Y2

2ê
ð−Þ
j êð−Þk þ 1ffiffiffi

6
p Y−2

2 êðþÞ
j êðþÞ

k ; ðB17Þ

where we have defined êð�Þ ¼ êðxÞ � iêðyÞ. Then, we employ the identity (B13) to obtain

P̃ðlmÞ
ij ðkrÞ ¼ 4π

X∞
l1¼0

Xl1
m1¼−l1

ð2l1 þ 1Þi−l1jl1ðkrÞY�m1

l1
ðψ ; χÞ

�
l1 l 2

0 0 0

� X2
j¼−2

ΓðjÞ
ij

�
l1 l 2

m1 m j

�
; ðB18Þ

where the ΓðjÞ symbols are defined as combinations of the Cartesian unit vectors,

Γð0Þ
jk ¼ 1

3
ð−êðxÞj êðxÞk − êðyÞj êðyÞk þ 2êðzÞj êðzÞk Þ; Γð�1Þ

jk ¼ 1ffiffiffi
6

p ðêðzÞj êð∓Þ
k þ êð∓Þ

j êðzÞk Þ; Γð�2Þ
jk ¼ 1ffiffiffi

6
p êð∓Þ

j êð∓Þ
k : ðB19Þ

Finally, we have to evaluate the Fourier transform of the vector surface harmonics B. Inserting into

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
BðmlÞ
j ¼ ϵikjê

ðrÞ
i CðmlÞ

k ðB20Þ

the expansion (B6) for CðmlÞ
k , we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
êðrÞi BðmlÞ

j ¼ êðrÞi ðϵabjêðrÞa að0Þb ÞYm
l þ êðrÞi ðϵabjêðrÞa aðþÞ

b ÞYmþ1
l þ êðrÞi ðϵabjêðrÞa að−Þb ÞYm−1

l : ðB21Þ

Next, we represent the products êðrÞi ϵabjê
ðrÞ
a að0;�Þ

b by the Γ symbols defined previously, dropping all antisymmetric parts,
obtaining

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
B̃ðmlÞ
jk ðkrÞ ¼ 4π

X∞
l1¼0

Xl1
m1¼−l1

ð2l1 þ 1Þi−l1jl1ðkrÞY�m1

l1
ðψ ; χÞ

�
l1 l 0

0 0 0

� X2
j¼−2

DðjÞΓðjÞ
ik ; ðB22Þ
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where the DðjÞ are given by

Dð0Þ ¼−
3

2
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−mÞðlþmþ1Þ

p �
l1 l 2

m1 mþ1 −1

�
−

3

2
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl−mþ 1Þ

p �
l1 l 2

m1 m−1 1

�
;

Dð�1Þ ¼−
m
2

�
l1 l 2

m1 m �1

�
−

3

2
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl∓mÞðl�mþ1Þ

p �
l1 l 2

m1 m�1 0

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðl∓mþ 1Þ

p �
l1 l 2

m1 m∓ 1 �2

�
;

Dð�2Þ ¼∓m

�
l1 l 2

m1 m �2

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl∓mÞðl�mþ 1Þ

p �
l1 l 2

m1 m� 1 �1

�
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