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The boundary-to-bound (B2B) correspondence, which connects orbital and radiative observables
between bound and unbound orbits, has recently been introduced and demonstrated in the perturbative
regime. We produce a large number of numerical relativity simulations of bound and unbound encounters
between two nonspinning equal mass black holes in order to test this correspondence in the nonperturbative
regime. We focus on testing the radiated energy and angular momentum, as well as orbital parameters
such as the period and periastron advance. We find that, across a wide range of eccentricities, the B2B
relationships do not hold in the nonperturbative regime, thereby placing a clear limit on the applicability of
these relationships. We also approximate the separatrix between bound and unbound relativistic encounters
as a function of their initial energies and angular momenta.
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I. INTRODUCTION

The full exploitation of the rich astrophysical informa-
tion carried by gravitational waves requires the generation
of accurate gravitational waveforms that can be used to
study observed signals. For quasicircular sources, early
inspiral orbits can be calculated perturbatively using post-
Newtonian (PN) [1–4] or effective one-body (EOB) meth-
ods [5–10], while numerical relativity (NR) provides an
effective method for accurately simulating the late inspiral,
merger, and ringdown of two black holes. However, for
systems with larger eccentricities, a single orbit might
require NR to accurately model the periastron passage, but
might also have a long orbital time scale that would make
NR too computationally expensive to be practical. Also, the
large number of waveforms needed to accurately study the
entire parameter space means that NR is too computation-
ally expensive to be used on its own. Semianalytical
approximations like the EOB family of approximants
[11–14] address this issue by using perturbative expansions
in the weak field regions and calibrating to NR simulations
to better approximate the strong-field interactions.
However, simulating only part of a bound orbit in NR
presents technical challenges due to the influence of initial
data and the difficulty of characterizing orbital parameters.
Until now, only sources with low or no eccentricity have

been observed, so the primary focus of gravitational-wave
modelers has been to approximate that region of parameter
space as accurately as possible. However, future upgrades
to ground-based interferometers and planned space-based

observatories like LISA [15–17] will make it possible to
observe gravitational-wave signals from highly eccentric or
even hyperbolic systems [18–25]. Therefore, future gravi-
tational waveform models must be able to accurately
approximate systems with arbitrary eccentricities, so mod-
elers must overcome the challenges of approximating
bound relativistic encounters with large eccentricities and
long orbital periods. Analytical work on hyperbolic
encounters often employs the post-Minkowskian (PM)
approximation [26–30], which does not require the small
velocity assumption used in the PN approximation. A
variety of approaches are used to obtain contributions to
the PM expansions such as scattering amplitudes [31–36],
effective field theory [37–42], and a worldline field theory
approach [43–46]. While there has been significant numeri-
cal work done on bound black hole orbits, much less
work has been done on unbound orbits. In [47,48], the
authors studied the spin up of black holes caused by
the interaction of two black holes on unbound orbits.
The authors of [49–53] primarily focused on comparing
numerically obtained scattering angles and potentials to
analytical estimates.
Recently, a series of papers [54–56] introduced the

‘boundary-to-bound” (B2B) correspondence (B2B) to
connect observables between bound and unbound orbits
in the perturbative regime, including most of the available
conservative contributions and leading-order radiative
effects. These results provide a compelling new avenue
to study bound orbits; since hyperbolic encounters in NR
are less affected by initial data transients and easier to
characterize in terms of orbital parameters than single
periastron passages of a bound system, B2B raises the*Contact author: anuj.kankani@mail.wvu.edu
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prospect of using relatively inexpensive NR simulations of
scattering encounters to provide strong-field information
for the relativistic portion of highly eccentric bound
systems. Given the computational expense of simulating
highly eccentric bound systems for entire orbits, most of
which occur in the weak-field regime, B2B could poten-
tially provide a more efficient means for using NR to
inform waveform models.
However, as noted by the B2B authors, limitations to the

current approach exist, in particular, the absence of higher-
order radiative corrections and differences in the behavior
of nonlinear tail effects on either side of the correspon-
dence, which may limit the applicability of the B2B
relationships in full general relativity (GR). Nevertheless,
as was shown in [56], the incorporation of a large
eccentricity limit allows for the inclusion of additional
non-local-in-time contributions, raising the possibility of
the B2B relationships being applicable for orbits with non-
negligible eccentricities.
Furthermore, in [51,52] the authors used NR results to

extract the EOB radial potential using the methods of [54],
and found that the result closely matched the fourth post-
Minkowskian (4PM) radial potential that incorporated
radiative effects. While they only studied the behavior of
unbound systems, their work suggested the possibility that
not only conservative contributions, but also dissipative
ones, might possibly map similarly from the unbound to the
bound regions of parameter space.
In this paper we test some of the key observables in

the B2B dictionary for the case of two equal mass
nonspinning black holes. In particular, we test whether
NR data for unbound systems can be used to obtain
both radiative quantities and orbital characteristics for
bound binaries.

A. Notation

Throughout this work, we use E and J to refer to the
ADM energy and angular momentum of the system. Given
the individual masses of the two black holes, m1 and m2,
the total mass, reduced mass, and the symmetric mass ratio
are defined as

M ¼ m1 þm2; ð1Þ

μ ¼ m1m2

m1 þm2

; ð2Þ

ν ¼ m1m2

ðm1 þm2Þ2
: ð3Þ

The reduced binding energy and angular momentum are
defined as

ε ¼ E −M
νM

; ð4Þ

j ¼ J
GMμ

: ð5Þ

Finally, we note that the Newtonian eccentricity associated
with a conservative system

e2N ¼ 1þ 2εj2 ð6Þ

is distinct from the eccentricity e that we use to characterize
our fully relativistic bound orbits.
While we test both conservative and dissipative contri-

butions to our observables, unless explicitly written, our
analytical information will include only the conservative
contributions. Therefore, if we refer to the 4PM order
scattering angle, we are referring only to the conservative
contribution. If we use both the conservative and dissipative
contributions, we will explicitly make that clear. For all of
our numerical results, our E and J values refer to the initial
ADM energy and ADM angular momentum of the system.
When comparing to analytical results, other works have
used the average of the initial and final values, so care
should be taken when comparing to previous works.

II. NUMERICAL METHODS

Simulations were performed using the open-source
Einstein Toolkit [57–61] and our initial data and evolution
generally follows that of [47], although our specific
adaptive mesh refinement (AMR) grid setup and gravita-
tional wave extraction radii vary. We use the open source
software Kuibit [62] for post processing our simulations.
For the unbound runs, the black holes start on the x axis at
�30M. The AMR grid has a half side length of 500M and
consists of eight levels of refinement for a minimum
refinement of 5M

256
, with reflection symmetry employed

across the x − y plane. No significant difference was found
in runs with additional refinement or larger initial separa-
tion, and we find that an initial separation of 60M is
sufficient to determine an incoming track before the black
holes begin to strongly interact. We replicated a selection of
runs from [49] and found our results for the scattering angle
were consistent to within our stated uncertainties.
For the bound runs, we quantify our eccentricity as

in [63]; we modify the tangential momentum corresponding
to a quasicircular momentum pt;qc by a factor (1 − α), i.e.,
pt ¼ pt;qcð1 − αÞ, and then we define our eccentricity as
e ¼ 2α − α2. It is important to note that all our bound orbits
do not start at the same apocenter, so care must be taken
when comparing runs with different initial eccentricities.
Figures 1–3 show select examples of bound and unbound
orbits.

A. Radiated quantities

The accurate extraction of radiated energy and angular
momentum from numerical simulations is essential for the
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work presented here, and significant testing was undertaken
to ensure the accuracy of our radiated quantities. Because
the waveforms analyzed include those from low eccentric-
ity bound orbits, whose waveforms appear qualitatively
similar to traditional quasicircular orbits, and those from
both highly eccentric and unbound orbits, whose wave-
forms consist of a single or a series of isolated pulses, we
use both fixed frequency and time domain integration.
We extract waveforms at 140M for initially unbound orbits
and at 200M for bound orbits. We extrapolate our wave-
forms to infinity using the method presented in [64]. For
unbound orbits, there is no physically motivated “cutoff”
frequency that would be required for fixed frequency
integration. Therefore, as was done in [49,50], we resort
to time domain integration.

For the time domain integration, we first remove the junk
radiation, which is temporally separated from the physical
radiation for our unbound cases. Then, after each integration,
we remove a global linear fit for both the real and imaginary
components.We do this for all harmonics up to and including
the l ¼ 4modes.We find that for even higher-ordermodes, a
significant drift remains in the time domain integration even
after removing a global linear fit. Complications also arise
when we consider orbits that are only weakly interacting.
These typically correspond to orbits with high initial angular
momentum J ≳ 1.4M2. In this weekly interacting regime,
there still remain large unphysical drifts in the waveforms
after our time domain integration procedure, especially for
higher l modes, and we see significant differences between
time and frequency domain integrations. Comparison with
[49] shows that our simulations are consistent with the lower
impact parameter simulations, but we see small but non-
negligible deviations for simulations J ≳ 1.4M2. Therefore,
for our radiative observables we only use runs with
J < 1.4M2, so that the radiated quantities are largely
unaffected by the integration choice.We place a conservative
error estimate of 5% on our radiated quantities, based on
comparisons of time and frequency domain integrations,
comparisons with previously reported values, and compar-
isons with including both diagonal, l ¼ jmj, modes and off
diagonal, l ≠ jmj, modes. Because the physical signal
present in off diagonal modes can often be hidden under a
significant amount of unphysical noise, we only compare the
l ¼ jmjmodeswhen comparing our results to those available
through public waveform catalogs.
For all bound waveforms, we use fixed frequency inte-

gration with a lower cutoff frequency determined from the
corresponding quasicircular orbit [65–67].We compared our
results to those obtained from the time integration method
described above aswell as a full frequency integration,where
no cutoff frequency was applied, and found negligible
differences for medium and high eccentricity orbits, but

FIG. 1. The puncture tracks for a bound orbit of two black holes
starting at 60M separation with e ¼ 0.75. Note that the aspect
ratio of the figure is roughly 3∶1.

FIG. 2. A selection of initially unbound simulations with
Ei ≈ 1.01525 and varying Ji. Included are simulations that,
while initially on unbound orbits, become bound due to the
emission of radiation.

FIG. 3. A selection of scattering simulations with Ei ≈ 1.0235
and varying Ji. All simulations remain unbound after interacting.
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did find small differences for loweccentricities. Furthermore,
because our low eccentricity runs often require dozens of
orbits beforemerger and our runs starting at large separations
take significant amounts of time to complete even one orbit,
we do not run all of our simulations until merger sincewe are
only interested in the first orbit. To account for this, we add a
windowing function to our waveforms to ensure they
smoothly go to zero at both ends. This adds nonphysical
features to the end of ourwaveforms, but this is isolated to the
portion of the waveform corresponding to an incomplete
orbit, which we do not use. Lastly, we also see the effect of
junk radiation being reflected by the outer boundary in our
waveforms. This is mainly present in our low eccentricity
orbits, and we apply a filter to smooth the data and remove
noise for those cases. We extensively tested different filter
and windowing parameters, with both time and frequency
domain integration, and found that the differences are,

as expected, largest for the low eccentricity waveforms,
but even then are negligibly small.We also compared a subset
of low eccentricity runs to ones included in theRITwaveform
catalog [63] and found differences at the sub percent level for
the l ¼ jmj modes, with the differences being largely due to
the presence and handling of the initial burst of junk radiation
in the respective waveforms. Based on our testing, and to
account for the various complicating factors, we place a
conservative error estimate of 5% on our radiated quantities
for bound orbits. Tables I–III list the initial parameters and
the derived outputs of each run.

B. Scattering angle

To compute the scattering angle of each simulation, we
follow a procedure similar to [49]. First, we convert the
Cartesian coordinates of the black hole, provided through

TABLE I. List of unbound simulations used in this work. Provided are the initial energy, angular momentum, linear momentum,
radiated energy, radiated angular momentum, periastron distance, scattering angle, and our error estimate for the scattering angle. Also
included are simulations whose end state could not be determined.

E J px py Type ΔE ΔJ rmin½M� χ [deg] χerror [deg]

1.08824 1.35 0.22387 0.02250 Scattering 7.79017 × 10−2 4.53266 × 10−1 2.154 17.303 0.305
1.06236 1.25 0.18885 0.02083 Scattering 5.68047 × 10−2 3.59609 × 10−1 2.382 9.574 0.362
1.05569 1.225 0.17884 0.02042 Scattering 5.00994 × 10−2 3.28562 × 10−1 2.487 357.418 0.383
1.05898 1.245 0.18382 0.02083 Scattering 4.48590 × 10−2 3.04176 × 10−1 2.677 303.843 0.375
1.03836 1.152 0.15000 0.01920 Unknown 3.75180 × 10−2 2.67565 × 10−2 2.692 16.732 0.453
1.03237 1.125 0.13874 0.01875 Unknown 3.37486 × 10−2 2.48708 × 10−1 2.762 � � � � � �
1.04335 1.18 0.15879 0.01967 Scattering 3.69437 × 10−2 2.63980 × 10−1 2.768 327.467 0.430
1.05248 1.225 0.17380 0.02042 Scattering 3.95140 × 10−2 2.76891 × 10−1 2.790 299.096 0.396
1.03632 1.152 0.14625 0.01920 Scattering 3.10330 × 10−2 2.33308 × 10−1 2.922 322.505 0.467
1.07667 1.35 0.20879 0.02250 Scattering 4.55816 × 10−2 3.01829 × 10−1 3.041 244.079 0.338
1.02504 1.1 0.12365 0.01833 Unknown 2.44749 × 10−2 1.98435 × 10−1 3.083 351.854 0.554
1.03935 1.175 0.15174 0.01958 Scattering 2.86661 × 10−2 2.19993 × 10−1 3.100 286.939 0.453
1.03498 1.16 0.14371 0.01933 Scattering 2.46430 × 10−2 1.97821 × 10−1 3.270 278.779 0.478
1.02207 1.1 0.11697 0.01833 Scattering 1.79214 × 10−2 1.59227 × 10−1 3.497 296.827 0.595
1.04631 1.25 0.16368 0.02083 Scattering 2.13688 × 10−2 1.81150 × 10−1 3.590 213.149 0.433
1.01522 1.07 0.10003 0.01783 Scattering 1.36895 × 10−2 1.32982 × 10−1 3.746 306.479 0.716
1.01519 1.07 0.09997 0.01783 Scattering 1.36546 × 10−2 1.32748 × 10−1 3.749 306.208 0.718
1.02504 1.13 0.12357 0.01883 Scattering 1.56213 × 10−2 1.44677 × 10−1 3.839 256.458 0.565
1.01107 1.05 0.08828 0.01750 Unknown 1.15591 × 10−2 1.19197 × 10−1 3.888 � � � � � �
1.03769 1.25 0.14855 0.02083 Scattering 1.28360 × 10−2 1.28834 × 10−1 3.993 183.980 0.487
1.01522 1.08 0.10000 0.01800 Scattering 1.17378 × 10−2 1.19486 × 10−1 4.013 279.411 0.722
1.01107 1.055 0.08827 0.01758 Unknown 1.06438 × 10−2 1.12503 × 10−1 4.025 309.859 1.547
1.01811 1.1 0.10745 0.01833 Scattering 1.20071 × 10−2 1.20529 × 10−1 4.085 261.693 0.666
1.01107 1.06 0.08825 0.01767 Scattering 9.83967 × 10−3 1.06558 × 10−1 4.161 294.395 1.548
1.01524 1.1 0.10000 0.01833 Scattering 8.97745 × 10−3 9.99228 × 10−2 4.366 245.710 0.732
1.00904 1.055 0.08188 0.01758 Scattering 8.27826 × 10−3 9.50840 × 10−2 4.376 292.455 1.756
1.01107 1.07 0.08822 0.01783 Scattering 8.49335 × 10−3 9.64618 × 10−2 4.426 272.536 1.567
1.00790 1.05 0.07806 0.01750 Unknown 7.72021 × 10−3 9.09129 × 10−2 4.445 297.853 1.907
1.02352 1.2 0.12000 0.02000 Scattering 6.68706 × 10−3 8.49546 × 10−2 4.535 181.219 0.613
1.01526 1.12 0.10000 0.01867 Scattering 7.10503 × 10−3 8.61423 × 10−2 4.554 222.469 0.741
1.00790 1.055 0.07804 0.01758 Scattering 7.16481 × 10−3 8.64301 × 10−2 4.579 286.691 1.915

(Table continued)
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the AHFinderDirect thorn [59], to polar coordinates (r;ϕ).
We then define an incoming and outgoing track for which
we define an incoming and outgoing angle. For the
incoming track we choose the portion of the simulation

in which the black holes travel from r ¼ 55M to 25M. For
the outgoing track we start at 25M and choose the largest
final separation such that 100M ≥ rf ≥ 60M. These val-
ues were chosen such that all simulations reach a separation

TABLE I. (Continued)

E J px py Type ΔE ΔJ rmin½M� χ [deg] χerror [deg]

1.00702 1.05 0.07500 0.01750 Unknown 6.89075 × 10−3 8.43555 × 10−2 4.603 295.696 2.051
1.05361 1.5 0.17500 0.02500 Scattering 6.01727 × 10−3 8.24077 × 10−2 4.700 116.676 0.455
1.01529 1.14 0.10000 0.01900 Scattering 5.75732 × 10−3 7.55890 × 10−2 4.741 205.302 0.750
1.01212 1.11 0.09122 0.01850 Scattering 5.78263 × 10−3 7.53606 × 10−2 4.781 224.011 0.836
1.00597 1.05 0.07116 0.01750 Unknown 6.00006 × 10−3 7.70596 × 10−2 4.794 293.316 2.262

TABLE II. Continued list of unbound simulations.

E J px py Type ΔE ΔJ rmin½M� χ [deg] χerror [deg]

1.00716 1.06 0.07546 0.01767 Scattering 6.07676 × 10−3 7.75311 × 10−2 4.828 275.236 2.042
1.01530 1.152 0.10000 0.01920 Scattering 5.11406 × 10−3 7.03789 × 10−2 4.854 196.649 0.756
1.01531 1.16 0.10000 0.01933 Scattering 4.74490 × 10−3 6.71961 × 10−2 4.929 191.322 0.761
1.00716 1.07 0.07542 0.01783 Scattering 5.31145 × 10−3 7.09901 × 10−2 4.951 260.153 2.066
1.02352 1.26 0.11983 0.02100 Scattering 4.17009 × 10−3 6.14724 × 10−2 5.019 152.558 0.634
1.01533 1.18 0.10000 0.01967 Scattering 4.01742 × 10−3 6.03967 × 10−2 5.116 179.713 0.768
1.01536 1.2 0.10000 0.02000 Scattering 3.36217 × 10−3 5.42923 × 10−2 5.304 169.511 0.777
1.01536 1.2 0.10000 0.02000 Scattering 3.41396 × 10−3 5.44128 × 10−2 5.304 169.910 0.776
1.00387 1.06 0.06276 0.01767 Unknown 3.93181 × 10−3 5.85889 × 10−2 5.324 277.782 2.902
1.00387 1.07 0.06271 0.01783 Scattering 3.45636 × 10−3 5.39149 × 10−2 5.466 264.498 2.932
1.00457 1.08 0.06557 0.01800 Scattering 3.35957 × 10−3 5.29194 × 10−2 5.480 249.814 2.712
1.01538 1.22 0.10000 0.02033 Scattering 2.93103 × 10−3 4.92161 × 10−2 5.492 161.468 0.785
1.02352 1.32 0.11965 0.02200 Scattering 2.75504 × 10−3 4.38003 × 10−2 5.507 133.717 0.655
1.03819 1.5 0.14882 0.02500 Scattering 2.72415 × 10−3 4.41695 × 10−2 5.616 105.391 0.546
1.03501 1.5 0.14287 0.02500 Scattering 2.27897 × 10−3 4.03050 × 10−2 5.858 103.717 0.570
1.02352 1.38 0.11946 0.02300 Scattering 1.96632 × 10−3 3.81475 × 10−2 6.000 119.804 0.669
1.00287 1.1 0.05818 0.01833 Scattering 2.11608 × 10−3 3.95836 × 10−2 6.092 241.420 3.488
1.03195 1.5 0.13692 0.02500 Scattering 1.89240 × 10−3 3.51536 × 10−2 6.117 102.382 0.597
1.02902 1.5 0.13096 0.02500 Scattering 1.56783 × 10−3 3.05968 × 10−2 6.392 101.379 0.627
1.02352 1.44 0.11926 0.02400 Scattering 1.42527 × 10−3 2.88249 × 10−2 6.497 109.057 0.684
1.00719 1.2 0.07500 0.02000 Scattering 1.44896 × 10−3 3.16453 × 10−2 6.521 174.055 2.306
1.02621 1.5 0.12501 0.02500 Scattering 1.27425 × 10−3 2.47545 × 10−2 6.685 100.764 0.658
1.02620 1.5 0.12500 0.02500 Scattering 1.23879 × 10−3 2.25880 × 10−2 6.686 100.806 0.658
1.00597 1.2 0.07050 0.02000 Scattering 1.24773 × 10−3 2.87740 × 10−2 6.777 177.073 2.584
1.00127 1.152 0.05000 0.01920 Scattering 9.79912 × 10−4 2.46117 × 10−2 7.316 226.853 4.950
1.03934 1.8 0.15000 0.03000 Scattering 9.18176 × 10−4 1.81959 × 10−2 7.545 73.300 0.576
1.01623 1.5 0.10120 0.02500 Scattering 5.75278 × 10−4 1.39734 × 10−2 8.086 102.838 1.681
1.00133 1.2 0.05000 0.02000 Scattering 6.42959 × 10−4 1.90109 × 10−2 8.088 207.658 5.130
1.01212 1.5 0.08965 0.02500 Scattering 3.94042 × 10−4 1.16332 × 10−2 8.932 105.838 2.060
1.02352 1.74 0.11815 0.02900 Scattering 3.64771 × 10−4 7.92303 × 10−3 9.046 78.241 1.490
1.02352 1.8 0.11790 0.03000 Scattering 3.24678 × 10−4 8.44055 × 10−3 9.566 73.381 1.543
1.00762 1.5 0.07500 0.02500 Scattering 2.34247 × 10−4 9.00104 × 10−3 10.220 113.201 2.812
1.00597 1.5 0.06889 0.02500 Scattering 1.86569 × 10−4 7.78071 × 10−3 10.846 118.307 3.285
1.01536 1.8 0.09747 0.03000 Scattering 1.52700 × 10−4 4.69860 × 10−3 11.344 77.747 2.150
1.02353 2.04 0.11681 0.03400 Scattering 1.55428 × 10−4 4.51851 × 10−3 11.674 61.077 1.819
1.00176 1.5 0.05000 0.02500 Scattering 8.86609 × 10−5 4.89418 × 10−3 13.206 146.075 6.323
1.00597 1.8 0.06686 0.03000 Scattering 4.59814 × 10−5 2.50142 × 10−3 15.288 92.987 4.440
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of at least 60M, but we are able to use additional data from
certain simulations while staying in the same refinement
zone. For each track we fit the angle to a polynomial of
degree n in 1=r, where n ≤ 5, and extrapolate to infinity.
We then choose the lowest n such that the sum of the
squares of the residuals is less than 10−5. We calculate
an incoming and outgoing angle and define the final
scattering angle as

χ ¼ χin − χout − π: ð7Þ

Since we can also define an incoming angle using the
momenta defined in the initial conditions, we define the
error in our scattering angle as the difference between
the angle determined for the incoming track through the
fitting procedure and the initial momentum. For the vast
majority of simulations, these two methods agree very
well. However, for the weakest interacting simulations,
we start to see deviations between these two methods,
with the largest deviation being around six degrees. For
the scattering angle we do not place any restrictions on
the maximum initial angular momentum like we do for
our radiated quantities.

C. Dynamical invariants

The two dynamical invariants we obtain from numerical
simulations are the apocenter period and the periastron
advance. The apocenter period is relatively straightforward
to obtain; we simply identify the times of maximum radii in
our orbits and find the difference in the times. We note that
while the value of the maximum radii is gauge dependent,
the times at which they occur is relatively insensitive to
gauge choices. For the periastron advance, we convert our
separation vector into polar coordinates, and compute the
change in the angle at our apocenter times.

III. THE END STATE OF INITIALLY
UNBOUND ORBITS

Since the orbital energy and angular momentum
of a system is not a conserved quantity, but decreases over
time due to the emission of gravitational waves, a system
that is initially on an unbound trajectory may emit enough
radiation to become bound. Previous works [51,52,68–70]
have studied the boundary between orbits that remain
unbound and those that become bound. The authors of
[68] noted the presence of a unique class of orbits near the
boundary that exhibit zoom-whirl behavior. These type of
orbits are a critical phenomenon that are exponentially
sensitive to the initial conditions. Therefore, obtaining
zoom-whirl behavior amounts to fine-tuning initial con-
ditions near the boundary of scattering and nonscattering
orbits. While previous works have studied the boundary
at specific angular momentum or energies, to the author’s
knowledge no work has produced an approximate

boundary across a wide range of initial energies and angular
momenta. Figure 4 shows a selection of orbits, all of which
start on unbound orbits, that either remain unbound or
become bound due to the emission of radiation. We
determine whether an orbit is unbound or bound based
on whether its binding energy ε remains greater than zero
after the two black holes separate. It is important to note
that a visual check is not sufficient as there remain orbits
that appear to remain unbound, but are in fact bound with
very long orbital periods. Therefore, the radiation provides
a more rigorous approach to classifying the end state of
initially unbound orbits. Using our unbound and unknown
data points, we then interpolate to the ε ¼ 0 surface and fit
a function of the form of Eq. (8) to the result. Through this
procedure, we obtain an approximate separatrix of the form

JðEÞε¼0 ≈
aðE=MÞ2 þ bE=M þ c

E=M − 1
M2;

a ¼ 3.8733;

b ¼ −6.7554;

c ¼ 2.8823: ð8Þ

As shown in Fig. 4, this equation splits through the
unbound and bound data points at lower initial E and J
values, but slightly deviates into the nonscattering space at

FIG. 4. Top: a selection of initially unbound runs with varying
end states. The dashed line represents the approximate separatrix
between scattering and nonscattering orbits obtained by inter-
polating to the ε ¼ 0 surface and fitting the result to the form
given in Eq. (8). Bottom: ratio of initial angular momentum of the
run to the angular momentum predicted by the fit for select runs,
with the dashed line indicating an equal ratio.
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higher energies and as the initial energy approaches the
parabolic limit. Nonetheless, for future work studying
the boundary between scattering and nonscattering orbits,
Eq. (8) should decrease the initial guesswork needed to
approach the boundary. Equation (8) can also be used in
resummation procedures for the scattering angle such as the
one proposed in [51,54], and we do so in Sec. IV B.
Studying the behavior of the separatrix as a function of

energy, we can see that at any given angular momentum,
there are two boundary points discriminating scattering
from nonscattering orbits. This is due to the fact that, at a
given angular momentum, the radiated energy increases
nonlinearly as a function of the initial energy. Let us
consider the example of different orbits all at the same
initial angular momentum J0. The first type of orbit has an
initial binding energy only slightly above that needed to be
on an initially unbound orbit. The system radiates enough
energy that the initially unbound system becomes bound.
As we increase the initial energy of the orbit, this increase
outpaces the resulting increase in radiated energy. The
second type of orbit has enough initial energy that it is able
to remain unbound. As we continue to increase the initial
energy of the orbits beyond this point, the increase in
radiated energy begins to outpace the increase in initial
energy. The third type of orbit, with still higher initial
energy, now radiates enough energy that the system
becomes bound once again. Increasing the energy beyond
this point simply decreases the time between the initial
interaction and the eventual merger. We also note that as we
go to higher initial E and J values, the parameter space
of initial energies and angular momentum values allowing
for large bound orbits becomes smaller and the transition
from scattering orbits to a delayed merger to a prompt
merger becomes much smaller.

IV. THE BOUNDARY TO BOUND
STATE RELATIONS

Here, we present the results of testing the radiative and
orbital relationships presented in the B2B papers [54–56].
We focus on the energy and angular momentum radiated
during one bound orbit as well as the period and periastron
advance. For simplicity, we only use the first orbit from our
bound runs.
The B2B relations in the conservative sector rely on the

knowledge that the distance of closest approach for
an unbound orbit, r̃−, can be linked to the apocenter, rþ,
and pericenter, r−, of a bound orbit through analytic
continuation. That is,

r−ðJ; εÞ ¼ r̃−ðJ; εÞ ð9Þ

rþðJ; εÞ ¼ r̃−ð−J; εÞ ð10Þ

where ε < 0 and J > 0M2.

As was shown in [56], assuming the adiabatic approxi-
mation, we can relate the energy and angular momentum
radiated in unbound orbits to those of bound orbits via
analytic continuation. An inherent limitation in connecting
bound and unbound orbits is that unbound orbits, unlike
bound orbits, have a minimum angular momentum con-
straint, as can be seen in Fig. 4. We find that when
J ≲ 1.05M2, we are unable to obtain unbound orbits
and it is unclear how well we can model bound orbits
beyond this limit. In this work we choose to mostly limit
our bound orbits to J ≥ M2, with two exceptions where we
go slightly below this limit for orbits starting at 15M
separation. Because of this limitation, we are unable to test
the full range of eccentricities starting at one separation.
Therefore, we adopt various starting separations for our
bound orbits, allowing us to test a wide array of eccen-
tricities without having to significantly lower our angular
momentum below the scattering limit.
The main purpose of this work is to determine whether

the B2B relationships hold in full GR, where both
conservative and dissipative effects are at play. In order
to test the results, we need to generate a general functional
form for the observables as a function of energy and
angular momentum. Our functional forms consist of two
parts. The first part contains analytical information that has
been shown to follow the B2B relationships. The second
part is a fitting term, calibrated to NR simulations.

A. Radiative observables

We begin by testing the equation for the energy and
angular momentum radiated in one bound orbit introduced
in [56],

ΔEellðE; JÞ ¼ ΔEhypðE; JÞ − ΔEhypðE;−JÞ ð11Þ

ΔJellðE; JÞ ¼ ΔJhypðE; JÞ þ ΔJhypðE;−JÞ ð12Þ

where E < M and J > 0M2.
For the analytical information going into our functional

form, we choose to use the 3PN conservative equations for
radiated energy and angular momentum, derived in [71,72]
and shown to follow the B2B relations in [56]. These
expressions include even and odd terms up to 1=j13. We
will refer to the 3PN conservative equations simply as 3PN.
While the B2B relations can be used in either direction,

assuming we do not include both even and odd terms in
our fitting function, here we choose to use bound data to
predict unbound data. We do so primarily for clarity of
presentation. We have tested both directions, and our
overall findings remain the same. On the bound side we
place the constraint that the radiated quantity coming
from the fit should not deviate from the simulation result
by more than 10% for any data point. A significant
problem arises from attempting to fit all of our scattering
data to a single fitting term. Additionally, while we could
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choose to make our fitting form include both odd and
even terms, for example, an even function of angular
momentum for the radiated energy, doing so would make
it difficult to assess the accuracy of the B2B relations as it
would leave a free parameter that is not constrained by
applying the B2B relations.
Because the B2B relations may only apply within a

certain region of the parameter space, we test them on
subsets of our data; we start with our scattering orbits that
have the smallest periastron distance, and successively add
in orbits with larger periastron distances in increments of
0.25M. We then repeat this procedure in the opposite
direction. The periastron distances are gauge dependent,
but since we are only interested in roughly categorizing the
“strongness” of the interactions, we can nonetheless use it
to group the unbound runs.
Noting the sign flip between the equations for radiated

energy and angular momentum, we choose an even
function for our angular momentum equation and an odd
function for our energy equation. For bound orbits with
e≳ 0.5, we find that the functional form

ΔXellNR ¼ aðe2NÞb
jc

ð13Þ

where X ≡ fE; Jg, provides excellent fits to the numerical
data on the bound side. Our choice of c ¼ 15 for the
radiated energy and c ¼ 14 for the radiated angular
momentum was chosen due to the analytical 3PN result
including terms up to j13. Similar or worse results were
found for other reasonable choices of the exponent.
Because e2N can take negative values for bound orbits,
we only allow integer values for b. We set the value of b by
directly fitting the bound data. Fitting the radiated quantity
in a bound orbit to the functional form

ΔXell ¼ ΔXell3PN þ
aðe2NÞb
jc

ð14Þ

where X ≡ fE; Jg, c≡ f15; 14g, and b ¼ 1 can effectively
describe bound orbits with eccentricity e≳ 0.5. In our
dataset, this corresponds to starting apocenters of 50, 60,
and 100 M. Incorporating our fitting term, the B2B relation
for radiated energy reads

ΔEell3PNðε; jÞ þ
aelle2N
j15

¼ ΔEhyp3PNðε; jÞ − ΔEhyp3PNðε;−jÞ þ
2ahype2N

j15
ð15Þ

where J > 0 and ε < 0. Similarly, the B2B relation for
radiated angular momentum reads

ΔJell3PNðε; jÞ þ
aelle2N
j14

¼ ΔJhyp3PNðε; jÞ þ ΔJhyp3PNðε;−jÞ þ
2ahype2N

j14
ð16Þ

where J > 0 and ε < 0. For a fitting term of the form of
Eqs. (15) and (16), the B2B relations require

ahyp ¼
aell
2

: ð17Þ

We already know that the analytical hyperbolic infor-
mation follows Eq. (11), so that

ΔEhyp3PNðJÞ − ΔEhyp3PNð−JÞ ¼ ΔEell3PNðJÞ; ð18Þ

ΔJhyp3PNðJÞ þ ΔJhyp3PNð−JÞ ¼ ΔJell3PNðJÞ: ð19Þ

Thus, by obtaining a value for aell by fitting directly to
the bound data, we can obtain the B2B predicted value
for ahyp for the respective radiated quantity. This then
gives us the B2B predicted radiated quantity for the
unbound side, which we can directly compare to our
unbound NR results.
We emphasize again that all references to 3PN in this

work refer only to the conservative contributions, and not
dissipative contributions. As a very simple first test, we can
take the best fitting elliptical coefficient aell, and apply the
B2B relationship to determine the corresponding scattering
radiative observable. For comparison purposes, we also
include a fit where we arbitrarily change the B2B relation-
ship such that ahyp ¼ aell. As can be seen in Figs. 5 and 6,

FIG. 5. Mean fractional difference from NR for the radiated
energy of unbound encounters obtained from applying the B2B
relations on bound data with e > 0.5. We compare using the B2B
relations on a 3PN estimate for radiated energy from a bound
orbit and an NR-calibrated fit to the bound data consisting of 3PN
and a fitting term. The B2B relation implies ahyp ¼ aell

2
in Eq. (15),

but we also test ahyp ¼ aell.
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while the B2B predicted value shows a clear improvement
over the 3PN analytic relationship, arbitrarily doubling the
fitting coefficient yields even better results, suggesting that
the improvement may be spurious.
It is important to note that in Figs. 5–11, each data point

corresponds to the maximum or minimum periastron
distance of the multiple unbound runs used for that data
point. For each data point, we use all of our unbound runs
that have a periastron distance smaller or larger, depending
on the figure, than the indicated rmin value on the x axis.
To further test the B2B equations, we allow ahyp to be a

free parameter and fit directly to the NR unbound results
using a form similar to Eq. (14), but using the unbound 3PN
equation for the analytical term.

ΔXhyp ¼ ΔXhyp3PN þ
aðe2NÞb
jc

ð20Þ

where X ≡ fE; Jg, c≡ f15; 14g, b ¼ 1, and a is a free
parameter. This allows us to determine what is the
theoretical best result we can expect from our chosen
fitting form.
From Figs. 7 and 8, we can see that when we fit our

functional form for the unbound side, given in Eq. (20),
directly to our unbound NR data we observe significant
improvements when we isolate either the weak or strong
field data. When instead, we first fit the bound data
and follow the B2B relations given by Eqs. (15)–(17) to
obtain the unbound result, we do obtain improvements over
using only the 3PN data, but there still remains significant
disagreement with the NR data, and the B2B result
performs significantly worse than the free parameter result.
To test low eccentricity bound orbits, we split our data

into those starting at an apocenter of 15M and 25M. In
order to allow the free parameter to be in the range of the
B2B predicted value, we change our functional form to

ΔXell ¼ ΔXell3PN þ aell
εb

jc
: ð21Þ

For bound orbits starting at 25M, we set b ¼ 4, c ¼ 17 for
the radiated energy and b ¼ 4, c ¼ 14 for the radiated
angular momentum. We follow the same strategy as was
done for the previous functional form for transferring
bound and unbound data. Figure 9 shows that when we
isolate the strong field scattering, the B2B relation for the
radiated energy not only matches closely to the best fit

FIG. 6. Same as Fig. 5, but comparing radiated angular
momentum, ΔJ.

FIG. 7. Mean fractional difference from NR for the radiated
energy and angular momentum of unbound encounters, X ¼
fΔE;ΔJg using either 3PN bound data for runs with e > 0.5,
3PN and a fitting term (“Best Fit”), or the B2B predicted unbound
result. rmin indicates the maximum periastron distance from all of
the unbound runs used for the respective data point. We start with
only the strongest interacting runs and add additional runs in
increments of 0.25M.

FIG. 8. Same as Fig. 7, except rmin now indicates the minimum
periastron distance from all of the unbound runs use for the
respective data point. We start with only the weakest interacting
runs and add additional runs in increments of 0.25M.
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value, but also provides significant improvements over
the analytical 3PN estimate. While this could suggest that
higher order PN terms can be well captured by our NR
fitting term, and that perhaps the B2B relation holds in the
dissipative sector as well, we believe this result does not
have any physical significance. This is mainly due to the
fact that we can produce many different NR fitting terms,
that give very good results when ahyp is allowed to be a free
parameter, but terrible results when we restrict ahyp
according to the B2B relations. For example, if we set
b ¼ 6 for the radiated energy, Fig. 11 shows that the free
parameter result still yields an improvement over the PN
result, but the B2B result is completely incorrect.
We therefore believe any agreement between B2B and

our simulation results are a coincidence resulting from our

specific choice of the fitting term. This stresses an impor-
tant point, that while it is likely there exists some NR fitting
term that provides results consistent with the B2B relations
for any selection of bound runs, the large number of
alternate fitting terms that do not work with the B2B
relations indicates that this is more likely to be coincidence
than of any physical significance. Replicating this pro-
cedure for bound runs starting at 15M separation also
showed no evidence of the B2B relations working in the
dissipative regime.

B. Dynamical invariants

1. Scattering angle

We now compare the scattering angle obtained from our
numerical simulations to existing analytical information in
the PN and PM expansions. We compare our numerically
obtained scattering angles to the PN expanded analytical
estimates provided in [56], which was obtained through
derivations provided in [73–79], and contains terms up to
4PN that were shown to follow the B2B relations. Since the
B2B relations face limitations when including non-local-
in-time contributions, we split the PN scattering angle into
local and nonlocal contributions. The total 4PN scattering
angle is then given by

χ

2
¼

X∞
j¼1

1

jn

�
χðnÞj;locðν∞Þ þ χðnÞj;nlocðν∞Þ

�
ð22Þ

where ν∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
. For the nonlocal contribution

we only include terms that are proportional to log ν∞.
We also consider the 4PM scattering angle, including both
conservative and radiative contributions [36,40,42,80–83].
We split the components into conservative and radiative
parts. We also include a L-resummed PM scattering angle
of the form introduced in [51,54]. The resummation

FIG. 9. Same as Fig. 7 but only using data from bound orbits
starting at 25M separation. The B2B predicted value for the
radiated angular momentum and is not visible in this plot due to
its large value.

FIG. 10. Same as Fig. 8 but only using data from bound orbits
starting at 25M separation.

FIG. 11. Same as Fig. 9 but using an alternate fitting form
where we set b ¼ 6 in Eq. (21).

ANUJ KANKANI and SEAN T. MCWILLIAMS PHYS. REV. D 110, 064033 (2024)

064033-10



procedure requires information about the boundary
between scattering and nonscattering orbits. We note that
the estimate for JðEÞ on the boundary introduced in [51]
does not work beyond a limited range of energies, so we
instead use our own estimate for the separatrix from Eq. (8).
We also tested this resummation on the scattering infor-
mation provided in [56], but found the 4PM resummed
results to be significantly more accurate. For simplicity
we will refer to the 4PN local contributions as “4PN” and
the 4PM conservative contributions as “4PM” in all our
figures. We also note that we found the radiative contri-
butions in the PM expansion and the nonlocal contribution
in the PN expansion for the scattering angle to be
negligible, and we did not include them in our figures
since the results were indistinguishable. Likewise, the
resummed conservative 4PM and resummed full 4PM
scattering angle showed negligible differences.
Figures 12–16 show comparisons with numerical results

for the scattering angle for a selection of runs at various

initial energies and angular momenta. Each data point now
corresponds to a specific unbound run, and there is no
binning process as in Figs. 5–11. The resummed 4PM
scattering angle shows a clear improvement over the PN
and PM expanded scattering angle across much of the
parameter space. However, for very low initial energies we
see a clear divergence from the numerical data. Figure 14
shows that as we lower the initial energy, the PN, PM, and
resummed PM scattering angles all diverge from the
numerical result. Furthermore, Fig. 15 shows that at low
initial angular momenta, there is still a clear difference
between the resummed PM scattering angle and the
numerical result. In the small E and small J section of
the parameter space, significant improvements in the
analytical sector are still needed, but the resummation
procedure suggested in [51,54] shows excellent agreement
with the numerical results over a large region of the
parameter space.

FIG. 12. Scattering angle comparison for a selection of runs
with J ¼ 1.07M2. The resummation technique is that of [51].

FIG. 13. Same as Fig. 12, but with J ¼ 1.2M2.

FIG. 14. Same as Fig. 12, but with J ¼ 1.5M2.

FIG. 15. Scattering angle comparison for a selection of runs
with 1.015M < E < 1.016M.
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Because of the difficulty in finding a simple NR fitting
form that can uniformly improve the scattering angle across
the parameter space, we instead opt to focus on runs with
J < 1.1M2. We do this because on the bound side, runs
with J < 1.1M2 are where we see the largest disagreements
with the PN and PM analytical information, and generally
correspond to our strongest interacting runs. It is therefore
instructive to observe whether adding an NR fit can
improve the results in this area of the parameter space.
We adopt a functional form of the type

χ ¼ χ4PM þ aEb

j6
ð23Þ

and indeed, Fig. 16 shows agreement with the numerical
results better than the resummed 4PM scattering angle.

2. Periastron advance

Similar to the relations for the radiated energy and
angular momentum, the B2B developers introduced a
nonperturbative relation between the scattering angle and
the periastron advance [54,55],

ΔΦðJ; EÞ ¼ χðJ; EÞ þ χð−J; EÞ: ð24Þ

As can be seen from Fig. 17, we see excellent agreement
using unbound 4PM data with the numerical results for the
large periastron runs. However, as the periastron distance
becomes smaller, the analytical conservative prediction
underestimates the periastron advance.
The NR fitting term, which was calibrated to unbound

runs with J < 1.1M2, does not show any agreement with
the data. This clearly suggests that any generic form, even if

it shows excellent agreement on the unbound side, does not
transfer over smoothly to the bound side. Interestingly, the
resummed 4PM scattering angle does not show the wild
fluctuations seen in the fitting term, but rather shows
improvement over the 4PM result over certain regions of
parameter space. Comparing the conservative 4PM to the
full 4PM data including radiation reaction effects, we once
again see no difference between the two.

3. Constructing the radial action

Since no simple nonperturbative equation exists for the
orbital period, we must first construct the radial action Sr,

SrðJ;εÞ¼μ

�
sgnðp̂∞Þχð1Þj ðεÞ−j

�
1þ2

π

X
n¼1

χð2nÞj ðεÞ
ð1−2nÞjð2nÞ

��
:

ð25Þ

From the radial action, we can take the appropriate
derivative to obtain our corresponding dynamical invariant.
The period is given by

T ¼ 2π

μ

∂SrðJ; εÞ
∂ε

ð26Þ

and the periastron advance is given by

Φ ¼ 2π þ ΔΦ ¼ −2π
∂SrðJ; εÞ

∂ε
: ð27Þ

Our general approach is to construct the radial action for
unbound orbits, analytically continue to the bound regime,
and differentiate with respect to energy to obtain the period.
While a nonperturbative approach for construction of
the radial action was proposed in [54], we opt to model

FIG. 16. Scattering angle comparison for a selection of runs
with J < 1.1M2. Here we also include a combination of 4PM and
an NR calibrated fit (“4PMþ fit”) using the form of Eq. (23). We
note each data point corresponds to a single unbound run; thus,
rmin is the periastron distance of that specific run.

FIG. 17. Comparisons of the periastron advance of the first
orbit of NR bound systems to those obtained by applying the B2B
relation for periastron advance, Eq. (24), to various estimates for
the scattering angle. Legend is the same as in Figs. 16 and 18.
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the radial action in terms of the expanded scattering angle.

The resummation acts as a modification of the χðnÞj terms,
and an NR fitting term is simply the addition of a term in
the summation.

4. Period

Figure 18 shows the result of applying the B2B relations
using our various expressions for the scattering angle.

Immediately we note that the 4PM, local, and NR fitting
term perform almost identically, and further investigation
reveals that the period is completely dominated by the 1PM
scattering angle. For the fitting term we also tested a

modification of the χð1Þj term, but again found the difference
between the 4PM result to be negligible. The resummation
on the other hand shows clear deviations from the numeri-
cal result and the 4PM result. This may be due to our
approach of constructing the radial action.

V. SUMMARY AND DISCUSSION

In this paper we tested the B2B relations presented
in [54–56] against numerical simulations of bound and
unbound orbits of nonspinning equal mass black holes. We
tested a wide range of eccentricities and tested relations for
both radiative (ΔE, ΔJ) and orbital observables (T;ΔΦ).
We note that we were unable to produce unbound orbits
with J ≲ 1.05M2, which results in limitations to the initial
angular momentum of the bound orbits we can use to test
the B2B map. We did not find strong evidence that the B2B
relations hold in full GR. While we did find that, with the
use of a specific fitting form, the B2B relations seemed to
hold for bound orbits starting at 25M, we do not believe
this signifies any physical meaning, but rather is a result
of our choice of fitting form. Likewise, for both the period
and periastron advance, we were unable to find any
evidence that the B2B relations [54–56] continue to hold
in full GR.

FIG. 18. Comparisons of the period of the first orbit of NR
bound orbits to those obtained by applying the B2B relation for
period, Eq. (26). on a radial action constructed from various
scattering angle estimates.

TABLE III. List of bound simulations used in this work. Provided are the initial energy, angular momentum, approximate eccentricity,
initial separation as well as the periastron distance, radiated energy, radiated angular momentum, period and periastron advance of the
first orbit.

E J Eccentricity Initial separation [M] ΔE ΔJ rmin½M� T½M� ΔΦ [deg]

0.98986 0.91178 0.319 15 4.42046 × 10−3 −7.30813 × 10−2 5.019 261.372 236.477
0.99099 0.99467 0.190 15 6.73150 × 10−4 −2.26849 × 10−2 8.500 354.730 125.441
0.99180 1.04993 0.098 15 2.94668 × 10−4 −1.40675 × 10−2 11.269 408.938 93.793
0.99222 1.07756 0.049 15 2.05630 × 10−4 −1.13047 × 10−2 12.896 436.078 78.158
0.99310 1.01531 0.437 25 9.51433 × 10−4 −2.55916 × 10−2 7.281 513.844 131.100
0.99329 1.04916 0.399 25 5.75235 × 10−4 −1.90206 × 10−2 8.413 549.141 111.921
0.99350 1.08300 0.360 25 3.63865 × 10−4 −1.46049 × 10−2 9.615 557.578 91.216
0.99371 1.11684 0.319 25 2.38527 × 10−4 −1.15290 × 10−2 10.909 590.484 80.117
0.99392 1.15069 0.277 25 1.60519 × 10−4 −9.22901 × 10−3 12.320 623.531 70.566
0.99405 1.17099 0.252 25 1.28010 × 10−4 −8.14328 × 10−3 13.231 644.063 65.438
0.99437 1.21837 0.190 25 7.78028 × 10−5 −6.18332 × 10−3 15.578 698.484 55.655
0.99461 1.25222 0.144 25 5.56534 × 10−5 −5.07545 × 10−3 17.478 741.797 49.296
0.99485 1.28606 0.097 25 4.07362 × 10−5 −4.30982 × 10−3 19.604 793.828 44.707
0.99582 1.01191 0.698 50 2.02423 × 10−3 −3.93266 × 10−2 5.993 886.563 147.130
0.99604 1.14989 0.609 50 3.43879 × 10−4 −1.32908 × 10−2 9.690 1141.453 81.924
0.99629 1.28788 0.510 50 8.93953 × 10−5 −5.92305 × 10−3 13.999 1299.656 55.464
0.99640 1.00104 0.750 60 2.75363 × 10−3 −4.77044 × 10−2 5.526 1007.803 160.989
0.99771 1.02019 0.840 100 2.60412 × 10−3 −4.56601 × 10−2 5.714 1785.656 150.046
0.99774 1.08396 0.819 100 1.09557 × 10−3 −2.65850 × 10−2 7.315 2123.016 109.200
0.99777 1.14772 0.798 100 5.41450 × 10−4 −1.73048 × 10−2 8.798 2385.281 86.021
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In [51,52], similar to the approach employed here, the
authors used an analytically informed and NR calibrated
scattering function to extract the potential from scattering
simulations. They did not attempt to transfer information
between unbound and bound orbits, but only considered
unbound systems. While in [51,52] the higher order and
radiative scattering corrections incorporated through an
NR fitting term resulted in a more accurate calculation of
the scattering potential, in this work we have shown that
generic functional forms which fit the data very well on one
side of the B2B correspondence do not transfer over
robustly to the other side.
We compared both PN and PM expanded scattering angle

expressions against a large number of unbound orbits. We
found that the resummation procedure suggested in [51,54]
shows excellent agreement with numerical results over a
large region of the parameter space. However, for unbound
orbits starting with very low initial energy and angular
momentum values, we see consistent disagreement with
analytical expressions, and in some cases a strong divergence
between numerical results and analytical estimates.
Overall, our work indicates that for strongly radiating

systems where higher-order radiative corrections become

non-negligible, the B2B relations as currently proposed in
the literature do not hold. This motivates further work to
attempt to fully map nonperturbative corrections between
bound and unbound systems. Our results therefore place
clear limits on the applicability of the B2B relations for
generating gravitational waveforms.
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