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Hairy black-holes are a unique prediction of certain theories that extend general relativity (GR) with a
scalar field. The presence of scalar hair is reflected nontrivially in the entropy of the black hole along with
any topological coupling that may be present in the action. Demanding that a system of two merging black
holes obeys the global second law of thermodynamics imposes a bound on this topological coupling
coefficient. In this work we study how this bound is pushed from its GR value by the presence of scalar hair
by considering estimates of binary black-hole merger parameters through inference studies of both mock
and real gravitational-wave (GW) events. Although the scalar charge may produce a statistically significant
deviation of the change in entropy over the GR prediction, we find no evidence of this happening in the data
from real GW events taken from GWTC-1. We also find the entropy change to be susceptible to biases
arising out of GW inferences which ends up being two orders of magnitude larger, therefore overwhelming
any change, if at all, induced by the scalar hair.
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I. INTRODUCTION

Among the most interesting predictions of general
relativity (GR) are the existence of black holes (BHs)
and gravitational waves (GWs). The recent discovery of the
latter [1] has finally provided an opportunity to directly
study black holes and their properties. One striking aspect
of black holes is how they seemingly follow the laws of
thermodynamics, made manifest by Bekenstein’s identi-
fication of the horizon entropy with its area [2]. The
possibility of testing this feature is very compelling, in
particular the second law associated to the increase of
entropy across the merger process [3]. An equally enticing
prospect of GW observations and the window they have
opened of the strong-gravity regime is the possibility of
also testing GR itself. A new laboratory of sorts. For this
purpose it is necessary to have realistic expectations as to
how deviations from GR can look like, and what kind of
phenomenology they introduce. This requires the study of
modified-gravity models and their black-hole solutions, as
well as gravitational waves generated during the merger
process. Among such models are of special interest those
that predict that black holes are different from GR, for
example by carrying a new charge, i.e. a violation of GR’s
no-hair theorem [4].

A minimal extension of GR in this direction is achieved
by scalar-tensor theories where hairy black-hole solutions
have been found to exist, that is, black holes which carry a
scalar charge, see Ref. [5] for a review. These black
holes are expected to exhibit phenomenological differences
with respect to their GR counterparts. A particularly
well-motivated extension of GR of this type is when a
nonminimal coupling between the scalar field and the
Gauss-Bonnet invariant is present, fðϕÞG, also known as
scalar-Gauss-Bonnet (sGB) gravity, where

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð1Þ

This class of theories finds several motivations and has
received a lot of attention in recent times. The associated
phenomenology can be very rich and strongly depends on
the form of the coupling function fðϕÞ. On the one hand, an
interesting situation is when there is no linear term, i.e.
fðϕÞ ¼ λϕ2 þ � � �, which enables the phenomenon of
spontaneous scalarization, which is when both GR-like
(ϕ ¼ 0) and hairy solutions exist and a transition from
one to the other can happen owing to a tachyonic
instability induced by, depending on the sign of λ, either
compactness [6,7] or spin [8]. On the other hand, when
the coupling function starts with a linear term, fðϕÞ ¼
αϕþ � � �, every black-hole carries secondary hair [9]
while other horizonless compact objects are not able to
support any scalar charge [10]. This particularlity makes it
easier to constrain, as the ever-present scalar charge for
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BHs will inevitably generate dipolar radiation during the
inspiral phase of a merger and introduce a dephasing in
the GW signal which, so far, has not been observed and
puts a bound of α < ð1.2 kmÞ2 [11]. This bound already
implies a small α ≪ M2 regime, with M the mass of the
black hole. An example of a theory of this latter form is
precisely the perturbative regime of Einstein-dilaton-
Gauss-Bonnet (EdGB) gravity, where fðϕÞ ¼ eαϕ − 1,
which can arise from the spontaneous breaking of a
conformal symmetry [12]. Another special subcase is
when the coupling is exactly linear αϕG, i.e. no other
terms are present at all, making the theory gain a shift
symmetry. When such symmetry is present there is a well-
known no-hair theorem for scalar-tensor theories [13],
which however finds its only exception precisely for this
linear sGB coupling [14].
With black holes beyond GR it is also relevant to study

their thermodynamics (see [15] for a review). Thanks to
work by Wald et al. [16,17] it is possible to define the
horizon entropy for general theories of gravity by means of
Noether charges. This has been computed for the general
sGB theories described above assuming a spherically
symmetric, stationary black-hole horizon, giving [6]

SH ¼ AH

4
þ 4πγ þ 4π

κ
fðϕHÞ; ð2Þ

where AH is the horizon area, ϕH the value of the scalar
field at the horizon and κ ¼ 1=16π. The usual Bekenstein-
Hawking formula is modified by a new term proportional to
the coupling function evaluated at the horizon value of the
scalar field. Importantly, there is also always a possible
topological contribution proportional to γ, which is asso-
ciated to a term in the action of the form κγG. While such a
term is nondynamical in D ≤ 4 dimensions, it still shows
up in the entropy which makes it particularly relevant for
black-hole thermodynamics, as the topology actually
changes during black-hole formation through collapse, as
well as during binary black-hole mergers. Indeed, a γ > 0
can increase the instability of de Sitter spacetime by
favouring the nucleation of BHs [18]. On the other hand,
violations of the second law can occur at the instant a black-
hole horizon first forms during collapse, for γ < 0 [19,20].
For these reasons it is important to bound the value of this
type of topological coupling, as it has been explored in the
case of GR extended with quadratic curvature invariants
in [21].
In this paper we aim to find analogue bounds on γ for the

case of sGB theories containing a linear coupling term. For
this purpose it important to distinguish between the
approximately linear EdGB case and the exactly linear
sGB one. The reason for this being the aforementioned shift
symmetry that emerges in the latter, which would be broken
in a formula like Eq. (2) unless it is appropriately fixed at
the level of the action, including boundary terms [22]. This

will lead us to consider these two cases separately.
In addition, realistic merger events involve spinning
black holes, which requires to be accounted for by the
proper generalization of the entropy formula for Kerr-like
black holes.
The paper is organized as follows. In Sec. II we study

how the Bekenstein-Hawking horizon entropy formula of
GR is corrected when a linear coupling between the scalar
field and the Gauss-Bonnet invariant is present in the
action, accounting for the effect of rotation of a Kerr-like
black hole. We make the distinction between the approx-
imately and exactly shift-symmetric cases when appropri-
ate. Then, in Sec. III we outline our methodology to
compute the entropy change before and after merger, along
with a discussion on the caveats involved in our process.
Finally, we discuss our results obtained on the changes
bounds on the topological coefficient in Sec. IV.

II. ENTROPY IN SCALAR-GAUSS-BONNET
GRAVITY

We begin by considering a scalar-tensor theory where the
scalar field is nonminimally coupled linearly to the Gauss-
Bonnet invariant defined in Eq. (1), with action,

A¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κðRþ γGÞ−1

2
ð∂ϕÞ2þðαϕþ…ÞG

�
; ð3Þ

where κ ¼ 1=16π and we have also added a purely
topological term with coupling constant γ as discussed
in the Introduction. In this form the theory can correspond
to either EdGB or linear-sGB depending on the presence/
absence of higher powers of ϕ in the ellipses above, and in
fact in the small α ≪ M2 regime we will consider, their
dynamics are indistinguishable. Be it approximate or exact,
the classical theory is then invariant under a constant shift
of the scalar field ϕ → ϕþ C. Indeed, this only generates a
purely topological contribution αCG, which much like κγG,
gives just a boundary term. For this reason, neither γ nor the
value of ϕ itself (without derivatives) appear in the field
equations, and therefore the dynamics remain insensitive
to them.
Due to the linear coupling between the scalar and the

Gauss-Bonnet invariant in Eq. (3), in these theories the
equation of motion for the scalar field always has a source
term

□ϕþ αG ¼ 0; ð4Þ

meaning that the scalar field will have a nontrivial profile
whenever G ≠ 0. As mentioned in the Introduction, in
particular for a black-hole geometry a ϕ ≃Q=r scalar hair
is always generated with a secondary scalar charge
Q ∼ α=M. This scalar profile will in turn induce changes
in the geometry through backreaction with strength given
by the dimensionless ratio α=M2. While exact solutions to
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Eq. (4) are not known, one can still write approximate
solutions which can be found numerically and/or pertur-
batively [9,23].
Boundary terms are however important for thermody-

namical quantities such as the entropy. As it was shown by
Wald, the entropy associated to a stationary black-hole
horizon can be computed by

SH ¼ 2π

κ

Z
H

∂L
∂Rμνρσ

ϵμνϵρσ; ð5Þ

where ϵμν is the binormal tensor and the integration region
H is a spatial cross section of the horizon. For the theory in
Eq. (3) the above expression takes the explicit form [22]:

SH ¼ AH

4
þ 4πγ

þ α

4κ

Z
H
ϕðϵμνR − 4ϵλμRλ

ν þ ϵλρRνμλρÞϵμνd2A; ð6Þ

where the first two terms come from the Einstein-Hilbert
and topological terms in the action respectively, while the
last piece is the contribution from the αϕG term. In order to
explicitly compute the above expression for its later use in
the case of realistic spinning black-holes, we must rely on
the perturbative solutions of Ref. [23] valid for small
backreaction and slow rotation up to order α2 and χ2,
where χ is the dimensionless spin parameter. As shown in
the Appendix, this leads to

SEdGB ¼ AH

4
þ 4πγ þ 4πα2

κM2

�
11

6
− χ2

43

240

�
; ð7Þ

where we are stressing that this result is only valid for the
EdGB theory, i.e. when there is no exact shift symmetry.
The importance of boundary terms in the action becomes
evident by the presence of the γ in the entropy. The effects
of the α coupling are twofold; an explicit contribution that
starts at order Oðα2Þ, and an implicit one inside AH as the
backreacting scalar shrinks the horizon size, also starting at
Oðα2Þ [23]. Both effects must be accounted for as they are
of comparable size. Notice that our result, Eq. (7), is
consistent with the spherically symmetric expression given
in Eq. (2) for the case fðϕÞ ≃ αϕ, upon setting χ ¼ 0 and
identifying ϕH ¼ 11α=6M2 [9,23].
Turning to the linear-sGB case, as argued in Ref. [22] the

entropy formula, Eq. (5), cannot be correct for an exactly
shift-symmetric theory. This becomes immediately clear by
performing a constant shift of the scalar field, which gives
an extra ΔSH ¼ 4παC contribution, thus breaking the shift
symmetry at the level of the entropy. This traces back to the
fact that the action in Eq. (1) itself is only shift-symmetric
up to a boundary term, making it not fully invariant
although the field equations are. This suggests that a proper
definition of a shift-symmetric action by the addition of a

boundary term should lead to an entropy that respects the
shift symmetry everywhere. Following this prescription,
the entropy for the linear-sGB theory instead reads

SShift ¼
AH

4
þ 4πγ; ð8Þ

which essentially differs from the EdGB entropy at Eq. (7)
in the removal of the explicit α-contribution. Notice that the
implicit α-dependence is still present same as for EdGB,
through the change in AH with respect to GR as induced by
the backreaction of the scalar [23]:

AH ¼ AH;Kerr

�
1 −

49

40

α2

κM4

�
1þ 19

98
χ2
��

; ð9Þ

where AH;Kerr is the horizon area for a Kerr black hole.
The computation of the entropy change across the

merger follows from Eq. (9) along with Eqs. (7) or (8),
for EdGB or linear-sGB, respectively. For this we are
assuming that even though Wald’s prescription given in
Eq. (5) requires stationarity, it still gives a good description
of the entropy of the merging and final BHs in the
asymptotic past/future. As we will describe in the following
section, GW data analysis then enables us to measure
individual masses and spins before the merger from which
we calculate entropy premerger, while appropriately found
fitting functions infers the final mass and spin which
calculates postmerger entropy. The entropy difference is
thus

ΔS ¼ SðfÞ − ðSð1Þ þ Sð2ÞÞ; ð10Þ

where we are also assuming that the initial BHs can be
treated independently when they are sufficiently separated,
and therefore the total initial entropy can be expressed as
the sum of the individual entropies. Furthermore, any loss
of entropy through GW radiation is neglected. Importantly,
the constant topological contribution proportional to γ does
not balance out since the initial and final configurations
have different topology, i.e. two horizons merge into a
single one. For this reason, in ΔS there is a contribution of
the form −2πγ which offsets the change in entropy. In a
pure gravity effective field theory (EFT) valid up to the
Planck scaleMP it would reasonably be expected that this γ
term cannot ever lead to a violation of the second law for
macroscopic BHs, i.e. M ≫ MP, which is when a thermo-
dynamic description is sensible [24]. However, the theory
we are considering in Eq. (3) has a significantly lower UV
cutoff1 and is therefore consistent with a much larger γ,
making violations of the second law a priori possible

1The strong-coupling scale is at Λ ∼ ðMP=αÞ1=3 ≪ MP, while
the theory in its vanilla form (without additional scalar operators)
even requires a lower cutoff ΛUV ∼ 1=

ffiffiffi
α

p
in order to avoid

resolvable superluminal propagation [25].
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within its regime of validity. Here we take the approach of
demanding that ΔS ≥ 0 be satisfied during the merger
process, allowing us to put an upper bound on the
topological coupling γ.

III. METHOD TO COMPUTE
ENTROPY CHANGE

The results of our computations from Sec. II, especially
Eqs. (7) and (8) show that the entropy depends upon the
masses and spins of the BHs is question as well as on the
coupling coefficient α. Estimating the entropy change in a
BH merger thus requires along with α an estimation of the
initial masses M1, M2 and spins χ1, χ2 as well as the mass
and spin of the final configuration Mf, χf. In what follows
we will first briefly describe the waveform model in
Sec. III A that we later use, then illustrate our methodology
to obtain estimates on the component masses, spins and α
(Sec. III B). We will finally highlight our use of specific
fitting functions in Sec. III C which will then be used to
compute the entropy change.

A. Description of waveforms

Our intended analysis will be inspiral-only and therefore
is based on a parametrized post-Einsteinian (ppE) form, as
was done in Ref. [26]. Accordingly our waveforms can be
described by

h̃ ¼ AðuÞ
�
1þ fa

u2

�
exp

�
ΦðuÞ

�
1þ fp

u7

��
; ð11Þ

where u ¼ ðπMfÞ1=3 is the inspiral PN-expansion param-
eter and AðuÞ;ΦðuÞ are the GR contributions modeled after
the IMRPhenomD [27] approximant. We use the conventional
symbols M, η to denote the GW chirp-mass and the
symmetric mass-ratio, respectively. The presence of the
nonminimal coupling has signatures in both the amplitude
and the phase, although they come at different PN orders as
seen in Eq. (11). The quantities fa ¼ −ð5=192Þκ and fp ¼
ð−5=7168Þκ quantify the signatures, where κ is given by

κ ¼ 16πα2

M4

ðm2
1s2 −m2

2s1Þ2
M4η18=5

; ð12Þ

with si ¼ 1 − χ2i =4. Once again as per convention, mi, χi
are used to denote component masses and spins of the
binary whereas M denotes the total mass.
To perform an inspiral-only analysis one must cutoff the

waveform at some maximum frequency which normally is
taken to be the frequency at the last stable circular orbit
(LSCO). However the presence of the α-dependent non-
minimal coupling shifts the location and therefore the
frequency of the LSCO. We then take the change in the
LSCO radius from Ref. [28], add this to the GR LSCO

radius and terminate at the corresponding α-modulated
frequency.

B. Introduction to Bayesian inference

Let us briefly describe the general framework of
Bayesian inference used to obtain the posterior distribution
of GW signal parameters [29]. In GW data analysis, a
specific detector’s strain data d consists of an astrophysical
GW signal h along with noise n and would be defined as

dðnÞðtÞ ¼ hðnÞðtjθÞ þ nðnÞ; ð13Þ

where the superscript n defines a specific detector from a
network of detectors. In our work, we have assumed just
the two LIGO detectors at Livingston and Hanford in the
USA. hðtjθÞ defines the time-domain GW signal with a
specific set of parameters θ (intrinsic and extrinisic). The
intrinsic parameters are masses and spins for compact
binary coalescences, and the extrinsic parameters are the
coalescence phase, luminosity distance and the time of
arrival at the geocentre. Concerning the geocentric refer-
ence frame, the strain measured at a detector of a GW
source with polarization amplitudes hþ, h× could be
expressed as

hðnÞðtjθÞ ¼ FðnÞ
þ ði; j; kÞhþ þ FðnÞ

× ði; j; kÞh×; ð14Þ

where Fþ;× denotes the antenna pattern functions (plus and
cross) of the source locations ði; jÞ and the polarization
angle k of the GW signal. t denotes a specific time stamp
which could be of T ¼ fs × τobs seconds long. fs and τobs
define the sampling frequency and observational time-
window, respectively.
The estimation of the posterior probability density of the

parameters θ from the strain data of a specific detector
could be obtained using Bayes’ theorem as follows:

pðθjdÞ ∝ LðdjθÞ × πðθÞ; ð15Þ

where LðdjθÞ and πðθÞ define the likelihood and prior
probability density function. The likelihood function com-
putes the density function of the strain data corresponding
to the unknown value of the parameters θ:

lnðLðdjθÞÞ ¼ −
1

2
hd − hðθÞjd − hðθÞi; ð16Þ

where the inner product h:j:i is defined as

hdjhi ¼ 4Re

�Z
d̃ðfÞh̃�ðfÞ
SnðfÞ

df

�
; ð17Þ

where, SnðfÞ denotes the one-sided power spectral density
(PSD) of noise. h̃ðfÞ and d̃ðfÞ represent the frequency
domain waveform and data respectively after performing
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the Fourier transform of time domain representation. The
asterisk denotes the complex conjugate.
In our studies we have considered a set of three simulated

events (see Table I) as well as a set of three real events from
GWTC-1 [30] which are GW150914, GW170104, and
GW170729. The strain data from the LIGO detectors for
the real events have been taken from the GW Open Science
Center (GWOSC) [31], while for the simulated cases BBH
signals are injected into a two-detector network of LIGO-
Hanford (LIGO-H) and LIGO-Livingston (LIGO-L) oper-
ating at design sensitivity to obtain the fake strain. For
every case, we sample the log-likelihoods [Eq. (16)] using
the Bilby library [32] and the DYNESTY sampler. We then
make use of a Bayesian inference [cf. Eq. (15)] to infer the
posterior probability distributions of masses and spin
components along with α.

C. Fittings to obtain final mass and spin

The estimation of final entropy Sf requires the knowl-
edge of postmerger BH configuration Mf, χf. In principle,
the observation of BH-ringdown can help us infer the final
configuration as well. However, the amplitudes of the
ringdown are exponentially damped and thus cannot be
seen over the level of detector noise. To proceed one
normally relies on numerical relativity (NR) simulations of
BBH mergers. It turns out that NR simulations show
consistent trends between the mass and spin Mf, χf of
the final BH with the initial binary configuration M1, M2,
χ1, χ2, and can be fitted with appropriate fitting functions
both in GR and in weakly coupled scalar-GB theories using
the following relations presented in Ref. [26]:

Mf ¼ Mf;GR þ ζMf;ζ þOðζ2Þ;
χf ¼ χf;GR þ ζχf;ζ þOðζ2Þ;

Here expression forMf;GR and χf;GR have been taken from
Ref. [27].Mf;ζ and χf;ζ are the first order EdGB corrections
and can be estimated as follows:

Mf;ζ ¼ Mc0ð1þ c1χf þ c2χ2fÞ þOðχ3fÞ;
χf;ζ ¼ −d0ηð1þ d1χf;GR þ d2χ2f;GRÞ þOðχ3f;GRÞ:

Coefficients ci, di have been presented in Table 2 of
Ref. [26]. With this tool at our disposal, we can finally

calculate both AðfÞ
H ðMf; χfÞ as well as Að1Þ

H ðM1; χ1Þ and

Að2Þ
H ðM2; χ2Þ, which can then be added with the appropriate

α contributions to get the entropy once the inspiral
estimates of masses and spins are known.
Before moving further it is important to pause and

highlight a few caveats of our methods. To start, our entire
framework makes ample use of perturbative stationary
solutions [23] (see the Appendix) for both the metric gμν
and the scalar field ϕ. It is of importance for us to note that
owing to the breakdown of these solutions, this framework
cannot be applicable near the merger even though the
corresponding expressions for the GR or ϕ coupled GW
waveforms might still be true. Because of this, we have
performed an inspiral-only analysis, where the BBH system
can be well-approximated by two point-like sources and
two noninteracting scalar fields. We remark that a higher-
order perturbative solution could also make use of the full-
length waveforms of [26] including merger frequencies
fRD; fdamp. The problem of ϕ dependent backreaction is
best evident in the fitting formulas for Mf, χf with α ≠ 0.
To be in the perturbative regime, one must have α ≪ M2 or
otherwise get unphysical results. This is depicted in Fig. 1.
We plot the difference between the final mass Mf and
M ¼ M1 þM2, as a function of M and q ¼ M2=M1 < 1

with χ1, χ2 ¼ 0.1 and α ¼ 9.0 ½km�2. Interestingly Fig. 1
shows the existence of forbidden regions which have Φ ¼
Mf −M > 0 and therefore cannot be accessed with our
choice of α=M2.

TABLE I. Table showing the configurations for our choices of
simulated GW events. For each of these events we assume
α ¼ 9.0 km2. Units of m1, m2 are in M⊙, while the SNRs are
the network SNRs over LIGO-HL network.

# Label m1 m2 χ1 χ2 ρ(SNR)

1 Case A 36.0 29.0 0.4 0.3 14.89
2 Case B 58.0 15.0 0.02 0.06 27.86
3 Case C 50.0 20.0 0.4 0.3 26.07

FIG. 1. Plot showing thevalues ofΦ¼Mfðm1;m2;χ1;χ2;αÞ−M
for binary configurations with spin values χ1 ¼ χ2 ¼ 0.1 and
α ¼ 9.0km2. Note that configurations with positive Φ are for-
bidden. The black line indicates m2 ¼ 5M⊙.
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IV. RESULTS

As demonstrated in Sec. II the respective expressions of
Wald entropy for the dilaton and shift-symmetric coupling
pick up their respective additional contributions dependent
upon α. Thus, we see that in principle any bound on the
parameter γ should be affected by α ≠ 0. From the bounds
on α obtained from BBH inspiral dynamics, we also know
a priori that this change in the γ explicitly caused by α will
be small. Most of the budget of the entropy change before
and after the merger will be dominated by the α ¼ 0
Hawking-Bekenstein contribution, meaning that we can
expect only a small deviation of the γ bound from that
found in [21]. Given this fact we want to answer two
questions. First, we want to know if the α deviation to the γ
bound over the α ¼ 0 baseline as predicted by GR is small
enough to be insignificant. Provided that some nonzero
values of α do cause a small but statistically significant shift
to the γ bound, it is interesting to compare this theoretical
shift to the amount of biases. Biases are a well-known
problem in GW templates which typically arise out of
insufficiency in GW-template modeling [33]. We remind
ourselves that any bias in GW templates will reflect
themselves in biased estimates of the component masses
and spins ðM1;M2; χ1; χ2Þ which would bias the estimate
of the γ bound at the level of the GR contributions. So as a
second question we ask whether or not the biases dominate
over the α changes.

A. Quantifying the effect of α

In order to understand the consequences of the
α-dependent coupling we devise two separate procedures
involving separate instances of the GW events. For the
first procedure, we consider both mock and real events.
The injections for the mock events involve each of Case A,
Case B and Case C as given in Table I, along with anffiffiffi
α

p ¼ 3 km. We choose Case A as a GW150914-like [34]
event with binary BH masses of 36.0M⊙ and 29.0M⊙ with
a signal SNR ρ ∼ 15. Then Case B and Case C are
arbitrarily chosen events with stellar mass BHs and realistic
SNRs. Thus Case A, Case B and Case C along with the
GW150914, GW170104 and GW170729 make up all
the cases considered in this procedure. Making use of
the waveforms of [26], we use the Bayesian method
(cf. Sec. III B) to infer Mi, χi and α for all the cases
considered. Then we computed the difference in entropy
change (before and after the merger) between both the
dilaton and shift symmetric expressions and the Hawking-
Bekenstein one. In other words we have computed

δðΔSEdGBÞ ¼ ΔSEdGB − ΔSGR; ð18Þ

δðΔSShiftÞ ¼ ΔSShift − ΔSGR; ð19Þ

where ΔS is the respective “EdGB,” “Shift” or GR merger
entropy change from Eq. (10). We remind ourselves that in

the non-GR definitions ofΔS here, we do not factor in the γ
effect from the boundary [cf. Eqs. (7) and (8)]. Figure 2
shows the simultaneous plots of δðΔSEdGBÞ and δðΔSShiftÞ
for the set of simulated GW events while Fig. 3 shows the
same for the set of real events we considered.
The results from both our simulated cases and real events

considered lead to several interesting conclusions. To begin
with, we note that the 2d distributions (Figs. 2 and 3) that
the 95% CLs of the δðΔSÞ lies either completely or
overwhelmingly in the δðΔSEdGBÞ< 0 and δðΔSShiftÞ > 0
quadrant. Statistically it just means that the data from
the cases considered show a greater odds-ratio favoring
δðSEdGBÞ < 0 and δðΔSShiftÞ > 0. However, it should be
noted that a statistically significant deviation above the GR
baseline model for either of the theories can only be proven
for a particular event if the 90% CL of that event do not
touch the corresponding δðΔSÞ ¼ 0 baseline. In this regard,
the simulated event labeled Case B stand out as the one able
to predict statistically significant deviation at an injection of

FIG. 2. Plot showing the histogram of values of δðΔSÞ for the
dilaton and the shift symmetric cases, for the simulated GW
events of Table I. Note that we cannot claim a deviation
statistically significant from the GR baseline if the 90% CLs
of δðΔSÞ touch the δðΔSÞ ¼ 0 lines.

FIG. 3. Same as Fig. 2 except we use the real events
GW150914, GW1701104, and GW170729 [30,31].
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α ¼ 9.0 km2, whereas Case A and Case C do not. This also
is expected, as we see from Eqs. (7) and (8) that the
expression of the Wald entropy depends upon the dimen-
sionless factor α2=M4. Consequently these events which
had a proportionately bigger contribution owing to the
lighter BHs was able to give us a statistically significant
deviation. In other words, we see the presence of a
dynamical coupling to a scalar field through the α affects
the entropy computation and in principle can show up even
in the histograms computed for the entropy. However, it
should also be remembered that the magnitude of the shift
in entropy change is only ∼Oð1Þ, which is only a very tiny
fraction of the ∼Oð100Þ entropy change caused by GR.
This is not surprising given that the perturbative regime we
chose means that α effects cannot dominate over the
GR ones.
In contrast to our results for the simulated cases, we see

that the δðΔSÞ histograms for the real events are almost
completely consistent with GR, with only GW170104
showing a very small deviation which is statistically
significant. This means that an injection of α ¼ 9.0 km2

is large enough to be inconsistent with the result one gets
from computing δðΔSÞ for real events. Consequently at this
point, it is noteworthy for us to pause and ask the question
that given an event what would be the smallest α which
could add a meaningful contribution to the value of δðΔSÞ.
We answer this by employing a second procedure wherein
we consider only mock events. We fix the non-α parameters
of a set of three injections to Case B, but vary the value of
injected α, as shown in Fig 4. As per expectation, we clearly
see that as α → 0 the corresponding δðΔSÞ contours shift
towards the GR baseline (0,0) point and touch it when
α ¼ ffiffiffi

3
p

km at which, the results of our simulated event
become consistent with those obtained from the real data.

A consequence of this shift in entropy change is that the
presence of α in principle should also change the bounds on
the topological coupling parameter γ. Following the argu-
ments of Ref. [21], we now see that the global second law
now demands

δðΔSιÞ þ ðΔSGRÞ − 4πγ ≥ 0; ð20Þ

where ι stands for either “EdGB” or “Shift.” From Eq. (20)
it is clear that the δðΔSÞ term should add a small
perturbative correction to the bound on γ which was
previously obtained from just the Bekenstein-Hawking
entropy change. However, the exercises performed above
highlight a couple of important points. We see that
considerations of real data mean that α≲ ffiffiffi

3
p

km. We also
see that at such α values δðΔSιÞ ≃ 0 implying that events
involvingOð10ÞM⊙ BHs cannot modify the bounds on γ at
90% confidence over the baseline GR when

ffiffiffi
α

p
≤

ffiffiffi
3

p
km.

Thus, considering the latest obtained bounds onffiffiffi
α

p ≲ 1.2km as found in [11], it is unlikely that the bound
on γ will improve significantly over the GR case. We
remark that observation of binary mergers Oð1ÞM⊙ BHs
may produce observable effects even with the current
constraints with α, and as such have a better chance of
modifying the γ bound.
Before concluding this section, it is worthwhile to

explicitly see how much an unrealistic value of α pushes
γmax following Eq. (20), and compare it to a realistic
scenario. Accordingly, we jointly show the histograms of
γmax from Case B and GW150914 in Fig. 5. We observe
that even the unphysical

ffiffiffi
α

p ¼ 3.0 km only has a very
small shift to γmax which is nevertheless noticeable. As
expected we also see α to have no effect at all on the value
of γmax for the GW150914 event.

FIG. 4. Plot showing the histogram of values of δðΔSÞ for the
dilaton and the shift symmetric cases, for three different α values,
with the BBH parameters fixed to the Case B event. α is
expressed in ½km�2 units. The contours are seen to touch the
GR baseline for

ffiffiffi
α

p ¼ ffiffiffi
3

p
km.

FIG. 5. Plot showing the joint histogram of values of γmax=2 for
the Case B event with injected

ffiffiffi
α

p ¼ 3.0 km (x-axis) and the
realistic GW150914 event (y-axis). See text for details.
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B. Measure of bias and
its dependence on signal SNR

The results of Sec. IVA, demonstrate that the effect of α
on δðΔSÞ and therefore γmax is vanishingly small and one
needs to inject unphysically large α to get any meaningful
deviation over the GR baseline. However it should also be
noted that the GW170104 event shows a very small
deviation. In this section, we aim to investigate if template
biases could be responsible for the deviation thus observed.
For this we just consider the bias that is produced at the
level of the BH entropy difference. In other words, we want
to estimate ΔSGR for a pair of merging BHs at different
values of SNR ρ, and then compare them against the true
value ΔS0GR which would then give the measure of bias

BðρÞ ¼ 1

8π
ðΔSρGR − ΔS0GRÞ ð21Þ

as a function of SNR. Accordingly we have computed the
inference of necessary parameters using this time a
GW200225-like event [35] for two different instances of
SNR. The details of the parameters are shown in Table II.
Accordingly, we have simulated a set of two GW200225-
like events with the “LIGO-HL” network SNR of 21 and 54
respectively. The resulting biases as defined in Eq. (21)
have been plotted in Fig. 6.
Unsurprisingly we see that with increasing SNR the

histograms become narrower, which allows us to better
visualise the magnitude of the absolute bias. This absolute

bias is again seen to be of ∼Oð100Þ. Working out the
numbers we see that this is ∼30–40% of ΔSGR itself. To
explain this, we recall that BBH GW templates cannot
measure component masses very accurately and have been
previously found to introduce systematic errors in compo-
nent masses in the ∼15–20% ballpark [33]. AsΔSGR ∼M2,
we see that the bias in component mass alone is able to
account for almost all of the total bias. We should also
remember that spin estimation would add another source of
bias to the error budget. Returning to the problem at hand
we see that template biasing is more than sufficient to
explain the deviation seen with the GW170104 event.
Following Eq. (20), we can clearly see that this same
30–40% bias will also affect the bound on γ and is clearly
at least an order of magnitude greater than any effect
produced by α.

V. SUMMARY AND CONCLUSIONS

The presence of a topological coupling κγG in the
gravitational action can influence black-hole thermody-
namics through its contribution to their entropy, impacting
for example the BH nucleation rate in de Sitter which can
lead to instabilities. A bound on this coupling can be
obtained from demanding the validity of the global second
law of thermodynamics during binary black-hole mergers.
Building on previous literature, we aimed to study those
factors that could push the bounds on the topological
coupling γ away from its GR value when the BHs carry
scalar hair. To do that we made use of metric solutions and
waveforms in a perturbative framework to compute the
Wald entropy, a natural generalization of the Bekenstein-
Hawking result for beyond Einstein-Hilbert actions, for two
instances of a scalar-Gauss-Bonnet coupling, namely the
EdGB and linear-sGB theories. The perturbative nature of
the coupling α in relation to the BH mass M ensures the
corrections to be small. Even though we show that a
statistically significant deviation in the entropy at values of
α ≥ 9 km2 is possible, no such deviation shows up in the
real data from our list of selected GW events. This leads us
to conclude that with observation of Oð10ÞM⊙ BHs, the α
effects on entropy become statistically indistinguishable
from GR at α ≃ 3.0 km2, a value which is already ruled out
by the current bounds on α≲ ð1.2Þ2 km2 obtained from
inspiral dynamics. Going to smaller BH masses of a few
M⊙ might offer us a way out, since ultimately effects
depend on the ratio α=M2. Caution must be taken, however,
as this also brings the BHs closer to the cutoff of the EFT,
ΛUV < 1=

ffiffiffi
α

p
, signaling new-physics effects becoming

important [25]. Moreover, this would also require going
beyond the perturbative regime which necessitates full
numerical relativity simulations of these extended theories,
which will be an interesting aspect to explore in the future.
In this context, we also find that GW template biases shown
in Fig. 6 have effects that are two orders of magnitude

TABLE II. Table showing the configurations for our choices of
a GW200225-like event, injected at two SNR values. As before
the SNRs are LIGO-HL network SNRs.

# m1 m2 χ1 χ2 ρ(SNR)

1 19.3 14.0 −0.14 −0.08 27
2 19.3 14.0 −0.14 −0.08 54

FIG. 6. Plot showing the histogram of values of BðρÞ for the
events tabulated in Table II. Note that the measure of bias gets
sharper with the higher SNR of ρ ¼ 54.
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greater than those of the coupling α, and thus have a much
bigger risk of pushing γ away from its true value. It can be
safely concluded that biases from GW templates should be
focused on with priority during any future work in this
direction.
It is also worthwhile to note that in principle, our

computation and subsequent estimation of entropy can
distinguish between a dilaton-type or a shift-symmetric
action. However, this distinction is not a possibility at
current state-of-art simply because entropy cannot be
directly observed. We believe that the direct measurement
of BH temperature would break this deadlock, from which
our results could be meaningfully used to test the nature of
the scalar coupling.
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APPENDIX: ENTROPY FOR A KERR-LIKE
HAIRY BLACK HOLE

In order to compute the entropy for EdGB theory from
Wald’s entropy formula given by Eq. (6), we rely on the
analytic black-hole solution computed perturbatively
around Kerr in Ref. [23]. This solution is accurate up to
Oðα; χ2Þ for ϕ, andOðα2; χ2Þ for the metric gμν. At the level
of the entropy formula Eq. (6), the precision is set by the
Bekenstein-Hawking term AH=4, which is computed from
the metric solution gμν and thererfore it is also accurate up
to Oðα2; χ2Þ, as seen in Eq. (9). For this reason, for
perturbative consistency we only need to compute the
new contribution arising from the EdGB term up to the
same precision, i.e. Oðα2; χ2Þ. Moreover, this contribution
in itself already contains a factor of α and a factor of ϕ,

I ≡ α

4κ

Z
H
ϕðϵμνR − 4ϵλμRλ

ν þ ϵλρRνμλρÞϵμνd2A; ðA1Þ

making it only necessary to compute the rest of the
integrand at Oðα0; χ2Þ to achieve said precision.
This means in practice utilizing the unperturbed Kerr
expressions for the Riemann tensor Rμ

νρσ and its contrac-
tions, the binormal tensor ϵμν and the area element

d2A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgφφ
p jHdθdφ, where θ and φ are the standard

angular variables on the 2-sphere. An immediate conse-
quence of this is that, since Kerr is a vacuum solution of
GR, it holds that Rμν ¼ 0 (and thus also R ¼ 0), leaving
only a single term to be computed.
Since we want to compute the result up to Oðα2Þ, and

given that ϕ ¼ OðαÞ, it is sufficient to evaluate the
expression between brackets at Oðα0Þ, which is simply
the unperturbed Kerr metric. In this case, since Kerr is a
vacuum solution of GR, we have Rμν ¼ 0, and therefore
only the last term (Riemann) is nonvanishing,

I¼ α

4κ

Z
H
dθdφ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
ϕϵμνϵλρRνμλρjH;KerrþOðα3Þ; ðA2Þ

where, as mentioned, it suffices to use the Kerr solution at
this order.
The Kerr metric is given in the Boyer-Lindquist coor-

dinates (in the notation of [36]) as

ds2 ¼ −ρ2
Δ
Σ2

dt2 þ Σ2

ρ2

�
dφ −

2aMr
Σ2

dt
�

2

sin2ðθÞ

þ ρ2

Δ
dr2 þ ρ2dθ2; ðA3Þ

where

Δ ¼ r2 − 2Mrþ a2; ðA4Þ

ρ2 ¼ r2 þ a2 cos2ðθÞ; ðA5Þ

Σ2 ¼ ρ2ðr2 þ a2Þ þ 2a2Mr sin2ðθÞ; ðA6Þ

and a is the spin parameter. The event horizon corresponds
to the largest root of Δ ¼ 0, i.e. rH ¼ M þ ðM2 − a2Þ1=2,
and has an area of

AH;Kerr ¼ 4πðr2H þ a2Þ: ðA7Þ

This metric has a Killing vector field ξμ ¼ tμ þ ΩHφ
μ,

where ΩH is the constant angular velocity of the horizon.
From this, we can define the binormal tensor as

ϵμν ¼ κH∇½μξν� ¼ κHð∂μξν − ∂νξμÞ; ðA8Þ

where κH is the horizon surface gravity, which normalizes it
to ϵμνϵ

μν ¼ −2.
A long but straightforward computation leads to the

desired result at the required precision,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
ϵμνϵλρRμνλρjH;Kerr

¼ sinðθÞ
�
1þ χ2

2

�
1 − 3 cosðθÞ2��þOðχ4Þ: ðA9Þ
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where we have also expanded for small χ ¼ a=M, i.e. the
dimensionless spin parameter. The above expression needs
to be combined with the scalar field solution from [23],
valid up to Oðχ2; αÞ, evaluated at the horizon

ϕH ¼ α

M2

�
11

6
− χ2

ð118 cosðθÞ2 − 25Þ
80

�
: ðA10Þ

We can now compute the explicit α contribution to the
entropy, Eq. (A1) up to order Oðχ2; α2Þ,

I ≃ −
2πα

κ

Z
π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
ϕHϵμνϵλρRμνλρjH;Kerr

¼ 4πα2

κM2

�
11

6
− χ2

43

240

�
; ðA11Þ

which gives the result of Eq. (7) for the EdGB entropy.

Notice the index order swap with respect to Eq. (A1),
which accounts for the minus sign.
Both entropy formulas for the EdGB and linear-sGB

cases, Eqs. (7) and (8), respectively, can be combined into

SH ¼ 4πM2

�
1 −

χ2

4
þ α2

kM4
βðχÞ

�
þ 4πγ; ðA12Þ

where we have made the whole of the α-dependence fully
explicit, including the one inside AH [see Eq. (9)] and we
are also defining

βðχÞ ¼
(

73
120

− 53
480

χ2; EdGB;

− 49
40
þ 11

160
χ2; linear-sGB:

ðA13Þ
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logarithmic corrections to entropy in shift-symmetric
Gauss-Bonnet gravity, J. High Energy Phys. 11 (2023) 195.

[23] Dimitry Ayzenberg and Nicolas Yunes, Slowly-rotating
black holes in Einstein-dilaton-Gauss-Bonnet gravity:

CHAKRAVARTI, REZA, and TROMBETTA PHYS. REV. D 110, 064032 (2024)

064032-10

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1007/BF02757029
https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevLett.127.011103
https://doi.org/10.1103/PhysRevD.5.1239
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.125.231101
https://doi.org/10.1103/PhysRevD.90.124063
https://doi.org/10.1103/PhysRevD.93.024010
https://doi.org/10.1103/PhysRevD.105.064001
https://doi.org/10.1103/PhysRevD.105.064001
https://doi.org/10.1103/PhysRevD.106.069901
https://doi.org/10.1007/JHEP12(2011)099
https://doi.org/10.1007/JHEP12(2011)099
https://doi.org/10.1103/PhysRevLett.110.241104
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1007/s10714-019-2545-y
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.84.044048
https://doi.org/10.1103/PhysRevD.84.044048
https://doi.org/10.1103/PhysRevD.77.064004
https://doi.org/10.1103/PhysRevD.83.124048
https://doi.org/10.1103/PhysRevD.83.124048
https://doi.org/10.1103/PhysRevD.106.L041503
https://doi.org/10.1007/JHEP11(2023)195


Quadratic order in spin solutions, Phys. Rev. D 90, 044066
(2014); 91, 069905(E) (2015).

[24] Saugata Chatterjee and Maulik Parikh, The second law in
four-dimensional Einstein-Gauss-Bonnet gravity, Classical
Quantum Gravity 31, 155007 (2014).

[25] Francesco Serra, Javi Serra, Enrico Trincherini, and
Leonardo G. Trombetta, Causality constraints on black
holes beyond GR, J. High Energy Phys. 08 (2022) 157.

[26] Zack Carson and Kent Yagi, Probing string-inspired gravity
with the inspiral–merger–ringdown consistency tests of
gravitational waves, Classical Quantum Gravity 37,
215007 (2020).

[27] Sascha Husa, Sebastian Khan, Mark Hannam, Michael
Pürrer, Frank Ohme, Xisco Jiménez Forteza, and
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