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This paper investigates gravitational lensing effects in the presence of plasma in the strong deflection
limit, which corresponds to light rays circling around a compact object and forming higher-order images.
While previous studies of this case have predominantly focused on the deflection of light in a vacuum or in
the presence of a homogeneous plasma, this work introduces an analytical treatment for the influence of a
nonuniform plasma. After recalling the exact expression for the deflection angle of photons in a static,
asymptotically flat and spherically symmetric spacetime filled with cold nonmagnetized plasma, a strong
deflection limit analysis is presented. Particular attention is then given to the case of a Schwarzschild
spacetime, where the deflection angle of photons for different density profiles of plasma is obtained.
Moreover, perturbative results for an arbitrary power-law radial density profile are also presented. These
formulas are then applied to the calculation of the positions and magnifications of higher-order images,
concluding that the presence of a nonuniform plasma reduces both their angular size and their
magnifications, at least within the range of the power-law indices considered. These findings contribute
to the understanding of gravitational lensing in the presence of plasma, offering a versatile framework
applicable to various asymptotically flat and spherically symmetric spacetimes.
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I. INTRODUCTION

Gravitational deflection, one of the earliest phenomena
explored within the general theory of relativity, was initially
observed in the bending of light around the Sun.
Subsequently, it was identified, e.g., in the lensing of
quasars by foreground galaxies [1], the formation of arcs in
galaxy clusters [2], in galactic microlensing [3] and other
phenomena of gravitational lensing. In the weak deflection
approximation, the theory has passed all tests with flying
colors [4–10].
On the other hand, in recent years, the study of light

bending by compact objects has gained a significant
momentum, due to the groundbreaking observations con-
ducted by the Event Horizon Telescope team [11–23] (see
also Ref. [24] where the authors introduce the idea behind
such observations). By leveraging an international network
of radio telescopes, the team has provided unprecedented
insights into the immediate vicinity of black holes. They
captured images that were once thought to be beyond the
grasp of observational capabilities. These observations
have not only validated the existence of supermassive

black holes at the centers of galaxies but have also opened
a new era in the study of lensing beyond the weak
deflection approximation; this allows one to examine the
regions surrounding the black hole event horizon through
different techniques, see, e.g., Refs. [25–28].
Even if only from a theoretical perspective, the deflec-

tion of light due to very compact objects has also been
studied for a long time. In 1959, Darwin [29] investigated
the deflection of light in a Schwarzschild background. In
particular, he derived a logarithmic approximation (now
referred as strong deflection limit) for light rays moving
near the photon sphere and described the appearance of
higher-order images (“ghosts”); see also subsequent studies
of Atkinson [30], Misner et al. [31], Luminet [32], and
Ohanian [33]. Afterward, using the exact expression for the
deflection angle, Virbhadra and Ellis [34] numerically
calculated the properties of higher-order images (“relativ-
istic images”) in the case of a Schwarzschild black hole. In
the same year, Frittelli et al. [35] obtained solutions to the
exact lens equation in the form of integral expressions. The
exact gravitational lens equation in spherically symmetric
and static spacetimes has also been investigated by Perlick
in Ref. [36]. For a detailed discussion on higher-order
images and related topics, the reader may refer to Ref. [37].
The investigation of higher-order images is highly sim-

plified in the strong deflection limit, which provides an
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analytical logarithmic approximation for the deflection
angle. Calculations of the positions and magnifications of
higher-order images were performed for a Schwarzschild
black hole [38] and later generalized to generic spherically
symmetric spacetimes [39] and rotating black holes [40].
From then on, especially regarding the possibility of dis-
tinguishing different theories of gravity, numerous studies on
gravitational lensing beyond the weak deflection approxima-
tion have appeared in the literature (see, e.g., Refs. [41–58]).
In particular, higher-order images in the form of photon rings
around the black hole shadow have been widely studied (see,
e.g., [59–74]).
All the above-mentioned studies on higher-order images

and the strong deflection case are based on the assumption
that light propagates along lightlike geodesics, without
direct influence from matter on the trajectories of rays.
However, the presence of plasma in the regions of light
propagation changes the ray trajectory due to refraction and
dispersion of the medium. In the last decade or so, many
works describing different scenarios have appeared in the
literature, taking into account such influence, both in the
weak field approximation [75–85] and beyond [86–109];
see also earlier works [110–119]. For recent reviews on the
topic and on black hole lensing in general, the reader may
refer to Refs. [120–122]; see also earlier reviews [37,43]. In
most of the mentioned literature, both homogeneous and
nonhomogeneous plasma have been studied; however,
when it comes to the analytical calculation of the deflection
angle of photons in the strong deflection limit, the only case
that has been considered so far is the one of a cold
nonmagnetized homogeneous plasma [87].
In this paper, it is our goal to extend the results of

Ref. [87] to the case of a plasma with an arbitrary radial
density profile. At the same time, following the procedure
delineated in [39], we will present results that can be easily
adapted to any static and spherically symmetric spacetime.
The paper is organized as follows. In Sec. II, we

introduce some notation and in particular recall the
expression for the deflection angle of photons in a static,
spherically symmetric and asymptotically flat spacetime
filled with cold nonmagnetized plasma [87], setting the
stage for the rest of the paper. In Sec. III, the strong
deflection limit procedure introduced in Ref. [39] is
generalized to include matter. Specializing to the case
of a Schwarzschild spacetime, in Sec. IV, we will consider
different density profiles for the plasma; after reproducing
the known result for the deflection angle in the presence of
a homogeneous plasma [87], we will analyze some cases
commonly considered in the literature. We conclude this
section showing how semianalytical results can be
obtained for an arbitrary radial power-law density profile.
These results are then applied to the calculation of
the positions and magnifications of higher-order images
in Sec. V. Finally, Sec. VI is devoted to concluding
remarks.

In what follows, we set G ¼ c ¼ 1 and work with
signature convention f−;þ;þ;þg. Moreover, Greek indi-
ces sum over the spatial coordinates, while Latin indices run
over all four.

II. DEFLECTION ANGLE OF PHOTONS
IN A SPACETIME FILLED WITH COLD

NONMAGNETIZED PLASMA

In his work [110], Synge developed a framework for
understanding general relativistic geometrical optics within
curved spacetime that is filled with an isotropic transparent
medium (with negligible self-gravity effects). In this paper,
we focus on a particular kind of medium: cold, non-
magnetized plasma. Furthermore, we are interested in
studying lensing by static, spherically symmetric black
holes (or any other sufficiently compact object), described
by the line element

gikdxidxk ¼ g00ðdx0Þ2 þ gαβdxαdxβ

¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2; ð1Þ

where dΩ2 ≔ dθ2 þ sin2 θdφ2 defines the round metric on
the unit two-sphere. We further assume the spacetime to be
asymptotically flat. In the geometric optics limit, photon
trajectories in the presence of both a gravitational field and
nonmagnetized plasma can be calculated from the varia-
tional principle [110]

δ

Z
pidxi ¼ 0; ð2Þ

with pi being the linear momentum of photons, together
with the constraint

Hðxi; piÞ ¼ 0; ð3Þ

where the scalar function Hðxi; piÞ reads [86,88]

Hðxi; piÞ ≔
1

2
ðgikpipk þ ω2

eðxiÞÞ: ð4Þ

In the above expression, ωeðxiÞ represents the plasma
frequency, given by

ω2
eðxiÞ ¼

4πe2

me
NðxiÞ; ð5Þ

where e and me are the electron charge and mass,
respectively, and NðxiÞ is the electron number density
(measured in the frame comoving with the plasma).
Under these assumptions, we consider a photon that

moves from infinity toward a spherically symmetric and
static central object surrounded by cold plasma and then
returns to infinity. Without loss of generality, we assume
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that the motion occurs in the equatorial plane (θ ¼ π=2).
An exact expression for the deflection angle of such photon
results in [86–88,98]

α̂ðr0Þ ¼ 2

Z
∞

r0

ffiffiffiffiffiffiffiffiffiffi
BðrÞ
CðrÞ

s �
h2ðrÞ
h2ðr0Þ

− 1

�−1=2
dr − π; ð6Þ

where r0 denotes the minimum radial coordinate reached
by the photon from the black hole, while the function hðrÞ
is defined as

h2ðrÞ ≔ CðrÞ
AðrÞ

�
1 − AðrÞω

2
eðrÞ
ω2
∞

�
; ð7Þ

with ω∞ being the photon frequency measured by an
observer on a t-line at infinity. The frequency ωðrÞ
measured by a static observer is equal to ω∞=

ffiffiffiffiffiffiffiffiffi
AðrÞp

(see, e.g., [88,108]). In the above discussion, we also
implicitly assumed the electron density to be a function of
the radial coordinate only (i.e., we assume the distribution
of plasma surrounding the black hole to be spherically
symmetric). Now, recalling that the plasma refractive index
is given by [87,98]

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
eðrÞ

ω2ðrÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞω

2
eðrÞ
ω2
∞

s
; ð8Þ

we can rewrite the deflection angle as

α̂ðr0Þ ¼ 2

Z
∞

r0

ffiffiffiffiffiffiffiffiffi
BðrÞp

ffiffiffiffiffiffiffiffiffiffi
CðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðrÞ
Cðr0Þ

Aðr0Þ
AðrÞ

n2ðrÞ
n2ðr0Þ − 1

q dr − π: ð9Þ

An illustration of the physical scenario we have in mind is
shown in Fig. 1.

In terms of the function hðrÞ, the photon sphere equation
takes the simple form [88,98]

d
dr

h2ðrÞ ¼ 0; ð10Þ

where we recall that the photon sphere is the sphere covered
by all unstable circular orbits of photons with any possible
inclinations. Note that if the central object is not a black
hole but another compact object, it is implied that its size is
smaller than the size of the photon sphere.

III. STRONG DEFLECTION LIMIT IN THE
PRESENCE OF PLASMA

In this section, our goal is to perform a strong deflection
limit analysis on Eq. (9) adopting the formalism presented
in Ref. [39]. This analysis aims to provide a generalized
result for the deflection angle, applicable when the back-
ground is filled with plasma. The method developed in
Ref. [39] applies to light rays that come close to the photon
sphere, whose radius will be denoted by rm. As r0
approaches rm, the deflection angle approaches infinity:
Photons can make one or several revolutions before flying
off to infinity.
Before proceeding, let us notice that Eq. (9) in Sec. II can

be rewritten as

α̂ðr0Þ ¼ 2

Z
∞

r0

ffiffiffiffi
B

p
ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
C0

A0

A − 1
q dr − π; ð11Þ

where we defined A ≔ An−2 and, to avoid clutter of
notation, we introduced the subscript 0, which indicates
that the function is evaluated at r0. Moreover, we also
omitted radial dependence. This simple redefinition of the
coefficient A allows us to immediately verify that in the two
simplest limiting cases, n ¼ 1 and n ¼ constant, the results
in vacuum [39] are recovered, with Eq. (11) above formally
identical to Eq. (6) in Ref. [39]; we could then in principle
write down all the equations of Sec. II in Ref. [39] withA in
place of A. From the mathematical point of view, however,
we find it convenient to introduce the procedure directly
specifying the expressions in terms of the refractive index;
by doing so, the calculation of the sole integral of the strong
deflection limit procedure is indeed straightforward for
most of the cases considered.
We start by requiring that the photon sphere equation

admits at least one positive solution. The largest root of
Eq. (10) gives the radius of the outermost photon sphere,
rm. Now, we proceed by substituting the integration
variable r in Eq. (9) with a new variable, z, as

z ¼ AðrÞ − A0

1 − A0

; ð12Þ

FIG. 1. Deflection angle α̂ of a photon moving nearby a very
compact object surrounded by cold nonmagnetized plasma whose
frequency is denoted by ωeðrÞ. The value r0 denotes the
minimum value of the radial coordinate r for this trajectory,
while rm denotes the radius of the photon sphere. Inspired by
Fig. 1 in Ref. [98].
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allowing us to write down the deflection angle as

α̂ðr0Þ ¼ Iðr0Þ − π; ð13Þ

where Iðr0Þ is defined by the integral

Iðr0Þ ≔
Z

1

0

Rðz; r0Þfðz; r0Þdz; ð14Þ

with the two functions Rðz; r0Þ and fðz; r0Þ given by

Rðz; r0Þ ≔
2n0

ffiffiffiffiffiffiffiffiffiffiffiffi
ABC0

p ð1 − A0Þ
CA0 ; ð15Þ

fðz; r0Þ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0n2 − ½ð1 − A0Þzþ A0� C0

C n20

q : ð16Þ

Notice that all functions without the subscript 0 are
evaluated at r ¼ A−1½A0 þ ð1 − A0Þz�. The function
Rðz; r0Þ is regular for all z and r0, while fðz; r0Þ diverges
for z → 0. To find out the order of the divergence, we
expand the argument of the square root in fðz; r0Þ to the
second order in z, obtaining

f0ðz; r0Þ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðr0Þzþ βðr0Þz2
p ; ð17Þ

where the coefficient α ¼ αðr0Þ is

α ¼ n20ð1 − A0Þ
C0A0

0

�
C0
0A0 þ C0

�
2A0

n00
n0

− A0
0

��
; ð18Þ

while β ¼ βðr0Þ is given by

β ¼ n20ð1 − A0Þ2
2C2

0A
03
0

�
2C0C0

0A
02
0 þA0

0A0ðC0C00
0 − 2C02

0 Þ

−C2
0A

00
0A0

�
C0
0

C0

þ 2
n00
n0

��
þ A0ð1 − A0Þ2

A02
0

× ðn020 þ n0n000Þ: ð19Þ

As we can see, when αðr0Þ is nonzero, the leading order of
the divergence in f0ðz; r0Þ is z−1=2, which can be integrated
to give a finite result; on the other hand, when αðr0Þ
vanishes, the leading order of the divergence in f0ðz; r0Þ is
z−1, which results in a divergent integral. Since we are
interested in those trajectories whose inversion point is very
close to the radius of the photon sphere rm, we define a
parameter δ ≪ 1 by the equation

r0 ¼ rmð1þ δÞ: ð20Þ

We also notice that αðr0Þ vanishes at δ ¼ 0. Following
Ref. [39], we decompose the integral in Eq. (14) as

Iðr0Þ ¼
Z

1

0

Rð0; rmÞf0ðz; r0Þdzþ
Z

1

0

gðz; r0Þ

≔ IDðr0Þ þ IRðr0Þ; ð21Þ

where the function gðz; r0Þ has been defined as

gðz; r0Þ ≔ Rðz; r0Þfðz; r0Þ − Rð0; rmÞf0ðz; r0Þ: ð22Þ

As δ → 0, the integral IDðr0Þ diverges, while IRðr0Þ is
regular (it is indeed given by the original integral with the
divergence subtracted). The integral IDðr0Þ can be explic-
itly calculated, resulting in

IDðr0Þ ¼
2Rð0; rmÞffiffiffi

β
p log

� ffiffiffi
β

p þ ffiffiffiffiffiffiffiffiffiffiffi
αþ β

pffiffiffi
α

p
�
: ð23Þ

We proceed by expanding α up to OðδÞ, obtaining

α ¼ 2βmA0
mrm

1 − Am
δþOðδ2Þ; ð24Þ

where βm reads

βm ¼ nmð1 − AmÞ2
2CmA02

m
½nmðC00

mAm − CmA00
mÞ

þ ð3C0
mAm þ CmA0

mÞn0m þ 2AmCmn00m�: ð25Þ

To obtain (24), the photon sphere equation has been used.
Also, we have introduced the subscript m, which indicates
that the function is evaluated at rm. Starting from these
considerations, we can rewrite Eq. (23) as

IDðr0Þ ¼ −a log δðr0Þ þ bD þOðδÞ; ð26Þ

with a and bD given by the following expressions:

a ≔
Rð0; rmÞffiffiffiffiffiffi

βm
p ; ð27Þ

bD ≔ a log
2ð1 − AmÞ
A0
mrm

: ð28Þ

As for IRðr0Þ, expanding it in powers of δ and considering
only the first term of the expansion results in

Iðr0Þ ¼
Z

1

0

gðz; rmÞdzþOðδÞ ≔ bR: ð29Þ

Putting it all together, we can finally write Eq. (13) as

α̂ðr0Þ ¼ −a log δðr0Þ þ b; ð30Þ
where a is defined by Eq. (27), while b is given by

b ≔ bD þ bR − π: ð31Þ
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This concludes our discussion on the strong deflection limit
analysis in the presence of cold nonmagnetized plasma.
To summarize, the procedure consists of:

(i) Solving Eq. (10) [or, alternatively, αðr0Þ ¼ 0] to find
the radius of the photon sphere;

(ii) Computing βm from (25) [or from (19) evaluated at
r0 ¼ rm] and the function Rð0; rmÞ from (15);

(iii) Computing the coefficient bR given by (29) analyti-
cally or numerically, depending on the specific case;

(iv) Computing the coefficients a and b from Eqs. (27)
and (31), respectively.

As we will see in the next section, the critical steps are
the calculation of the photon sphere radius and of the
coefficient bR.
The deflection angle can also be written in terms of the

impact parameter, here denoted by u, which in the presence
of plasma is defined by the equation [109]

u ¼ n0
n∞

ffiffiffiffiffiffi
C0

A0

s
; ð32Þ

with n∞ ≔ nðr → ∞Þ. As δ → 0 (i.e., as r0 → rm), also the
impact parameter must be close to its minimum um; we thus
define the parameter ε ≪ 1 by the equation

u ¼ umð1þ εÞ: ð33Þ

Now, expanding Eq. (32) around δ ¼ 0, we find

u − um ¼ c̃r2mδ2 ¼ umε; ð34Þ

where c̃ is defined to be

c̃ ≔
βmA02

m
ffiffiffiffiffiffiffi
Cm

p

2n∞nmA
3=2
m ð1 − AmÞ2

: ð35Þ

In terms of ϵ, the deflection angle can be written as

α̂ðuÞ ¼ −ā log εðuÞ þ b̄; ð36Þ

where the coefficients ā and b̄ are given by

ā ¼ a
2
¼ Rð0; rmÞ

2
ffiffiffiffiffiffi
βm

p ; ð37Þ

b̄ ¼ −π þ bR þ ā log
2βm
n2mAm

; ð38Þ

respectively.

IV. SCHWARZSCHILD LENSING IN
THE PRESENCE OF PLASMA

In the previous section, building upon Ref. [39], the
strong deflection limit analysis in a static, asymptotically

flat and spherically symmetric spacetime has been
extended to include the presence of plasma. In particular,
an analytic expression for the deflection angle has been
derived, both in terms of the closest approach distance r0,
Eq. (30), and in terms of the impact parameter u, Eq. (36).
As anticipated, in this section, we will specialize our
discussion to the case of a Schwarzschild black hole, the
simplest spherically symmetric vacuum solution of the
Einstein field equations.
For convenience, we define the Schwarzschild radius as

the unit of measure of distances; then, in Schwarzschild
coordinates, the metric coefficients take the form

AðrÞ ¼ 1 −
1

r
; ð39Þ

BðrÞ ¼
�
1 −

1

r

�
−1
; ð40Þ

CðrÞ ¼ r2: ð41Þ

For the reader’s convenience, we also recall the expression
for the plasma refractive index, that is

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
eðrÞ

ω2ðrÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞω

2
eðrÞ
ω2
∞

s
: ð42Þ

We remind the reader that ωðrÞ denotes the photon
frequency measured by a static observer, ω∞ is the photon
frequency at infinity, and ωeðrÞ represents the plasma
frequency to be specified.
In what follows, after reproducing the already known

result for a homogeneous density profile [87] in Sec. IVA,
we will consider nonuniform plasma, deriving exact or
approximate expressions depending on the specific density
profile chosen. We will conclude Sec. IV by presenting
results for a plasma with arbitrary radial power-law density
profile.
To avoid clutter of notation, we will specify the depend-

encies of the various quantities only when strictly neces-
sary, e.g., when writing down the final expression for the
deflection angle.

A. Homogeneous plasma

As anticipated, before discussing the more realistic
scenario where the Schwarzschild black hole is surrounded
by nonuniform plasma, here, we consider the case of a
homogeneous plasma: ωeðrÞ ¼ ωe ¼ constant. Although
this case has already been analyzed in the literature [87], it
is worth it to show how the same expression for the
deflection angle can be obtained within the formalism
presented in this paper.
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Defining ω̃2 ≔ ω2
e=ω2

∞, the two functions Rðz; r0Þ and
fðz; r0Þ introduced earlier in Eqs. (15) and (16) read

Rðz; r0Þ ¼ Rðr0Þ ¼ 2n0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

1

r0

�
ω̃2

s
; ð43Þ

fðz; r0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αzþ βz2 − γz3
p ; ð44Þ

where the coefficients α, β and γ are given by

α ¼ αðr0Þ ¼ 2 −
3

r0
− 2ω̃2

�
1 −

2

r0
þ 1

r20

�
; ð45Þ

β ¼ βðr0Þ ¼
3

r0
− 1þ ω̃2

�
1 −

4

r0
þ 3

r20

�
; ð46Þ

γ ¼ γðr0Þ ¼
1

r0

�
1 − ω̃2

�
1 −

1

r0

��
: ð47Þ

If ωe ¼ 0, it is immediate to verify that the above
expressions reduce to Eqs. (43) and (44) of Ref. [39].
Now, the radius of the photon sphere can be found by
setting αðr0Þ ¼ 0, resulting in

r20 −
�
3 − 4ω̃2

2 − 2ω̃2

�
r0 −

ω̃2

1 − ω̃2
¼ 0: ð48Þ

The solution of the above equation which, as ωe → 0,
reduces to the well-known vacuum result (i.e., 3=2) is

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8ω̃2

p
− 4ω̃2 þ 3

4ð1 − ω̃2Þ : ð49Þ

In order to make contact with Ref. [87], we define

x≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

8

9
ω̃2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

8ω2
e

9ω2
∞

s
: ð50Þ

In terms of x, Eq. (49) can be rewritten as

rm ¼ 3
1þx
1þ3x

: ð51Þ

Consequently, from Eq. (27), we compute the coefficient a,
finding

a¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ω̃2þ ω̃2

rm
3
rm
−1þ ω̃2− 4ω̃2

rm
þ 3ω̃2

r2m

vuut ¼ 2

ffiffiffiffiffiffiffiffiffiffi
1þx
2x

r
: ð52Þ

The coefficient β has been read off from the expansion of
the denominator of fðz; r0Þ, and then it has been evaluated
at r0 ¼ rm. For consistency, one can immediately check

that the same expression for βm can be obtained from
Eq. (25). Let us now consider the other two coefficients to
be calculated, bD and bR. The former gives

bD ¼ −2
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
2x

r
log

1

2
: ð53Þ

Concerning the latter, we have

bR ¼ 2nm

Z
1

0

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βmz2 − γmz3
p −

1ffiffiffiffiffiffi
βm

p
z

�
dz

¼ −a
�
log

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γm

βm

q
þ 1

1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γm

βm

q �
þ log

γm
4βm

�

¼ −a log
�ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

3x − 1
p þ ffiffiffiffiffi

6x
p Þ2

24x

�
: ð54Þ

Putting it all together, we can finally write the deflection
angle in terms of x as

α̂ðr0; xÞ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
2x

r
log ðz1ðxÞδðr0ÞÞ − π; ð55Þ

where the quantity z1 is defined as

z1ðxÞ ≔
9x − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6xð3x − 1Þp

48x
; ð56Þ

while δðr0Þ as

δ ¼ r0
rm

− 1: ð57Þ

Equation (55) agrees with Eq. (79) in Ref. [87].
In terms of the impact parameter u, the deflection angle

results in

α̂ðu; xÞ ¼ −āðxÞ log εðu; xÞ þ b̄ðxÞ; ð58Þ

where εðu; xÞ, āðxÞ and b̄ðxÞ read

εðu; xÞ ¼ u
umðxÞ

− 1; ð59Þ

āðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
2x

r
; ð60Þ

b̄ðxÞ ¼ −āðxÞ log
�
2z21ðxÞ
3x

�
− π; ð61Þ
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respectively, with umðxÞ given by

umðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ xÞ
3x − 1

r
rm: ð62Þ

Equation (58) is in agreement with Eq. (88) in Ref. [87].
As we have seen, the homogeneous plasma case can be

solved exactly: The radius of the photon sphere can be
indeed found without relying on any approximation and,
moreover, no numerical integration is needed to calculate
the coefficient bR.
In Fig. 2, the comparison between the exact deflection

angle (found by numerical integration) and the one in the
strong deflection limit is plotted, showing excellent agree-
ment for r0 close to the photon sphere rm.

B. Plasma with density profile NðrÞ ∝ r− 1
Let us now consider a nonuniform plasma with comov-

ing number density of the form

NðrÞ ¼ Nc1

r
; ð63Þ

where Nc1 is a constant. Consequently, the plasma fre-
quency can be rewritten as

ωeðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2Nc1

mr

s
: ð64Þ

For further simplicity, we introduce the constant

k ≔
4πe2Nc1

ω2
∞m

; ð65Þ

which fully characterizes the magnitude of plasma influ-
ence compared to the vacuum case. A larger value of this
coefficient indicates a greater influence of plasma. If
Nc1 ¼ 0 or ω∞ → ∞, we have k ¼ 0, and the vacuum
case is recovered.
The functions Rðz; r0Þ and fðz; r0Þ now read

Rðz; r0Þ ¼ Rðr0Þ ¼ 2n0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

1

r0

�
k
r0

s
; ð66Þ

fðz; r0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αzþ βz2 − γz3
p ; ð67Þ

where the coefficients α, β and γ are given by

α ¼ 2 −
3þ k
r0

þ k
r20

�
2 −

1

r0

�
; ð68Þ

β ¼ 3þ k
r0

− 1 −
k
r20

�
3 −

2

r0

�
; ð69Þ

γ ¼ 1

r0
−

k
r20

�
1 −

1

r0

�
: ð70Þ

As before, the radius of the photon sphere can be found
from the equation α ¼ 0, leading to

rm ¼ 1

6

�
kþ 3þ gðkÞ þ ðk − 3Þ2

gðkÞ
�
; ð71Þ

where the function gðkÞ is defined as

gðkÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − 3Þ3 þ 54þ 6

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − 3Þ3 þ 27

q
3

r
: ð72Þ

Setting k ¼ 0 gives gð0Þ ¼ 3 and rm ¼ 3=2, as expected.
The coefficient a results in

a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − 1

rm

�
k
rm

3þk
rm

− 1 − k

�
3
r2m
− 2

r3m

�
vuuuuut ; ð73Þ

with rm given by Eq. (71). As for the coefficients bD and
bR, no complications arise with respect to the homogeneous

1.5 1.6 1.7 1.8 1.9 2.0
0

2

4

6

8

r0

( r 0
)

HOMOGENEOUS PLASMA

FIG. 2. Deflection angle in Schwarzschild spacetime sur-
rounded by homogeneous plasma as a function of the minimum
radial coordinate r0, Sec. IVA. The red curve is the result of a
numerical calculation, while the blue curve represents the
deflection angle calculated using the strong deflection limit
formula (55). We set the value ω̃2 ¼ 0.2. As expected, the
agreement is excellent when r0 is near the photon sphere
radius.
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case, finding

bD ¼ a log 2; ð74Þ

bR ¼ −a log

2
64 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

3−rm

q
4ð3 − rmÞ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

3−rm

q �
3
75; ð75Þ

respectively. We can thus write down the formal expression
for the deflection angle as

α̂ðr0; kÞ ¼ −aðkÞ log δðr0; kÞ þ bðkÞ; ð76Þ

where δðr0; kÞ is

δðr0; kÞ ¼
r0

rmðkÞ
− 1: ð77Þ

The quantities rmðkÞ and aðkÞ are given by Eqs. (71) and
(73), respectively, and bðkÞ ¼ bDðkÞ þ bRðkÞ − π, where
bDðkÞ and bRðkÞ are given by Eqs. (74) and (75),
respectively. In Fig. 3, the comparison between the
numerical calculation of the deflection angle and the one
computed in the strong deflection limit is shown. As we can
notice, also the case of a nonuniform plasma with a density
profile of the form NðrÞ ∝ 1=r can be solved exactly.
However, for later convenience, we can specialize our
formulas to the realistic case when the plasma frequency is
much smaller than the photon frequency; to implement this

approximation, we rewrite the refractive index as

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ

ω2
eðrÞ

ω2ðrÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ

�
1 −

1

r

�
k
r

s
: ð78Þ

Above, we have introduced a book-keeping parameter,
denoted by ϵ, which will be set to unity after linearizing all
equations with respect to ϵ. The function fðz; r0Þ assumes
of course the same form as in (67), but now the coefficients
α, β and γ are given by

α ¼ 2 −
3þ ϵk
r0

þ ϵk
r20

�
2 −

1

r0

�
; ð79Þ

β ¼ 3þ ϵk
r0

− 1 −
ϵk
r20

�
3 −

2

r0

�
; ð80Þ

γ ¼ 1

r0
−
ϵk
r20

�
1 −

1

r0

�
: ð81Þ

By solving the equation α ¼ 0 and then linearizing with
respect to ϵ, we obtain

rm ≃
3

2
þ ϵ

k
18

: ð82Þ

In this approximation, the coefficient a becomes

a ≃ 2

�
1 −

k
27

�
; ð83Þ

where in the last step, we again linearized with respect to ϵ
and then set ϵ ¼ 1. Applying the same strategy to the
regular term, we find

bR ≃ bR;0 þ bR;1k; ð84Þ

where bR;0 and bR;1 are written as

bR;0 ¼ 2 log ½6ð2 −
ffiffiffi
3

p
Þ� ≈ 0.95; ð85Þ

bR;1 ¼ −
2

27

�
3

ffiffiffi
3

p
− 3þ bR;0

2

�
≈ −0.20: ð86Þ

Finally, the coefficient bD is given by

bD ≃ 2

�
1 −

k
27

�
log 2: ð87Þ

FIG. 3. Deflection angle in Schwarzschild spacetime sur-
rounded by nonuniform plasma with density profile of the form
NðrÞ ∝ r−1; see Sec. IV B. The red curve is the result of a
numerical calculation, while the blue curve represents the
deflection angle in the strong deflection limit; see Eq. (76). In
both cases, the constant k introduced in (65) is chosen to be equal
to k ¼ 1.
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In the low-density plasma approximation, the deflection
angle can then be explicitly written as

α̂ðr0; kÞ ≃ −2
�
1 −

k
27

�
log δðr0; kÞ þ 2

�
1 −

k
27

�

× log½12ð2 −
ffiffiffi
3

p
Þ� − 2k

9
ð

ffiffiffi
3

p
− 1Þ − π: ð88Þ

As expected, the well-known result in the absence of
plasma [39] is recovered by setting k ¼ 0. In Fig. 4,
Eq. (88) is plotted and compared against the numerical
calculation. It is worth mentioning that in Fig. 4, the
constant k has been set to 0.1, not unity as in Figs. 2 and 3.
Indeed, in Fig. 3, we are plotting the numerical calculation
of αðr0Þ against both the strong deflection limit and the
low-density plasma limit. It is therefore important to verify
the approximation’s accuracy and determine its valid-
ity range.
Computing um; ā and b̄, we can also express the

deflection angle in terms of the impact parameter as

α̂ðu;kÞ≃−
�
1−

k
27

�
logεðu;kÞþ log ½216ð7−

ffiffiffi
3

p
Þ�

−
2k
9

� ffiffiffi
3

p
−1þ1

6
log6þ1

3
log ½6ð2−4

ffiffiffi
3

p
Þ�
�
−π;

ð89Þ

with εðu; kÞ given by

εðu; kÞ ¼ u
umðu; kÞ

− 1 ¼ 2
ffiffiffi
3

p
u

9 − k
− 1: ð90Þ

C. Plasma with density profile NðrÞ ∝ r− 2
The plasma number density is now given by

NðrÞ ¼ Nc2

r2
: ð91Þ

This case is particularly interesting because with this choice
of the plasma distribution, the radius rm of the photon
sphere in the presence of plasma is exactly equal to the
radius of the photon sphere in vacuum, which in our units is
3=2; see Ref. [88].
The plasma frequency and the refractive index are now

given by the expressions

ωeðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2Nc2

mr2

s
; ð92Þ

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

1

r

�
k
r2

s
; ð93Þ

respectively. It is important to note that the constant k
introduced above is defined as

k ≔
4πe2Nc2

ω2
∞m

: ð94Þ

Although it is different from the one introduced in the
previous section (Nc1 ≠ Nc2), we do not change its label to
avoid cluttering the notation.
The case considered in this section turns out to be

surprisingly simple; this is due to the fact that the function
fðz; r0Þ has the same form as the one in the absence of
plasma [39], namely

fðz; r0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2 − 3
r0

�
zþ

�
3
r0
− 1

�
z2 − z3

r0

s ; ð95Þ

from which we read off the coefficients α and β:

α ¼ 2 −
3

r0
; ð96Þ

β ¼ 3

r0
− 1: ð97Þ

By imposing α ¼ 0, we find the radius of the photon
sphere, rm ¼ 3=2, which immediately leads to βm ¼ 1. The
coefficients a; bR and bD turn out to be

a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4k
27

r
; ð98Þ

bR ¼ a log ½6ð2 −
ffiffiffi
3

p
Þ�; ð99Þ

bD ¼ a log 2; ð100Þ

FIG. 4. Deflection angle in Schwarzschild spacetime sur-
rounded by nonuniform plasma with density profile of the form
NðrÞ ¼ N0r−1. The red line is the result of a numerical calcu-
lation, while the black line represents the deflection angle both in
the strong deflection limit and in the low-density plasma
approximation, Eq. (88). In both cases, we set k ¼ 0.1.
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respectively. The deflection angle is thus given by

α̂ðr0; kÞ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4k
27

r
log δðr0Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4k
27

r

× log ½12ð2 −
ffiffiffi
3

p
Þ� − π: ð101Þ

The low-density plasma version of Eq. (101) reads

α̂ðr0; kÞ ≃ −2
�
1 −

2k
27

�
log δðr0Þ þ 2

�
1 −

2k
27

�

× log ½12ð2 −
ffiffiffi
3

p
Þ� − π: ð102Þ

For later convenience, we also write down the result we
obtained for the regular term. Using the same notation as
before, we can write bR ≃ bR;0 þ bR;1k, with bR;0 given by
Eq. (85) and

bR;1 ¼ −
4

27
log ½6ð2 −

ffiffiffi
3

p
Þ� ≈ −0.07: ð103Þ

In terms of u, the deflection angle instead results in

α̂ðu; kÞ ≃ −
�
1 −

2k
27

�
log εðu; kÞ þ 4k

27

×

�
1 − log

ffiffiffi
6

p
− log

�
6ð2 −

ffiffiffi
3

p
Þ
��

þ log ½216ð7 − 4
ffiffiffi
3

p
Þ� − π; ð104Þ

with εðu; kÞ given by

εðu; kÞ ¼ u
umðu; kÞ

− 1 ¼ 6
ffiffiffi
3

p
u

27 − 2k
− 1: ð105Þ

D. Plasma with density profile NðrÞ ∝ r− 3
The next scenario that one could hope to solve exactly is

the one in which the Schwarzschild black hole is sur-
rounded by a nonuniform plasma with number density
NðrÞ proportional to 1=r3. However, the first difficulty
arises when we write down the photon sphere equation,
which is not analytically solvable in this case. Therefore,
we are forced to rely on the low-density plasma approxi-
mation from the very beginning. When the plasma fre-
quency is significantly smaller than the photon frequency,
we can linearize the equation for the photon sphere around
the corresponding value for light rays in vacuum. For more
details, the reader may refer to Sec. V of Ref. [88]. In the
case at hand, such linearization procedure results in

rm ≃
3

2
− ϵ

2k
81

: ð106Þ

Before proceeding, we also write down the expression for
the plasma frequency; that is

ωeðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2Nc3

mr3

s
: ð107Þ

The function fðz; r0Þ assumes a slightly more complicated
form with respect to the previous cases, namely

fðz; r0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αzþ βz2 − γz3 þ δz4
p ; ð108Þ

where the coefficients α, β, γ and δ read

α ¼ 2 −
3

r0
þ ϵk

r30

�
1 −

2

r0
þ 1

r20

�
; ð109Þ

β ¼ 3

r0
− 1 −

ϵk
r30

�
2 −

5

r0
þ 3

r20

�
; ð110Þ

γ ¼ 1

r0
−
ϵk
r30

�
1 −

4

r0
þ 3

r20

�
; ð111Þ

δ ¼ ϵk
r40

�
1 −

1

r0

�
: ð112Þ

The constant k above is defined as

k ≔
4πe2Nc3

ω2
∞m

: ð113Þ

As for the coefficient a, we have

a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ

	
1 − 1

rm



k
rm

3
rm
− 1 − ϵk

r3m

	
2 − 5

rm
þ 3

r2m



vuuut ≃ 2

�
1 −

16k
243

�
; ð114Þ

where we linearized with respect to ϵ and finally set ϵ ¼ 1,
as before. The next step is to compute the regular term, bR;
as it turns out, also in this case, the integration can be easily
performed, leading to

bR ¼ a

�
2atanh

� ffiffiffiffiffiffi
δm

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βm − γm þ δm

p ffiffiffiffiffiffi
βm

p
�

þ log

�
4βm

γm þ 2
ffiffiffiffiffiffiffiffiffiffiffi
βmδm

p
��

; ð115Þ

with βm > 0, γm < 1 and βm > γm. Now, by inserting
Eqs. (110)–(112) in Eq. (115), linearizing with respect
to ϵ and finally setting ϵ ¼ 1, leads to

bR ≃ bR;0 þ bR;1k; ð116Þ
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with bR;0 given by (85) and

bR;1 ¼ −
16

243
½2

ffiffiffi
3

p
− 5þ bR;0� ≈ 0.04: ð117Þ

The coefficient bD is instead given by

bD ≃ 2

�
1 −

16k
243

�
log 2; ð118Þ

again after the linearization procedure. Putting it all
together, we can write the deflection angle as

α̂ðr0;kÞ≃−2
�
1−

16k
243

�
logδðr0;kÞþ2

�
1−

16k
243

�

×log ½12ð2−
ffiffiffi
3

p
Þ�−16k

243
ð2

ffiffiffi
3

p
−5Þ−π: ð119Þ

In summary, we have been able to obtain results in this
case without relying on numerical procedures. However,
due to the impossibility of solving the photon sphere
equation exactly, we had to specialize all the expressions
to the case where the plasma frequency is much smaller
than the photon frequency. As before, we also write down
the deflection angle as a function of u, resulting in

α̂ðu;kÞ≃
�
1−

16k
243

�
logεðu;kÞþ log ½216ð7−4

ffiffiffi
3

p
Þ�

−
16k
243

�
2

ffiffiffi
3

p
þ log6−

15

2
þ log ½6ð2−

ffiffiffi
3

p
Þ�
�
−π;

ð120Þ

with εðu; kÞ given by

εðu; kÞ ¼ u
umðu; kÞ

− 1 ¼ 18
ffiffiffi
3

p
u

81 − 4k
− 1: ð121Þ

E. General case: NðrÞ ∝ r− q, q > 0

The outlined procedure is by now clear. Here, we
generalize the results presented in the previous sections
to the case of a nonhomogeneous plasma with number
density NðrÞ ∝ r−q, with q > 0. In this case, the radius of
the photon sphere and the refractive index read

rm ≃
3

2
þ ϵ

2q−1

3qþ1

�
1 −

q
2

�
k; ð122Þ

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ

�
1 −

1

r

�
k
rq

s
; ð123Þ

respectively. In the general case we are considering here,
the constant k is defined as

k ≔
4πe2Ncq

ω2
∞m

: ð124Þ

Proceeding as before, i.e., reading off the coefficient β
from the function fðz; r0Þ is not possible anymore; this is
simply due to the fact that the exponent in the power law, q,
can be any real number: The function fðz; r0Þ cannot be
expanded in powers of z. We then calculate βm directly
evaluating (19) at r0 ¼ rm or, alternatively, from Eq. (25).
By doing so, and applying the linearization procedure
introduced in the previous sections, the coefficients a and
bD turn out to be

aðqÞ ≃ 2þ 2q−1

3qþ2
ðq2 − 7qþ 4Þk; ð125Þ

bDðqÞ ≃ aðqÞ log 2; ð126Þ

respectively.
The crucial step is the calculation of bR. Indeed, in this

case, the resulting integral is not analytically tractable. The
strategy we adopt is to first expand the integrand in powers
of ϵ and then evaluate the integral. We first recall that bR is
defined as

bR ¼
Z

1

0

gðz; rmÞdz; ð127Þ

where the function gðz; rmÞ is given by

gðz; rmÞ ¼ 2nmðfðz; rmÞ − f0ðz; rmÞÞ: ð128Þ

Explicitly writing down the expressions for fðz; rmÞ and
f0ðz; rmÞ [given by Eqs. (16) and (17), respectively,
specialized to this case], linearizing the integrand in
(127) with respect to ϵ and setting ϵ ¼ 1, leads to

bRðqÞ ≃ bR;0 þ bR;1ðqÞk; ð129Þ

with the second term in the above expression given by

bR;1ðqÞ ¼
Z

1

0

bR;1ðz; qÞdz; ð130Þ

where, in turn, bR;1ðz; qÞ is defined as

bR;1ðz; qÞ ¼
2q3−

3
2
−q

½z2ð3 − 2zÞ�32 fð1 − zÞqð3þ 6zÞ

þ zðq − 2Þ½zðz − 3Þ þ 3�g

−
2q−1

3qþ2

q2 − 7qþ 4

z
: ð131Þ

The integral in (130) cannot be solved exactly for every
value of q. Nevertheless, by restricting our attention to
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values of q in the interval [0.5, 5], we are able to find a good
approximation of the integral in terms of polynomial
functions; that is

bR;1ðqÞjq∈½0.5;5�≃2.60655×10−6ðq2−10.8264qþ33.1271Þ
×ðq2−6.60733qþ19.4469Þ
×ðq2−12.5198qþ39.4461Þ
×ðq2−0.699467qþ6.59669Þ
×ðq−2.56535Þðq−0.219367Þ: ð132Þ

For the values of q that we considered in the previous
sections, the above formula gives

bR;1ð1Þ ≈ −0.20;

bR;1ð2Þ ≈ −0.07;

bR;1ð3Þ ≈ 0.04;

thus finding perfect agreement, at least up to the second
decimal place considered here. It is important to remark
that, even if Eq. (132) is only valid for q∈ ½0.5; 5�, such
interval can be easily extended.
We can now finally write the deflection angle for any

value of q in the interval [0.5, 5] as

α̂ðr0; q; kÞ ≃ −aðq; kÞ log δðr0; q; kÞ þ bDðq; kÞ
þ bR;0 þ bR;1ðqÞk − π; ð133Þ

where δðr0; q; kÞ is given by

δðr0; q; kÞ ¼
r0

rmðq; kÞ
− 1: ð134Þ

Moreover, the coefficient aðq; kÞ and the radius of the
photon sphere rmðq; kÞ are given by Eqs. (125) and (122),
respectively, while bDðq; kÞ; bR;0 and bR;1ðq; kÞ are given
by (126), (85), and (132), respectively.
Figure 5 illustrates how the radius of the photon sphere is

approached for different values of q.
Below, we also write down the formula for the deflection

angle as a function of q and u; that is

α̂ðu; q; kÞ ≃ −āðq; kÞ log εðu; q; kÞ þ b̄ðq; kÞ; ð135Þ

where εðu; q; kÞ, āðq; kÞ and umðq; kÞ are given by

εðu; q; kÞ ¼ u
umðq; kÞ

− 1; ð136Þ

umðq; kÞ ¼
3
1
2
−q

2
ð3qþ1 − 2q−1kÞ; ð137Þ

āðq; kÞ ¼ 1þ 2q−2

3qþ2
ðq2 − 7qþ 4Þk; ð138Þ

respectively, while the coefficient b̄ðq; kÞ is

b̄ðq; kÞ ¼ −π þ log½216ð7 − 4
ffiffiffi
3

p
Þ� þ 2q−2

3qþ2

× f4 log 6 − 16þ q½qðlog 6 − 2Þ
þ 18 − 7 log 6� þ bR;1ðqÞgk: ð139Þ

We conclude the discussion of this section by showing
the behavior of the coefficients um; ā and b̄ as a function of
q, setting k ¼ 0.1 (Figs. 6–8), and as a function of k
(Figs. 9–11), respectively.

q = 1
q = 3/2
q = 2
q = 3
vacuum

1.495 1.500 1.505 1.510 1.515 1.520

8
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16

18

20

r0

(r 0
)

FIG. 5. The dashed curve illustrates the deflection angle in the
absence of plasma, see Ref. [39]. The solid curves represent the
deflection angles in Schwarzschild spacetime in the presence of a
nonuniform plasma for different values of q. In all cases, we set
k ¼ 0.1. It is worth noting that the vacuum case and the case with
q ¼ 2 both diverge at r0 ¼ rm ¼ 3=2.
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FIG. 6. Minimum impact parameter defined in Eq. (137) as a
function of q, with k set to 0.1. The dashed line represents the
value in the absence of plasma.
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V. OBSERVABLES

In this section, we make use of the results from the
previous section to calculate the properties of high-order
images. Specifically, Eq. (135) can be used to determine the
positions and magnifications of such images when a
Schwarzschild black hole is surrounded by inhomogeneous
plasma.
As is well known, gravitational lensing of a distant source

by a black hole (“lens”) leads to the formation of two infinite
sequences of images on either side of the lens. These
sequences comprise the primary image, the secondary image,
and the high-order images. In cases of perfect alignment, an
infinite sequence ofEinstein rings occurs, including a “main”
Einstein ring formed by merging the primary and secondary
images, as well as higher-order rings. In the formation of
high-order images, light orbits the black hole at least once,
traveling very close to the photon sphere. The deflection
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FIG. 7. Coefficient ā defined in Eq. (138) as a function of q,
with k set to 0.1. The dashed line represents the value in the
absence of plasma.
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FIG. 8. Coefficient b̄ defined in Eq. (139) as a function of q,
with k set to 0.1. The dashed line represents the value in the
absence of plasma.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
2.55

2.56

2.57

2.58

2.59

2.60

k

u m

FIG. 9. Minimum impact parameter defined in Eq. (137) as a
function of k, setting q ¼ 1. The dashed line represents the value
in the absence of plasma.
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FIG. 10. Coefficient ā defined in Eq. (138) as a function of k,
setting q ¼ 1. The dashed line represents the value in the absence
of plasma.
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FIG. 11. Coefficient b̄ defined in Eq. (139) as a function of k,
setting q ¼ 1. The dashed line represents the value in the absence
of plasma.
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angle for these images can be accurately calculated using the
strong deflection limit [37,39].
Building on the results of Sec. IV E, we incorporate the

influence of plasma as a linear correction (low-density
approximation), assuming that the number of images in the
presence of plasma remains the same, but their position and
magnification slightly change.
The general lens equation for spherically symmetric

black holes can be written as [123]

ϕO − ϕS ¼ α̂ðu; q; kÞ þ π mod 2π; ð140Þ

where ϕO and ϕS are the azimuthal coordinates of the
observer and the source, respectively. It is assumed that
both the source and the observer are far away from the
black hole (DLS;DOS ≫ 1). Additionally, we remind that u
represents the impact parameter, Eq. (32), q denotes the
power-law index in the plasma distribution (see Sec. IV E),
and k is the constant characterizing the plasma influence.
Fixing the origin of the azimuthal coordinate in such a

way that ϕO ¼ π and using Eq. (135), we can solve for the
impact parameters of the high-order images, obtaining

unðq; kÞ ¼ umðq; kÞð1þ lðq; k; nÞÞ; ð141Þ

with the quantity lðq; k; nÞ defined by

lðq; k; nÞ ≔ exp

�
b̄ðq; kÞ þ ϕS − 2πn

āðq; kÞ
�
: ð142Þ

Above, n denotes the number of loops around the black
hole performed by light rays before reaching the observer
and ϕS ∈ ½−π; π�. Equation (141) describes the images on
one side of the lens; images on the other side of the lens can
be found by substituting ϕO − ϕS with 2π − ϕO þ ϕS.
Therefore, every number n ≥ 0 corresponds to a pair of
images ondifferent sides of the lens (see, e.g., pp. 2274–2275
of Ref. [37]). Formula (141) applies only to higher-order
images (n ≥ 1), while for primary and secondary images (a
pair with n ¼ 0), the strong deflection limit approximation
does not apply. For completeness, it should be noted that this
widely used definition of n should not be confused with the
number of half-orbits, which has been recently used in
describing higher-order photon rings in black hole images
(see, e.g., [60,65,68]).
Recalling that the angular separation of the image from

the center of the lens is θ ¼ u=DOL, where DOL is the
distance between the lens and the observer (in our case,
DOL ≫ 1), from the above equation we easily get

θnðq; kÞ ¼
umðq; kÞ
DOL

ð1þ lðq; k; nÞÞ: ð143Þ

Computing the impact parameters in the presence of
plasma for different values of q in the range [0.5, 5], we

find that they are always smaller than the corresponding
impact parameters in vacuum; in Table I, considering
specific values of q, some results for the impact parameters
are presented. By varying q, we can therefore deduce that
the presence of an inhomogeneous plasma reduces the
angular size of the higher-order images. This conclusion is
valid within the low-density plasma approximation. We
also emphasize that here we restrict ourselves to consid-
ering a decreasing density profile, which is the most
physically motivated situation. The decrease in angular
size of higher-order images agrees with the results of
Ref. [88], where the decrease in angular size of the shadow
in nonhomogeneous plasma is found.
Let us conclude by considering the simple scenario where

only the first (n ¼ 1) higher-order image is resolved in
observations, while all others (n ≥ 2) are grouped together
near the shadow boundary. Recall that we consider only one
side of the lens. The image with n ¼ 1 is the outermost
among all higher-order images and has an angular separation
θ1 from the center, as given byEq. (143).All other images are
closer to the shadow boundary, so we can approximate their
asymptotic position as θ∞ ¼ um=DOL, where θ∞ is the
angular size of the shadow. This allows us to examine
how the relative separation between the first image and
the others, defined as

sðq; kÞ ≔ lðq; k; 1Þ ¼ exp

�
b̄ðq; kÞ þ ϕS − 2π

āðq; kÞ
�
; ð144Þ

changes due to the presence of inhomogeneous plasma.
Figure 12 illustrates how the quantity sðq; kÞ behaves as a
function of q, where, for simplicity, we set ϕS ¼ 0 (in this
case,we thus haveϕO − ϕS ¼ π; i.e., the background source,
the lens and the observer are in perfect alignment).
Another important observable is the magnification of the

higher-order images. For sources and observers very far
from the black hole, it is given by [33,37,39]

μnðq; kÞ ¼
�
DOS

DLS

�
2 u2mðq; kÞsðq; kÞ
D2

OLāðq; kÞ sin ðπ − ϕSÞ
; ð145Þ

with DOS being the distance between the observer and the
source, DLS the one between the lens and the source, and
finally DOL the one between the observer and the lens,
already introduced before. Equation (145) was derived for

TABLE I. Comparison between the impact parameters of the
higher-order images in vacuum and inhomogeneous plasma for
different values of q, in the specific case of perfect alignement.
The constant k has been set to 0.1.

Impact parameter Vacuum q ¼ 3
2

q ¼ 2 q ¼ 3

u1 2.60133 2.57754 2.58188 2.58837
u2 2.59808 2.57451 2.57884 2.58525
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the vacuum case, but it can also be applied to the plasma
case if the quantities umðq; kÞ, āðq; kÞ, and b̄ðq; kÞ are now
given by Eqs. (137)–(139), respectively. We also recall that
we fixed the origin of the azimuthal coordinate in such a
way that ϕO ¼ π. Setting k ¼ 0 gives the expression for the
magnification in the absence of plasma; that is

μn;vac ¼
�
DOS

DLS

�
2 u2m;vacsvac
D2

OL sin ðπ − ϕSÞ
; ð146Þ

where the subscript “vac” stands for “vacuum” and the
quantities svac and um;vac are given by [39]

svac ¼ 216ð7 − 4
ffiffiffi
3

p
Þe−πð2nþ1Þ; um;vac ¼

3
ffiffiffi
3

p

2
; ð147Þ

respectively.
In Table II, ratios μn=μvacn for different values of q are

presented. In Fig. 13, with n ¼ 1 set, the ratio between the
magnification factor for gravitational lensing in inhomo-
geneous plasma and that in vacuum is plotted as a function
of q, concluding that the presence of inhomogeneous
plasma reduces the magnifications of higher-order images,
at least in the range of q considered here.

VI. DISCUSSION AND CONCLUSIONS

This paper marks the initial stages of examining the
deflection angle of photons by very compact objects in the
presence of nonuniform plasma through analytical calcu-
lations. We find the deflection angle in the strong deflection
limit, which corresponds to light rays circling several times
around a compact object, and calculate properties of high-
order images formed by such rays. In comparison with
previous studies where the strong deflection limit was
considered mainly in vacuum or in homogeneous plasma,
here, we develop a much more general approach valid for
nonhomogeneous plasma distribution.
We investigate analytically a quite general scenario:

deflection angle in a static, asymptotically flat and spheri-
cally symmetric spacetime filled with nonhomogeneous
plasma having a spherically symmetric density profile
(Sec. III); see Eqs. (30) and (36). We focus on the
Schwarzschild spacetime, providing insights into how
different plasma density profiles impact the deflection of
photons for this metric (Sec. IV). The inclusion of results
for an arbitrary power-law radial density profile (Sec. IV E)
adds versatility to the framework, making it ready for
application to a broad range of astrophysical settings. The
formulas presented in the paper are then applied to the
calculation of the positions and magnifications of higher-
order images (Sec. V).
It is worth noting the different level of approximation used

in the various cases considered. As explained in the text, the
two crucial steps of the strong deflection limit procedure are
the calculation of the radius of the photon sphere and the
coefficientbR [Eqs. (10) and (29), respectively]. In the case of
homogeneous plasma (Sec. IVA), as well as in the cases of
power-law indexes q ¼ 1 and q ¼ 2 (Secs. IV B and IV C,
respectively), both the radius of the photon sphere and the
coefficient bR have been found without relying on any
approximation other than the one dictated by the strong
deflection limit procedure. In terms of the distance of closest
approach, r0, the deflection angle in the homogeneous
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FIG. 13. Ratio between the magnification factors for lensing in
the presence of inhomogeneous plasma and that in vacuum, as a
function of q, with n ¼ 1 and k ¼ 0.1.

TABLE II. Here, we compare the magnification factors of
relativistic images for lensing in inhomogeneous plasma, across
different values of q, with those in vacuum. We consider the ratios
μn=μvacn , which depend only on q and k (the constant k is set to
0.1). The values μvacn have been taken from [87].

μn=μvacn μvacn q ¼ 3
2

q ¼ 2 q ¼ 3

μ1=μvac1 0.716 × 10−11 0.93 0.94 0.96
μ2=μvac2 0.134 × 10−13 0.89 0.90 0.92
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FIG. 12. The behavior of the function sðq; kÞ, defined in
Eq. (144), is examined as a function of the power-law index q
with a fixed value of k. The constant k is set to 0.1, and the dashed
line represents the function’s value in the absence of plasma.
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plasma case is given by Eq. (55), while the deflection angles
in the cases q ¼ 1 and q ¼ 2 are given by Eqs. (76) and
(101), respectively. In the q ¼ 3 case (Sec. IV D), the low-
density plasma approximation was additionally used to find
the radius of the photon sphere. However, the coefficient bR
could still be determined through exact integration. The
resulting deflection angle in this case is given by Eq. (119).
As one might expect, for arbitrary q in the range [0.5, 5], the
radius of the photon sphere can only be found in the low-
density plasma approximation, and the coefficient bR can
only be computed by linearizing the integrand (Sec. IV E).
The result for the deflection angle is given by Eq. (133). For
the sake of completeness, we also provide references to the
expressions for the deflection angle in terms of the impact
parameter; in the homogeneous plasma case, it is given by
Eq. (58), while in the cases q ¼ 1, q ¼ 2 and q ¼ 3, it is
given byEqs. (89), (104), and (120), respectively. Finally, for
arbitrary q in the range [0.5, 5], we have obtained Eq. (135).
By opting for analytical methods, we provided a clear

and direct understanding of the relation between photon

deflection and nonuniform plasma environments, opening
avenues for further exploration and application. Beyond
delving into more complex plasma models, the next logical
step in our study involves extending the analysis to address
axially symmetric and stationary solutions to Einstein field
equations.
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spacetime geometric optics for vortex beams, Phys. Rev. A
104, 013718 (2021).

[29] C. Darwin, The gravity field of a particle, Proc. R. Soc. A
249, 180 (1959).

[30] R. d’E. Atkinson, On light tracks near a very massive star,
Astron. J. 70, 517 (1965).

[31] C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
(W. H. Freeman, San Francisco, 1973).

[32] J.-P. Luminet, Image of a spherical black hole with thin
accretion disk, Astron. Astrophys. 75, 228 (1979).

[33] H. C. Ohanian, The black hole as a gravitational “lens”,
Am. J. Phys. 55, 428 (1987).

[34] K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black
hole lensing, Phys. Rev. D 62, 084003 (2000).

[35] S. Frittelli, T. P. Kling, and E. T. Newman, Spacetime
perspective of Schwarzschild lensing, Phys. Rev. D 61,
064021 (2000).

[36] V. Perlick, Exact gravitational lens equation in spherically
symmetric and static spacetimes, Phys. Rev. D 69, 064017
(2004).

[37] V. Bozza, Gravitational lensing by black holes, Gen.
Relativ. Gravit. 42, 2269 (2010).

[38] V. Bozza, S. Capozziello, G. Iovane, and G. Scarpetta,
Strong field limit of black hole gravitational lensing, Gen.
Relativ. Gravit. 33, 1535 (2001).

[39] V. Bozza, Gravitational lensing in the strong field limit,
Phys. Rev. D 66, 103001 (2002).

[40] V. Bozza, Quasiequatorial gravitational lensing by spin-
ning black holes in the strong field limit, Phys. Rev. D 67,
103006 (2003).

[41] C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, The
geometry of photon surfaces, J. Math. Phys. (N.Y.) 42, 818
(2001).

[42] W. Hasse and V. Perlick, Gravitational lensing in spheri-
cally symmetric static spacetimes with centrifugal force
reversal, Gen. Relativ. Gravit. 34, 415 (2002).

[43] V. Perlick, Gravitational lensing from a spacetime per-
spective, Living Rev. Relativity 7, 9 (2004).

[44] S. V. Iyer and A. O. Petters, Light’s bending angle due to
black holes: From the photon sphere to infinity, Gen.
Relativ. Gravit. 39, 1563 (2007).

[45] K. S. Virbhadra and C. R. Keeton, Time delay and mag-
nification centroid due to gravitational lensing by black
holes and naked singularities, Phys. Rev. D 77, 124014
(2008).

[46] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Strong gravi-
tational lensing by Schwarzschild black holes, Astrophys-
ics 51, 99 (2008).

[47] N. Mukherjee and A. S. Majumdar, Rotating brane-world
black hole lensing in the strong deflection limit, Gravita-
tion Cosmol. 15, 263 (2009).

[48] A. Tarasenko, Reconstruction of a compact object motion
in the vicinity of a black hole by its electromagnetic
radiation, Phys. Rev. D 81, 123005 (2010).

[49] E. F. Eiroa and C. M. Sendra, Gravitational lensing by a
regular black hole, Classical Quantum Gravity 28, 085008
(2011).

[50] S.-W. Wei, Yu.-X. Liu, C.-E. Fu, and K. Yang, Strong field
limit analysis of gravitational lensing in Kerr-Taub-NUT
spacetime, J. Cosmol. Astropart. Phys. 10 (2012) 053.

[51] G. Li, Y. Zhang, L. Zhang, Z. Feng, and X. Zu, Strong
gravitational lensing in the Einstein-Proca theory, Int. J.
Theor. Phys. 54, 1245 (2015).

[52] A. Alhamzawi and R. Alhamzawi, Gravitational lensing in
the strong field limit by modified gravity, Gen. Relativ.
Gravit. 48, 167 (2016).

[53] N. Tsukamoto, Strong deflection limit analysis and gravi-
tational lensing of an Ellis wormhole, Phys. Rev. D 94,
124001 (2016).

[54] G. F. Aldi and V. Bozza, Relativistic iron lines in accretion
disks: The contribution of higher order images in the strong
deflection limit, J. Cosmol. Astropart. Phys. 02 (2017) 033.

[55] D.-C. Dai, D. Stojkovic, and G. D. Starkman, Strong
lensing constraints on modified gravity models, Phys.
Rev. D 98, 124027 (2018).

STRONG DEFLECTION LIMIT ANALYSIS OF BLACK HOLE … PHYS. REV. D 110, 064031 (2024)

064031-17

https://doi.org/10.3847/2041-8213/ac6675
https://doi.org/10.3847/2041-8213/ac6675
https://doi.org/10.3847/2041-8213/ac6429
https://doi.org/10.3847/2041-8213/ac6429
https://doi.org/10.3847/2041-8213/ac6736
https://doi.org/10.3847/2041-8213/ac6672
https://doi.org/10.3847/2041-8213/ac6672
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.1086/312423
https://doi.org/10.1086/312423
https://doi.org/10.1103/PhysRevD.100.044057
https://doi.org/10.1103/PhysRevD.100.044057
https://doi.org/10.1093/mnrasl/slz176
https://doi.org/10.1142/S0218271821420177
https://doi.org/10.1103/PhysRevA.104.013718
https://doi.org/10.1103/PhysRevA.104.013718
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1086/109775
https://doi.org/10.1119/1.15126
https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1103/PhysRevD.61.064021
https://doi.org/10.1103/PhysRevD.61.064021
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1103/PhysRevD.66.103001
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1063/1.1308507
https://doi.org/10.1063/1.1308507
https://doi.org/10.1023/A:1015384604371
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.1007/s10714-007-0481-8
https://doi.org/10.1007/s10714-007-0481-8
https://doi.org/10.1103/PhysRevD.77.124014
https://doi.org/10.1103/PhysRevD.77.124014
https://doi.org/10.1007/s10511-008-0011-8
https://doi.org/10.1007/s10511-008-0011-8
https://doi.org/10.1134/S0202289309030116
https://doi.org/10.1134/S0202289309030116
https://doi.org/10.1103/PhysRevD.81.123005
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1088/1475-7516/2012/10/053
https://doi.org/10.1007/s10773-014-2321-4
https://doi.org/10.1007/s10773-014-2321-4
https://doi.org/10.1007/s10714-016-2161-z
https://doi.org/10.1007/s10714-016-2161-z
https://doi.org/10.1103/PhysRevD.94.124001
https://doi.org/10.1103/PhysRevD.94.124001
https://doi.org/10.1088/1475-7516/2017/02/033
https://doi.org/10.1103/PhysRevD.98.124027
https://doi.org/10.1103/PhysRevD.98.124027


[56] F. Aratore and V. Bozza, Decoding a black hole metric
from the interferometric pattern of the relativistic images of
a compact source, J. Cosmol. Astropart. Phys. 10 (2021)
054.

[57] X.-M. Kuang, Z.-Y. Tang, B. Wang, and A. Wang,
Constraining a modified gravity theory in strong gravita-
tional lensing and black hole shadow observations, Phys.
Rev. D 106, 064012 (2022).

[58] F. Aratore and V. Bozza, Analytical perturbations of
relativistic images in Kerr space-time, J. Cosmol. Astro-
part. Phys. 07 (2024) 033.

[59] S. E. Gralla, D. E. Holz, and R. M. Wald, Black hole
shadows, photon rings, and lensing rings, Phys. Rev. D
100, 024018 (2019).

[60] M. D. Johnson, A. Lupsasca, A. Strominger, G. N. Wong,
S. Hadar, D. Kapec, R. Narayan, A. Chael, C. F. Gammie,
P. Galison et al., Universal interferometric signatures of a
black hole’s photon ring, Sci. Adv. 6, eaaz1310 (2020).

[61] S. E. Gralla and A. Lupsasca, Observable shape of black
hole photon rings, Phys. Rev. D 102, 124003 (2020).

[62] S. E. Gralla, A. Lupsasca, and D. P. Marrone, The shape of
the black hole photon ring: A precise test of strong-field
general relativity, Phys. Rev. D 102, 124004 (2020).

[63] S. E. Gralla and A. Lupsasca, Lensing by Kerr black holes,
Phys. Rev. D 101, 044031 (2020).

[64] M. Wielgus, Photon rings of spherically symmetric black
holes and robust tests of non-Kerr metrics, Phys. Rev. D
104, 124058 (2021).

[65] A. E. Broderick, P. Tiede, D. W. Pesce, and R. Gold,
Measuring spin from relative photon ring sizes, Astrophys.
J. 927, 6 (2022).

[66] D. Ayzenberg, Testing gravity with black hole shadow
subrings, Classical Quantum Gravity 39, 105009 (2022).

[67] M. Guerrero, G. J. Olmo, D. Rubiera-Garcia, and D. S.-C.
Gómez, Multiring images of thin accretion disk of a regular
naked compact object, Phys. Rev. D 106, 044070 (2022).

[68] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Analytical
study of higher-order ring images of the accretion disk
around a black hole, Phys. Rev. D 105, 064040 (2022).

[69] O. Yu. Tsupko, Shape of higher-order images of equatorial
emission rings around a Schwarzschild black hole: Ana-
lytical description with polar curves, Phys. Rev. D 106,
064033 (2022).

[70] A. Eichhorn, A. Held, and P.-V. Johannsen, Universal
signatures of singularity-resolving physics in photon rings
of black holes and horizonless objects, J. Cosmol. As-
tropart. Phys. 01 (2023) 043.

[71] A. E. Broderick, K. Salehi, and B. Georgiev, Shadow
implications: What does measuring the photon ring imply
for gravity?, Astrophys. J. 958, 114 (2023).

[72] P. Kocherlakota, L. Rezzolla, R. Roy, and M. Wielgus,
Prospects for future experimental tests of gravity with
black hole imaging: Spherical symmetry, Phys. Rev. D
109, 064064 (2024).

[73] P. Kocherlakota, L. Rezzolla, R. Roy, and M. Wielgus,
Hotspots and photon rings in spherically symmetric space–
times, Mon. Not. R. Astron. Soc. 531, 3606 (2024).

[74] F. Aratore, O. Yu. Tsupko, and V. Perlick, Constraining
spherically symmetric metrics by the gap between photon
rings, Phys. Rev. D 109, 124057 (2024).

[75] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Gravitational
radiospectrometer, Gravitation Cosmol. 15, 20 (2009).

[76] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Gravitational
lensing in a non-uniform plasma, Mon. Not. R. Astron.
Soc. 404, 1790 (2010).

[77] V. S. Morozova, B. J. Ahmedov, and A. A. Tursunov,
Gravitational lensing by a rotating massive object in a
plasma, Astrophys. Space Sci. 346, 513 (2013).

[78] X. Er and S. Mao, Effects of plasma on gravitational
lensing, Mon. Not. R. Astron. Soc. 437, 2180 (2014).

[79] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Gravitational
lensing in plasmic medium, Plasma Phys. Rep. 41, 562
(2015).

[80] G. Crisnejo and E. Gallo, Weak lensing in a plasma
medium and gravitational deflection of massive particles
using the Gauss-Bonnet theorem. A unified treatment,
Phys. Rev. D 97, 124016 (2018).

[81] G. Crisnejo, E. Gallo, and K. Jusufi, Higher order
corrections to deflection angle of massive particles and
light rays in plasma media for stationary spacetimes using
the Gauss-Bonnet theorem, Phys. Rev. D 100, 104045
(2019).

[82] G. Crisnejo, E. Gallo, and A. Rogers, Finite distance
corrections to the light deflection in a gravitational field
with a plasma medium, Phys. Rev. D 99, 124001 (2019).

[83] O. Yu. Tsupko and G. S. Bisnovatyi-Kogan, Hills and
holes in the microlensing light curve due to plasma
environment around gravitational lens, Mon. Not. R.
Astron. Soc. 491, 5636 (2020).

[84] J. Sun, X. Er, and O. Yu. Tsupko, Binary microlensing
with plasma environment—star and planet, Mon. Not. R.
Astron. Soc. 520, 994 (2023).

[85] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Time delay
induced by plasma in strong lens systems, Mon. Not. R.
Astron. Soc. 524, 3060 (2023).

[86] V. Perlick, Ray Optics, Fermat’s Principle, and Applica-
tions to General Relativity (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000).

[87] O. Yu. Tsupko and G. S. Bisnovatyi-Kogan, Gravitational
lensing in plasma: Relativistic images at homogeneous
plasma, Phys. Rev. D 87, 124009 (2013).

[88] V. Perlick, O. Yu. Tsupko, and G. S. Bisnovatyi-Kogan,
Influence of a plasma on the shadow of a spherically
symmetric black hole, Phys. Rev. D 92, 104031 (2015).

[89] A. Rogers, Frequency-dependent effects of gravitational
lensing within plasma, Mon. Not. R. Astron. Soc. 451, 17
(2015).

[90] A. Rogers, Escape and trapping of low-frequency gravi-
tationally lensed rays by compact objects within plasma,
Mon. Not. R. Astron. Soc. 465, 2151 (2017).

[91] A. Rogers, Gravitational lensing of rays through the
levitating atmospheres of compact objects, Universe 3, 3
(2017).

[92] V. Perlick and O. Yu. Tsupko, Light propagation in a
plasma on Kerr spacetime: Separation of the Hamilton-
Jacobi equation and calculation of the shadow, Phys. Rev.
D 95, 104003 (2017).

[93] Y. Huang, Y.-P. Dong, and D.-J. Liu, Revisiting the shadow
of a black hole in the presence of a plasma, Int. J. Mod.
Phys. D 27, 1850114 (2018).

FELEPPA, BOZZA, and TSUPKO PHYS. REV. D 110, 064031 (2024)

064031-18

https://doi.org/10.1088/1475-7516/2021/10/054
https://doi.org/10.1088/1475-7516/2021/10/054
https://doi.org/10.1103/PhysRevD.106.064012
https://doi.org/10.1103/PhysRevD.106.064012
https://doi.org/10.1088/1475-7516/2024/07/033
https://doi.org/10.1088/1475-7516/2024/07/033
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1126/sciadv.aaz1310
https://doi.org/10.1103/PhysRevD.102.124003
https://doi.org/10.1103/PhysRevD.102.124004
https://doi.org/10.1103/PhysRevD.101.044031
https://doi.org/10.1103/PhysRevD.104.124058
https://doi.org/10.1103/PhysRevD.104.124058
https://doi.org/10.3847/1538-4357/ac4970
https://doi.org/10.3847/1538-4357/ac4970
https://doi.org/10.1088/1361-6382/ac655d
https://doi.org/10.1103/PhysRevD.106.044070
https://doi.org/10.1103/PhysRevD.105.064040
https://doi.org/10.1103/PhysRevD.106.064033
https://doi.org/10.1103/PhysRevD.106.064033
https://doi.org/10.1088/1475-7516/2023/01/043
https://doi.org/10.1088/1475-7516/2023/01/043
https://doi.org/10.3847/1538-4357/acf9f6
https://doi.org/10.1103/PhysRevD.109.064064
https://doi.org/10.1103/PhysRevD.109.064064
https://doi.org/10.1093/mnras/stae1321
https://doi.org/10.1103/PhysRevD.109.124057
https://doi.org/10.1134/S020228930901006X
https://doi.org/10.1111/j.1365-2966.2010.16290.x
https://doi.org/10.1111/j.1365-2966.2010.16290.x
https://doi.org/10.1007/s10509-013-1458-6
https://doi.org/10.1093/mnras/stt2043
https://doi.org/10.1134/S1063780X15070016
https://doi.org/10.1134/S1063780X15070016
https://doi.org/10.1103/PhysRevD.97.124016
https://doi.org/10.1103/PhysRevD.100.104045
https://doi.org/10.1103/PhysRevD.100.104045
https://doi.org/10.1103/PhysRevD.99.124001
https://doi.org/10.1093/mnras/stz3365
https://doi.org/10.1093/mnras/stz3365
https://doi.org/10.1093/mnras/stad200
https://doi.org/10.1093/mnras/stad200
https://doi.org/10.1093/mnras/stad2030
https://doi.org/10.1093/mnras/stad2030
https://doi.org/10.1103/PhysRevD.87.124009
https://doi.org/10.1103/PhysRevD.92.104031
https://doi.org/10.1093/mnras/stv903
https://doi.org/10.1093/mnras/stv903
https://doi.org/10.1093/mnras/stw2829
https://doi.org/10.3390/universe3010003
https://doi.org/10.3390/universe3010003
https://doi.org/10.1103/PhysRevD.95.104003
https://doi.org/10.1103/PhysRevD.95.104003
https://doi.org/10.1142/S0218271818501146
https://doi.org/10.1142/S0218271818501146


[94] H. Yan, Influence of a plasma on the observational
signature of a high-spin Kerr black hole, Phys. Rev. D
99, 084050 (2019).

[95] T. Kimpson, K. Wu, and S. Zane, Spatial dispersion of
light rays propagating through a plasma in Kerr space-
time, Mon. Not. R. Astron. Soc. 484, 2411 (2019).

[96] T. Kimpson, K. Wu, and S. Zane, Pulsar timing in extreme
mass ratio binaries: A general relativistic approach, Mon.
Not. R. Astron. Soc. 486, 360 (2019).

[97] G. Z. Babar, A. Z. Babar, and F. Atamurotov, Optical
properties of Kerr–Newman spacetime in the presence
of plasma, Eur. Phys. J. C 80, 761 (2020).

[98] O. Yu. Tsupko, Deflection of light rays by a spherically
symmetric black hole in a dispersive medium, Phys. Rev. D
103, 104019 (2021).

[99] A. Chowdhuri and A. Bhattacharyya, Shadow analysis for
rotating black holes in the presence of plasma for an
expanding universe, Phys. Rev. D 104, 064039 (2021).

[100] J. Badía and E. F. Eiroa, Shadow of axisymmetric, sta-
tionary, and asymptotically flat black holes in the presence
of plasma, Phys. Rev. D 104, 084055 (2021).

[101] Q. Li, Y. Zhu, and T. Wang, Gravitational effect of plasma
particles on the shadow of Schwarzschild black holes, Eur.
Phys. J. C 82, 2 (2022).

[102] B. Bezděková, V. Perlick, and J. Bičák, Light propagation
in a plasma on an axially symmetric and stationary
spacetime: Separability of the Hamilton–Jacobi equation
and shadow, J. Math. Phys. (N.Y.) 63, 092501 (2022).

[103] Z. Zhang, H. Yan, M. Guo, and B. Chen, Shadows of Kerr
black holes with a Gaussian-distributed plasma in the polar
direction, Phys. Rev. D 107, 024027 (2023).

[104] G. Briozzo, E. Gallo, and T. Mädler, Shadows of rotating
black holes in plasma environments with aberration effects,
Phys. Rev. D 107, 124004 (2023).

[105] G. Briozzo and E. Gallo, Analytical expressions for pulse
profile of neutron stars in plasma environments, Eur. Phys.
J. C 83, 165 (2023).

[106] J. Badía and E. F. Eiroa, Shadows of rotating Einstein-
Maxwell-dilaton black holes surrounded by a plasma,
Phys. Rev. D 107, 124028 (2023).

[107] B. Bezděková and J. Bičák, Light deflection in plasma in
the Hartle-Thorne metric and in other axisymmetric space-
times with a quadrupole moment, Phys. Rev. D 108,
084043 (2023).

[108] B. Bezděková, O. Yu. Tsupko, and C. Pfeifer, Deflection of
light rays in a moving medium around a spherically

symmetric gravitating object, Phys. Rev. D 109, 124024
(2024).

[109] V. Perlick and O. Yu. Tsupko, Light propagation in a
plasma on Kerr spacetime. II. Plasma imprint on photon
orbits, Phys. Rev. D 109, 064063 (2024).

[110] J. L. Synge, Relativity: The General Theory (North-
Holland Publishing Company, Amsterdam, 1960).

[111] D. O. Muhleman and I. D. Johnston, Radio propagation in
the solar gravitational field, Phys. Rev. Lett. 17, 455
(1966).

[112] J. Bičák and P. Hadrava, General-relativistic radiative
transfer theory in refractive and dispersive media, Astron.
Astrophys. 44, 389 (1975).

[113] R. A. Breuer and J. Ehlers, Propagation of high-frequency
electromagnetic waves through a magnetized plasma in
curved space-time. I, Proc. R. Soc. A 370, 389 (1980).

[114] R. A. Breuer and J. Ehlers, Propagation of high-frequency
electromagnetic waves through a magnetized plasma in
curved space-time. II. Application of the asymptotic
approximation, Proc. R. Soc. A 374, 1756 (1981).

[115] R. A. Breuer and J. Ehlers, Propagation of electromagnetic
waves through magnetized plasmas in arbitrary gravita-
tional fields, Astron. Astrophys. 96, 293 (1981).

[116] P. V. Bliokh and A. A. Minakov, Gravitational Lenses (in
Russian), (Naukova Dumka, Kiev, 1989).

[117] R. Kulsrud and A. Loeb, Dynamics and gravitational
interaction of waves in nonuniform media, Phys. Rev. D
45, 525 (1992).

[118] A. Broderick and R. Blandford, Covariant magnetoionic
theory—I. Ray propagation, Mon. Not. R. Astron. Soc.
342, 1280 (2003).

[119] A. Broderick and R. Blandford, Covariant magnetoionic
theory—II. Radiative transfer, Mon. Not. R. Astron. Soc.
349, 994 (2004).

[120] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Gravitational
lensing in presence of plasma: Strong lens systems, black
hole lensing and shadow, Universe 3, 57 (2017).

[121] P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong
gravitational lensing: A brief review, Gen. Relativ. Gravit.
50, 42 (2018).

[122] V. Perlick and O. Yu. Tsupko, Calculating black hole
shadows: Review of analytical studies, Phys. Rep. 947, 1
(2022).

[123] V. Bozza and G. Scarpetta, Strong deflection limit of black
hole gravitational lensing with arbitrary source distances,
Phys. Rev. D 76, 083008 (2007).

STRONG DEFLECTION LIMIT ANALYSIS OF BLACK HOLE … PHYS. REV. D 110, 064031 (2024)

064031-19

https://doi.org/10.1103/PhysRevD.99.084050
https://doi.org/10.1103/PhysRevD.99.084050
https://doi.org/10.1093/mnras/stz138
https://doi.org/10.1093/mnras/stz845
https://doi.org/10.1093/mnras/stz845
https://doi.org/10.1140/epjc/s10052-020-8346-3
https://doi.org/10.1103/PhysRevD.103.104019
https://doi.org/10.1103/PhysRevD.103.104019
https://doi.org/10.1103/PhysRevD.104.064039
https://doi.org/10.1103/PhysRevD.104.084055
https://doi.org/10.1140/epjc/s10052-021-09959-z
https://doi.org/10.1140/epjc/s10052-021-09959-z
https://doi.org/10.1063/5.0106433
https://doi.org/10.1103/PhysRevD.107.024027
https://doi.org/10.1103/PhysRevD.107.124004
https://doi.org/10.1140/epjc/s10052-023-11331-2
https://doi.org/10.1140/epjc/s10052-023-11331-2
https://doi.org/10.1103/PhysRevD.107.124028
https://doi.org/10.1103/PhysRevD.108.084043
https://doi.org/10.1103/PhysRevD.108.084043
https://doi.org/10.1103/PhysRevD.109.124024
https://doi.org/10.1103/PhysRevD.109.124024
https://doi.org/10.1103/PhysRevD.109.064063
https://doi.org/10.1103/PhysRevLett.17.455
https://doi.org/10.1103/PhysRevLett.17.455
https://doi.org/10.1098/rspa.1980.0040
https://doi.org/10.1098/rspa.1981.0011
https://doi.org/10.1103/PhysRevD.45.525
https://doi.org/10.1103/PhysRevD.45.525
https://doi.org/10.1046/j.1365-8711.2003.06618.x
https://doi.org/10.1046/j.1365-8711.2003.06618.x
https://doi.org/10.1111/j.1365-2966.2004.07582.x
https://doi.org/10.1111/j.1365-2966.2004.07582.x
https://doi.org/10.3390/universe3030057
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1103/PhysRevD.76.083008

