PHYSICAL REVIEW D 110, 064030 (2024)

Second-order perturbations of the Schwarzschild spacetime:
Practical, covariant, and gauge-invariant formalisms

Andrew Spiers ,*3 Adam Pound®,’ and Barry Wardell®*

lNottingham Centre of Gravity, Nottingham NG7 2RD, United Kingdom
2School of Mathematical Sciences, University of Nottingham,
University Park, Nottingham NG7 2RD, United Kingdom
*School of Mathematical Sciences and STAG Research Centre, University of Southampton,
Southampton, SO17 1BJ, United Kingdom
*School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

® (Received 12 May 2024; accepted 3 July 2024; published 10 September 2024)

High-accuracy gravitational-wave modeling demands going beyond linear, first-order perturbation
theory. Particularly motivated by the need for second-order perturbative models of extreme-mass-ratio
inspirals and black hole ringdowns, we present practical spherical-harmonic decompositions of the Einstein
equation, Regge-Wheeler-Zerilli equations, and Teukolsky equation at second perturbative order in a
Schwarzschild background. Our formulations are covariant on the 7-r plane and on the two-sphere, and we
express the field equations in terms of gauge-invariant metric perturbations. In a companion Mathematica
package, PerturbationEquations, we provide these invariant formulas as well as the analogous formulas in
terms of raw, gauge-dependent metric perturbations. Our decomposition of the second-order Einstein
equation, when specialized to the Lorenz gauge, was a key ingredient in recent second-order self-force
calculations [Phys. Rev. Lett. 124, 021101 (2020); ibid. 127, 151102 (2021); ibid. 130, 241402 (2023)].
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I. INTRODUCTION

The first phase of gravitational-wave astronomy [1-3]
has been a success of experimental physics, data analysis,
and the theory of general relativity (GR) in its strong-field
regime. It also represents a success of perturbation theory.
Waveform templates commonly incorporate information
from perturbative approximations, particularly from post-
Newtonian theory [4], which describes the early stages of
an inspiral. Many of them additionally incorporate infor-
mation from black hole perturbation theory in a variety of
ways. For example, effective one body models are designed
to capture the point particle limit [5], in which the motion of
a binary reduces to geodesic motion in a black hole
spacetime; they can be informed by the associated pertur-
bative fluxes [6-10] and by perturbative self-force correc-
tions to black hole geodesics [11-13]; and they often use
black hole perturbation theory to describe the final, ring-
down phase after merger [14].

As detectors are upgraded and new detectors come
online, perturbative models must be further improved. In
the context of black hole perturbation theory, the over-
whelming majority of calculations have been restricted to
first, linear perturbative order. There are now at least two
prime examples for which gravitational-wave astronomy
requires going to second perturbative order, where non-
linear effects first appear. The first example is the ringdown
phase of a binary [15-18]. The second is binaries with

2470-0010/2024/110(6)/064030(43)

064030-1

small mass ratios, such as extreme-mass-ratio inspirals
(EMRIs) in which a stellar-mass compact object orbits a
massive black hole [19-21].

Ringdowns have, historically, been well modeled as sums
of quasinormal modes [22]. However, recent work has shown
that quadratic coupling between modes can be significant
and leave observable signatures in waveforms [15,16].
Any model using a perturbative treatment of ringdown will
likely have to include such nonlinear effects to meet future
accuracy requirements. That is especially true for models of
massive black hole binaries, which will be observable (with
SNRs ~ 10?) by the space-based detector LISA [23].

EMRIs, which are also expected to be key sources for
LISA [23], are best modeled by self-force theory, which
treats the smaller object as a source of perturbations of
the background spacetime of the large black hole [20,21].
It has been widely accepted for decades that accurately
modeling EMRIs necessitates carrying self-force theory to
second order [19,24-27]. More recently, it has been
predicted that second-order self-force calculations can also
provide accurate waveforms in the intermediate-mass-ratio
regime and even for the mass ratios ~1:10 observable by
present-day detectors [28,29]. That prediction was vali-
dated when second-order waveforms were first obtained in
2021 [30,31]. These waveforms were specialized to qua-
sicircular, nonspinning binaries, but their high accuracy
across a broad range of mass ratios (and their capacity for
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rapid waveform generation) provides additional motivation
for extending such calculations to more generic binary
configurations.

Unfortunately, although the general formulation of non-
linear perturbation theory on arbitrary backgrounds is well
established [32-35], and general formulas, such as the nth-
order expansion of the Einstein equation, are easily derived
at any finite order [36], there has been limited development
of practical, ready-at-hand tools in black hole spacetimes.
Concrete calculations (e.g., [37-45]) have generally been
limited to vacuum perturbations and to a small number of
harmonic modes. In the simple case of a Schwarzschild
background, the most thorough treatment was provided by
Brizuela et al. [46—49], who extended the Regge-Wheeler-
Zerilli (RWZ) formalism to second order. This formalism,
while useful in many contexts, is limited in that it inherits
the sometimes pathological behavior of the RWZ gauge
[50-52] and does not provide the entire metric pertur-
bation, missing the £ = 0 and 1 modes that describe the
spacetime’s mass and momentum.

There is therefore call for a broader suite of tools. This is
especially true for EMRIs, which bring particular complex-
ities. In self-force calculations, the £ = 0 and 1 modes of
the perturbation cannot be ignored; some ingredients are
only available in practical form in the Lorenz gauge [53];
and calculations often demand a large number of modes of
the first-order perturbation [54] (often above £ = 50).

Our goal with this paper is to provide a comprehensive,
practical treatment of second-order calculations on a
Schwarzschild background. Our treatment is deliberately
modeled on Martel and Poisson’s (hereafter MP’s) now-
standard summary of first-order perturbation theory in
Schwarzschild [55]. Like MP, we include significant review
material to make our paper a stand-alone reference.
However, our treatment is more expansive than MP’s,
covering a wider variety of formulations to make our
results useful to the broadest userbase. We also find this
larger toolset provides alternative methods that are some-
times more useful than MP’s at second order. In all cases,
our goal is to decompose the field equations into a set of
tensor or spin-weighted spherical harmonics. Our core
output is a set of coupling formulas that express harmonic
modes of the second-order source as sums of products of
first-order field modes. We present these formulas in two
forms: in terms of the gauge-dependent first- and second-
order metric perturbations and in terms of gauge-invariant
perturbations.

We begin in Sec. II by reviewing second-order pertur-
bation theory in a generic vacuum background. In Secs. 111
and IV we specialize to a Schwarzschild background and
assemble the ingredients required for the harmonic decom-
position of the second-order field equations, following
MP’s description (with some modifications and several
extensions) of the decomposition of four-dimensional
covariant quantities into quantities that are separately

covariant on the f—r plane and on the two-sphere.
Section V discusses gauge freedom at the level of harmonic
modes and the construction of invariant variables. In
Sec. VI, we present the decomposition of the second-order
Einstein equation. Section VII then presents the decom-
positions of the second-order RWZ and Teukolsky equa-
tions. We conclude in Sec. VIII with a discussion of
applications, specifically how our decomposition of the
second-order Einstein equation underpinned the recent
second-order self-force calculations in Refs. [30,56-58].
Table I and Appendix F describe how to translate our
formulas into alternative choices of harmonic basis and
field variables.

Alongside our paper, we provide the fully decom-
posed equations in a companion Mathematica package,
PerturbationEquations, Which we make available as part of the
Black Hole Perturbation Toolkit [59]. The package pro-
vides utilities to work with the second-order Einstein
equations, RWZ equations, and Teukolsky equations in a
variety of popular harmonic bases and conventions.

II. SECOND-ORDER PERTURBATION THEORY

Before introducing any decompositions, we begin with
the first- and second-order Einstein equations in their
covariant, four-dimensional form on an arbitrary vacuum
background spacetime, which we will specialize to
Schwarzschild in later sections. We keep these formulas
generic, but we write them in a form that naturally
simplifies in the Lorenz gauge (the gauge used in all
second-order self-force calculations to date). At the end of
the section we summarize (i) the Bianchi identities that
constrain the equations and (ii) the gauge freedom the
equations admit.

A. Einstein equations

We write the exact spacetime metric as g, = g, +
where g, is the background metric and h,, ~e <1 is a
small correction, with an associated small stress-energy
tensor 7, ~ e. We will ultimately expand A, and T, in
powers of €, meaning

Iy = ehiy) + Eh3) + O(e), (1)

T, = eT,(,i,) + ezT,%) + O(e?), (2)
and write field equations for h,(,’f). But to organize those
equations, we first expand curvature quantities in orders of
nonlinearity in /.

Explicit perturbative expressions are typically simplest
when using the Einstein equation in its trace-reversed form,

1
R/w[g] =38 T;w - Egyu(g_l)aﬂTa/i ’ (3)
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where (g7')% is the inverse of g, and where we omit
indices on tensorial arguments of functionals. We write the
Ricci tensor’s expansion in orders of nonlinearity as

Ry lg+h =Ry [g)+ R, [h]+ R, [n]+ O(|h, ). (4)

where 6"R,,, is the (normalized) nth functional derivative of
R,,, defined by

n

) 1 d
"R, @] = EWR"” [9+ 2A9]],-0 (5)

for any rank-two symmetric tensor ¢,,,. With this definition,
8"R,, [h] is constructed from the background metric and n
copies of h,,. We use the same notation for any quantity
constructed from the metric; as a trivial example,
89u1h] = hy, and 6"g,,[h] = 0 for n > 1.

Concrete formulas for 6"R),, are found straightforwardly
from the spacetime’s exact Ricci tensor [60],

R;w [g + h] = R/u/ [g] + 2Cp/4[u;p] + 2Cﬂ6U7C6u];u (6)

where C"‘ﬂy is the exact difference between the Christoffel
symbols of g,, and g,,. Explicitly,

C%, = = (97") " (2hs(py) — hpys); (7)

N =

a semicolon and V both denote the covariant derivative
compatible with g,s. The expansion in orders of non-
linearity then immediately follows from the expansion

(g—l)aﬂ = ga/} - h + hayhyﬁ + O(|hﬂl/|3)' (8)

Here and throughout this paper, Greek indices are lowered
and raised with g, and its inverse g"*.

From Egs. (6) and (8), and some simple manipulations
(using R, [g] = 0), one finds

Rl = =5 (Eulh] + Fult), O
62R/w[h] = % (-A/w[h] + B;w [h] + C;w [h])’ (10)
where
Eﬂy[h] = Dhﬂy + ZR”aDﬂhaﬁ, (11)
fﬂl/[h] = _2l_la(;4;au)v (12)

with (= ¢*V,V,, and

1 .
Py hﬂy;ahul/;ﬂ + hﬂ/}’y(hya;u - hl/(l;ﬂ) s (13)

Arz/} [h] = 2

Ba/}’[h] = _hMD(Zhu(a;/})y - ha/)’;;w - hyz/;oz/i)7 (14)

— happ)- (15)

We use an overbar to denote trace reversal with the
background metric, as in h, := h,, =3 ¢, g% hyp.

If we now substitute Eqs. (4) and (8) into the exact
Einstein equation (3), along with the series expansions (1)
and (2), then we can equate coefficients of powers of €.
The result is the sequence of linear equations

Coplh] = =1, (2R p)

SR, [hV] = 8T, (16)

SR, [h?] = 82T .2 — R, [hV)], (17)
with matter source terms

) =2 L.« 1
7Y =72 - 5 (hﬁ,} g - gﬂyh(l)aﬂ> T4 (19)
In the Lorenz gauge, where i_z”’“;y = 0, the quantities C,,
and F,, both vanish, simplifying the field equations to

&

v

h] = —162T %), (20)

&

I

Jh) = —162T%) + A, [hD] + B, [hD].  (21)

Alternatively, we can write the field equations in terms
of the perturbed Einstein tensor. The analogs of Egs. (16)
and (17) are
[hD] = 82T%), (22)

oG,

oG

LB = 82T — 532G, [hV)]. (23)

The perturbations of G,, are immediately obtained from
those of R,, using §"G,, = &8"(R,, —39,g”Rap). In a
Ricci-flat background, this simplifies to

oG OR,,, (24)

w =
—— 1
52G,w = 52R/w ~3 (h,wgaﬁ - g,wha/})5Raﬁ. (25)

In vacuum regions, where 5R,,,,[h(1)] =0= T,(,},), T ,(,2,,)

reduces to 72 and &G, [h"] reduces to &R, [h1)].
We write the field equations (16) and (17) in generic
form as

SR, [h™] = 3. (26)
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The relations (24) and (25) ensure that field equations in the
form (16) and (17) can be written in terms of a trace reversal
with respect to the background metric,

5G, [h"] = %), (27)
where S,(,,,> = _fw) - —gﬂyg"‘ﬁ st ﬁ In the Lorenz gauge,

Eulnt] = =285 (28)
and

£, = —28), (29)

where we have used the fact that £,,[h] = &,,[h].

For simplicity, in the paper we only provide the harmo-
nic decompositions of quantities appearing in Eq. (26)
[and therefore also Eq. (28)]. The companion package
PerturbationEquations additionally includes the decompositions
of 6G,, and §°G,.

B. Bianchi identities and conservation equations

The components of the perturbative Einstein equations
are not all independent. They are related by the contracted
Bianchi identity (97')/79V,G4[g] = 0, where 9V, is the
covariant derivative compatible with g,;. Expanding that
identity in orders of nonlinearity, we obtain the identities

P1V,6G 5 =0, (30)
PV, 2G oy = W1V, 3G oy + 25CT (,6Gy,.  (31)

Here 5C%,[h] == 3 g™ (2V 3h,)5 — Vsh,) is the linear per-
turbation of the Christoffel symbol. These identities hold
for any symmetric rank-two tensor .

By virtue of the field equations, these identities are equi-
valent to stress-energy conservation (g~ )79V, T 5 = 0, or

VT =0, (32)

2 _ (1
VIT, = hPry, T ) 4+ 26C7 Ty, (33)
Since Eq. (30) holds for any /g, it immediately implies
that the sources ng appearing in the field equations (27)

must all be conserved with respect to the background
divergence,

vis™ = o. (34)

C. Gauge freedom

Perturbation theory in GR comes with well-known gauge
freedom corresponding to the choice of how to identify

points on the exact spacetime with points in the back-
ground spacetime [34,61,62]; see Sec. IVA of Ref. [63]
or Appendix A of this paper for a concise summary.
To understand the practical consequence of this, let
A=A 4 eAl) + €24 + O(e3) be the expansion of a
generic tensor of arbitrary rank (in index-free notation).
Under a gauge transformation, the terms in this expansion
transform as A — A + AA™M  where

D= £, AO), (35a)

1
2) 0 2 0 1
AAR) =L, AO) + E,cfmm )+ L, A (35b)

Here £ denotes a Lie derivative, and the gauge generators
cf’(‘n) correspond to the small coordinate transformation

o =gt (x) - € ¢t (0 - & (90,80 ()
+ O(e?). (36)

Applying Eq. (35) to the metric perturbations h,(,'L) yields

Ah,w Le G (37a)
ALY = L Lo h 37b
= bego) Gu T 5 b G T b (37b)

Applying it to the stress-energy tensor in a vacuum back-
ground yields

ATY) =0, (38a)

ATW £5 (38b)

The field equations (16) and (17) are invariant under a
generic gauge transformation, as can be established from
the above transformation laws and the identities [63]

AR, [hV] = 0, (39)
ASR,,[h?)] = 6R,, [ARD)], (40)
1
AR, [WV] = L. 6R,,[hV)] - 6R,, [5 521)9}
— R, [L:, hD). (41)

Analogous equations apply for the transformation of 6" G, .

We stress that, while the second-order field equation (17)
is invariant, the individual terms in it are not. In particular,
the left-hand side of (17) has the nontrivial transformation
(40), while the sources on the right-hand side have the
nontrivial transformations (38b) and (41). This differs from
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the situation at first order, where (in a vacuum background)
Eqgs. (38a) and (39) ensure that each side of the field
equation is separately invariant.

III. TENSORS AND BASES ON M2 x §2

When specialized to a Schwarzschild background, the
perturbative Einstein equations are fully separable by virtue
of the background’s stationarity and spherical symmetry.
The spherical symmetry allows us to naturally decompose
4D tensorial quantities into 2 + 2D quantities. Specifically,
we follow MP in writing the spacetime manifold M as the
Cartesian product M = M? x §?, where M? is the “t-r
plane” and S? is the two-sphere. This method, which is
generally attributed to Gerlach and Sengupta [64], enables
us to work with quantities that are separately covariant on
M? and S?. Tensors on S? are then naturally decomposed
into harmonics.

Although we mostly follow MP, we do adopt slightly
different notation. Table I provides the conversion between
the two.

A. Covariant decompositions

We let x¢ be coordinates on M? and give tensors on M?
lowercase Latin indices a, b, c, ...; analogously, we let 4
be coordinates on S? and give tensors on S uppercase Latin
indices A, B, C, .... The background line element can then
be written as

ds® = g,pdx®dx? + r?Q,pd6* d6®, (42)

where r is the areal radius of a sphere of fixed x¢, g, is the
restriction of g, to M?, and Q, is the metric of the unit
sphere. We use g,, and its inverse g*’ to lower and raise
indices of tensors on M?, and Q, and its inverse Q4% to
lower and raise indices of tensors on S>. We also require the
Levi-Civita tensors €,, and e€45. In standard polar coor-
dinates 6" = (0, ¢), the tensors on S? are given by
Qup = diag(1,sin’@) and €y, =sind = —eyy.  (43)
Decomposing the field equations (16) and (17) into
tensors on M? and S? requires doing likewise for covariant

derivatives. We define 6, and D4 to be the derivatives com-
patible with g,, and Q,p, respectively, with corresponding

TABLE I. Relationship between our bases and derivatives and
those of Martel and Poisson (MP) [55].

This paper MP

ta _f—l tglP

ra ra

5& va

Dy Dy

Christoffel symbols I'[6]¢, and I'[D]4.. The nonvanishing
Christoffel symbols I', associated with V,, are related to
these according to I'? . = T[8]¢ ., ['4c = I'[D]4, and

5Arc
rpo =2 @)

F.ZB = —rr”QAB,
where
rg = 0,r. (45)

This allows us to decompose the components of a derivative
Vv into covariant quantities on M? and §%:

Vb =68,0°, (46a)
V08 =608 +rlr o8, (46b)
VP = Dyvb — rr*Qu g8, (46¢)
V08 = DyoB + r 188 r.0°, (46d)

where D, acts on v” as it would on a scalar, and §, acts on v

as it would on a scalar. Similarly, the components of V,wy
are written as

V,w, = 5,my, (47a)
V,0p = 8,05 — r 'r,wp, (47b)
Vo, = Dywy, — 1 wyry, (47¢)
Vi wp = Dywg + rQuprew,. (474d)

Higher derivatives are expressed in the same manner.
We will also require the Riemann tensors associated with
the derivatives &, and D, R[6] .4 and R[D] 45 p- They are

abc
given by
2M
R[0]upea = A (GacTbd = GadIbe) (48)
R [D]ABCD = QucQpp — QupBc- (49)

In concrete calculations, our first step is always to
expand contractions into 2 42D form and then project
any free indices onto either M? or S2. For example,

g“ﬁvahﬁy = gabvahb}, + r_ZQABVAhBy. (50)

Choosing y = ¢ (i.e., projecting onto M?) and then using
Eq. (47), one obtains a fully decomposed expression:

gaﬂvahﬁc = gabéahbc + r_ZQABDAth =+ Zr_lrahac
—r3htyr,, (51)

where /’lAA = QABI’ZAB.
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B. Bases on M? and S?

Most of our results will be fully covariant, without any
choice of basis on M? or 2. However, we will on occasion
adopt specific bases.

1. Bases on M?
As a coordinate basis for tensors on M?, we use (t,, 7,),
where r, is defined in Eq. (45) and
ty = 0,4t. (52)

Here ¢ is the usual Schwarzschild time, and we note that
MP use the same notation to instead denote the timelike
Killing vector; the two are related by ¢ = —f~114,,, with

f=(tt) " =rir,=1 —ZTM. (53)

In terms of these quantities, we have
Gab = =[taly + [ 1ars, (54)
€ap = LT — Talp. (55)

We will also make use of a Newman-Penrose null basis

a 7
[ —ﬁ(l,f), (56)
1
n _—Tf}/(l’_f)’ (57)

where the components are given in (¢, r) coordinates and
y = y(r) > Ois an arbitrary boost factor. This basis satisfies
l“n, = -1 and [“l, = 0 = n“n,, which imply

Gab = —lanty — ngly, (58)
€ap = Lgny, — nyly, (39)

and
18,1% = 15,1",

1b8,n% = —n?s, 1",

n’8,n® = n®s,n’,
nbs,1¢ = —145,n”.  (60)

The divergences that appear in (60) are given by

2£0 M 2f0y — M
sle = IOV EMY g e =IO MY
r\2f r\2fy

In the definition of the null basis vectors, the boost factor y
is commonly chosen to be one of the following [21,65-67]:

Carter : y =1, (62a)
Kinnersley : y = /2/f, (62b)
Hartle-Hawking : y = +/f/2. (62c)

In the Kinnersley basis, §,/ = 0; in the Hartle-Hawking
basis, 6,n* = 0; in the Carter basis, 6,/ = —,n* # 0. In
the Kinnersley basis, [ is tangent to affinely parametrized
outgoing null rays, where r is the affine parameter. This
makes the Kinnersley basis singular at the future horizon
but particularly useful for studying outgoing radiation: in
retarded Eddington-Finkelstein coordinates (u, r),

190, =0, and n%d, =0, — (f/2)0,.  (63)

In the Hartle-Hawking basis, n“ is tangent to affinely para-
metrized ingoing null rays, where r is again the affine para-
meter. This makes the Hartle-Hawking basis singular at the past
horizon but particularly useful for studying ingoing radiation:
in advanced Eddington-Finkelstein coordinates (v, r),

lILfIHaa =0, + (f/Z)a,. and  nfy0d, = —0,. (64)

The Carter basis is singular at both the past and future horizon,
but it has the advantage of maintaining a symmetry between
ingoing and outgoing null directions: in double null coordi-
nates (u, v),

2 2
190, = /=0, and n%d, = {/=9,. 65
g %C ¢ \ﬂ (65)

2. Bases on S?

As a basis on S2, we define a complex null vector

A = (1@) (66)

and its complex conjugate, 74*, where the components are
given in (6, ¢) coordinates. Our definition of m* differs by
a factor of v/2r relative to the traditional Newman-Penrose
basis [68]. With our choice of normalization, the basis
vectors satisfy

ﬁlAl’hA = 0, ﬁ’lBDBﬁ”lA = mADBﬁlB,
mAmy =2, mP Dyt = —mADgmB* . (67)
and
1 S ek Sk
Qup = 3 (aiy + mymg), (68)
I ok Sk
€A = 5 (maimy — myimg). (69)
In (0, ¢) coordinates,
DBI;hB - DBﬁ’lB* - C0t9. (70)

Equation (69) also provides the useful identity

exm® = im*. (71)
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It will be useful to also define the Newman-Penrose basis,
mt = —gmt, (72)

which satisfies g,zm*m®?* = 1, and in terms of which
gag = r*(mamy + mymg). (73)

The factor of r* arises from the fact that indices are lowered
with Q5.

The set of vectors {/%, n% m* m*} forms a null tetrad
on M, with the natural definitions I* = n* =m¢ =0. A
generic symmetric tensor A,z can be decomposed into this
basis according to

hab = hllnanb + hln(”alb + lanb) + hnnlalb’ (743)
hos = —r*hyngm’y = r*hy,l,m} + c.c., (74b)
hAB = ]"4hmmm2mz —|— r4hmm¥m2m3 + C.C. (740)

Alternatively, we can decompose it in a mixed basis
{t4, o, My, i}, according to

hab = htttatb + htr(tarb + ratb) + hrrrarb7 (75&)
1

haA = E (htrh[a’/h/*{ + hrrhramjx + C'C')’ (75b)
1 s o

hAB = Z (hmml’ﬂil’ﬂ% + h,hm*m/*‘mg =+ C.C.), (75(:)

or only partially decompose it, according to

hab = hlltatb + hlr(tarb + ratb) + hrrrarlw (763)

haB = htBta + hrBraa (76b)

hap = hap. (76¢)

As a final comment, we observe the main practical advan-
tage of working with the quantities {g,;,0,,Quz,D4}-
Besides allowing tensor-harmonic decompositions while
preserving invariance, these choices enforce that the back-
ground quantities on M? commute with those on S

DAgab = 5uszAB = [DAa 6(1] =0. (77)

This is not the case if working with g, 5 and V4. Likewise, /i#

often provides a more convenient basis than m* because
S,m = [I,m] = [n,m] = 0. (78)

In this last equation, [-,-] denotes the vector commutator,
[, v]* = P ov* — VP Opu® = uPV v — VPV u® = L0

By working with trivially commuting quantities, our
choices (like MP’s) take maximal advantage of
Schwarzschild’s spherical symmetry.

IV. DECOMPOSITIONS INTO SPIN-WEIGHTED
AND TENSOR SPHERICAL HARMONICS

The literature contains numerous bases of spherical
harmonics that can be used to decompose the field
equations. With the exception of the Teukolsky formal-
ism, calculations in Schwarzschild spacetime typically
use tensor harmonic bases. For that reason, we will
decompose the metric perturbation and Einstein equations
into tensor harmonics, specifically adopting MP’s choice
of harmonics. However, for reasons explained below,
instead of tensor harmonics we take spin-weighted
spherical harmonics (Y, to be the “base” harmonics.
Our expansions in tensor harmonics will utilize spin-
weighted harmonics as an intermediary. This will also
allow us to easily connect to the Teukolsky formalism
in Sec. VIIB. We refer to Brizuela et al. for a treatment
that consistently uses tensor harmonics rather than spin-
weighted ones [46—48].

Given the large number of common conventions for
harmonic expansions, in Table II we provide translations
between conventions.

A. Spin-weighted harmonics

A spin-weighted tensor v on S” is said to have spin
weight s if it transforms as » — ¢*?v under the complex
phase rotation m* — e/ [68]. In practice, this means v’s
spin weight is the number of factors of /4 appearing in it
minus the number of factors of m** appearing in it.

We define derivative operators

0= ﬁ’lADA - S(DAﬁ’lA), (793)

O = m*Dy + s(Dyin), (79b)
which act on tensors of spin-weight s. Our definitions and
notation here differ slightly from common conventions in
the literature, as summarized in Table III. The derivative 0
raises the spin weight by 1, while & lowers it by 1. They
satisfy the Leibniz rule [e.g., 0(uv) = (Ou)v + udv, where
u and v can have differing spin weights], and the identities
(67) ensure they annihilate m* and m**:

omt = o'm? = dm** = i = 0. (80)

They satisfy the commutation and anticommutation rela-
tions

1
3 (00 —00) = i DDy + 5. (81a)
1
3 (00 4+ 080') = D,D* + s[(Dgm® )m* D, — c.c.]
_ DR, (81b)

When acting on a spin-weighted scalar (such as a com-
ponent h,,), they satisfy 007 = 878" if j =i+ 2s.
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TABLE II.

Relationship between harmonic coefficients in various conventions. The relationship between the tensorial and tetrad

decompositions is the same for sources (bottom half of table) as for metric perturbations (top half of table). Additional relations can be
found in Eq. (112) and Appendix F of this paper and Table I of Ref. [21].

This paper Martel and

(tensorial) Poisson [55] This paper (tetrad) Barack-Lousto-Sago [69,70]

hey hGy Lalp i + 21 (nyy G + nany by 5 [(Pim + fil6fm)£atb + f__1 hagm(tary + Taly) +
T2 (hgm = Fhoem)rars)

hf;f'kl jgm ﬁ;m [la (hm - hi%‘) + I’la(hﬁ:? - hfrzl*)} ﬁ (}_142/’mta + f_lBSKmrzt)

W PG 2 (i + ) S+

him K rPhim. L ham

hgT th - \/ii;m [la (hfzrzl + h;;nnl*) + ng (hfm + hlfn’?‘ )] _ﬁ (BSanta + f_l}_l%’mra)

hem hgm — 12 (hg, — ) =7 Mom

SZZI igl \/Li [(Slfm +fS3fm)tatb +f_152fm(tarh + ratb) +
f_z(slfm _fs3fm)rarb]

ngﬁ %Qﬁm ﬁ;ﬂm(sh’m[a +f_1S5fmra)

‘m 2

S+ %anm \}/EZ S7fm

stm 2o = Seem

som SPe v (Ssemta + f ™" Sormra)

4 147 2

§=" P - \,/3: S10m

Like Dy, they commute with background quantities v 1 [ (=1)0Y,,, 0<s<Z?, (83)

on M?: S s ybly,,, —£<s<0,

09ap = 0'gap = [64.0] = [6,.0] = 0. (82)

A spin-weighted scalar of spin-weight s is conven-
iently expanded as a sum of spin-weighted spherical
harmonics of the same spin weight, defined for £ > |s| as

TABLE III. Relationship between our derivatives and those of
Newman and Penrose (NP) [68,71] and Geroch-Held-Penrose
(GHP) [72]. We note that Ref. [21] adopts GHP conventions.
The quantities f, p, €, and ynp appearing in the relations
are Newman-Penrose spin coefficients, which in our context
reduce to f=31D,m*; p=—I1r,Fr; e =15, =10,I"; and
ynp = —38,n% = —10,n", or yxp = —€’ in GHP notation. The
quantity b is boost weight, defined above Eq. (196a).

This paper NP [71] NP [68] GHP
4 V2r(8 = 2sp) —(?NP V2rdgup
o V2r(6 + 2sp) —Onp V2rdgp
b D —2be . b

p/ A - Zbpr : pl

where

[( + |s])!
hes =\ [ Gl = (L= Is|+ 1)y (84)

We also define for later use the related quantity u, by

pr = (C+2)(6 = 1) = (Aeafdea)* =25, =2 (85)

Here we adopt standard definitions; these are precisely
the spin-weighted harmonics defined by Newman and
Penrose [68], simply reexpressed in terms of our con-
vention for the operators & and &'. These definitions
are also consistent with, for example, Mathematica’s

SphericalHarmonicY function and with the
SpinWeightedSphericalHarmonicY function
in the Black Hole Perturbation toolkit’s
SpinWeightedSphericalHarmonicY package

[59,73]. Note that although Goldberg et al. [74] is
also a standard reference for the spin-weighted spherical
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harmonics, their definition includes a nonstandard overall
factor of (—1)".

The spin-weighted harmonics are related to Wigner D
matrices (again, following conventions consistent with
Mathematica’s WignerD function) according to

Yon0.0) = (<12 D0,0.0.9). (36)

They satisfy the orthonormality conditions

f SY}m sz’m’dQ = 5ff’5mm” (87)

where dQ = sin 0d@d¢, and they have the properties [74]

Yo = (D" Yo (88a)
0Yim=—/(—=5) € +s+1),,Yen, (88b)
O Y=V (C+8)(=s+1), Ypn  (88c)

00, Yy = —(=5) (€ +5+1)Y,,. (88d)

Because of our sign convention for d, Egs. (88b) and (88c)
differ by an overall sign relative to the analogous formulas
in Ref. [74]. The identity (88d) is an eigenvalue equation
that can equivalently be written as

1
5 (66/ + 6,6)SYfm = _[f(l’ﬂ + 1) - sz]szm' (89)

Spin-weighted harmonics are convenient for two key
reasons. First, Eq. (17) involves many derivatives, and any
number of covariant derivatives of Y,, can be easily
written in terms of (Y,,. For example, using DY ., =
L (mamB* + mimPB)DyY ,, together with Eqgs. (79) and
(88), one finds

A 5 ok
DYy = % (LY pia = 1Y g i4). (90)
Doing the same for D4, DyY ,,, and making use of Eqs. (67),

(79), and (88), one finds

/15’ 2 = 7*
DyDgY s, = e (LY pmiitaiing +,Y 4, iy i)

£
5 Y nQ2%p. (91)
Higher derivatives are given in Eqgs. (C2) and (C3).

The second reason spin-weighted harmonics are useful is
that, when one expands the first-order field in a basis of
harmonics, the sources in Eq. (17) involve products of
those harmonics, and decomposing that product into a sum
of single harmonics requires the integral of three harmon-
ics. With spin-weighted harmonics, that integral is easily
found. We define the desired integral as

C?Zf’s’f”m”s” = f s Yz;ms/ Yf’m’s” Yf”m"dg’ (92)

For s ="+ 5", one can explicitly evaluate the integral
using Eq. (86) and then following Sec. 30B of Ref. [75] to
derive the integral of three Wigner D matrices. The result
is [76]

20+ 1)20 +1)(2" + 1
O i = (_1)"1“\/( aiCihCAR )
ms m-s 471_
¢ ¢
x (S — —s”)(—m m' m//)’

(93)

where the arrays are 3j symbols. It follows from the
symmetries of the 3 symbol that

‘ms _ O+ 4" fm—s
Clo/m/srbp//mus// — (_1) Cf’m’—s'f”m”—s”’ (943)
1 ol _
CLL:’r:lns’s’f”m”s” - (_ 1 )erf +£ C?—mms’s’f”—m”s” ’ (94b)
C?/nr/ll;ly/.v/f”m”s” = C?f/’i’i//sllf/mlsl . (94C)

It also follows that the usual rules associated with coupling

of angular momenta are enforced, since the C2™5 ., are
zero unless

m=m+m", (95a)

| =" <<+ 7", (95b)

Finally, we note that for £ = m = s = 0 and s” = —5/, the
result collapses to

_1)m’+s’
CO(/)O/,/ "non o — (—6 d ’/5 ! —m! . 96
m's'"'m" s /—47[ " Om! —m ( )

To decompose Eq. (17) in tensor harmonics, we will
express all quantities in terms of spin-weighted harmonics.
Equation (93) then becomes the essential tool in the
decomposition. To the best of our knowledge, this strategy
has not appeared in prior literature.

B. Tensor harmonics
Tensor harmonics of rank s are constructed from
symmetric and trace-free combinations of covariant deriv-
atives of ordinary scalar harmonics Y, [46]":

YI{;T“AJ = D(A] e DAS>Yfm’ (978.)

Xi?--Ax = _€<A1CDA2 e DA,.)DCYfm’ (97b)

'"To maintain compatibility with MP, we have introduced a
minus sign into Ref. [46]’s definition of Xﬁ’]"m A

064030-9



ANDREW SPIERS, ADAM POUND, and BARRY WARDELL

PHYS. REV. D 110, 064030 (2024)

where angular brackets denote the symmetric-trace-
free part of a tensor, with traces defined using QA5.
These harmonics are defined only for Z >s, as they
identically vanish for 0 < ¢ <s. They are related to
spin-weighted harmonics by the simple formulas

lf ~ ~ ot 3 ot
Yo . :Tf{—szmmAl sy A (=1 Y iy e
(98a)

iy - - 5
XfmA — %[-;Yfmmm m (-1) Yoy, ..mAj;
(98b)

see Appendix C. The harmonics Y ,, and Yf;’ln,_, 4, are said to
have even parity, transforming as Y f;:’fn 4= (-1)%Y Z’f“ "
under the parity inversion (0,¢) — (z — 0, ¢ + n), while
Xj;’]"__. 4, are said to have odd parity, transforming as
Xﬁ'l?f"Av - (—l)fHXi'l".-.A; In the linearized field equations,
the even- and odd-parity sectors decouple. However, at
second order they couple through the source terms in the
field equation (17).

Brizuela et al. [46-48] worked consistently with tensor
harmonics rather than spin-weighted ones, motivating their
use of rank-s > 2 harmonics. However, in our case we will
only require rank-one (vector) and rank-two tensor har-
monics. Specializing Eq. (97) to these cases, we see that the
vector harmonics, defined for # > 1, are given by

Yo" = DY g, (99a)

X4 = —e,DeY gy (99b)

and the tensor harmonics, defined for £ > 2, are given by

1
Yi’g = DADB +§f(f+ I)QAB Yfmv (100&)

X = —e,“Dg)DcY gy (100b)
In the formula for Y4%, we have used the eigenvalue
equation

DAl)A Yo =

—4(¢ +1)Y 4, (101)

By construction, the tensor harmonics are trace free:
ABy£m
QYL

=0=Q8xm. (102)

From Eq. (98), they are related to spin-weighted harmonics
as

A ~ ~ %
Yff;m = %(71Yfmm/1 - IYfmmA)’ (1033)
‘m __ j’I»ﬂ-l . ~ ~
XA - _71(—1Yfmmz‘\ + IYfmmA)’ (103b)

m _ Aeo o .

Y = 4 (LY pating + Y g L), (103c)
‘m lf,l . O JO

Xip = =4 1Y ewativg = oY g iyiing). (103d)

They are orthogonal with respect to the natural inner product
on S2, but they are not orthonormal:

% Y‘?;; f/m dQ Af léfﬂémm s (104a)
%X?; X3 dQ = 23 16408 (104b)
o M2
Framvigaa="2000.  (04)
ABx* m lf.Z
Xinr X4 dQ = = 0ceSmm (104d)

and

f X4 yimdQ =0= f X4Bsydm'dQ.  (105)

C. Harmonic expansions

In terms of the MP harmonics, any symmetric tensor v,
can be expanded as

Vap = D VY p, (106a)
‘m

van = SRV X, (106b)
‘m

Vap = Z(UomeAByfm 4 ,Ufmyfm 4 vfmxfm) (1060)
‘m

where the coefficients are functions of x“. Here and

throughout this paper, sums range over all allowed values
of £ and m. If U is real valued, then all of its harmonic
coefficients satisfy
0T = (=1)mpfmE, (107)
Here and below we use the following shorthand.
Definition. A dot, as in v?™, is used to denote a generic

tensor-harmonic coefficient, in this case any of v/, v,
V™, or vi™.

Our convention in Eq. (106) differs slightly from that of
MP, who followed tradition [77] by introducing a factor of
72 in front of 2™ and v7™. Our notation also differs from
tradition in that we umformly use a “+” sign to denote the
coefficient of an even-parity vector or tensor harmonic, a
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[Tt

sign to denote the coefficient of an odd-parity vector or
tensor harmonic, and a “o” to denote one-half the angular
trace of a tensor.

Using the orthogonality of the harmonics, each of the
coefficients in Eq. (106) can be written as an integral

against the appropriate harmonic:

v = j[ v Vi, dQ, (108a)
Im 1 Ax
e A (108b)
‘1
Im 1 Ax
Vy— = 2 Z)aAledQ, (108C)
lf,l
1
Uim = E% UABQABY}kmdQ, (108(1)
Im 2 ABx
U+ = /12— UABY[m dQ, (108@)
2
l 2 ABx
v = PV UABX[m dQ. (108f)
j’f,Z

To facilitate use of Eq. (93), in practice we express these as
integrals against spin-weighted harmonics using the rela-
tions (103).

These expansions in tensor harmonics are covariant; they
do not depend on any choice of basis vectors on S2. If we
adopt the null basis {m*, m"*} on S?, then components of a
symmetric tensor v,, can instead be expanded in spin-
weighted harmonics according to

Vab = Y VoY s (109a)
‘m

Van = Y Ve ¥ p (109b)
‘m

Van = )V 1Y em: (109¢)
‘m

Vo = > V¥ (109d)
‘m

Ve = Zvﬁl@m*_szm, (109e)
‘m

Ve = VoY . (109f)

‘m

In these expansions, the spin weights are carried by the
harmonics; the coefficients have spin weight 0.

* *

If v, is real, then v, = (v4,)" and v, = (Vym)*
Together with Eq. (88a), this implies

V™ = =(=1)"(vim. )%, (110a)
Vi = (=1)" (w5, )" (110b)

More generally, the modes of a spin-weight s scalar,
V=" pm VsmsY ¢m» are related to the modes of its complex

conjugate, v* =, v, Y, by
Vi = (1) (05 (1)

The coefficients in the spin-weighted harmonic decom-
position are easily related to those in Eq. (106):

Vi = —%(v,’f’ﬂ + ivim), (112a)

i = %(vfﬁ —ivim), (112b)

v = % (v + ivfm), (112c)

vom = ’;%?(vim — ivm), (1124d)

vim, = izvfm. (112e)
r

We conclude with the explicit expansion of our main
quantity of interest: the metric perturbation. Its expansion
reads

hay = Y _hEpYom, (113a)
‘m

haa = D _(HGTYE" + HGmXGm), (113b)
‘m

I = S (MR WY RN, (1130)

‘m

We will likewise write the decomposition of a generic
source term in the Einstein equations (27) as

Sab = _Simyem, (114a)
‘m

Saa = Y _(SEHYA™ 4 SEmX4m), (114b)
‘m

Sap = > _(SIMQupY?™ + STmYGH 4+ SIXGn). (114c)

‘m

The field equations also often involve the trace reversal of
these fields, h,, and S,,. To facilitate trace reversals at the
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level of harmonic coefficients, for a generic field v,, we
introduce

ab ,.‘m
29 Vab

‘m

(115)
in analogy with v2”. The coefficients in the tensor-
harmonic expansion of 7,, := v, — 3 ,,§” v, are then
related to those in the expansion of v,, by

pim =yl — g (VI 4 r2elm), (116a)

plm = —yZytm, (116b)

M= and " = ofm (116c)

If instead we expand v,, and 7,, in spin-weighted har-

monics, then

nem — ,fm fm ‘m
Vi = Unmt and Voms = Vi > (117)
and all other coefficients satisfy 77" = v’

V. GAUGE TRANSFORMATIONS AND
INVARIANT PERTURBATIONS

In Ref. [55], MP wrote the first-order Einstein equation
in terms of a set of gauge-invariant metric perturbations.
Here we extend that approach to second order. In the
accompanying PerturbationEquations package, we also provide
the second-order field equations in terms of the original,
gauge-dependent perturbations. We discuss the relative
merits of each approach at the end of the section.

A. Gauge transformations of harmonic coefficients

We first examine how tensor-harmonic coefficients
transform under a change of gauge. That requires decom-
posing Eq. (37), which in turn requires the decompositions
of Lie derivatives. Consider the Lie derivative L:v,, of a

symmetric tensor v,, along a vector & = (£, Z*). It has

components

(Lev) y = Levap + €700 + 200040 ZC, (118a)
(Lev)op = levap +£7008 + VeS8, ZE + v,Dpl¢,  (118b)
(Lev)gp = levap + L7045 + 2v.aDp) ", (118c)

where [, is a Lie derivative on M?, and £, is a Lie
derivative on S?. We can use the decomposition (118) to
calculate the components of Ahf,ly) straightforwardly from

Eq. (37a). Given that result, we may then use the decom-
position (118) a second time to calculate the components of

Ah/(f), after rewriting Eq. (37b) as

AR = Le, g + H,, (119)
with
n, Lo
H, =L, (h,(,,,) + EAhf,,)) : (120)

To obtain the harmonic expansion of the result, we expand
5’(‘n) in vector harmonics as

Ly = D LlyemY em: (121a)
‘m
ZI(A”) Z(Z+ ‘m Y?m + Z(_rz)me?m>’ (121b)

‘m

A ._ QAByZm A ._ OQABYylm
where, recall, Y2, = Q"°YJ" and X7, = QP X",

For the first-order transformation Ah,(;,) = Lfm s

Eq. (118) reduces to

ARy =260 (122a)

AR = 125,28 + D). (122b)
(1 _ c 2 (1)

Ahyg = 2rr 8 Qup + 2D Zy, . (122c)

Substituting the harmonic expansion (121) into Eq. (122),
one finds

ARG = 25,00 (123a)
AR = 25,700 4 Dm (123b)
ARD™ = 25, 7(1)Em (123c)
ARV =2 L8, — E+1D)PZYT (1234)
ARV = gp27(00m (123¢)

In the same way, the harmonic decomposition of Eq. (119)
reads

Vem

AR = 25,00 + HE (124a)
@im _ a5 Q)¢

AR = 25, 2P0 4 (D0 g gem, (124b)

AR = 25,720m 4 gem, (124c)

Ah(()z)lm _ ercgfz)f - (¢ + 1)?2253)fm + HOm, (124d)

Ah(ﬁ)lm _ 2r2z(i2)fm + Him' (1246)
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The mode decompositions of the quadratic quantity H .4 are

obtained through the following steps:
(1) Write Eq. (120) in 2 + 2D form using Eq (118).

(2) Substitute the harmonic expansions of h( and 5“

(3) Use Egs. (90), (91), (99), (100), (C2), and (C3) to
express tensor harmonics and their covariant deriv-
atives as sums of spin-weighted harmonics.

(4) Use Eq. (108) to pick out the tensor-harmonic
coefficients of the result.

(5) Use Eq. (92) to express the result in terms of the
constants C2" T 1 P 1

(6) Use the symmetries (94) and relabel summation
indices to minimize the number of constants
Cfms

f’mlslf//rnllsﬁ
This gives us the final expressions:

L ! ! AN ! o
HZZ" = E Af’.s’/’lf”,slC?’rfno’s’f”m”—s’Hfbm s'em’=s s (1253)
(/’ﬂ////m//
51=0,1
Hfm o ﬂbﬂ/,sllfﬁ,l_s fml Hf/mls/fﬁm//’l_s/
at A Cf’m " m" 1-5' ’
o M Z.1
s1=12
(125b)
om £m0 Ol s' O —s'
Hom — ﬂf/qsrﬂf”-,slCf”’:n’s/f”m”—s/Ho ms mn $ P} (1250)
m
51=0,1,2
Zm ﬂf’,s’/lf”l—s ‘m2 'm's' " m'" 2—s'
Hi — 7Cﬂm 'O 2—S’H )

e A2
s1=1,23

(1254d)
where the quantities H”"'*'“"""s" are made up of quadratic
products of first-order mode coefficients pDEm (1) m”
Coems Soyemrs Ziyprmes and Z{) 0. We give those
products, which we refer to as coupling functions, explic-
itly in Eq. (D2).

Equation (125) has the appearance of a quintuple sum

S + +¢" smax

ZZ 2. 2 > (126)

07"=0 m'=—¢ m"==¢" §'=0

However, these summation ranges are restricted by the
factors Cf st Which enforce the conditions  in
Eq. (95). The definitions of tensor harmonics also auto-
matically enforce ¢’ >s’ and we additionally require

s = s’ + 5. Together these restrictions reduce the sums to

Shax 00 4+ +'

2.2 2 D

§'=0 ¢ =s' "= max s—s'|. m'=
£ —f’ D)

(127)

B. Common gauge choices

There are several common gauge conditions in
Schwarzschild spacetime. These include the RWZ gauge
[77,78], the ingoing and outgoing radiation gauges (IRG
and ORG), and the Lorenz gauge:

RWZ: By = 0 = (hyy — hope ). (128a)
IRG: hyylt =0 = %hyy. (128b)
ORG: hyn’ =0 = ghy. (128¢)
Lorenz: V/h,; = 0. (128d)

Here and below, we do not distinguish between h((l},) and

hfﬁ) The gauge conditions can be applied to either or both
of them, and one can “mix and match” by adopting a
different condition for hf,) than for hfl}} .

The RWZ gauge is the most common because it greatly
simplifies the field equations. Following MP, we will make
extensive use of it in the sections below.

The radiation gauges, which reduce to so-called light-cone
gauges [37,79] for specific choices of null basis, are
particularly useful for studying ingoing or outgoing radia-
tion. If the Kinnersley tetrad is used, then the IRG condition
ensures that radially outgoing null cones have the same
coordinate description in the perturbed spacetime as in the
background spacetime: surfaces of constant retarded time u
are null cones, and r is an affine parameter along the
generators of the cones. If the Hartle-Hawking tetrad is
used, then the ORG condition ensures that the analogous
statements apply to ingoing null cones.” The radiation gauges
also ensure that r remains an areal radius in the perturbed
spacetime. This follows from the fact that if haﬁlﬂ =0or
hgsn” = 0, then the traceless condition g h,; = 0 is equiv-
alent to Q48 h,, = 0; since Q48h,, is proportional to the
perturbation of the area element on the sphere of constant r,
the surface area of the sphere remains 4772

Finally, the Lorenz gauge condition is useful for putting
the perturbative field equations in the symmetric hyperbolic
form [(20) and (21)].

*The traditional names and geometrical features of the radi-
ation gauge conditions may appear antithetical: the outgoing
radiation gauge preserves ingoing null cones, which should make
it ideal for studying ingoing waves, while the ingoing radiation
gauge preserves outgoing null cones, which should make it ideal
for studying outgoing waves. This clash stems from the particular
metric reconstruction method traditionally used to obtain the
metric perturbation in these gauges, reviewed in Sec. VIIB
below. Despite the geometrical features of the gauge conditions,
the reconstruction method yields metric perturbations that match
the gauges’ names: outgoing (ingoing) radiation is asymptotically
regular in the ORG (IRG), while ingoing (outgoing) radiation is
asymptotically irregular in the ORG (IRG) [80].
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In mode-decomposed form, the gauge conditions

become
RWZ: hi" = hi" = 0. (129a)
hfm — hfm — 0’
IRG: { hlf i} Oli (129b)
hom = pim =0,
ORG: {h " O”* (129¢)

8P hly =L (22 rhi 4 2r, hS™ — 207 P RO,
8 hm = Sy (u2h?™ — 4rrPhym — 2h%M),

sbhim = 3z (UZhim — drrbhm),

72

Lorenz:

(129d)

where u, is defined in Eq. (85). Note that MP denote this
same quantity as u, meaning pyp = /,t?;.

All four conditions leave residual gauge freedom, mean-
ing in each case one can find gauge perturbations V&
that satisfy the relevant gauge conditions. Specifically, the
RWZ gauge condition does not constrain £ = 0 modes or
the # = 1 mode h!™; the radiation gauges can be altered
by a gauge vector satisfying lﬂV<a:§ﬂ) =0 (IRG) or
nPV &5 = 0 (ORG) and V,&* = 0; and the Lorenz gauge
can be altered by a gauge vector satisfying V/’V(afﬁ) =0
(which is equivalent to [1&* = 0). In the next sections, we

will specifically analyze (and remove) the gauge freedom in
the Z = 0, 1 modes.

C. Gauge-fixing procedure and residual
gauge freedom

It is common in perturbation theory to construct gauge-
invariant metric perturbations using a gauge-fixing pro-
cedure; see, for example, Refs. [47,48,55,81-85] and
Nakamura’s recent series of papers exploring this method
in Schwarzschild spacetime [86-90]. The idea is to identify
gauge conditions that completely fix the gauge, leaving no
residual gauge freedom. The gauge vectors, call them 5’(‘">,

that transform from a generic gauge to the fixed gauge are

then determined by the perturbations in the generic gauge,

call them h,(,',f). Referring to the transformation rule (37), we

can then construct gauge-invariant perturbations 71,(]? that
are simply the metric perturbations in the fixed gauge
expressed in terms of the perturbations hf,'y
gauge:

in the generic

ilf,p == h/(li/) + EE(I)gﬂw (130&)

;l}(}y) - hl(}y) + ﬁfmgﬂ” +H,, (130b)

where

g o= (a0 Lp

H,, = £é’<1> (h,,,, +§£§(])gﬂy>. (131)
Analogously, referring to the transformation rule (38), we
construct invariant stress-energy perturbations,

T =1, (132a)

T =T + Lz, T (132b)
The most obvious examples of such invariants are the
variables used by MP, which use the RWZ gauge conditions
to specify iz,(lly) We review those RWZ-based invariant
variables in Sec. V D below.

To our knowledge, this procedure has always specified

the fixed gauge through conditions on 71,(,';), which then
determines ;) = 5’(‘1)[h(1)] and &, = f?’z)[h“),hm] via
Eq. (130). If h,(f;) happens to already be in the fixed gauge,
then E?’n) =0 and 13,(3 = h/(ff,). But if h,(fl’,) is in any other

gauge, then the quantities fz,(fﬁ) are invariants constructed

from hﬁ,?; no matter the choice of gauge used to calculate

hY, B\ take the value of the perturbations in the
fixed gauge.

However, such a procedure is necessarily incomplete
because conditions on the metric perturbation cannot fully
specify the gauge. This is because of the Killing sym-
metries of the background. If Zj’(‘ 1 is a Killing vector of the

background, then the gauge transformation Ah,(,1> =

Egmg,w vanishes. This means any gauge condition on

fzf,i) can only fix the gauge up to infinitesimal isometries
of the background.

In linear perturbation theory, this incomplete gauge
fixing is not problematic. Since the £m modes decouple
from each other, one can fully fix the # > 1 gauge freedom
through conditions on the £ > 1 pieces of E,SL) . The gauge
ambiguity is then confined to the =0 and 7 =1
perturbations. Those perturbations are very often simply
ignored because in vacuum they are only perturbations
toward another stationary black hole solution (specifically,
a linear-in-spin Kerr solution).

However, at second order the residual gauge ambiguity
does manifest itself in the metric perturbation. If Zj’(l ) is a

Killing vector of the background, then it induces a non-

trivial transformation Ah,(f,) =L, hf,L). This implies that if

;ﬁ’(ll) is only determined up to the addition of a background
Killing vector, then l~1,(3,) is not invariant.
Appendix A analyzes the general transformation proper-

ties of E"(‘n) and 71,(]2) and the implications of residual gauge
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freedom. In the body of the paper, we outline a specific type
of gauge-fixing prescription that eliminates the residual
freedom. Our prescription differs from others by enforcing
a condition on T,(ﬁ,); through Eq. (132), this imposes

additional conditions on E’(‘ 1 ‘We then obtain vectors 5’(’ H=
‘3?1)[}1(1)’ T(z)] and 5’(42) = E’&) [h(l)’ h<2)] and fully invariant

perturbations 71,(4’,? and Tf,',i). This restricts our prescription to
nonvacuum perturbations. In global vacuum, without a
matter distribution to refer to, fixing the residual gauge
freedom would require specifying a value of time and
angular position at some physically identifiable event in the
perturbed spacetime.

We detail a particular gauge-fixing scheme in the
remainder of this section. Our procedure for £ > 1 follows
tradition, while our procedure for £ = 0 and # = 1 appears
here for the first time.

D. Gauge fixing for ¢ > 1
We follow MP and Brizuela et al. [48] by putting the

¢ > 1 pieces of ﬁ,(,’,ﬁ) in the RWZ gauge, setting

R =0 = R, (133)

At first order, the analog of Egs. (123b) and (123e) then
implies that the vector E’(’l) has Z > 1 modes given by

ghom = —pl)om — s,z 00, (134a)
(1)¢m

~(1)¢m h

A > (134b)

Substituting these formulas into the analogs of Eqs. (123a),
(123c), and (123d), we find the nonzero ¢ > 1 pieces of

Ef,},) are

T (1)¢m 1)¢m 2(1)¢m

By ™ = i " + 25<aé,‘,)’ ; (135a)
}Nl[(ll_)fm — h<al_)fm + ’,25612(_1)fm7 (135b)
ilgl)fm o h(()Ufm + 2rrc5f1)fm _ f(f—f— 1)r22$)fn1. (135C)

These are the equivalent of MP’s Egs. (4.10), (4.11), and

(5.7). The fields R™ are invariant regardless of what we
do with Z = 0, 1 modes.
At second order, the analogs of Egs. (124b) and (124e)

imply that the vector E’(‘z) has # > 1 modes given by

(2)¢m

Foem _ _hEZZJme — i — 25,717, (136a)
(2)¢m Frém

. h H

Foem _ e Ay (136b)

272

and the analogs of Egs. (124a), (124c), and (124d) imply

that the nonzero # > 1 modes of fzﬁ) are

7(2)¢m 2)¢m rém 2)¢m
Ry " = ) HO 280,80 (137a)
B2 = gy fom 25,720, (137b)

R = W O g 2 By, = (6 + 1)PZDT

(137c¢)

As per the discussion in the preceding section and
Appendix A, these fields are not yet invariants. They only
become invariant once we fix the £ = 0,1 modes of the

first-order field izf}).

E. Gauge fixing for £ =0

For # = 0, the only nonvanishing pieces of h,(,'Z) are the

scalar-harmonic modes 1")® and 1. Equation (130)
reduces to
Z(1)00 _ (100 | ¢ Ze
hfm) = hih) +¢(1009eGab + 20(aC{1y009p)e:  (1382)
A = % 20 ZE g (138b)

at first order. It reduces to the same equations at second
order with the replacement A(V% — B0  F% on the
right-hand side. Given this simple replacement, we only list
results at first order in this and the next two sections below.
In these sections, we streamline the analysis by restrict-
ing ourselves to perturbations that are asymptotically flat at
spatial infinity.” For the monopole mode, this implies

(n)

W% = S o(2), (139)
r
(Moo _ o ! -2
hs ™ =r +O(r =) (140)
r

for some -independent constants CE;Z) and ¢". Note that

this restricts the gauge of h,(ﬁ) in addition to restricting the

3Lifting this restriction is straightforward. If perturbations are
not asymptotically flat, or are in a gauge that does not manifest
the asymptotic flatness, then integrals such as the one in Eq. (144)
become ill defined. One can then take the Hadamard finite part
of such integrals [91]. As an example, suppose an integrand of
the form ]j‘i(l] a;r* +y(t,r), where y(,r) falls off faster
than 1/r. We can define the integral as Zfzoﬁrk‘ﬁur
a Inr+ [1 f71(r)y(2,r)dr'. Any length scale in the loga-
rithm can be absorbed into (! (7).
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asymptotic geometry. Moreover, we make the simplifying

assumption that the gauge of A satisfies ¢\ = 0.

We are not aware of any work that has constructed gauge

invariants /)% and ("' that are local functions of (z, r).
We will instead allow one of the components to be a
nonlocal function that takes the form of a radial integral.
However, at least at first order we are able to construct a
local invariant from it through differentiation.

We adopt the following gauge-fixing conditions:

R = o, (141a)
RmoO _ o (141b)
lim 2% = o, (141c)

where the limit is taken at fixed ¢.
Now, the trace condition (141a), with Eq. (138b), fully

determines ¢ (100 to be

- L (1)0
g(l)ooz__ho) .

P (142)

With Eq. (138), this in turn determines

- M 1 1
o — oo M om 1, <_ h(()1)oo)‘ (143)
rf f r

The quantity i)

is invariant even without specifying the
remaining component & 21)00. The quantity iz(r%)oo is given by
the same formula with 2(V% — p20 1 F9 byt it is not
invariant until {{,,, is specified.

Next, the condition (141b), with the #-r component of
Eq. (138), restricts qn)oo to be

zh)oo =oW(1) + / (f_1h§})00 +f_zarézf1>oo)d7”/, (144)

(s

where ¢(!) is an arbitrary function of 7.
The condition (141c), with the -t component of
Eq. (138), then implies

1
o) = oV (145)
for some constant Q(()l). This represents a time translation; it
is a timelike Killing vector of the background, which we
cannot fix using conditions on fz,(}y) To fix this remaining
freedom, we examine the transformation of the stress-

energy tensor. We defer that procedure to Sec. V H.

. 7 (1)00
The remaining nonzero component of hg;

nonlocal invariant given by

is now a

-~ 2M -~ -
R = W = S L0 — 208y (146)

It is nonlocal because of the radial integral in 521)00-
However, we can immediately construct a local invariant
from it:
_17(1)00
oV =0, (£ 1), (147)

or more explicitly,

M
o =0,(f " h ") =20, + o, < ’“5’1)00>

Pf
1 (1)00
+W0?ho . (148)
Our local invariants ﬁg)oo and ¢! are related to the
quantities y, and o, in Ref. [92] by fz(,i)oo =2y,

and o) = 2f1o,.

At second order, the above formulas remain valid if we
replace A% with 229 + A% However, the invariant ¢(?)
is not manifestly local because H* depends on the non-
local quantity ¢ €1)00' It might be possible to express A% in
terms of local quantities, or to construct alternative second-
order invariants that are manifestly local, but we leave this
for interested readers to explore.

F. Gauge fixing for £ =1: Even parity

For even-parity ¢ = 1 perturbations, the only nonvan-

ishing pieces of h,(,rL) are the scalar- and vector-harmonic

modes hs,’])lm, RO and h,(;fﬁlm. Equation (130) reduces to
By = iy 4 E)0cdap + 20L(1 e (1492)
)" = n)" - B+ 28, 20 (149b)
A = O e B - 2R 70 (149¢)

at first order and to the same equations at second order with
the replacement (V" — p@1m 4 g™ Our assumption of
asymptotic flatness implies

(n)m
n)lm C, —
A L+ O(r), (150a)
(n)1m C<’1>m
R r|:7 + O(r‘3)] : (150b)
(n)m
pIm r2|: —+ (’)(r‘3)] (150c)
r
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for r - oo at fixed ¢, where cg;)m, (:E,'Qm, and cc(,")m are

constants.
A convenient set of gauge-fixing conditions is

R =0, (151a)
Rt — o, (151b)
lim (izﬁt”)"”) —0, (151c)
lim (ﬂ]ﬁf”"’) —0, (151d)
lim (ﬂﬁ&’:“’”) ~0 (151e)

(1) Im

The first of these determines £, in terms of Z by

Zgl)lm _ _hgl-i)_lm _ 25 Z( )lm (152)
and the second determines a radial differential equation for

ZS:)]m’

2r25,(rf2$”’") = hO oD (153)

The solution to this equation is

(H)1m )m
5(Dim K fhrJr
Zmm rf rf/ (2r - >er (154)

where « is an arbitrary function of .

K represents an asymptotic translation of the coordinate
system. The condition (151c) imposes 0’k = 0, which
enforces that the fixed gauge is not asymptotically accel-
erating. The condition (151d) imposes d,x = 0; the fixed
gauge is asymptotically stationary with respect to the

asymptotic frame of h,(,'Z). Finally, the condition (151e)
imposes

x(m = 3LM (cgl)m - 2c52m). (155)

The nonzero invariants are now
= -2 250, (156a)
" = "+ 0, — fOL . (156b)
B = W e L+ 200 (1560)

Again these are nonlocal. They depend on a radial integral,
and through ()" they depend explicitly on the values

R at spatial infinity. But again we can construct a set of
local invariants through differentiation:

o =00, (™). (157a)
" =0, (rf?h"™), (157b)
o = 0r(r2f3fz§i“'”). (157¢)
Explicitly, in terms of D1
o))" = % [Mr?fo*h, — M(5r —12M)0,h, — r*d70,h,

—2r30%h, +2Mr*f0,h,, +2r° f0?0,h,.,
+2r3(3r—4M)o?h,, —2M (3r —8M)h,.,.
—21°f0,0th +4r fO, by, —4r*0,0,h . 41 fOrh,

M
+2/%,hy =27 fhy |+~ (2r=5M)h,,  (158a)

|
0" = 5[~ f0,0,h, + MOh. + rf (r = 4M)0,h,,

+ P f20,0,h,. — P 28N, — Pfo,hy,

2M
+ r3f26rhtr + rf(r + 2M)htr] - 3 (r - 4M)h’+’
(158b)
o0 = L0250~ (r ~3M)0h, + 22 fo,h,
r

)hr+ - r3fzarhrr - 2rf(r + M)hrr]

h,. (158¢)

+2(r—
RE

Here, for readability, we have omitted superscript “(1)¢m”
labels on the right-hand side.

Again, at second order we replace AV with
h§2)1m+H.l}n'

G. Gauge fixing for £ =1: Odd parity

For odd-parity £ = 1 perturbations, the only nonvanish-

ing piece of h,(w) is the vector-harmonic mode A", At

first order, Eq. (130) reduces to
Sy A R WAL (159)

Our assumption of asymptotic flatness at spatial infinity
implies the falloff condition

i — ["(“2‘) +O(rm )] (160)

for some t-independent constants cE,"_)
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We impose conditions

Rt — o, (161a)
. 7 (n)lm
lim (ht_ ) —0. (161b)
The first implies
~ , h(])lm
2 — o(Om(g) — / Sdr. (162)
and the second implies
w!m = m(()l>m (163)

for some constant w(()l)m. This constant represents the

rotational Killing vector of the background, and once again
we are unable to determine it through conditions on fzf,ly)
The nonzero invariant component is
RO = n D' 4 29,z (164)
This is a nonlocal invariant, but we can construct a local
invariant from it:

P = a,(r—zzgiﬂm). (165)

Explicitly,

o = o, (7200 — 0, 2h0M™). (166)
This local invariant is related to the quantity W in Ref. [92]
by o = —W, /r,

At second order, we replace A4 with 2™ + H in
these formulas.

H. Residual Killing freedom and comments
on gauge fixing

We have now fully fixed the gauge freedom at first and
second order, up to the Killing vectors represented by the
constants gél) and wél)m in Egs. (144) and (162). To fix
those remaining constants, we can impose conditions on
the stress-energy tensor.

We decompose E’(‘l) into the Killing and non-Killing

pieces, denoting the former by K’(‘ 9 (for the timelike Killing
vector) and K* (for the rotational Killing vector), and
denoting the latter by 25’(‘1). The invariant T,(,%) defined in
Eq. (132b) is then

T =T + Kgy0.Tw) + LxTh) + Lz, T, (167)

Imposing conditions on T,(,ZU) allows us to rearrange this to

obtain equations for the constants in K’(‘ ;) and K*.

The full list of now fully fixed invariants is (135), (143),
(146), (156), and (164).

Having now completed our gauge-fixing procedure, we
consider its merits relative to the obvious alternative:
simply adopting a convenient gauge and solving the
perturbative Einstein equations in that gauge. We first
enumerate some merits of the gauge-fixing scheme.

(1) It fully elucidates and isolates the gauge-invariant
degrees of freedom in the metric perturbation. By
removing all gauge degrees of freedom, we have
reduced the metric perturbation to the set of invariant

fields fzg,")oo and fzﬁ’f)oo for £ = 0; fzy},}lm and izﬁf)"”

for £ = 1; and ﬁirzfm, R and AU for £ > 1.

(2) Although the invariants are, in general, nonlocal
functionals of the metric perturbation, the method
also provides a simple recipe for deriving local
invariants, at least at first order in perturbation
theory. It might be possible to write the field
equations entirely in terms of these local invariants
(although we leave that possibility unexplored).

(3) Even if we wish to work with the gauge-dependent
metric perturbations and choose some convenient
gauge, it can be expedient to derive the field
equations for the invariant variables. From them,
field equations for the gauge-dependent metric
perturbations can be obtained simply by substituting
the definitions of 2™ in terms of A"

Contrast this with a clear disadvantage:

(1) Writing the FEinstein equations in terms of the
invariant metric perturbation components is equiv-
alent to simply adopting the fixed gauge as one’s
working gauge. This might very well be an un-
fortunate choice, as it is often useful to choose a
gauge that is well adapted to one’s particular
problem.

Note that this last point does not mean that working in a
convenient gauge is always equivalent to working in some
fully fixed gauge. If one works in a gauge with residual
gauge freedom, such as the Lorenz gauge, then the residual
freedom is eliminated through a choice of boundary
conditions rather than at the level of the field equations.

In this paper, part of our motivation for presenting a

gauge-fixing formalism is to remain in the tradition of MP.
However, we recognize the merits of both approaches and
therefore provide field equations both for invariant varia-
bles and for raw, gauge-dependent metric perturbations.

VI. MODE DECOMPOSITION OF THE FIRST-
AND SECOND-ORDER EINSTEIN EQUATIONS

Having assembled the necessary tools, we now apply
them to the Einstein field equations (16) and (17).
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Sections VI A and VI B present the harmonic expansions of
the quantities appearing in the field equations, relegating
lengthy expressions to Appendixes B and D. Section VI D
then summarizes the field equations in various forms, and
Sec. VIE presents the mode-decomposed conservation
equations that constrain the field equations. The special
case of the field equations for £ = 0,1 is discussed in
Appendix E.

We decompose the quantities in Eqs. (16) and (17)
following the steps outlined above Eq. (125). In the body of
the paper we present mode-decomposed formulas for the
linear quantities &,,[h] and F,[h] and the quadratic
quantities A, [h], B, [h], and C,, [h]; the companion pack-
age PerturbationEquations includes also the decompositions of
the field equations in the form (22) and (23).

We present our results in terms of the invariant fields
fz,(fy. However, in PerturbationEquations we also provide the raw
results, without the gauge-fixing procedure. As mentioned
in the Introduction, to the best of our knowledge, this is the
first time a complete mode decomposition has been
presented for the second-order Einstein equations, with
arbitrary first-order mode content and in an arbitrary gauge.

A. Linear curvature terms

Equation (9) expresses the linearized Ricci tensor
6R,, [h] in terms of the quantities &£,,[h] and F,, [h] defined
in Egs. (11) and (12). The 2 4 2D decomposition of those
quantities is given in Egs. (B1) and (B2). Substituting
the mode expansion (113), we obtain the modes £ [h?™]
and F¢"[h’™). We then make the replacement &, — h,,,,
with 2" =0 = hf".

The results are

7.6m aM 7.¢m 7¢m 4 - m c
€t = Ok + =5 gy (2R = B ) =Ry r
4, -y, AMN\ 2 sy
+Fhf Talb —phib (’1?1 +T> tor Sehiy
(168a)
2 . 2
gm = —Sr him + SR, (168b)
r r
R XM\ 4 -,
ggT = DMZhZ— —ﬁhg_ <ﬂ§;71 —T> —phi_rarb,
(168c¢)
o Mg AM - " 2 oz
Em =0y hl™ =i ——h" + 207 r b == re5,hom,
r r r
(168d)
gom =2 pajem 168
+ _;r at> ( e)

where

Oae = g8, (169)

and

- ~ 2 ~ 4 -
m __ c,fm ‘m ‘m c ‘m
‘7:519 = _26(a5 hb)c+25a6bh‘ +ﬁ5a5bho —;I" é(ahb)c

2 jem aM 5 m 4 c Tfm
_Fr(a&)hf —7hib —l—;r r(ahi>c, (170a)

- com Ve 2 i 2
Fom = —8"hp + 28,0 +—8,h5™ —=r RS == Py,
r r r

(170b)
o 2w 2 o em 2M -
Fom = =8,8"hy" + = r, 80 hy" — =P8, by — = hi"
r r r3
6 bT,Cm
+ﬁrar ", (170c¢)

Fim — —2rra5b7152" + 2rr”5ail.fm - 4715},"?”"” - l%,lilfm

2 ~
+ 24, mim, (170d)
r
J:im _ Zil.fm, (1706)
A
Fm = 28R — = r i, (170f)
r

Here we have written the expressions for a generic sym-
metric tensor 71,“,, which can be either 71,(41) or 71,(,%)
At first order, these expressions are valid in all gauges

since (i) they are valid in at least one gauge (the gauge in
which h,gL) = iz,(,L)), and (ii) they express the invariant
quantity R, [AV)] in terms of invariant fields. If desired,
o 1 .
we can express these quantities in terms of 4, in any
gauge by substituting the explicit expressions (135), (143),
(146), (156), and (164) for hl in terms of h.
Alternatively, we can solve the field equations directly
for the invariant fields.

At second order, R, [h(?)] is not invariant, and the above
expressions are valid only in the gauge for which
hﬁ) = 71,(,2”) However, the second-order field equation (17),
taken as a whole, is invariant, meaning it will remain

valid in all gauges after the replacements h,(jz) - fzfj,’,) and
7@ _ 70
uv

Hv -

B. Quadratic curvature terms

Equation (10) expresses the second-order Ricci tensor
8°R,,,[h] in terms of the quantities A, [h], B, [h], and C,, [h]
defined in Egs. (13)—(15). The 2 + 2D decomposition of
those quantities is given in Egs. (B3)—(B5). Substituting the
mode expansion (113), and following the same steps that
led to Eq. (125), for A,, we obtain
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‘m __ ¢m0 Om's' " m"—s'
A(lb - l"ﬂ’vs/ﬂﬂlw“/Cf’m’s’f”m”—s"Aab ) (1713)
K’m’f”m”
s'=0,1
ﬂf/ /Atﬂl 1_ ! f/ /,/Lﬂ// ! 1 !
Az,’m — .8 SI=s Cfml ./4 m's'C"m",1—s
at ﬁfl Om's'""m' 1—s"Y tat ’
vy '
(171b)
‘m __ Zm0 s’ "' m" —s'
Aom - /Iﬂvs///{f”vs/Cf{’;l/slf”m”—s/Ao msem =S ) (1710)
f’m,f’”m”
5'=0,12
Afm _ lf/,s”lf”,Z—s’ Ccém2 Af’m’s’f”m”,Z—s’
- f/m/s/f//'n//’z_sl j: k)

//m/f//m” ﬂf,Z
s'=12

(171d)
where the quantities A”"'*'“""'s" are made up of products
of hN¢™ and h(V?""" We display these quantities in

Eq. (D3) in terms of the invariants 71,(,},) If A, is calculated

in a generic gauge in terms of h,(,i,), then s}, in the above

sums is increased by 1 because of the involvement of the

tensor modes 2™ and A" in the invariant form of

the field equations, those higher-spin terms appear instead
on the left-hand side of the field equations, hidden
within 7).

Similarly, B/™ and C/™ are given by the sums

‘m £m0 C'm's' " m" —s'
B = 5" Dy yCOO B . (172a)
it
Bfm o ﬂf’,s’lf”,l—s’ Cfml Bf’m/s’f”m”,l—s’
at /lfl Om's'"m" 15" ax ’
amy
(172b)
m £m0 Al s' " —s!
Bom - Aff”s’/lf”,s’ Cf”:n/s/f"m”—s/Bo mes e =S ) (1720)
gind
Bfm _ ’11,”,3%/”,2—5’ CfmZ Bf’m’s’f”m”,2—s’
+ = /1;,”2 Om's'" m" 2—s'" +£ ’
g
(172d)
‘m __ ¢m0 C'm's' " m" —s'
Cah - if/’xllf”vs/Cf/m/slf//m”—slcah N (173&)
Cfm _ lf’.‘v’lf”,l—s' Cfml Cf’m's’f”m”,l—s’
at /lzf’l 'm's' "' m" 1—s' at ’

Ol "
s'=1

(173b)

! onl ! P11 !
Cfm - E j.f/’xlif”’x/ C;:Z?s/f//mu_slcfm s'¢"m’—s ) (173(:)
' m!"
S/:O,l
ofm — Ae s her oy cim ofm's' e 2=/
+ = 2 'm's'"m" 2—s" £ ’
f/g}lzfl//vgx// f,z
(1734d)
. . o oanl ! PN ! M o oanl ! PN I M
where the quantities B¢ '¢"""s" and C*™'<*"™"s" are made

up of products of AV and (V"™ We display these
quantities in Eqs. (D4) and (D5) in terms of the invariants

fz,(;,) In all cases, the sums run over the restricted range of

mode numbers displayed in Eq. (127).

C. Stress-energy terms

The stress-energy terms in the field equations (26)
are more straightforwardly decomposed. In the first-order
equation we have

TWem = hem, (174)

where 7()/" are related to TV by Eq. (116). In the
second-order equation we have the harmonic modes of

the invariant Tﬁ) = T,(f,) + LE(I) Tfli,). Expressed in terms of

the invariants 7 f,? and 71,(41), this quantity reads

=02) a2 | w2 1 (1) z(1 o

T;(w> = T;<w) - Egﬂl/-q(/}T((xﬁ) + E gﬂvhfzﬂ) - hl(“/)gtlﬂ T(f)'
(175)

Its mode expansion is given in Eq. (D6).

D. Summary of the decomposed field equations

1. Field equations in terms of invariant variables

In summary, we can write our covariant, gauge-invariant,
tensor-harmonic decomposition of the Einstein equa-
tions (16) and (17) as

SRIM [V = 8T (em, (176a)

SRIM[AP™) = 87T @M — 2RI [A1], (176b)

using the shorthand introduced below Eq. (107). The mode-
decomposed operator on the left-hand side is

~ 1 ~ ~
SRI™ AWM = —5(5%"" [AMEm] . Fom[pmem)y - (177)

with E7[A™™) and F7"[R"™] as given in Egs. (168)
and (170).
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The stress-energy source terms on the right-hand side are
given in Eqgs. (174) and (D6). The quadratic source term is

SR = 2 (A 4 B[RO 4 Con V),
(178)

where the quantities A", B™, and C/™ are infinite sums of

products of modes of ﬁﬁ,i,) These sums take the form (171)
for all three calligraphic quantities (with differing s},,,),
where (i) the sums run over the range in Eq. (127),
(i1) C?,”;js, o 18 given in Eq. (93), and (iii) (as an
example) the quadratic coupling functions A77s'¢"m"s"
are given in Eq. (D3).

The even- and odd-parity sectors of these field equations
decouple at each order. This is because on the left-hand side
of the field equations, the even-parity terms SR’Y, SR%™,
5R§f'|}, and 5Rf_’” only depend on the even-parity perturba-
tions 22" and hZ™; and odd-parity terms SR%” and 6R™
only depend on the odd-parity perturbations /5"

However, due to the quadratic source term, the even- and
odd-parity first-order fields do become coupled in the
second-order field equation (176b). The even-parity fields
A2 and BP™™" are sourced by “even x even” products
R and A7 multiplying 7)™ and A7) as
well as by “odd x odd” products (2%’"™ multiplying
RD7™"). The odd-parity fields 7™ are sourced by “even
x odd” products (Eglb)ﬂm/ and A"7™ multiplying 207 ™).

Similarly, the £Zm modes decouple from one another at
each order, but the first-order modes couple to one another

in the second-order source. A second-order mode 7)™
with any given £ value is generically sourced by all first-
order modes AV from £ =0 to oo.

The modes of the trace-reversed field equations (27) can
be obtained from these modes using the relations (116).

2. Field equations in a generic gauge

If we do not make the replacement pmWem _ pm then
we arrive at the raw field equations

5Rfm [h(n)fWL] — S‘(")fm’ (179)

which have all the same features as Eq. (176) but are
substantially more complicated due to the nonvanishing

hi’f’" and h(i")fm. The sources are
SWtm — g (Nem — g (M)em, (180a)
S@fm = gaTAm _ RImpM]. (180b)

We can also obtain these equations by starting from
Eq. (176) and substituting the expressions (135), (143),

(146), (156), and (164) for A™“™ in terms of A"
Additional manipulations (involving the Bianchi identities,
for example) are required to put the result in precisely the
form of Eq. (179), but the equations are necessarily
equivalent.

3. Field equations in the Lorenz gauge

In the Lorenz gauge, where the fields 7, and C,, vanish,

the field equations (179) reduce to
(c/’.fm [h.(n)fm} _ _2S§n)fm’ (181)

with the same first-order source SV = 8zT(V?" and
with
_ 1
S — 8aT@m - = (ACHO] + BAO]). (182)

The Lorenz-gauge field equations (at first order) in the
MP harmonic basis are described in detail in Ref. [93].
Most self-force calculations in the Lorenz gauge have

instead been in the closely related Barack-Lousto-Sago
harmonic basis; see Table II and Appendix F.

E. Conservation equations

Because of stress-energy conservation, the source terms
S?m in the field equations (and therefore the field
equations themselves) are not all independent. They are
related by the mode decomposition of the conservation
equation (34), which divides into the three equations

1
8 Sey =5 (A5 ArS + 2raSE = 270 SG), (183a)
1
Sy = 55 (S —4rdS =280, (183b)
1
oSy = 27 (u2S7m — 4rrbsim). (183¢)

The quantity u2 appearing here is defined in Eq. (85).

VII. MASTER SCALARS AND METRIC
RECONSTRUCTION

As an alternative to directly solving the Einstein equa-
tions, a common approach in black hole perturbation theory
is to instead solve one or more scalar field equations for
master scalar variables. The metric perturbation is then
reconstructed from the master scalar(s).

Here we summarize the formulation of this approach at
second order. We specifically describe the most common
variants of the approach: the RWZ formalism and the
Teukolsky formalism [94,95]. Both of these are intimately
related to the Weyl scalars of the perturbed spacetime,
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although the RWZ formalism is less often described in
those terms.

The formalisms in this section are broadly identical at
first and second order, with the only difference being the
source terms. We therefore omit the label n that indicates a
quantity’s perturbative order. However, we do emphasize
some particular features that distinguish the second-order
problem from the first-order one.

A. Regge-Wheeler-Zerilli formalism

For the RWZ formalism we adopt the conventions of MP
and Ref. [96]. Our treatment at second order differs from
that of Brizuela et al. [48] through our choice of master

scalars and our inclusion of low (£ = 0, 1) modes in h,(,ly>.

1. Master functions

The RWZ formalism has two master functions, one for
even-parity perturbations and one for odd-parity perturba-
tions, each of them only defined for # > 1. We specifically
adopt the Zerilli-Moncrief function W47 [78,97] in the
even-parity sector and the Cunningham-Price-Moncrief
function W2 [98] in the odd-parity sector, with MP’s
choice of normalizations. They are closely related to the
real and imaginary parts, respectively, of the linearized
Weyl scalar sy, [99].

In terms of our invariant metric perturbations, these
functions are

pim — 2 {r‘zﬁf’” —l—i (r“ rP i — rr“éa(r‘zfzfm))]
(A1) A
.1 ¢ e
and
pom = i;eab <5aiziin - % rJlf’_") : (185)
with
Ay ==u§+6TM. (186)

The even-parity master function satisfies the 2D scalar
wave equation

(D/vl2 - Vefven)lpg\%n = Sg\%n’ (187)
with the potential
1 [t 6M\  36M? 2M
ngen = A_§ |:7 (/1301 + T) + & ML% + T .
(188)

The source term is constructed from the source in the
Einstein equation according to

8 - 2 . 2 24M -
Sg%n - asim __Sfm 4 a bsfm
Afr + r * /1?1/\/ Abp T
- 4f . 2
—arres,si+ s 2 gs o)
r Af
12M 84M?] -
+— (W2 -3) + 2 ]Sf’"}. (189)

The odd-parity master function likewise satisfies a 2D
scalar wave equation,

(Oaee = Voad) Poda = Sodas (190)
with the potential
£ +1) oM
ngd 27_7 (191)
and a source term
sim = ——e®s, 8" (192)
¢

2. Metric reconstruction

From W47, and ‘Pfgfj, we can reconstruct the invariants
h?™ for £ > 1. They are given by [96]

him = f2him 4 280, (193a)

~ 21 [ 2r -

Ry = ro,0, Wi, + rB,o, Wi, + E (Sfrm - A—f.fatst{;m> ,
(193b)

~ 1 ~ ~
hom =7 [Af (zgl P —2h0m) +4r3 18, (r 2R ﬂ ,

(193c)
it L, ¢ 2r2"’f
R = ~e,08, (rPim) + = 3m, (193d)
2 U7
7 em 2 ¢ 2 ¢ 4t o
ho =r raaaqje\’gn_"rAf‘Pe\%n_z—Sn ’ (1936)
Az
where
1 oM am
Ay = 2+ — (2 + = 194
‘ 2Af{ﬂ“+ (”” r)] (154
1 3M 6M?>
B, = 2(1-22) - 2= 195
‘ rfAf{”f< r> rz] 9
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As pointed out by Brizuela et al. [48], this metric
reconstruction is problematic at large r. For a linear metric

perturbation that is geometrically asymptotically flat, the

quantities 71;(,},) blow up at large r. If the second-order source

is constructed from those quantities, it is also asymptoti-
cally singular. Dealing with such a source is problematic
numerically but also makes the choice of physical, retarded

boundary conditions unclear. We can trace the emergence

of this poor behavior starting from WM If the first-order

source is spatially bounded and we impose retarded
boundary conditions, then an outgoing mode with fre-

(1)Zm

quency @ behaves as Weyen ~ e " at large r. The

Ijl(l)fm o

reconstruction formula (193) then implies ho

r2e~ i@ and fzilb)fm ~ re~®": this contrasts with the natural

N > Dém 1 e s
behavior A" ~ re=i@t and A ~ plemion in a well-

behaved gauge. The second-order Einstein tensor then
behaves as 6°G,, (A, A ~ 2, and the source (189)
constructed from it blows up even more rapidly.

One possible route around this is to work with alternative
master variables at second order. Another route, suggested
by an analysis in Ref. [100], is to work with alternative

variables at first order (or equivalently, work with h,(,},) ina

particular, nice gauge, rather than working with izftly)). We
defer further discussion of asymptotics to the Conclusion
and to Ref. [101], where we will provide a thorough
treatment of the problem.

B. Teukolsky formalism

For the Teukolsky formalism we follow the conventions
of Ref. [21]; most equations in this section are mode-
decomposed, Schwarzschild specializations of equations in
that reference. Our treatment also incorporates recent work
on nonvacuum metric reconstruction by Green, Hollands,
and Zimmerman (GHZ) [102]. Although the overarching
formalism here was detailed in our earlier Ref. [100], this is
the first time (to our knowledge) that a second-order
Teukolsky equation has appeared in mode-decomposed
form with generic first-order mode content.

1. Master scalars

We first introduce some additional tools from Geroch,
Held, and Penrose (GHP) [72]. In analogy with spin-
weighted quantities, a tensor v is said to have boost weight
b if it transforms as v — y”v under the boost (I, n%) —
(y1%,y~'n“). In practice, this means v’s boost weight is the
number of factors of [“ appearing in it minus the number of
factors of n“ appearing in it. We next define derivatives P
and P’ that act on boost-weighted tensors just as d and 8 act
on spin-weighted ones, meaning

by = (15, — b5,1%)v, (196a)

Pv = (n6, + bs,n")v. (196b)
Here and below we simplify definitions using the GHP
prime operation:

"o mA o mt,

1% < n“. (197)
P raises the boost weight by 1, while P’ lowers it by 1. They
satisfy the Leibniz rule [e.g., P(uv) = vPu + uPv even for
u and v of differing boost weights], and Eq. (60) ensures

they annihilate [* and n:

pl* = p'1* = pbn* = P'n* = 0. (198)
They satisfy the commutation relation
2Mb
(P'P — PP') = —™5,5;, — 5 (199)

and the anticommutation relation

(P'P + PP') = =, — 2b%(5,17)(8,n") + b[2(5,n")145,
—2(8,1°)n5, + (196,6,n") — (n%5,5,1°)).
(200)
They commute with d and & and with all other background
quantities on S
pQAB - p/QAB - [p,DA] - [pl,DA] - O (201)
In the Kinnersley basis in retarded coordinates (u,r),
P =0, when acting on a scalar; in the Hartle-Hawking
basis in advanced coordinates (v, r), P’ = —0d, when acting
on a scalar.
The field variable in this formalism can be the linear
perturbation of either of the Weyl scalars y or yy,

Swolh] = 8Cp, [ 1*mH P, (202a)

Swylh] == 6Cpp, [Mn*m** nPm**,  (202b)
where 6C,,4,[h] is the linearized Weyl tensor. These vari-
ables are related by the GHP prime operation dy, = dy,.
At first order, they are the first-order perturbations of
the Weyl scalars, w(<)1> = dyo[hV] and zpil) = Sy [hW)].
However, at second order they form only part of the
second-order perturbations of the Weyl scalars,

vy = dwolh®] + SyolhV, e, (203a)
yi = oy ] + Fy[hD. eq). (203b)

Here e?’l) represents the first-order perturbations of the
tetrad legs, {l’(’l), n‘(‘]), m‘(l ) m‘(’l*)}. The quantities 5%y, and
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&y, are quadratic in the tetrad perturbations and in hgg In

Ref. [100], we discuss some of the merits of working with
Swo[h®] or Sy, [h?)] rather than with 1//(()2> or 1//4(3).

For easy reference in the following sections, it will be
convenient to write the four-dimensional Teukolsky equa-
tions prior to mode decomposition. Written in compact
form, they read

051//0 =

89S s, 204a
p

Oy, =85S, (204b)
where we use a hat to denote linear differential operators,
Sqp is the source in the Einstein equation 6G4[h] = S,
and we again use the GHP prime to show the manifest
symmetry between the two equations. The operators O and
S are given explicitly in four-dimensional form in
Egs. (58) and (59) of Ref. [21] (with the conversions
in Table III and 7 =17 =0 in Schwarzschild). When
acting on dy and Sy, respectively, these reduce in the
Schwarzschild case to

3M

O=(P-5p)(P -p)— Faa’ = (205a)
a 1 3M
O' = (P -5p)(p—p)— ~—00+—, (205b)
2r r
where we have introduced
p=-l ang p=_ld (206)

We will also refer to their adjoints, O and S’Zﬂ and their
GHP primes, adopting Wald’s definition

/ AUBAV = / (UTA)BdV (207)
for any linear differential operator I/ and tensor test fields A
and B of appropriate ranks. The operator O is related
to O' by
o' =r*0'r ™, (208)
and S’Zﬁ is given explicitly in Eq. (60) of Ref. [21] (again
with the conversions in Table III and 7 = ¢/ = 0).
Expanded in spin-weighted harmonics, oy and dy 4 read

Swo = Wi Y, (209a)
‘m
Oyy = Z5w§m72yfm’ (209b)

‘m

with coefficients

1
S = =5 [heahif" + 2 ucr(p = )iy
+22(p - m%fgg} (210)
and
i
5‘//?" = 42 {/ﬂf’.zhf - 2%y, r(p' )hfm
L 22(p p/)2hf;l’fm*} . (211)

Note that the formulas for sy and Sy4™ differ only by an
application of the GHP prime operation and a change in
sign of the term proportional to y.; the latter change stems
from the sign difference between Eqs. (88b) and (88c).
This pattern carries over to the equations for the source
modes below.

At the level of these #m modes, the Teukolsky equa-
tions (204) become

[(p—sm(b' o)+ ]&pfm—sfm (212a)

2

e 3MY s om _ gem
R CIEY

with source terms

Sfm _ Sfm _ b—-3 Sfm
T 4r 2 \/Erﬂf( P)Sim
— 5 (b= 5p) (b~ p)SEi, (213a)
/1 1
Sfm — ‘2 Sfm b -3y Sfm*
4 4 2 Vnn + \/E ﬂf( p) nm
1
=5 (' =5 (P = p)S[0 (213b)

2. Green-Hollands-Zimmerman metric reconstruction

Metric reconstruction from dy or Sy, has traditionally
followed a method due to Chrzanowski, Cohen, and
Kegeles [103—-105], neatly explained by Wald [106].
That method was specialized to homogeneous solutions
with S,z = 0, but it has recently been extended to generic
sourced perturbations by GHZ.

The method writes the metric perturbation in a radiation
gauge in terms of a Hertz potential ® and a “corrector
tensor” x,;. We first focus on reconstruction in the IRG, in
which case the perturbation reads

BISG = 2Re (5, @eq ) + 1150 (214)
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The traditional, source-free reconstruction method uses

only the first term; the corrector tensor then corrects for

the failure of that method in the presence of sources.
For convenience below, we define

KRG .= 2Re (s;,pIRG). (215)
It satisfies
kOl =0 = kS g?, (216)
while x9 satisfies
ARG — 0 but ARG £ 0, (217)
xys satisfies the Einstein equation
5G s |XRO] I = S, 40P (218)

and it is only nonzero if Sel’ # 0. ki then satisfies the
remainder of the Einstein equation,

6Gaﬂ [kIRG] = S(l/)’ - 5Ga[)’ [xIRG] (219)

(implying 6G ,4[k™C]/# = 0). Unlike x[}i°, k[0 is nonzero
so long as Sy is nonzero, even if S,; vanishes. The Hertz
potential itself satisfies the adjoint Teukolsky equa-
tion O'®Rrg = nrg. Where the source g vanishes if
Sap = 0, but we will not require g explicitly.

At the level of modes, the nonzero components of kfl‘},G

are given by
m ﬂf-z m HEm
kﬁn = - m (q){RG + q){RG)’ (2203)
km = FC(p 4 opypim (220b)
nm 2\/57‘
1

Kt = =5 (P = p)(P+ 3p) @ (220¢)

together with
ko = (=1)" (k)" (221a)
K = (=1)" (Ko™ (221b)

We suppress the IRG label on the left-hand side to avoid
overcrowded notation. The modes of the Hertz potential
can be found by solving the inversion relation

|
L PO = out. (222)

Note that for the Hertz potential (and no other quantity) we
use a bar to denote the complex conjugate; modes of ® can
be obtained from modes of ® using Eq. (111), which in this
case implies

Ot = (=1)"(Pfag")"- (223)
Because P is a derivative along /4, Eq. (222) is a fourth-
order ordinary differential equation along outgoing null
rays. In the Kinnersley tetrad in retarded coordinates, it
reduces to § oL = Sy ™.

Like the Hertz potential, the corrector tensor can be
obtained by solving ordinary differential equations along
outgoing null rays. The Einstein equation (218) reduces to
the following hierarchical sequence of differential equa-

tions for the nonzero components of x}f;*:

PPP(p7bxp) = =Sif". (224a)
Pl b)) = ~28(0 + 2EL patn (224)
V2r

p*P(p~txn) = =S + B% -~ i—];/[ + 2pp/

—2(p'P + pP') + P’P} xim,

A1 em _ o fm
— a7z (P = 3p) (i — x0), (2240

together with

X = (=1 (™), (225)

again suppressing the IRG label. We again recall that
P = 0, in the Kinnersley tetrad in retarded coordinates.
Reconstruction in the ORG is precisely analogous. All of
its formulas can be obtained from those above by applying
the GHP prime together with y, — —pu, and 1, — —4,;,
beginning with the prime of Eq. (214),
hORG = 2Re(8'] ;@ora) + x0KC. (226)
The primed analogs of Eqgs. (222) and (224) are ordinary
differential equations along ingoing null rays. In this case

the differential equations simplify in the Hartle-Hawking
tetrad in ingoing null coordinates, for which P’ = —9.,.

VIII. CONCLUSION

In this paper we have attempted a comprehensive treat-
ment of the second-order perturbative field equations in a
Schwarzschild background.

With tensor spherical harmonics defined in Egs. (99) and

(100) and first- and second-order metric perturbations h,(,ly)
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and h,(,%,) expanded as in Eq. (113), the harmonic coefficients

h(W?m satisfy the first- and second-order Einstein equa-
tions (179). Those equations apply in all gauges, but the
left-hand side of the equations, as well as the source terms
in the second-order field equation, will take different values
depending on the choice of gauge. If we specialize to the
Lorenz gauge, the field equations reduce to Eq. (181). If we
adopt gauge-invariant field variables, as defined in Sec. V
C, then the field equations instead reduce to Eq. (176).

As an alternative to directly solving the Einstein equa-
tions, one can solve master equations for scalar variables
and then reconstruct the metric perturbation. This is
described in Sec. VII A within a RWZ formalism and in
Sec. VII B within a Teukolsky formalism.

Regardless of which formulation is adopted, the essential
ingredient in each of the second-order field equations is a
coupling formula: a formula for each mode of the second-
order source as an infinite sum over products of modes of
the first-order field. In previous literature, such coupling
formulas were presented for the Regge-Wheeler and Zerilli
equations, omitting £ = 0, 1 modes from both the first- and
second-order fields and restricting £ > 2 modes to the
RWZ gauge (or equivalently, adopting gauge-fixed invari-
ant RWZ variables for £ > 2). We have presented a number
of extensions and generalizations: (i) the sources in the
Einstein equations in “raw” form without any gauge fixing
and with arbitrary mode content, (ii) the sources in the
Einstein equations in terms of invariant fields, including
invariant £ = 0,1 modes derived using a novel gauge-
fixing method, (iii) the second-order RWZ sources includ-
ing £ = 0, 1 first-order input modes, and (iv) the source in
the second-order Teukolsky equation in a convenient
“reduced” form. We have also, as far as possible, attempted
to cast all of these in a unified framework. Most impor-
tantly, we have created the package PerturbationEquations tO
work with these sources in a variety of conventions.

A crucial question in all of these formulations is how
quickly, if at all, the coupling formulas converge. The
answer, as analyzed in Ref. [107], is that the convergence is
dictated by the smoothness of the first-order field. If the
first-order field contains a singularity, then its harmonic
modes decay slowly in a neighborhood of the singularity,
and evaluating the sum of products in the coupling
formulas becomes infeasible. This challenge is critical in
the self-force context, where the convergence becomes
arbitrarily slow at points arbitrarily close to the particle.
This has been overcome in practice using the strategy
described in Ref. [107], which requires knowledge of the
four-dimensional singularity structure. More efficient strat-
egies are likely possible.

Another important question is how well the source terms
behave at large distances and near the horizon. Poor
behavior there will represent an obstacle to numerical
integration of the field equations and difficulties in estab-
lishing physically correct boundary conditions. This has

posed a problem in most second-order calculations. As
reviewed in Sec. VII A, the RWZ metric variables are not
asymptotically flat, which causes poor behavior of the
second-order sources in the RWZ equations. This can be
ameliorated by working with modified master functions.
However, even in asymptotically well-behaved gauges,
such as the Lorenz gauge, practical implementations can
encounter nonconvergent retarded integrals [108]. This
problem has been addressed by developing post-
Minkowskian and near-horizon expansions that can be
used to derive physical boundary conditions in the Lorenz
gauge, as described in Ref. [108] and in forthcoming work.
A superior method of eliminating nonconvergent integrals,
explained in Refs. [100,101], is to work with variables
adapted to the physical light-cone structure of the perturbed
spacetime.

Follow-up papers will detail how the second-order self-
force results in Refs. [30,56-58] were obtained by combin-
ing (i) the coupling formulas derived in this paper, (ii) the
two-timescale expansion of the Lorenz-gauge field equa-
tions in Ref. [109], (iii) the strategies developed in
Refs. [107,108] to overcome slow convergence of the
coupling formulas and nonconvergence of two-timescale
retarded integrals, (iv) an extension of the ‘“puncture
scheme” in Ref. [110], and (v) the punctures in Ref. [53].
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APPENDIX A: TRANSFORMATIONS OF E‘('n)

AND &)y

In Sec. VC we discuss the construction of invariant
perturbations ﬁfff,) through a procedure of gauge fixing.

These invariants depend on vector fields E%. Here we show

how E‘("n) and iz,(,',i) transform under a gauge transformation in

the case of a fully fixed gauge and in the case of an only
partially fixed gauge.
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1. Fully fixed gauge

First we review the derivation of the standard trans-
formation rules for metric perturbations, as displayed in

Eq. (37). Perturbations hﬁ,’,ﬂ) are defined by an identification
between the background spacetime manifold and the
perturbed spacetime manifold. An identification is speci-
fied by the flow of a vector field X through the one-
parameter family of spacetimes, where ¢ is the parameter;
see Fig. 1 of Ref. [63] for an illustration. The nth-order
metric perturbation is then the nth-order term in the Taylor
expansion along this flow,

m _ 1

h[ll/ - n!‘cgfg”y’ (Al)

evaluated on the background manifold. If we instead work
(n)

in a gauge specified by a vector field Y, then &y, is instead
LL4g,,. The two quantities differ by
n 1 1
AhLD) = ; r)l’g/w - ;£§gyu (A2)

Basic manipulations of the Lie derivatives put Ah,(fﬁ) in the

form (37) with the definitions

g = v X, (A3)
g, = % X, Y]". (A4)

Now suppose fzf,’,i) is the nth-order metric perturbation in

a gauge specified by a vector field Z, and h,(ff,) is in the

gauge specified by X. Then

L = ) + Ay_zhlY), (AS)
where
n 1 n 1 n
Ax_zhiy) = 1L7% — aﬁxgmw (A6)

This can be written in the form (130) with definitions
analogous to (A3) and (A4):

5/(41) = — XH, (A7)
~ 1
& =5 X2 (A8)

It h,(,'ﬁ) is instead in a gauge specified by Y, then the vectors
Eﬁw become 3?(41) == 7 — Y* and E’(‘Q) := 3 [Y, Z]*. Therefore,
under the transformation from X to Y, they transform as

AZ) = (2 =) = (2" = XV), (A9)
A, o= % v, 7) - % X, Z)". (A10)

Expressing these in terms of 5’(‘n) and f:"(‘n), we obtain

gl =~ (A11)
~ 1 -
A(‘%) = _‘f’(lz) _5[5(1),5(1)]”~ (A12)

We now show that these transformation rules for E’(‘n)
imply the invariance of 71,(,';). Referring to the definition of

IZLZ) in Eq. (130), we see that at first order we have

7(1 1
Ah;(w) = Ah;(w) + ﬁAE(I)gﬂy = £§(|)+AE“)gﬂw (A13)

)

where we used Ah,(,ly) = Ef(])gﬂ,,. If the gauge of fzf,L is fully

fixed, then £ £+ A, Juw trivially vanishes because in that
case Af’(’l) = —5’(’1).

Again referring to the definition of /) in Eq. (130), we
see that at second order, the gauge transformation is

2

~ 2 ~
Ah;(u/) = Ahfﬂ) + ‘CAE(z)g/“/ —+ AH/“,, (A14)
where
g (0 m, .
AHy, = L 48z, <h’”’ + A +§£5<I>+A5<I>g"”>
—re (n) 41 (A15)
5(1) UU 2 /:(l)g;w .

This can be manipulated into the form
L A
£(§<2)+A§(z)+%[§(1)»5(1)])9”” + £§(1)+A§(1)h/‘”

1 1
2 ~ ~
T §£§<1>+AE(1>Q“” t E['[§<1>—5<1>’§<1>+A§<1>]g””' (Al6)

ARG =

If the gauge of 71,(,’;) is fully fixed, then this immediately

vanishes by virtue of Eqs. (A11) and (A12) for AE’(‘H).

2. Partially fixed gauge

In many instances, the gauge is only partially (or
“mostly”) fixed. The most pervasive such case, discussed
in Sec. V C, is when the partially fixed gauge is specified up
to transformations generated by a Killing vector of the
background. The gauge of fzfj,f)

the gauge of Al

in this scenario depends on
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In the geometrical description from the previous section,
the vector field Z itself now depends on the gauge of h,(,'ﬁ).
We can label it Zy in the X gauge and Zy in the Y gauge. A
short calculation leads to the following modified versions

of Egs. (Al1) and (A12):

AEI(G) = 5 1) + 77/(1)7 (A17)
& 1z H 1 £ H
A&’(@ = —5’(1) —5[5(1) Sy +'7’(2) +§[§<1> =Sy el

(A18)

where 77‘(‘1> i= 7y — 7 and 17"2 11Zx. Zy]* are the gen-

erators of the transformation from the gauge defined by Zy
to the gauge defined by Zy. If the gauge conditions on 71,(};)
specify Z up to an isometry of the background, then 17’(‘1)
and 11?’2) must be Killing vectors of the background.

Given these results, we can now assess the transforma-
tions of 71,(,',1) using Eqgs. (A13) and (A16), which remain
valid in this scenario. A trivial calculation shows

(1
AR = Ly, Gy (A19)

7(2
ARG = Ly, G+ Ly 1) +3 L 2w (A20)

This is simply the expected transformation from the Zy
gauge to the Zy gauge. If n’(’n) are Killing vectors of the

background, then

ARy =0 (A21)

because £, g, = 0. Therefore 71,(,1,) is invariant even if the

gauge fixing is only specified up to background Killing
symmetries. On the other hand, Eq. (A16) reduces to

(A22)
|

Here we see that iz,%) is only invariant if (i) the first-order

metric perturbation possesses the same Killing symmetries

as g,, and (ii) the gauge of fz,(,},) respects that symmetry.
The same considerations apply for more generic unfixed

low (£ =0, 1) modes. If we fix the gauge of the £ > 1

modes of fz,(ﬁ,) but leave the gauge of the low modes entirely
unfixed, then r]’(‘n) are generic £ = 0, 1 vector fields. More

concretely, if E’(‘] \¢<1 =0, then

Af’;]) = _5}(1),&”>1 = _5;(‘1) + gl(ll)fS]; (A23)

that is, 71’(’1) is simply the Z = 0, 1 piece of é’gl). The 7 > 1

modes of 71/(,},) are invariant because, by virtue of Eq. (A19),

Aﬁ,(,},) is confined to Z = 0, 1 modes. But the Z > 1 modes

of fz,(i) are not invariant because the term L, il,(,]y) =

AR

£§ vl 0 Eq. (A20) generically contributes nonzero

amounts to all modes of Ah,w .

APPENDIX B: DECOMPOSITION OF
CURVATURE TENSORS INTO TENSORS
ON M? x §2

In this appendix we provide the 2 + 2D decompositions
of the linear and quadratic quantities appearing in the
Einstein equations (16) and (17), following the decom-
position procedure described in Sec. III A.

1. Linear terms
The linear quantities in Eqs. (16) and (17) are &, [h] and
Fulh], defined in Egs. (11) and (12). For a generic
perturbation /%, with components A, h,4, and hyp, the
2 + 2D decomposition of &, is

Eaplh] = 8.5hy), + %DADAhab + %hAArarb +%rcéchab - %DAh(aArb) - %hc(arb)rc +2R[5), ey — 27Mh AGabs
(Bla)
Eanlh] = 6,6"han + : 5 DpD"hys +%V "D phgp — ° —raDghy” s _JLhas +j2hhA’”a”h’ (B1b)
Exlh] = 6,5y + lDFDFhAB T 2y g 21 (2D gy = Syhas) + 5 RIDLT 4
+%thB S fhe"Qup —2—Mh “Qap. (Blc)

Recall that hp, h,u, and h,p are defined with indices down, and their indices are raised with ¢g°* and Q*8, such that

ht == g QABR, 5. for example.

064030-28



SECOND-ORDER PERTURBATIONS OF THE SCHWARZSCHILD ... PHYS. REV. D 110, 064030 (2024)

F . is defined in Eq. (12). Its components are found to be

oM, 6 _ aM
Fanlh] =5 W agap = 1 arars = 265D ——r Blahn)e + 2 @har® = 5D Fpy) =5 hav
2 - _
—l-ﬁrw(éb)hAA + 2DAhb>A), (B2a)

- 2 - - - - 6 - 1 - 1 -
]:aA [h] = _5a5hhhA - ; [rb(éuhhA + DAhub) - raﬁbth] - DAéhhah + ﬁhhArarh - ﬁéaDBhAB - pDADBhaB

2M - 1 - _
—7haA +Fra(DAhBB +4Dgh,®), (B2b)

_ - _ 2f - 2 - 2 - -
Faplh] = =4ha,rr"Qup — 2r'rQupé,h," — 2D (46hg),, + r_];hFFQAB - ﬁD(ADFhB)F - ;ra(zD(AhB)a + QupDrh,"),

(B2c)

where we have opted to not explicitly express fzw in terms of %, and parentheses around indices indicate symmetrization.

Hvs

2. Quadratic terms

The quadratic quantities in Eq. (17) are A, [h], B,, [h], and C,, [h], defined in Eqs. (13)—~(15). Decomposing them in the

same manner as we did the linear terms, we find for A,,,

1
Aab [h] = 2r‘6hABhABrarb + §6ah0d5bhcd - 2r‘5hABr(a5b>hAB + 25[dhc]b5dhac + 21’_4D[BhA]bDBhaA
— 2r_3hCA ( (51, h 5‘C|hb A + D‘A‘hb ) + r_25ahCA5bhcA —|— r_zéchhAéchaA

1
- Zr_26"h(aAD|A|hb)c + r_zDAhthAhaC + Zr_4hc.Ah"Ararb + 5 I"_45al/lAB§h/’lAB, (B3a)

Agalh] = =6, 5h 4 4 5.y 5R° 4 + %QWDAth — 7 P g (281, 4 Bchap) + 1y rP Dby,

A r e r? (8,0 g — 8hyp) = r>hBFr,Dyhgr — r3hagr? (5,h,® + 8,h,B) + r3h Br’Dyh,,

+ 2r‘3hb3(r(b5a)hAB + Dphgary) — DBhA(arb)) —2r2hY s hyor 7€+ 20, hp g6 h, B+ r28,hPB D s by

—r28°h,PDghy, — r26°h BDyh,y, + r2Dgh,,DPh? y — 2r*hPBh,pr.r), + % r=*6,hBF D hpp

+ 2r*Diphga D" h,5, (B3b)
Apglh] = 2, Ry rr*Qap — 8,hyp6" h g 4 Sphap6”h 4 + r "1 pr? (26,0 — Dahgay) + 2f 1~ *hy " hgp

27 (2hy Diaht gy = hoSyhap) + 1= hOAr (285 — Dihay) + %DAh“”DBhu,, = 23\ F 198 4 gy

- 2r‘3hF<Ar“DB)haF + 4r‘3h“FraD(AhB)F —2r3h r ,Dphyg + 2r‘3hF<Ar“DFhB)a +2fr2h,ph?,

+ 2r‘2h”thFraerAB + r_250h3F5”hAF + r‘zDAh“FDBhaF - 2r‘250hF(ADFh“B) + r‘zDFhaBDFh“A

+ % FD4hFODyhpg + 2r-*DighpsDOh,T (B3c)

where square brackets indicate antisymmetrization and vertical bars indicate that the enclosed indices are excluded from the

symmetrization or antisymmetrization. For B,,,

By[h] = =2Mr~"hygh*B gy, + 2r h gh*Br,r, — 2Mr=>h  h4 g, — 2r‘5hABr(a5b)hAB
+ W (8p8ah g = 8aBahpe — 8aBphac + 8a8chap) — r2hA 47 (28 hy)e — Bchyy)
+ r 2 hAR2r (28 ,hpy 4 — Dahay) = 274 (8pyhea + jcihpya — Diajhp)e)] + 1 2h (28,8 4hes — 26.6(ahp)a
— 2D 484y + 2D 8 hgy) + 1 W8 (8,8,hap + DD phyy) — 2r~*hyg DBS  hyt, (B4a)
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Boalh] = hype (86" has — 5°6,h° 4) 4 2Mr=2h? s hypy + 1= 2 47 (26 o By = 8chap) + r>hapr?8,hy®
— Ry [P (84h€ 4 + 8hgn) — 27a6°hP 4] + r ', P Dyhy — r='RPr, D s by + ZthDA6[ahC]b
+ 2r‘3thr(a5b)hAB — r3hypr®s,h, + 6r‘3hb3r[bD|A‘ha]B - r_ShBBrb(Zé[ahb]A + Djhgy)
+ 6 R Dyghya + rhaBr Dghgy — 12 (8,8, + 26, Dishigia — 2D 48 by + 2D g8 ahya
+ DgDjhyy) +2Mr>h,Bhyg + 4r‘5hBFraD[FhA]B —4r 4 0By pr, vy + 25 * WY yshB gy, 1y
+ r*hBED S hpr — r*hBE DS hag — r~*hgr DT Doh,2 + r*hgpDF DBhy,, (B4b)

Baplh] = —2h,6°Dyh gy + 2r 3 hpar*DF hy), + B rrQyp(8,hpe — 28:hap) + h* (5y84hap + DDyhyy)
— 2M 1 hp h Qup + 25 W g S hy g — 4r7 R P QS hy e — 28 Sy g
+ 1 e (28,,hpa + Dahay) + 1~ By rP Dghyy, — 2r W Qg D phyy, — 4172 R s hP gr 1y
+ 4r 2y hpgr@r? + 4r2h R pr oy Qup — 25 2 hy,h pr@r®Qup + 2r 2 f(hagh®s — haph®f Qup)
— 2r2hF5,D s hgyp — 4rh 1 ,Dphag + r2hF 8, Dphyg + 2r 2hF DD shyp + 1 2h*F Dpd,hag
—2r2hF DD s hpyy — 2r 3 hpgroQupDOh, " + 2f r~* (hyFhyr — hpgh"CQyp)
+ 1 hF (DD shpg — 2DGD (shgyr + DgDrphag) — 2Mr—>hophF Qup — 2r3hsFre6), h)
+ r R Qg8 hpG + 2r P hpar* Dy h" + 4r b F e D s hgyp + 1B pr@(8,hap — 2D (s b)) (B4c)

For C,,,

1
Cab [h] =-2r" hcdrc(25(ahb)d - 5dhab) + E (25(ahh)c - 5chab)(5chdd - 26dhcd) - 2r_3hCArc (25(ahb)A - DAhab)
1
32280 8l g = 8,45 By = 43 oy DA 426, Dy + 285D

1
+ 28(,hp) (Dah . — 28.h¢y) — Dgh¢ .D*hy,) + 2 r~4(268(,hp)* — D*hyy) (DyhP g — 2Dghy®), (BSa)

Conlh] = =11 h? 4 (5,1 . = 28.1,C) = 21 Py (S,h€ 4 — 6 hyp) — 1 hyBr (Dght p — 2D phy")
—2r P hy, Dy by + % [8.h° A (8ph¢ . — 28.h,,) — Sph€ 8P hyp + 26" hyu S, hy¢ — 26,hP D s hy,
+ 8hyDyhye) = 2r 3R ry (8,hap + 2D s hg)) + 121y [2hapSph?® — BP 4 (5,hP p — 2Dghy®) — hyBDght )
+ % F2[8RY g hpor o7 = 28,hapB,h"E + 8,1 48,0 g — 8,hE p6P hyy — 28,hPPD 4hyp + P WP gDy hy,
+ 28,h"BDgh,y — 26,h" ;D hyB + 28 hyyDphy,® — 2D 4 hyyDgh?® + 6,0, Dgh?, + D,h,BDght,

1
- DthbDBhuA] + 47'_4/’1}}3/’11437“7’}, + Er_4(5uhAB + DAI’luB - DBhuA)(DBhFF - 2DFhBF), (B5b)

1
CAB[I’l} = habrarQAB(ébhcc - 25chbc> + E (26ahab5bhAB - 8hachbcraerAB - 6bhA35bhaa + ZtsahbbD<AhaB>
- 45bhahD(AhaB)) + 7' R, (28, hag + Qupdph F) — Zhab(zD(Ath) + QupDph’T)|
1
+ 7 r Qg (Dph® ), — 26, ) + 5 r (2D uhg)" = D" hyp)(Dph®G = 2DghC)
1
— 5 V_Z[ShthbpraerAB + 45ahaFD(AhB)F - 5ath(2D(Ah“B) - 5ahAB) + 4D(AhuB)DF/’laF

- 25ahABDFhaF - 25ahaFDFhAB - ZD(AhB)FDFhaa + DFhABDFhaa}
+ r_3rahaF(2DFhAB - 4D(AhB)F + QABDFhGG - ZQABDGI’IFG). (BSC)
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APPENDIX C: COVARIANT DERIVATIVES OF SCALAR HARMONICS

Our method of decomposing the Einstein equation requires expressing covariant derivatives of Y, in terms of spin-
weighted harmonics. We do so by noting that each covariant derivative in Dy, - - - D, Y, acts on a tensor of spin weight 0,

such that Eqgs. (79a) and (79b) imply D4 = %(ﬁ’lAé/ + m}0). Using this along with Eq. (80), we find

1
Da, - DpYon =5

:—ZH% 14, 0)Y o (Clb)

1
25[

(1114,0" + m;;la) e (g 0 4 ﬁizxé)Yfm (Cla)

g, - iy O°Y gy iy -ty Yy - J. (Clc)

The sum runs over all of the 2* distinct products of A/_é’ and rhjgjé (with s total factors) acting on Y,,. This is made precise
in the second line, where o(s) is the set of s-tuples with all elements either 0 or 1, 5(s), ; is the jth element of the ith s-tuple,
a; ;(y0') = iy 0 if o(s);; = 0, and «a; ; (/4 0') = iy 0 if o(s);; = 1.

This sum is straightforwardly written in terms of spin-weighted harmonics using the definition (83) and the identities
(88). For s =1 and s = 2, the results are Egs. (90) and (91). For s = 3 and s = 4, the results are

N7 1 S~ sk ok Sk o
DADBDCYfm = 8/1f3( 3YfmmAmBmC — Yfmmj\mBmc) +§/1f,2 (l + 2)(1 - 1)(1YfmmAmBmC | YfmmAmBmC)

1
4/1f1( YfmmA - YfmmA)QBC’ (C2)

and

1 ~

1 P R * =k 5 *
DyDpDcDpY sy =~ Ap a(gY pmiiaiiginciing + Y, iy mpimnging, ) — ﬂf.z{zyfm[(l +3)(1 = 2)imamng

16
+ (14 2)(I = Dmymglmeig, + 5Y 4, [(143)(1 = 2)’71/*4’713 + (L +2)(1 = Vinginplineinp }

1 >y oy it e 3 1
- g’lg’.l (L+2) (L= 1) (LY pminaing + ,Y p, iy ig)Qep + Zl?]gABQCDYfm

lfz(mAﬁiB cmy, + miymymceimp)Y op. (C3)

Equation (C1) can also be used to derive the relationships (98) between tensor and spin-weighted harmonics. Y f;’f?” 4, 18
the symmetric trace-free piece of Eq. (C1), which picks out the two terms that contain only 72’s or only 772*’s. Equation (98a)
then immediately follows from the definition (83). Given the identity (71), the definition (97) of Xj:’]’f“ A, likewise picks out

the two terms that contain only 72’s or only m*’s in Eq. (C1), and Eq. (98b) then immediately follows.

APPENDIX D: QUADRATIC COUPLING FUNCTIONS

In this appendix we list the coupling functions appearing in the decompositions of quadratic quantities. We only provide
expressions for even-parity coupling functions: for example, AZ:’”“W'"”‘” and Af’”""/f "m's" - Odd-parity analogs can be
obtained using the rule

Al/ﬂ/rn s f/lm//S// o _iAf/mls f//rn/!s//
- a+

Af’m’v’f”m” s’ _iAi/m/S/fum//S// Wlth (= - _G:F' (Dl)

C4-t 4"

The quantities o := (—1) and o, := o £ 1 arise from use of Eq. (94).
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1. Gauge transformation

The coupling functions appearing in Eq. (125) are
Hy 00 = 20 1) 8+ S Behly” + 8(aL 5,080 S+ o 0c8aL" + 8L 8™ (D2a)

lc|

1 !

i Il _ . 7 _ . vy Pl _ .
) |:hibm (Zf’m’ - lZ;m,> - thm (Zf”m” + lz:’g’m”) + 2(]1(2—7-1 - lhfain )(517)Zf’m’ - léb)z:’gm’)

Hg;)m’lf”m”—l _ 5
= 2(REM A+ iR ) (8 Z o + iéh)Z;f,,m,,)} + 128 Zgnyr + 184 Z o, ) iB)Z s = 84y Z70,)
_é {g{a”'"” (60 Zy = 180 Z}) = SO By Zipnr 180 Z ) = (Zign 02 ) 8(aC)"

+(Z5,, - iz;m,)é(aéi;/m"] : (D2b)

1
! n ! M a1l 1o 1 . /) _ ! a! _ . ! an! _— /
I = 2020 W LGy 4 B |10 WG 25,y = 0 H2 2 — i 20, — 0 MG 2

1 o1l _ . . 1 ol 1ol . 1o _
+h" e, 25 +ic Z), ) +ic W™ Z), =0 hSMZE, | = 2ic_hS™ 8,27,
- . /o ) . 7 1ol
20 W8, = 2ia T 8, Le )+ 26 h L = 200 B+ 20, Lo BT }
. 1 . 1l 1 ol . 11l
= rr S, (i6_6,25,, — 6+5aZ;§,m,) + 3 /@,,J (—la_ZL;,,m,,Cgm — a+Z:;,,m,,é‘gm + zo-_Z;,m,é‘g m
4 vy . vy . ' m! Ol . -
—0yZp,Ca") +20,.05,,0.00" +20,.05,,0,00" +20,.85,,0.84™ +20,.85,,6.05" ]
1 2 — 2 — ; + + 2 ; — +
+ g r _Zf”m”ﬂf”,l (G+5azf’m’ + lG—(SaZf’m’) + 3Zf”m//ﬂf”,l (10'_5azf,m, - 6+5azf/m/)
2 — ; + — ; — + + +
+ )’f”,] [(6+Zflm/ + lG—Zf’m/)éaZf”m” + (ZG—Zf’m/ —_ U+Zf/m/)5azf//m//] + 26+C;/,m,,555azf,m,

— 2i0'_5a (C;//m//(sczg/m/) + 20+50C;um//5cz;m/ } . (DZC)

1 i
W 1 ool _ . 1 ool _ . ! . 1 !
Hm2rm =l — 1 h "oy Zy,, +ic Z} ) + 1 h" (e Z,,, +ic Z},,) —6_hS" Z,, .+ ic hM Z

+ hG™ (i6, Zo0 0+ 0_Z) ) +ic K825 = 6 K" 8,250 v+ (0_hE™ + ic hi")8,Z )
1 . — ! ! . _ 1" o I

"3 @Z 0, Z g )G = (102 = 0.7, ) ]
1 _ . _ _ _ .

-3 2 [3(G+pr,m, +i6_Z} V8:Zp, Lo (0.8,Z , +i6_8,Z7, )

-7 i0_8,Z5,, — 06,8,Z5 ) = 3i(0_Z5, , + i6+Z;m,)5aZ:£,,m,,] : (D2d)

'm'

M
e 1o I o 1 . i i y .
Hfm 02"m"0 — —]’lf m ZjL A?’,l + C;//m/ﬁchfm + rarCCZ?/m/g?//m// + _}" C{ m C;//m// - rcr(ZZ;Zm,C;um///lfﬂ/J

1
- C;ﬁm’ﬁaé’;’m/) + 5 rzﬂ«z/.l (Z;m/zz’m”lé”,] - é’;/rm//écz_;m/), (DZC)
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! oinl 14! ! — " // _ ! ! _ . - " // ! 1an! . ! !
HEmem =l — 5 [hf (Z sy = Z7y) + RS (Zg +1Z0,0) + (REZ™ 4 TRE)ES, = (REE = ThE )G

1 iy ] _ . —
f’ /é’f Er r[<qum// + lZ;um//)C;/m/ - (Z)/p/ / IZ;/ /)é’;/rmu}
1
+ Zﬂ{—iz;, oL iy LI 20y A+ Z s (0 250 1)]
- Z_:;//mu(i(sczf/ ,+ 13} Z)//?I /) + lz:bpr /( f// n+ i pr// u)} (sz)

ol P 1 1 1 1 wq Pl Y !
Hfm2fm -2 :Z |:(him +lhim )( ' lZ;/ /) (hi hf )(Z;n /r+lep// //)

|y : _ .
+ 5 }’2 (Zt”m’ - lZ;m/)(Zf//m” + lZ;//m//), (ng)
1ol 1 P ! 1 ) . TN . ! ! . 1 ! I
Hﬁm 12m"1 = Zﬂ;,[(0+him + la_him )pr//m// + (lO'_hi - U+hi )Z;//m//] - (lﬁ_hf_ - f )é’f’ ’
1 c "'m” 2 [7— — . + + . _ +
+ = 5 O'+£: ’ /Z: + 4 M{/ [Zf/m/<o-+zf”m” + la_Zf”m”) + Zf’m’<lo-_zf”m” - 0+Z f”m”)]
- 2C;/m/(ia_6CZ;u " U+6csz //)} (Dzh)
Him/Zf”m”O = —% |:2I’lf” //( Zf’ ;+ lU+Zf/ /) +o_ ]’lf m' Zf” ”j'f” lﬂ+hf m' Zf” //ﬂ%//

1ol . 1 ol
- h)f’m (16+Zf” " + O'_Zf// //)/1?/ + o_ f// u him + 10+C;//m//6ch§_m:|

- 2rcr(iO-_Z;/m/ - G+Z;/m/)él;//m// - |:lG Zf” ”Zf’ //,{f” + 26+Zf/ /Zf” ///1f//

1
2"

+ Z;/m/ (6+Z;//n 210-—2/” //)l;//’l + id—C;//m/lécZ;/m/ - 6+C;H ”6(,Zfl /] £ (DZi)

! ol N 1 1 /) /) ! an ! 1
HEm3m =1 — _Z[(G*him +io_hi™)Z5, = (ic_h2™ — o, hi™)Z}, ] —ZrZ[Z;,,m,,(6+Z;,m, +ic_Z}, )

- (l.O-_Z;/m/ - G+Z;/m/)Z;_/rmH]- (D2J)

2. Ricci tensor
The quantities appearing in Eq. (171) are

4;~lfrm/}~lf//mu § 4;~lbp//m//r 6 i‘lf/m/ ilﬂ_m/il"ﬂim”ﬂlz /,{2// 5 ilf/mlﬁ ilf”m”
2m'0l" m"0 o ° f 1" d o (a b) o a ", o bllo
Al #Jr SR S, g gt — 3 + 5 —
+ 281h 3o g, (D3a)
oot 2R R G, T (R — Sy + 8y R
A - 4 - P
R L e R
1”3 1"2
6 ilf/m/écilfﬂm// _i i‘lf//m//5ci’ltﬂm/ _ i‘l{j/m/éci‘lf//rnﬂ
e (a— b)— ( c(a S b)— c(a b)— )7 (D3b)
r
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+Zia_h,f_m g (5 o™ =260 ) hf " (a+h§d — 2io_61,hf" >
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a+ - ’

273 452
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1 ~ ol ol ~ ol ~ ol
(1m0 m" _bd 'm" sbh ' m
+10+9m(hah hed™ 97 + 40 hyy " 6" he ™),
. ~ ol 1 ) . ~ ! ~ I I
AL _ 2ic_hl," hEM P g i hLM RS
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The quantities appearing in Eq. (172) are

A(rrary = Mgap)hE™ R 4RC™ r Sy R RC™ (28,8,hC — 25 )
’,.7 7’5 + 7”4

2R (28 hy = 8 by )

Bf’m’Of”m”O _
ab

B hf”m” ce df(5b5 h -|-5d5 h _25d5(aljli;’gl/)’
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N ed /m/ ~ //m// f m f// " _ f” " ~f//nl” ~f’m’ -~f/m/
e _ MGG g R QO )+ K Q0 )
ab 7"5 r3
gcdr( [( )hfm + 5|d|hf m' 4 lhf )hf”m ( hd//m” + 5‘d\hf lili;/gn”)ljlfl_m/]
3

,

GBI 12846 iy = 28,8, b + 2i(84hGy" = Sy
272

25175 hf// m' —21(5[1]’/;” m' —5((1]’15[)/2’1”)]

272

" !

gR 25,8 B

, (D4b)

(0 B vy + iMo_RGM YR (0,8, HE™ + i 2 R )RS
r " 27
0. [34%, RO (g REM ry = PPREYY — PP RO RS
273
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Bf/ml ll/ﬂ//mllo — _
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+ +ic_ gcd5b5[ ]’lﬁ’m/hf” m'"
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452 r
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2r

+ , (D4c)

bc‘hf” //( hicm _2 5( hf/ /)

'm'2¢"m" -1 __ )=
Bat B 4r?

, (D4d)

“’f/m/ ~f/lm// 2 ~f// " ~f/m’
1 ol " ! ho ho (2f + /I 4 1) 2h n r“5 h ~ ~

! ol M 1 M ol e

Bmef m'0 __ 5’1?,19a gbdhfm hf r4 , o r3 a’to thm 5b6ahfm

. V2N ey W 1 ~ ol ~/
2Mgee g Rl RE 4 2R, r SR ™
r

+ rraghdgeehy M (8,00 — 28,h5"). (Dde)

= ol 5 AN . o2/ BV [V N ey W 1 =~ ol al 5 AN
MR Ry — it (R RS — R RE™)  2rt PG R

r3 r2

QiR SR ™ — R SURE™) = (A 4 g+ g+ R + 2 )R R
472
gre g (280" — i) + R (28, hG ™ + ik )]
2r ’

Bf/mr 12" m" -1 _
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(D4f)

Dio_r R R o [t — P (2f + pd A A% RS R 4 2ie RS 54 R
r + 272
PR (20, 8 = io R

4 p , (D4g)

! a! i
Bfmlf m'l _
+

! 1a! 1 a1 1 ~ Pl oI
Bim 2'm"0 — zhibm g*“ (o, gbdh "+ 2io_ 5bhfm ). (D4h)
The quantities appearing in Eq. (173) are

70"m" sepl'm' _ p'm' scp'm” ¢ de " m" 7¢'m 7m
Cf/ m o' m"o __ 26( hf;mréchbpu m" _ 5 hf”m//é‘h’/ﬂ m _ 5 h 5 hO 225(ahb)c 5 ho _ 2r g hcd (25(dhb) 5€h )
r r

l !
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~ fll m// ~ f/m/ e f/m/ f/ ! f(/ " KJI/ "
o em-1 _ re[he " (26(ahy)" + ihgy )+ him (28, b = ihg™ )]
ab r3
(hf// m' + 21.6([1]7[[5[)/:””)(7”1{;/"1/ _ lécilf’_m’) + (i’li’hml _ 2i5(aili;rfl)(i"lf”m” + l(sci;lfim//)
+ : (D5b)
2r?
e _ Qio_r,rP R RS ol (lé,,_lrb RO RE — p BE MR
a+ - r4 r3
b ~ f/m/ ~ f//m// ~ f//m// b ~ f/m/ ~ f/nll b ~ f//ﬂ’l//
io_|r"hs ™o, ,hs ™ —r, (hS ™ 8°hy ™ — hy ™ 6" R, 1 L i =
[ b— Ya a( r3 b b )]"’_E(U-&-hibm +16_5bh§_m)5bh.fm
io._ [6ai’lfl/'n//6bili/_rn/ + Zébilf//ml/é[bili]lT/ _ 4rarbgcdi’lilt/"n//i’lf/ ! _ A%ﬁ hfl/m//hf/rn:l
+ 272
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(D5c¢)
Cf’m'Of” m'0 _ 5ahrf”m”5bhfm 4p9pb thfm hf” m' _ 5a]flf’m’5ail.f”m" + 2rra(ili’l’7m"5bil.f’m’ _ gbcil52n1”5dilfl’im’)
6 hf//m 5ahfl / 4hf// II aébhf/n,l
ke TS " dhy" 16" (Dsd)
r r
AT R (SR 4 RO RO (SR — iR
14 = = . , (D5e)
. o 2l6 rahf/mﬂhbﬂ/ / i’lffm/ 6 i’l.f//n,l// + i()-_&ailfll]n”
Cim 17"m"1 __ r3 + ( + r2 a ) , (DSf)
! anl M a1 2. - hchf/'n//hfm ] _ilf/_nl/éailf”mu ~ ol ] ~ ol I ~ ol "
comaenmto _ 210-I"g - ~ —io R (8RS — g sy ). (D5g)
3. Stress-energy terms
The mode decomposition of Eq. (175) is
= (2)¢m =(2)¢m #(2)¢m _2(2)¢m 'm's' " —s'
T =T = gy (T 4 2T 4 Z S g den g CUS s prr T (D6a)
=01
=(2)fm _ #(2)¢ A v
Ta:i: "= Ttl:t " + z A C;/mml'lf”m”OTfm e 0 (D6b)
A
f//m”
=(2)¢n 7(2)7) gl o PNl
T = PFD NN D ghon gL T (Déc)
ol 5'=0,1
{H a
=(2)¢ = (2)¢
Fom — p@im (D6d)
The coupling functions 77"'s"?""s" are
! /, " 1, 1 ~ o / o " 1 " " " " ! ! ~ ol " ! o
bem 02"m"0 _ Egabgcegdfhfdm Tffm _ zhfm chf m' r—4ga hf m Tfm _ r—Zhibm Tofm . (D7a)
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1

Ti;m/]f”m”ﬁ_l — 2 gubg I:hf!/ ”(Tf/ I Tf m ) + hf’_ /( gllm/l + Tf// /I)]’ (D7b)

T = ia_ixf_’"’ geT" + #6_715_’”’ T, (D7c)

Tf/m/of//m//o — %rzga{/gbdililbm/Tfl}mﬁ _ %ilf/m’gabTZ;;m// + r_Zilof//n,l/!Tf/'n/ _ r_zi'lf/m/ Tf//ml/’ (D7d)

U 1 a1 1 = ol ! a! !y U 1 H v
Tl = S g R (TR = TG + R (TR + AT | (D7e)
|
APPENDIX E: FIELD EQUATIONS FOR LOW M

MULTIPOLES SR, = r~'0,(réM) + M+ e (B30)

In this appendix we summarize the special cases of the
field equations (176) for £ = 0 and £ = 1. We specifically
discuss the Z = 0 and odd-parity £ = 1 equations, which
we are able to relate to the evolution of mass and spin.
We have not found a new or illuminating form for the
even-parity £ = 1 equations, which are associated with a
displacement of the center of mass [55].

1. 2=0

The ¢ = 0 field equations, with #m labels omitted for
visual simplicity, are

SR [RV)] = 82T ), (Ela)

SR, [ = 82TV, (E1b)

and their analogs at second order. These can be written
entirely in terms of the invariant variables /,, and ¢ defined
in Egs. (143) and (148). However, we opt to replace 71,,
with an effective mass perturbation M, defined from

- 0 26M
hrr = i = 5 - (EZ)
oM rf
In terms of 6M and ¢,
MSM  0?6M  Mo,6M fr—-M)p 1
OR.. = - _ r _ —— 129
" fr4 fr r 272 2f P
(E3a)
2 06M
OR,, = ———, E3b
TPf ot (E3b)
2r —3M 026M  2r—3M
SR,, = S5 L 0,0M
rr f3 r4 + f3r f2I'3 r
3M(p 1
f2 5+ 0,¢, (E3c)

We can further reduce these field equations by elimi-
nating ¢. Solving 6R, = 8z7 , for ¢ yields

20,6M  26M n 1677,
rf r’f? rf
which reduces the remaining three components of the

field equations to equations for 6M. The tr component,
6R,. = 87T ,,, reads

0
EﬁM = 4nr?fT,,.,

p=- (E4)

(ES)

where we have used 7, = T,,. Equation (E5) is a flux-
balance equation, equating the rate of change of the mass at
radius r to the flux of energy crossing the r = const
surface. This determines M up to a time-independent
function of r. The function of r can be determined up to a
constant from the “antitrace” piece of the field equations,

f_léRtt + faRrr = 8”(f_]Ttt + fTrr)’ (E6)
which can be simplified to
0 2 -1
—O6M = 4rr-f~'T,, (E7)

or

after using (E4) and expressing 7,5 in terms of Ty
Equation (E7) relates the mass within a sphere of radius
r to the total energy within that sphere. Equations (ES)
and (E7) together determine 6M up to a constant 6M,),
corresponding to a trivial perturbation toward another
Schwarzschild solution with mass M + edM,.

In this way, the entire invariant content of the £ =0
solution is placed in 0M, which satisfies physical energy-
balance equations. The remaining piece of the field
equations is the trace piece,

1
Eg“béRab = 4xg®*T ,pp = 877 .. (E8)
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After using Eq. (E4), we can simplify this to a wave
equation for oM,

M
O20M = 8n<fa,70 + 5T, - rf7.>. (E9)
I

This final equation is redundant due to the Bianchi
identities, but it shows that the mass perturbation prop-
agates causally according to a hyperbolic equation.

The same calculations apply at second order with the
obvious replacements of source terms. As a final comment
in this section, we note that at second order the quadratic
source terms dramatically simplify for =0 due to
Eq. (96). Equation (171), for example, reduces to

’ Y/
( ) At”m’s’f’,—m’,—s’

T (E10)

2. £ =1, odd parity
The ¢ = 1, odd-parity field equations, with #m labels
omitted for visual simplicity, are
SR,_[hV] = 82TV, (E11)
and their analogs at second order. These can be written
entirely in terms of the invariant variable ¢_ defined in

Eq. (165). However, we opt to write it in terms of an
effective angular momentum variable 6J defined by

o

@_ 7 (E12)
r
Explicitly, the field equations reduce to
0 5= _1omr, (E13a)
o f 7
4 2
—o0J = —16xr°fT,_. (E13b)

ot

In analogy with Egs. (ES) and (E7), Eq. (E13b) can be
interpreted as the statement that the angular momentum
within a sphere of radius r changes at a rate equal to the
instantaneous flux of angular momentum into the sphere,
while Eq. (E13a) can be interpreted as the statement that the
total angular momentum within the sphere is equal to the
integrated angular momentum density within the sphere.
These two equations determine oJ up to a constant. The
constant represents a perturbation toward a Kerr solution
with spin parameter 7.

In analogy with Eq. (E9), from Eq. (E13) we can derive a
wave equation for oJ:

DM25J = —16ﬂ€“b5a(r2Tb_). (E14)

APPENDIX F: FIELD EQUATIONS IN
BARACK-LOUSTO-SAGO CONVENTIONS

For self-force computations in the Lorenz gauge, the
most common set of conventions are those of Barack and
Lousto [69] as modified by Barack and Sago [70].* These
conventions were used at first order in Refs. [70,110,111]
(among others) and in all second-order calculations
[30,56,57,109]. In this appendix we describe the translation
of our results into these conventions.

The Barack-Lousto-Sago conventions use a set of
harmonics Y,’ﬁm, where ¢ runs from 1 to 10, with non-
vanishing components given by

1
Vi = 5 taty + [ Pran)Y - (Fla)
-1

y2om — 7 (tary + raty) Y™, (Fib)
3¢m _ _L Yfm (F] )
ab \/igab ’ C

y¥m =g yim (F1d)
aA \/ilf’l at A >

m rf_l m
Stm — T r Yom, (Fle)
ysem — g yem FIf
AB \/i 'AB ) ( )
V2r?

Yo = on Y45, (Flg)
U (F1h)
aA \/EAZ,I a“*A o

rf! .

youm = L xim (F1i)
V22,

m \/Erz m 1

Y™ = - s X35 (F1j)

These harmonics are orthogonal (but not ortho-
normal) with respect to the inner product (S,,.Q,,) =
[0 S:0,,dQ,  where = diag(1, f2, r2QA) 2
If we expand a tensor v, as

“The Barack-Lousto-Sago basis is related to the Barack-

Lousto basis by Yf,fm(BLS) =f Yﬁf’"(BL), leading to coefficients

related by Sg%g = nggﬁf).
>The definition of 7 corrects a typo in Ref. [69], as previously
noted in Ref. [110].

064030-38



SECOND-ORDER PERTURBATIONS OF THE SCHWARZSCHILD ...

PHYS. REV. D 110, 064030 (2024)

UV = Zvifmy;if;mv <F2)

i‘m

then the coefficients are given by®
Vigm = K; / Yéfi’"*n”“nﬂ”vwdg, (F3)

where k3 = 72 and k; = 1 for i # 3.

An advantage of these harmonics is that they are well
suited to assessing (or imposing) the regularity of a tensor
at the future horizon. A tensor v,, = Y s, ViewnYis" has
continuous components in ingoing Eddington-Finkelstein
coordinates (v, r) at r = 2M if and only if

(1) each coefficient v;,,, is continuous there,

) Vapm = Vigm + O(f?), and

() Viem = Vigrem + O(f) for i = 4,8.

If each v;,,, is a smooth function of v and r at r = 2M, then
the above conditions are equivalent to smoothness of v,,, at
the future horizon.

Another advantage of this set of harmonics is that it
makes trace reversals trivial. If we expand a tensor v, as in
Eq. (F2) and its trace reverse as ,, = Yz Viem Y, then
the coefficients in the two expansions are related by

@ifm = Vigm if i ?é 3,6, (F4a)
U3gm = Vetms (F4b)
Z_)fn”m = Us¢m- (F4C)

Hence, a trace reversal is accomplished by the simple
switch i =3 < i =6.

The coefficients v;,,, are related to the tensor-harmonic
coefficients in the body of the paper according to

Viem = \}i(v” + f2ulm), (F5a)
Vapm = V2V, (F5b)
V3gm = —%gabvﬂf, (F5c)
Vagm = fﬂm A (F5d)
Vspm = \/_/If if fff, (F5e)

®This corrects Eq. (2.7) in Ref. [110], which omitted the factor
of N, as previously noted in Ref. [109].

\/ifm

Vorm = 3 Vo (F5f)
- jg (F5g)
Vspm = —%v’f_’”, (F5h)
Vorm = —\@r‘"f vim, (F5i)
Vioem = \//1{; vl (Fsj)

These relations can be used to obtain the linear and
quadratic quantities in the Lorenz-gauge field equations
(Eipm» Aigm» and Byy,,) from their counterparts £, A”™,
and B‘™ given in the body of the paper. However, the
results will be expressed in terms of the field variables him,
which must be translated to Barack-Lousto-Sago variables.

Instead of directly using coefficients in an expansion of

h,(l'Z) of the form (F2), the Barack-Lousto-Sago convention
is to scale those coefficients by convenient factors.
Specifically, the trace-reversed field is expanded as

Za,fhlfmw;m, (F6)

lfm

where

1 fori=1,2,3,6,
Qg i=—={ 0, fori =4,5,8,9, (F7)
Yo for i =7, 10.

The nth-order field variables are then the coefficients hff,)n

We can express our field variables £ in terms of these
by inverting the relations (F5), accounting for the rescaling,
and performing the trace reversal i = 3 <> i = 6. The result
is given in Table II.

If we begin from a field equation of the form (27) and
specialize to the Lorenz gauge, we reduce the equation to
Eq. (28), reproduced here for convenience: &,,[h("] =

—25\) . Obtaining €;,,, from £ using Eq. (F5), substitut-
ing Eq. (F6) into &,,,,, and then adding terms proportional
to the gauge condition, as described in Ref. [69], leads to
the Barack-Lousto-Sago formulation of the linearized
Einstein equation in the Lorenz gauge, which is written as

n 7 n f
Dgcdhtfm + Mtf jem — za SEZ’Zn (FS)

Here [12¢ = 9,0, + V, is a two-dimensional scalar wave
operator with potential V, =1 f[2M/r} + £(¢ +1)/r%],
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and the terms /\/l’ h me are given in Egs. (A1)-(A10) of

Ref. [70]. S Mm is obtained from S"?" via Eq. (F5).
At first order, Eq. (F8) becomes

4
Dgghtfm + M ”rf tfm (F9)
it
At second order, it becomes
47rrf rf
Dgcdhzfm + le ]fm - a; lfm - 2a1f 52Glfm[h(l)]
(F10)

or, more explicitly, in terms of the sources appearing in
Sec. VID,

. drrf =2 rf -
+ Mih jf)m G Tgfm " 4a, (Aiem + Biem)-
L L

1247%)

i‘m

(F11)

The source terms T“pm, Aism,» and B,z,, can be obtained

exphcltly by (i) constructing Tlfm, Aigm, and B, from

TEm - Afm and B™ using Eq. (FS), (ii) replacing the
(1)

™ with the variables &;,),

variables h(D¢m using Table II, and

(iii) performing the trace reversal i =3 <> i = 6 of 72
Aisms and Bz, to obtain ’Tl.fm, Aipm> and Big,,.

In self-force computations, Tf,ly) is the stress-energy
tensor of a point mass. At second order, rather than working
with a stress-energy tensor and solving directly for the
physical retarded field, we instead use a puncture scheme.
A singular piece of the metric perturbation, representing the
particle’s local self-field that diverges at the particle’s
position, is moved to the right-hand side of the field
equation, and one solves for the regular residual field.
The field equations in that case then become

i‘m>

Dgghuf’m +le_jfnl - (D%ghtfm + le_jfm)

rf - -
———(Aigm + Bizm)s F12
g ient Bun). (F12)
where }—1(21’7[9 are the harmonic coefficients in the expansion

of the 4D puncture field given in Ref. [53], and 2R =

i‘m
fzgfﬂzn - i_z,(%) are the residual field modes. No stress-energy

terms appear in Eq. (F12), and the total source on the right-
hand side is defined on the puncture’s worldline by taking
the limit from off the worldline; see the discussion around
Egs. (13)-(17) in Ref. [112]. The field equations are
also further modified using a two-timescale expansion,
as described in Ref. [109].
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