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High-accuracy gravitational-wave modeling demands going beyond linear, first-order perturbation
theory. Particularly motivated by the need for second-order perturbative models of extreme-mass-ratio
inspirals and black hole ringdowns, we present practical spherical-harmonic decompositions of the Einstein
equation, Regge-Wheeler-Zerilli equations, and Teukolsky equation at second perturbative order in a
Schwarzschild background. Our formulations are covariant on the t-r plane and on the two-sphere, and we
express the field equations in terms of gauge-invariant metric perturbations. In a companion Mathematica
package, PerturbationEquations, we provide these invariant formulas as well as the analogous formulas in
terms of raw, gauge-dependent metric perturbations. Our decomposition of the second-order Einstein
equation, when specialized to the Lorenz gauge, was a key ingredient in recent second-order self-force
calculations [Phys. Rev. Lett. 124, 021101 (2020); ibid. 127, 151102 (2021); ibid. 130, 241402 (2023)].
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I. INTRODUCTION

The first phase of gravitational-wave astronomy [1–3]
has been a success of experimental physics, data analysis,
and the theory of general relativity (GR) in its strong-field
regime. It also represents a success of perturbation theory.
Waveform templates commonly incorporate information
from perturbative approximations, particularly from post-
Newtonian theory [4], which describes the early stages of
an inspiral. Many of them additionally incorporate infor-
mation from black hole perturbation theory in a variety of
ways. For example, effective one body models are designed
to capture the point particle limit [5], in which the motion of
a binary reduces to geodesic motion in a black hole
spacetime; they can be informed by the associated pertur-
bative fluxes [6–10] and by perturbative self-force correc-
tions to black hole geodesics [11–13]; and they often use
black hole perturbation theory to describe the final, ring-
down phase after merger [14].
As detectors are upgraded and new detectors come

online, perturbative models must be further improved. In
the context of black hole perturbation theory, the over-
whelming majority of calculations have been restricted to
first, linear perturbative order. There are now at least two
prime examples for which gravitational-wave astronomy
requires going to second perturbative order, where non-
linear effects first appear. The first example is the ringdown
phase of a binary [15–18]. The second is binaries with

small mass ratios, such as extreme-mass-ratio inspirals
(EMRIs) in which a stellar-mass compact object orbits a
massive black hole [19–21].
Ringdowns have, historically, been well modeled as sums

of quasinormalmodes [22].However, recentwork has shown
that quadratic coupling between modes can be significant
and leave observable signatures in waveforms [15,16].
Any model using a perturbative treatment of ringdown will
likely have to include such nonlinear effects to meet future
accuracy requirements. That is especially true for models of
massive black hole binaries, which will be observable (with
SNRs ∼ 103) by the space-based detector LISA [23].
EMRIs, which are also expected to be key sources for

LISA [23], are best modeled by self-force theory, which
treats the smaller object as a source of perturbations of
the background spacetime of the large black hole [20,21].
It has been widely accepted for decades that accurately
modeling EMRIs necessitates carrying self-force theory to
second order [19,24–27]. More recently, it has been
predicted that second-order self-force calculations can also
provide accurate waveforms in the intermediate-mass-ratio
regime and even for the mass ratios ∼1∶10 observable by
present-day detectors [28,29]. That prediction was vali-
dated when second-order waveforms were first obtained in
2021 [30,31]. These waveforms were specialized to qua-
sicircular, nonspinning binaries, but their high accuracy
across a broad range of mass ratios (and their capacity for
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rapid waveform generation) provides additional motivation
for extending such calculations to more generic binary
configurations.
Unfortunately, although the general formulation of non-

linear perturbation theory on arbitrary backgrounds is well
established [32–35], and general formulas, such as the nth-
order expansion of the Einstein equation, are easily derived
at any finite order [36], there has been limited development
of practical, ready-at-hand tools in black hole spacetimes.
Concrete calculations (e.g., [37–45]) have generally been
limited to vacuum perturbations and to a small number of
harmonic modes. In the simple case of a Schwarzschild
background, the most thorough treatment was provided by
Brizuela et al. [46–49], who extended the Regge-Wheeler-
Zerilli (RWZ) formalism to second order. This formalism,
while useful in many contexts, is limited in that it inherits
the sometimes pathological behavior of the RWZ gauge
[50–52] and does not provide the entire metric pertur-
bation, missing the l ¼ 0 and 1 modes that describe the
spacetime’s mass and momentum.
There is therefore call for a broader suite of tools. This is

especially true for EMRIs, which bring particular complex-
ities. In self-force calculations, the l ¼ 0 and 1 modes of
the perturbation cannot be ignored; some ingredients are
only available in practical form in the Lorenz gauge [53];
and calculations often demand a large number of modes of
the first-order perturbation [54] (often above l ¼ 50).
Our goal with this paper is to provide a comprehensive,

practical treatment of second-order calculations on a
Schwarzschild background. Our treatment is deliberately
modeled on Martel and Poisson’s (hereafter MP’s) now-
standard summary of first-order perturbation theory in
Schwarzschild [55]. Like MP, we include significant review
material to make our paper a stand-alone reference.
However, our treatment is more expansive than MP’s,
covering a wider variety of formulations to make our
results useful to the broadest userbase. We also find this
larger toolset provides alternative methods that are some-
times more useful than MP’s at second order. In all cases,
our goal is to decompose the field equations into a set of
tensor or spin-weighted spherical harmonics. Our core
output is a set of coupling formulas that express harmonic
modes of the second-order source as sums of products of
first-order field modes. We present these formulas in two
forms: in terms of the gauge-dependent first- and second-
order metric perturbations and in terms of gauge-invariant
perturbations.
We begin in Sec. II by reviewing second-order pertur-

bation theory in a generic vacuum background. In Secs. III
and IV we specialize to a Schwarzschild background and
assemble the ingredients required for the harmonic decom-
position of the second-order field equations, following
MP’s description (with some modifications and several
extensions) of the decomposition of four-dimensional
covariant quantities into quantities that are separately

covariant on the t − r plane and on the two-sphere.
Section V discusses gauge freedom at the level of harmonic
modes and the construction of invariant variables. In
Sec. VI, we present the decomposition of the second-order
Einstein equation. Section VII then presents the decom-
positions of the second-order RWZ and Teukolsky equa-
tions. We conclude in Sec. VIII with a discussion of
applications, specifically how our decomposition of the
second-order Einstein equation underpinned the recent
second-order self-force calculations in Refs. [30,56–58].
Table II and Appendix F describe how to translate our
formulas into alternative choices of harmonic basis and
field variables.
Alongside our paper, we provide the fully decom-

posed equations in a companion Mathematica package,
PerturbationEquations, which we make available as part of the
Black Hole Perturbation Toolkit [59]. The package pro-
vides utilities to work with the second-order Einstein
equations, RWZ equations, and Teukolsky equations in a
variety of popular harmonic bases and conventions.

II. SECOND-ORDER PERTURBATION THEORY

Before introducing any decompositions, we begin with
the first- and second-order Einstein equations in their
covariant, four-dimensional form on an arbitrary vacuum
background spacetime, which we will specialize to
Schwarzschild in later sections. We keep these formulas
generic, but we write them in a form that naturally
simplifies in the Lorenz gauge (the gauge used in all
second-order self-force calculations to date). At the end of
the section we summarize (i) the Bianchi identities that
constrain the equations and (ii) the gauge freedom the
equations admit.

A. Einstein equations

We write the exact spacetime metric as gμν ¼ gμν þ hμν,
where gμν is the background metric and hμν ∼ ϵ ≪ 1 is a
small correction, with an associated small stress-energy
tensor Tμν ∼ ϵ. We will ultimately expand hμν and Tμν in
powers of ϵ, meaning

hμν ¼ ϵhð1Þμν þ ϵ2hð2Þμν þOðϵ3Þ; ð1Þ

Tμν ¼ ϵTð1Þ
μν þ ϵ2Tð2Þ

μν þOðϵ3Þ; ð2Þ

and write field equations for hðnÞμν . But to organize those
equations, we first expand curvature quantities in orders of
nonlinearity in hμν.
Explicit perturbative expressions are typically simplest

when using the Einstein equation in its trace-reversed form,

Rμν½g� ¼ 8π

�
Tμν −

1

2
gμνðg−1ÞαβTαβ

�
; ð3Þ
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where ðg−1Þαβ is the inverse of gαβ, and where we omit
indices on tensorial arguments of functionals. We write the
Ricci tensor’s expansion in orders of nonlinearity as

Rμν½gþh�¼Rμν½g�þδRμν½h�þδ2Rμν½h�þOðjhμνj3Þ; ð4Þ

where δnRμν is the (normalized) nth functional derivative of
Rμν, defined by

δnRμν½φ� ≔
1

λ!

dn

dλn
Rμν½gþ λφ�jλ¼0 ð5Þ

for any rank-two symmetric tensor φμν. With this definition,
δnRμν½h� is constructed from the background metric and n
copies of hμν. We use the same notation for any quantity
constructed from the metric; as a trivial example,
δgμν½h� ¼ hμν and δngμν½h� ¼ 0 for n > 1.
Concrete formulas for δnRμν are found straightforwardly

from the spacetime’s exact Ricci tensor [60],

Rμν½gþ h� ¼ Rμν½g� þ 2Cρ
μ½ν;ρ� þ 2Cρ

σ½ρCσ
ν�μ; ð6Þ

where Cα
βγ is the exact difference between the Christoffel

symbols of gμν and gμν. Explicitly,

Cα
βγ ¼

1

2
ðg−1Þαδð2hδðβ;γÞ − hβγ;δÞ; ð7Þ

a semicolon and ∇ both denote the covariant derivative
compatible with gαβ. The expansion in orders of non-
linearity then immediately follows from the expansion

ðg−1Þαβ ¼ gαβ − hαβ þ hαγhγβ þOðjhμνj3Þ: ð8Þ

Here and throughout this paper, Greek indices are lowered
and raised with gμν and its inverse gμν.
From Eqs. (6) and (8), and some simple manipulations

(using Rμν½g� ¼ 0), one finds

δRμν½h� ¼ −
1

2
ðEμν½h� þ F μν½h�Þ; ð9Þ

δ2Rμν½h� ¼
1

2
ðAμν½h� þ Bμν½h� þ Cμν½h�Þ; ð10Þ

where

Eμν½h� ≔ □hμν þ 2Rμ
α
ν
βhαβ; ð11Þ

F μν½h� ≔ −2h̄αðμ;ανÞ; ð12Þ

with □ ≔ gμν∇μ∇ν, and

Aαβ½h� ≔
1

2
hμν;αhμν;β þ hμβ ;νðhμα;ν − hνα;μÞ; ð13Þ

Bαβ½h� ≔ −hμνð2hμðα;βÞν − hαβ;μν − hμν;αβÞ; ð14Þ

Cαβ½h� ≔ −h̄μν;νð2hμðα;βÞ − hαβ;μÞ: ð15Þ

We use an overbar to denote trace reversal with the
background metric, as in h̄μν ≔ hμν − 1

2
gμνgαβhαβ.

If we now substitute Eqs. (4) and (8) into the exact
Einstein equation (3), along with the series expansions (1)
and (2), then we can equate coefficients of powers of ϵ.
The result is the sequence of linear equations

δRμν½hð1Þ� ¼ 8πT ð1Þ
μν ; ð16Þ

δRμν½hð2Þ� ¼ 8πT ð2Þ
μν − δ2Rμν½hð1Þ�; ð17Þ

with matter source terms

T ð1Þ
μν ¼ T̄ð1Þ

μν ; ð18Þ

T ð2Þ
μν ¼ T̄ð2Þ

μν −
1

2

�
hð1Þμν gαβ − gμνhð1Þαβ

�
Tð1Þ
αβ : ð19Þ

In the Lorenz gauge, where h̄μν;ν ¼ 0, the quantities Cμν
and F μν both vanish, simplifying the field equations to

Eμν½hð1Þ� ¼ −16πT ð1Þ
μν ; ð20Þ

Eμν½hð2Þ� ¼ −16πT ð2Þ
μν þAμν½hð1Þ� þ Bμν½hð1Þ�: ð21Þ

Alternatively, we can write the field equations in terms
of the perturbed Einstein tensor. The analogs of Eqs. (16)
and (17) are

δGμν½hð1Þ� ¼ 8πTð1Þ
μν ; ð22Þ

δGμν½hð2Þ� ¼ 8πTð2Þ
μν − δ2Gμν½hð1Þ�: ð23Þ

The perturbations of Gμν are immediately obtained from
those of Rμν using δnGμν ¼ δnðRμν − 1

2
gμνgαβRαβÞ. In a

Ricci-flat background, this simplifies to

δGμν ¼ δRμν; ð24Þ

δ2Gμν ¼ δ2Rμν −
1

2
ðhμνgαβ − gμνhαβÞδRαβ: ð25Þ

In vacuum regions, where δRμν½hð1Þ� ¼ 0 ¼ Tð1Þ
μν , T ð2Þ

μν

reduces to T̄ð2Þ
μν and δ2Gμν½hð1Þ� reduces to δ2Rμν½hð1Þ�.

We write the field equations (16) and (17) in generic
form as

δRμν½hðnÞ� ¼ S̄ðnÞμν : ð26Þ
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The relations (24) and (25) ensure that field equations in the
form (16) and (17) can be written in terms of a trace reversal
with respect to the background metric,

δGμν½hðnÞ� ¼ SðnÞμν ; ð27Þ

where SðnÞμν ≔ S̄ðnÞμν − 1
2
gμνgαβS̄

ðnÞ
αβ . In the Lorenz gauge,

Eμν½hðnÞ� ¼ −2S̄ðnÞμν ð28Þ

and

Eμν½h̄ðnÞ� ¼ −2SðnÞμν ; ð29Þ
where we have used the fact that Ēμν½h� ¼ Eμν½h̄�.
For simplicity, in the paper we only provide the harmo-

nic decompositions of quantities appearing in Eq. (26)
[and therefore also Eq. (28)]. The companion package
PerturbationEquations additionally includes the decompositions
of δGμν and δ2Gμν.

B. Bianchi identities and conservation equations

The components of the perturbative Einstein equations
are not all independent. They are related by the contracted
Bianchi identity ðg−1Þβγg∇γGαβ½g� ¼ 0, where g∇α is the
covariant derivative compatible with gαβ. Expanding that
identity in orders of nonlinearity, we obtain the identities

gβγ∇γδGαβ ¼ 0; ð30Þ

gβγ∇γδ
2Gαβ ¼ hβγ∇γδGαβ þ 2δCγβðαδGβÞγ: ð31Þ

Here δCα
βγ½h� ≔ 1

2
gαδð2∇ðβhγÞδ −∇δhβγÞ is the linear per-

turbation of the Christoffel symbol. These identities hold
for any symmetric rank-two tensor hαβ.
By virtue of the field equations, these identities are equi-

valent to stress-energy conservation ðg−1Þβγg∇γTαβ ¼ 0, or

∇βTð1Þ
αβ ¼ 0; ð32Þ

∇βTð2Þ
αβ ¼ hð1Þβγ∇γT

ð1Þ
αβ þ 2δCγβðαT

ð1Þ
βÞγ: ð33Þ

Since Eq. (30) holds for any hαβ, it immediately implies

that the sources SðnÞαβ appearing in the field equations (27)
must all be conserved with respect to the background
divergence,

∇βSðnÞαβ ¼ 0: ð34Þ

C. Gauge freedom

Perturbation theory in GR comes with well-known gauge
freedom corresponding to the choice of how to identify

points on the exact spacetime with points in the back-
ground spacetime [34,61,62]; see Sec. IVA of Ref. [63]
or Appendix A of this paper for a concise summary.
To understand the practical consequence of this, let
A ¼ Að0Þ þ ϵAð1Þ þ ϵ2Að2Þ þOðϵ3Þ be the expansion of a
generic tensor of arbitrary rank (in index-free notation).
Under a gauge transformation, the terms in this expansion
transform as AðnÞ → AðnÞ þ ΔAðnÞ, where

ΔAð1Þ ¼ Lξð1ÞA
ð0Þ; ð35aÞ

ΔAð2Þ ¼ Lξð2ÞA
ð0Þ þ 1

2
L2
ξð1ÞA

ð0Þ þ Lξð1ÞA
ð1Þ: ð35bÞ

Here L denotes a Lie derivative, and the gauge generators
ξμðnÞ correspond to the small coordinate transformation

x0μ ¼ xμ − ϵξμð1ÞðxÞ − ϵ2
�
ξμð2ÞðxÞ −

1

2
ξνð1ÞðxÞ∂νξμð1ÞðxÞ

�
þOðϵ3Þ: ð36Þ

Applying Eq. (35) to the metric perturbations hðnÞμν yields

Δhð1Þμν ¼ Lξð1Þgμν; ð37aÞ

Δhð2Þμν ¼ Lξð2Þgμν þ
1

2
L2
ξð1Þgμν þ Lξð1Þh

ð1Þ
μν : ð37bÞ

Applying it to the stress-energy tensor in a vacuum back-
ground yields

ΔTð1Þ
μν ¼ 0; ð38aÞ

ΔTð2Þ
μν ¼ Lξð1ÞT

ð1Þ
μν : ð38bÞ

The field equations (16) and (17) are invariant under a
generic gauge transformation, as can be established from
the above transformation laws and the identities [63]

ΔδRμν½hð1Þ� ¼ 0; ð39Þ

ΔδRμν½hð2Þ� ¼ δRμν½Δhð2Þ�; ð40Þ

Δδ2Rμν½hð1Þ� ¼ Lξð1ÞδRμν½hð1Þ� − δRμν

�
1

2
L2
ξð1Þg

�
− δRμν½Lξð1Þh

ð1Þ�: ð41Þ

Analogous equations apply for the transformation of δnGμν.
We stress that, while the second-order field equation (17)

is invariant, the individual terms in it are not. In particular,
the left-hand side of (17) has the nontrivial transformation
(40), while the sources on the right-hand side have the
nontrivial transformations (38b) and (41). This differs from
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the situation at first order, where (in a vacuum background)
Eqs. (38a) and (39) ensure that each side of the field
equation is separately invariant.

III. TENSORS AND BASES ON M2 × S2

When specialized to a Schwarzschild background, the
perturbative Einstein equations are fully separable by virtue
of the background’s stationarity and spherical symmetry.
The spherical symmetry allows us to naturally decompose
4D tensorial quantities into 2þ 2D quantities. Specifically,
we follow MP in writing the spacetime manifold M as the
Cartesian product M ¼ M2 × S2, where M2 is the “t-r
plane” and S2 is the two-sphere. This method, which is
generally attributed to Gerlach and Sengupta [64], enables
us to work with quantities that are separately covariant on
M2 and S2. Tensors on S2 are then naturally decomposed
into harmonics.
Although we mostly follow MP, we do adopt slightly

different notation. Table I provides the conversion between
the two.

A. Covariant decompositions

We let xa be coordinates onM2 and give tensors onM2

lowercase Latin indices a; b; c;…; analogously, we let θA

be coordinates on S2 and give tensors on S2 uppercase Latin
indices A; B;C;…. The background line element can then
be written as

ds2 ¼ gabdxadxb þ r2ΩABdθAdθB; ð42Þ

where r is the areal radius of a sphere of fixed xa, gab is the
restriction of gμν to M2, and ΩAB is the metric of the unit
sphere. We use gab and its inverse gab to lower and raise
indices of tensors on M2, and ΩAB and its inverse ΩAB to
lower and raise indices of tensors on S2. We also require the
Levi-Civita tensors ϵab and ϵAB. In standard polar coor-
dinates θA ¼ ðθ;ϕÞ, the tensors on S2 are given by

ΩAB ¼ diagð1; sin2 θÞ and ϵθϕ ¼ sin θ ¼ −ϵϕθ: ð43Þ

Decomposing the field equations (16) and (17) into
tensors onM2 and S2 requires doing likewise for covariant
derivatives. We define δa and DA to be the derivatives com-
patible with gab and ΩAB, respectively, with corresponding

Christoffel symbols Γ½δ�abc and Γ½D�ABC. The nonvanishing
Christoffel symbols Γμ

νρ associated with ∇α are related to
these according to Γa

bc ¼ Γ½δ�abc, ΓA
BC ¼ Γ½D�ABC, and

Γa
AB ¼ −rraΩAB; ΓA

Bc ¼
δABrc
r

; ð44Þ

where

ra ≔ ∂ar: ð45Þ
This allows us to decompose the components of a derivative
∇αvβ into covariant quantities on M2 and S2:

∇avb ¼ δavb; ð46aÞ

∇avB ¼ δavB þ r−1ravB; ð46bÞ

∇Avb ¼ DAvb − rrbΩABvB; ð46cÞ

∇AvB ¼ DAvB þ r−1δBArcv
c; ð46dÞ

whereDA acts on vb as it would on a scalar, and δa acts on vB

as it would on a scalar. Similarly, the components of ∇αωβ

are written as

∇aωb ¼ δaωb; ð47aÞ

∇aωB ¼ δaωB − r−1raωB; ð47bÞ

∇Aωb ¼ DAωb − r−1ωArb; ð47cÞ

∇AωB ¼ DAωB þ rΩABrcωc: ð47dÞ

Higher derivatives are expressed in the same manner.
We will also require the Riemann tensors associated with

the derivatives δa andDA, R½δ�abcd and R½D�ABCD. They are
given by

R½δ�abcd ¼
2M
r3

ðgacgbd − gadgbcÞ; ð48Þ

R½D�ABCD ¼ ΩACΩBD −ΩADΩBC: ð49Þ

In concrete calculations, our first step is always to
expand contractions into 2þ 2D form and then project
any free indices onto either M2 or S2. For example,

gαβ∇αhβγ ¼ gab∇ahbγ þ r−2ΩAB∇AhBγ: ð50Þ
Choosing γ ¼ c (i.e., projecting onto M2) and then using
Eq. (47), one obtains a fully decomposed expression:

gαβ∇αhβc ¼ gabδahbc þ r−2ΩABDAhBc þ 2r−1rahac

− r−3hAArc; ð51Þ
where hAA ¼ ΩABhAB.

TABLE I. Relationship between our bases and derivatives and
those of Martel and Poisson (MP) [55].

This paper MP

ta −f−1tMP
a

ra ra
δa ∇a
DA DA
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B. Bases on M2 and S2

Most of our results will be fully covariant, without any
choice of basis onM2 or S2. However, we will on occasion
adopt specific bases.

1. Bases on M2

As a coordinate basis for tensors onM2, we use ðta; raÞ,
where ra is defined in Eq. (45) and

ta ≔ ∂at: ð52Þ
Here t is the usual Schwarzschild time, and we note that
MP use the same notation to instead denote the timelike
Killing vector; the two are related by ta ¼ −f−1taMP, with

f ¼ ð−tataÞ−1 ¼ rara ¼ 1 −
2M
r

: ð53Þ

In terms of these quantities, we have

gab ¼ −ftatb þ f−1rarb; ð54Þ
ϵab ¼ tarb − ratb: ð55Þ

We will also make use of a Newman-Penrose null basis

la ¼ γffiffiffiffiffiffi
2f

p ð1; fÞ; ð56Þ

na ¼ 1ffiffiffiffiffiffi
2f

p
γ
ð1;−fÞ; ð57Þ

where the components are given in ðt; rÞ coordinates and
γ ¼ γðrÞ > 0 is an arbitrary boost factor. This basis satisfies
lana ¼ −1 and lala ¼ 0 ¼ nana, which imply

gab ¼ −lanb − nalb; ð58Þ
ϵab ¼ lanb − nalb; ð59Þ

and

lbδbla ¼ laδblb; nbδbna ¼ naδbnb;

lbδbna ¼ −naδblb; nbδbla ¼ −laδbnb: ð60Þ
The divergences that appear in (60) are given by

δala ¼
r2f∂rγ þMγ

r2
ffiffiffiffiffiffi
2f

p and δana ¼
r2f∂rγ −Mγ

r2
ffiffiffiffiffiffi
2f

p
γ2

: ð61Þ

In the definition of the null basis vectors, the boost factor γ
is commonly chosen to be one of the following [21,65–67]:

Carter ∶ γ ¼ 1; ð62aÞ

Kinnersley ∶ γ ¼
ffiffiffiffiffiffiffiffi
2=f

p
; ð62bÞ

Hartle-Hawking ∶ γ ¼
ffiffiffiffiffiffiffiffi
f=2

p
: ð62cÞ

In the Kinnersley basis, δala ¼ 0; in the Hartle-Hawking
basis, δana ¼ 0; in the Carter basis, δala ¼ −δana ≠ 0. In
the Kinnersley basis, la is tangent to affinely parametrized
outgoing null rays, where r is the affine parameter. This
makes the Kinnersley basis singular at the future horizon
but particularly useful for studying outgoing radiation: in
retarded Eddington-Finkelstein coordinates ðu; rÞ,

laK∂a ¼ ∂r and naK∂a ¼ ∂u − ðf=2Þ∂r: ð63Þ
In the Hartle-Hawking basis, na is tangent to affinely para-
metrized ingoing null rays, where r is again the affine para-
meter.Thismakes theHartle-Hawkingbasis singular at thepast
horizon but particularly useful for studying ingoing radiation:
in advanced Eddington-Finkelstein coordinates ðv; rÞ,

laHH∂a ¼ ∂v þ ðf=2Þ∂r and naHH∂a ¼ −∂r: ð64Þ
The Carter basis is singular at both the past and future horizon,
but it has the advantage of maintaining a symmetry between
ingoing and outgoing null directions: in double null coordi-
nates ðu; vÞ,

laC∂a ¼
ffiffiffi
2

f

s
∂v and naC∂a ¼

ffiffiffi
2

f

s
∂u: ð65Þ

2. Bases on S2

As a basis on S2, we define a complex null vector

m̃A ¼
�
1;

i
sin θ

�
ð66Þ

and its complex conjugate, m̃A�, where the components are
given in ðθ;ϕÞ coordinates. Our definition of m̃A differs by
a factor of

ffiffiffi
2

p
r relative to the traditional Newman-Penrose

basis [68]. With our choice of normalization, the basis
vectors satisfy

m̃Am̃A ¼ 0; m̃BDBm̃A ¼ m̃ADBm̃B;

m̃Am̃�
A ¼ 2; m̃B�DBm̃A ¼ −m̃ADBm̃B�; ð67Þ

and

ΩAB ¼ 1

2
ðm̃Am̃�

B þ m̃�
Am̃BÞ; ð68Þ

ϵAB ¼ i
2
ðm̃Am̃�

B − m̃�
Am̃BÞ: ð69Þ

In ðθ;ϕÞ coordinates,

DBm̃B ¼ DBm̃B� ¼ cot θ: ð70Þ

Equation (69) also provides the useful identity

ϵABm̃
B ¼ im̃A: ð71Þ
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It will be useful to also define the Newman-Penrose basis,

mA ¼ 1ffiffiffi
2

p
r
m̃A; ð72Þ

which satisfies gABmAmB� ¼ 1, and in terms of which

gAB ¼ r4ðmAm�
B þm�

AmBÞ: ð73Þ

The factor of r4 arises from the fact that indices are lowered
with ΩAB.
The set of vectors flα; nα; mα; mα�g forms a null tetrad

on M, with the natural definitions lA ¼ nA ¼ ma ¼ 0. A
generic symmetric tensor hαβ can be decomposed into this
basis according to

hab ¼ hllnanb þ hlnðnalb þ lanbÞ þ hnnlalb; ð74aÞ
haA ¼ −r2hlmnam�

A − r2hnmlam�
A þ c:c:; ð74bÞ

hAB ¼ r4hmmm�
Am

�
B þ r4hmm�m�

AmB þ c:c: ð74cÞ

Alternatively, we can decompose it in a mixed basis
fta; ra; m̃A; m̃�

Ag, according to

hab ¼ htttatb þ htrðtarb þ ratbÞ þ hrrrarb; ð75aÞ

haA ¼ 1

2
ðhtm̃tam̃�

A þ hrm̃ram̃�
A þ c:c:Þ; ð75bÞ

hAB ¼ 1

4
ðhm̃ m̃m̃�

Am̃
�
B þ hm̃m̃�m̃�

Am̃B þ c:c:Þ; ð75cÞ

or only partially decompose it, according to

hab ¼ htttatb þ htrðtarb þ ratbÞ þ hrrrarb; ð76aÞ
haB ¼ htBta þ hrBra; ð76bÞ
hAB ¼ hAB: ð76cÞ

As a final comment, we observe the main practical advan-
tage of working with the quantities fgab;δa;ΩAB;DAg.
Besides allowing tensor-harmonic decompositions while
preserving invariance, these choices enforce that the back-
ground quantities on M2 commute with those on S2:

DAgab ¼ δaΩAB ¼ ½DA; δa� ¼ 0: ð77Þ
This is not the case ifworkingwith gAB and∇A. Likewise, m̃A

often provides a more convenient basis than mA because

δam̃A ¼ ½l; m̃� ¼ ½n; m̃� ¼ 0: ð78Þ
In this last equation, ½·; ·� denotes the vector commutator,
½u; v�α ≔ uβ∂βvα − vβ∂βuα ¼ uβ∇βvα − vβ∇βuα ¼ Luvα.
By working with trivially commuting quantities, our

choices (like MP’s) take maximal advantage of
Schwarzschild’s spherical symmetry.

IV. DECOMPOSITIONS INTO SPIN-WEIGHTED
AND TENSOR SPHERICAL HARMONICS

The literature contains numerous bases of spherical
harmonics that can be used to decompose the field
equations. With the exception of the Teukolsky formal-
ism, calculations in Schwarzschild spacetime typically
use tensor harmonic bases. For that reason, we will
decompose the metric perturbation and Einstein equations
into tensor harmonics, specifically adopting MP’s choice
of harmonics. However, for reasons explained below,
instead of tensor harmonics we take spin-weighted
spherical harmonics sYlm to be the “base” harmonics.
Our expansions in tensor harmonics will utilize spin-
weighted harmonics as an intermediary. This will also
allow us to easily connect to the Teukolsky formalism
in Sec. VII B. We refer to Brizuela et al. for a treatment
that consistently uses tensor harmonics rather than spin-
weighted ones [46–48].
Given the large number of common conventions for

harmonic expansions, in Table II we provide translations
between conventions.

A. Spin-weighted harmonics

A spin-weighted tensor v on S2 is said to have spin
weight s if it transforms as v → eisφv under the complex
phase rotation m̃A → eiφm̃A [68]. In practice, this means v’s
spin weight is the number of factors of m̃A appearing in it
minus the number of factors of m̃A� appearing in it.
We define derivative operators

ð ¼ m̃ADA − sðDAm̃AÞ; ð79aÞ

ð0 ¼ m̃A�DA þ sðDAm̃A�Þ; ð79bÞ

which act on tensors of spin-weight s. Our definitions and
notation here differ slightly from common conventions in
the literature, as summarized in Table III. The derivative ð
raises the spin weight by 1, while ð0 lowers it by 1. They
satisfy the Leibniz rule [e.g., ððuvÞ ¼ ððuÞvþ uðv, where
u and v can have differing spin weights], and the identities
(67) ensure they annihilate m̃A and m̃A�:

ðm̃A ¼ ð0m̃A ¼ ðm̃A� ¼ ð0m̃A� ¼ 0: ð80Þ
They satisfy the commutation and anticommutation rela-
tions

1

2
ðð0ð − ðð0Þ ¼ iϵABDADB þ s; ð81aÞ

1

2
ðð0ðþ ðð0Þ ¼ DADA þ s½ðDBmB�ÞmADA − c:c:�

− s2jDAm̃Aj2: ð81bÞ
When acting on a spin-weighted scalar (such as a com-
ponent ham), they satisfy ðið0j ¼ ð0jði if j ¼ iþ 2s.
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Like DA, they commute with background quantities
on M2:

ðgab ¼ ð0gab ¼ ½δa; ð� ¼ ½δa; ð0� ¼ 0: ð82Þ
A spin-weighted scalar of spin-weight s is conven-

iently expanded as a sum of spin-weighted spherical
harmonics of the same spin weight, defined for l ≥ jsj as

sYlm ≔
1

λl;s

(
ð−1ÞsðsYlm; 0 ≤ s ≤ l;

ð0jsjYlm; −l ≤ s ≤ 0;
ð83Þ

where

λl;s ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ jsjÞ!
ðl − jsjÞ!

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − jsj þ 1Þ2jsj

q
: ð84Þ

We also define for later use the related quantity μl by

μ2l ≔ ðlþ 2Þðl − 1Þ ¼ ðλl;2=λl;1Þ2 ¼ λ2l;1 − 2: ð85Þ

Here we adopt standard definitions; these are precisely
the spin-weighted harmonics defined by Newman and
Penrose [68], simply reexpressed in terms of our con-
vention for the operators ð and ð0. These definitions
are also consistent with, for example, Mathematica’s
SphericalHarmonicY function and with the
SpinWeightedSphericalHarmonicY function
in the Black Hole Perturbation toolkit’s
SpinWeightedSphericalHarmonicY package
[59,73]. Note that although Goldberg et al. [74] is
also a standard reference for the spin-weighted spherical

TABLE II. Relationship between harmonic coefficients in various conventions. The relationship between the tensorial and tetrad
decompositions is the same for sources (bottom half of table) as for metric perturbations (top half of table). Additional relations can be
found in Eq. (112) and Appendix F of this paper and Table I of Ref. [21].

This paper
ðtensorialÞ

Martel and
Poisson [55] This paper ðtetradÞ Barack-Lousto-Sago [69,70]

hlmab hlmab lalbhlmnn þ 2lðanbÞhlmln þ nanbhlmll
1
2r ½ðh̄1lm þ fh̄6lmÞtatb þ f−1h̄2lmðtarb þ ratbÞ þ

f−2ðh̄1lm − fh̄6lmÞrarb�
hlmaþ jlma rffiffi

2
p

λl;1
½laðhlmnm − hlmnm� Þ þ naðhlmlm − hlmlm� Þ� 1

2λ2l;1
ðh̄4lmta þ f−1h̄5lmraÞ

hlmþ r2Glm r2
λl;2

ðhlmmm þ hlmm�m� Þ r
λ2l;2

h̄7lm

hlm∘ r2Klm r2hlmmm� r
2
h̄3lm

hlma− hlma − irffiffi
2

p
λl;1

½laðhlmnm þ hlmnm� Þ þ naðhlmlm þ hlmlm� Þ� − 1
2λ2l;1

ðh̄8lmta þ f−1h̄9lmraÞ

hlm− hlm2 − ir2
λl;2

ðhlmmm − hlmm�m� Þ − r
λ2l;2

h̄10lm

Slmab Qlm
ab ..

.
1ffiffi
2

p ½ðS1lm þ fS3lmÞtatb þ f−1S2lmðtarb þ ratbÞ þ
f−2ðS1lm − fS3lmÞrarb�

Slmaþ 1
2
Qlm

a ..
. rffiffi

2
p

λl;1
ðS4lmta þ f−1S5lmraÞ

Slmþ 1
2
Q♯

lm ..
.

ffiffi
2

p
r2

λl;2
S7lm

Slm∘ r2
2
Q♭

lm ..
. r2ffiffi

2
p S6lm

Slma− 1
2
Plm
a ..

. − rffiffi
2

p
λl;1

ðS8lmta þ f−1S9lmraÞ

Slm− Plm
..
. −

ffiffi
2

p
r2

λl;2
S10lm

TABLE III. Relationship between our derivatives and those of
Newman and Penrose (NP) [68,71] and Geroch-Held-Penrose
(GHP) [72]. We note that Ref. [21] adopts GHP conventions.
The quantities β, ρ, ϵ, and γNP appearing in the relations
are Newman-Penrose spin coefficients, which in our context
reduce to β ¼ 1

2
DAmA; ρ ¼ −laraFr; ϵ ¼ 1

2
δala ¼ 1

2
∂rlr; and

γNP ¼ − 1
2
δana ¼ − 1

2
∂rnr, or γNP ¼ −ϵ0 in GHP notation. The

quantity b is boost weight, defined above Eq. (196a).

This paper NP [71] NP [68] GHP

ð
ffiffiffi
2

p
rðδ − 2sβÞ −ðNP

ffiffiffi
2

p
rðGHP

ð0
ffiffiffi
2

p
rðδ̄þ 2sβÞ −ð̄NP

ffiffiffi
2

p
rð0GHP

Þ D − 2bϵ ..
. Þ

Þ0 Δ − 2bγNP ..
. Þ0
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harmonics, their definition includes a nonstandard overall
factor of ð−1Þm.
The spin-weighted harmonics are related to Wigner D

matrices (again, following conventions consistent with
Mathematica’s WignerD function) according to

sYlmðθ;ϕÞ ¼ ð−1Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Dl

−smð0; θ;ϕÞ: ð86Þ

They satisfy the orthonormality conditionsI
sY�

lm sYl0m0dΩ ¼ δll0δmm0 ; ð87Þ

where dΩ ¼ sin θdθdϕ, and they have the properties [74]

sY�
lm ¼ ð−1Þmþs

−sYl;−m; ð88aÞ

ðsYlm ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm; ð88bÞ

ð0sYlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm; ð88cÞ

ð0ðsYlm ¼ −ðl − sÞðlþ sþ 1ÞsYlm: ð88dÞ

Because of our sign convention for ð, Eqs. (88b) and (88c)
differ by an overall sign relative to the analogous formulas
in Ref. [74]. The identity (88d) is an eigenvalue equation
that can equivalently be written as

1

2
ððð0 þ ð0ðÞsYlm ¼ −½lðlþ 1Þ − s2�sYlm: ð89Þ

Spin-weighted harmonics are convenient for two key
reasons. First, Eq. (17) involves many derivatives, and any
number of covariant derivatives of Ylm can be easily
written in terms of sYlm. For example, using DAYlm ¼
1
2
ðm̃Am̃B� þ m̃�

Am̃
BÞDBYlm together with Eqs. (79) and

(88), one finds

DAYlm ¼ λl;1
2

ð−1Ylmm̃A − 1Ylmm̃
�
AÞ: ð90Þ

Doing the same forDADBYlm and making use of Eqs. (67),
(79), and (88), one finds

DADBYlm ¼ λl;2
4

ð−2Ylmm̃Am̃B þ 2Ylmm̃
�
Am̃

�
BÞ

−
λ2l;1
2

YlmΩAB: ð91Þ

Higher derivatives are given in Eqs. (C2) and (C3).
The second reason spin-weighted harmonics are useful is

that, when one expands the first-order field in a basis of
harmonics, the sources in Eq. (17) involve products of
those harmonics, and decomposing that product into a sum
of single harmonics requires the integral of three harmon-
ics. With spin-weighted harmonics, that integral is easily
found. We define the desired integral as

Clms
l0m0s0l00m00s00 ≔

I
sY�

lms0Yl0m0 s00Yl00m00dΩ: ð92Þ

For s ¼ s0 þ s00, one can explicitly evaluate the integral
using Eq. (86) and then following Sec. 30B of Ref. [75] to
derive the integral of three Wigner D matrices. The result
is [76]

Clms
l0m0s0l00m00s00 ¼ ð−1Þmþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r

×

�
l l0 l00

s −s0 −s00

��
l l0 l00

−m m0 m00

�
;

ð93Þ
where the arrays are 3j symbols. It follows from the
symmetries of the 3j symbol that

Clms
l0m0s0l00m00s00 ¼ ð−1Þlþl0þl00Clm−s

l0m0−s0l00m00−s00 ; ð94aÞ

Clms
l0m0s0l00m00s00 ¼ ð−1Þlþl0þl00Cl−ms

l0−m0s0l00−m00s00 ; ð94bÞ

Clms
l0m0s0l00m00s00 ¼ Clms

l00m00s00l0m0s0 : ð94cÞ

It also follows that the usual rules associated with coupling
of angular momenta are enforced, since the Clms

l0m0s0l00m00s00 are
zero unless

m ¼ m0 þm00; ð95aÞ

jl0 − l00j ≤ l ≤ l0 þ l00: ð95bÞ

Finally, we note that for l ¼ m ¼ s ¼ 0 and s00 ¼ −s0, the
result collapses to

C000
l0m0s0l00m00s00 ¼

ð−1Þm0þs0ffiffiffiffiffiffi
4π

p δl0l00δm0;−m00 : ð96Þ

To decompose Eq. (17) in tensor harmonics, we will
express all quantities in terms of spin-weighted harmonics.
Equation (93) then becomes the essential tool in the
decomposition. To the best of our knowledge, this strategy
has not appeared in prior literature.

B. Tensor harmonics

Tensor harmonics of rank s are constructed from
symmetric and trace-free combinations of covariant deriv-
atives of ordinary scalar harmonics Ylm [46]1:

Ylm
A1���As

≔ DhA1
� � �DAsiYlm; ð97aÞ

Xlm
A1���As

≔ −ϵhA1

CDA2
� � �DAsiDCYlm; ð97bÞ

1To maintain compatibility with MP, we have introduced a
minus sign into Ref. [46]’s definition of Xlm

A1���As
.
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where angular brackets denote the symmetric-trace-
free part of a tensor, with traces defined using ΩAB.
These harmonics are defined only for l ≥ s, as they
identically vanish for 0 ≤ l < s. They are related to
spin-weighted harmonics by the simple formulas

Ylm
A1���As

¼ λl;s
2s

½−sYlmm̃A1
� � � m̃As

þ ð−1ÞssYlmm̃�
A1
� � � m̃�

As
�;

ð98aÞ

Xlm
A1���As

¼−
iλl;s
2s

½−sYlmm̃A1
� ��m̃As

−ð−1ÞssYlmm̃�
A1
� ��m̃�

As
�;

ð98bÞ
see Appendix C. The harmonics Ylm and Ylm

A1���As
are said to

have even parity, transforming as Ylm
A1���As

→ ð−1ÞlYlm
A1���As

under the parity inversion ðθ;ϕÞ → ðπ − θ;ϕþ πÞ, while
Xlm
A1���As

are said to have odd parity, transforming as
Xlm
A1���As

→ ð−1Þlþ1Xlm
A1���As

. In the linearized field equations,
the even- and odd-parity sectors decouple. However, at
second order they couple through the source terms in the
field equation (17).
Brizuela et al. [46–48] worked consistently with tensor

harmonics rather than spin-weighted ones, motivating their
use of rank-s > 2 harmonics. However, in our case we will
only require rank-one (vector) and rank-two tensor har-
monics. Specializing Eq. (97) to these cases, we see that the
vector harmonics, defined for l ≥ 1, are given by

Ylm
A ≔ DAYlm; ð99aÞ

Xlm
A ≔ −ϵACDCYlm; ð99bÞ

and the tensor harmonics, defined for l ≥ 2, are given by

Ylm
AB ≔

�
DADB þ 1

2
lðlþ 1ÞΩAB

�
Ylm; ð100aÞ

Xlm
AB ≔ −ϵðACDBÞDCYlm: ð100bÞ

In the formula for Ylm
AB, we have used the eigenvalue

equation

DADAYlm ¼ −lðlþ 1ÞYlm: ð101Þ

By construction, the tensor harmonics are trace free:

ΩABYlm
AB ¼ 0 ¼ ΩABXlm

AB: ð102Þ

From Eq. (98), they are related to spin-weighted harmonics
as

Ylm
A ¼ λl;1

2
ð−1Ylmm̃A − 1Ylmm̃

�
AÞ; ð103aÞ

Xlm
A ¼ −

λl;1
2

ið−1Ylmm̃A þ 1Ylmm̃
�
AÞ; ð103bÞ

Ylm
AB ¼ λl;2

4
ð−2Ylmm̃Am̃B þ 2Ylmm̃

�
Am̃

�
BÞ; ð103cÞ

Xlm
AB ¼ −

λl;2
4

ið−2Ylmm̃Am̃B − 2Ylmm̃
�
Am̃

�
BÞ: ð103dÞ

They are orthogonal with respect to the natural inner product
on S2, but they are not orthonormal:I

YA�
lmY

l0m0
A dΩ ¼ λ2l;1δll0δmm0 ; ð104aÞ

I
XA�
lmX

l0m0
A dΩ ¼ λ2l;1δll0δmm0 ; ð104bÞ

I
YAB�
lm Yl0m0

AB dΩ ¼ λ2l;2
2

δll0δmm0 ; ð104cÞ

I
XAB�
lm Xl0m0

AB dΩ ¼ λ2l;2
2

δll0δmm0 ; ð104dÞ

and I
XA�
lmY

l0m0
A dΩ ¼ 0 ¼

I
XAB�
lm Yl0m0

AB dΩ: ð105Þ

C. Harmonic expansions

In terms of the MP harmonics, any symmetric tensor vμν
can be expanded as

vab ¼
X
lm

vlmab Ylm; ð106aÞ

vaA ¼
X
lm

ðvlmaþYlm
A þ vlma−Xlm

A Þ; ð106bÞ

vAB ¼
X
lm

ðvlm∘ ΩABYlm þ vlmþ Ylm
AB þ vlm− Xlm

ABÞ; ð106cÞ

where the coefficients are functions of xa. Here and
throughout this paper, sums range over all allowed values
of l and m. If vμν is real valued, then all of its harmonic
coefficients satisfy

vl;−m· ¼ ð−1Þmvlm�
· : ð107Þ

Here and below we use the following shorthand.
Definition. A dot, as in vlm· , is used to denote a generic

tensor-harmonic coefficient, in this case any of vlmab , v
lm
a�,

vlm� , or vlm∘ .
Our convention in Eq. (106) differs slightly from that of

MP, who followed tradition [77] by introducing a factor of
r2 in front of vlm∘ and vlmþ . Our notation also differs from
tradition in that we uniformly use a “þ” sign to denote the
coefficient of an even-parity vector or tensor harmonic, a
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“−” sign to denote the coefficient of an odd-parity vector or
tensor harmonic, and a “∘” to denote one-half the angular
trace of a tensor.
Using the orthogonality of the harmonics, each of the

coefficients in Eq. (106) can be written as an integral
against the appropriate harmonic:

vlmab ¼
I

vabY�
lmdΩ; ð108aÞ

vlmaþ ¼ 1

λ2l;1

I
vaAYA�

lmdΩ; ð108bÞ

vlma− ¼ 1

λ2l;1

I
vaAXA�

lmdΩ; ð108cÞ

vlm∘ ¼ 1

2

I
vABΩABY�

lmdΩ; ð108dÞ

vlmþ ¼ 2

λ2l;2

I
vABYAB�

lm dΩ; ð108eÞ

vlm− ¼ 2

λ2l;2

I
vABXAB�

lm dΩ: ð108fÞ

To facilitate use of Eq. (93), in practice we express these as
integrals against spin-weighted harmonics using the rela-
tions (103).
These expansions in tensor harmonics are covariant; they

do not depend on any choice of basis vectors on S2. If we
adopt the null basis fmA;mA�g on S2, then components of a
symmetric tensor vμν can instead be expanded in spin-
weighted harmonics according to

vab ¼
X
lm

vlmab Ylm; ð109aÞ

vam ¼
X
lm

vlmam1Ylm; ð109bÞ

vam� ¼
X
lm

vlmam�−1Ylm; ð109cÞ

vmm ¼
X
lm

vlmmm2Ylm; ð109dÞ

vm�m� ¼
X
lm

vlmm�m�−2Ylm; ð109eÞ

vmm� ¼
X
lm

vlmmm�Ylm: ð109fÞ

In these expansions, the spin weights are carried by the
harmonics; the coefficients have spin weight 0.

If vμν is real, then vam� ¼ ðvamÞ� and vm�m� ¼ ðvmmÞ�.
Together with Eq. (88a), this implies

vl;−mam ¼ −ð−1Þmðvlmam� Þ�; ð110aÞ

vl;−mmm ¼ ð−1Þmðvlmm�m� Þ�: ð110bÞ

More generally, the modes of a spin-weight s scalar,
v ¼ P

lm vlmsYlm, are related to the modes of its complex
conjugate, v� ¼ P

lm v�lm−sYlm, by

v�lm ¼ ð−1Þmþsðvl;−mÞ�: ð111Þ

The coefficients in the spin-weighted harmonic decom-
position are easily related to those in Eq. (106):

vlmam ¼ −
λl;1ffiffiffi
2

p
r
ðvlmaþ þ ivlma− Þ; ð112aÞ

vlmam� ¼ λl;1ffiffiffi
2

p
r
ðvlmaþ − ivlma− Þ; ð112bÞ

vlmmm ¼ λl;2
2r2

ðvlmþ þ ivlm− Þ; ð112cÞ

vlmm�m� ¼ λl;2
2r2

ðvlmþ − ivlm− Þ; ð112dÞ

vlmmm� ¼ 1

r2
vlm∘ : ð112eÞ

We conclude with the explicit expansion of our main
quantity of interest: the metric perturbation. Its expansion
reads

hab ¼
X
lm

hlmab Y
lm; ð113aÞ

haA ¼
X
lm

ðhlmaþYlm
A þ hlma−Xlm

A Þ; ð113bÞ

hAB ¼
X
lm

ðhlm∘ ΩABYlm þ hlmþ Ylm
AB þ hlm− Xlm

ABÞ: ð113cÞ

We will likewise write the decomposition of a generic
source term in the Einstein equations (27) as

Sab ¼
X
lm

Slmab Y
lm; ð114aÞ

SaA ¼
X
lm

ðSlmaþYlm
A þ Slma−Xlm

A Þ; ð114bÞ

SAB ¼
X
lm

ðSlm∘ ΩABYlm þ Slmþ Ylm
AB þ Slm− Xlm

ABÞ: ð114cÞ

The field equations also often involve the trace reversal of
these fields, h̄μν and S̄μν. To facilitate trace reversals at the
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level of harmonic coefficients, for a generic field vμν we
introduce

vlm• ≔
1

2
gabvlmab ð115Þ

in analogy with vlm∘ . The coefficients in the tensor-
harmonic expansion of v̄μν ≔ vμν − 1

2
gμνgαβvαβ are then

related to those in the expansion of vμν by

v̄lmab ¼ vlmab − gabðvlm• þ r−2vlm∘ Þ; ð116aÞ

v̄lm∘ ¼ −r2vlm• ; ð116bÞ

v̄lma� ¼ vlma� and v̄lm� ¼ vlm� : ð116cÞ

If instead we expand vμν and v̄μν in spin-weighted har-
monics, then

v̄lmln ¼ vlmmm� and v̄lmmm� ¼ vlmln ; ð117Þ

and all other coefficients satisfy v̄lm· ¼ vlm· .

V. GAUGE TRANSFORMATIONS AND
INVARIANT PERTURBATIONS

In Ref. [55], MP wrote the first-order Einstein equation
in terms of a set of gauge-invariant metric perturbations.
Here we extend that approach to second order. In the
accompanying PerturbationEquations package, we also provide
the second-order field equations in terms of the original,
gauge-dependent perturbations. We discuss the relative
merits of each approach at the end of the section.

A. Gauge transformations of harmonic coefficients

We first examine how tensor-harmonic coefficients
transform under a change of gauge. That requires decom-
posing Eq. (37), which in turn requires the decompositions
of Lie derivatives. Consider the Lie derivative Lξvμν of a
symmetric tensor vμν along a vector ξμ ¼ ðζa; ZAÞ. It has
components

ðLξvÞab ¼ lζvab þ £Zvab þ 2vCðaδbÞZC; ð118aÞ

ðLξvÞaB ¼ lζvaBþ £ZvaBþ vBCδaZCþvacDBζ
c; ð118bÞ

ðLξvÞAB ¼ lζvAB þ £ZvAB þ 2vcðADBÞζc; ð118cÞ

where lζ is a Lie derivative on M2, and £Z is a Lie
derivative on S2. We can use the decomposition (118) to

calculate the components of Δhð1Þμν straightforwardly from
Eq. (37a). Given that result, we may then use the decom-
position (118) a second time to calculate the components of

Δhð2Þμν , after rewriting Eq. (37b) as

Δhð2Þμν ¼ Lξð2Þgμν þHμν ð119Þ

with

Hμν ≔ Lξð1Þ

�
hð1Þμν þ 1

2
Δhð1Þμν

�
: ð120Þ

To obtain the harmonic expansion of the result, we expand
ξμðnÞ in vector harmonics as

ζaðnÞ ¼
X
lm

ζaðnÞlmYlm; ð121aÞ

ZA
ðnÞ ¼

X
lm

ðZþ
ðnÞlmY

A
lm þ Z−

ðnÞlmX
A
lmÞ; ð121bÞ

where, recall, YA
lm ≔ ΩABYlm

B and XA
lm ≔ ΩABXlm

B .

For the first-order transformation Δhð1Þμν ¼ Lξð1Þgμν,
Eq. (118) reduces to

Δhð1Þab ¼ 2δðaζ
ð1Þ
bÞ ; ð122aÞ

Δhð1ÞaB ¼ r2δaZ
ð1Þ
B þDBζ

ð1Þ
a ; ð122bÞ

Δhð1ÞAB ¼ 2rrcζcð1ÞΩAB þ 2r2DðAZ
ð1Þ
BÞ : ð122cÞ

Substituting the harmonic expansion (121) into Eq. (122),
one finds

Δhð1Þlmab ¼ 2δðaζ
ð1Þlm
bÞ ; ð123aÞ

Δhð1Þlmaþ ¼ r2δaZ
ð1Þlm
þ þ ζð1Þlma ; ð123bÞ

Δhð1Þlma− ¼ r2δaZð1Þlm
− ; ð123cÞ

Δhð1Þlm∘ ¼ 2rrcζcð1Þlm − lðlþ 1Þr2Zð1Þlm
þ ; ð123dÞ

Δhð1Þlm� ¼ 2r2Zð1Þlm
� : ð123eÞ

In the same way, the harmonic decomposition of Eq. (119)
reads

Δhð2Þlmab ¼ 2δðaζ
ð2Þlm
bÞ þHlm

ab ; ð124aÞ

Δhð2Þlmaþ ¼ r2δaZ
ð2Þlm
þ þ ζð2Þlma þHlm

aþ; ð124bÞ

Δhð2Þlma− ¼ r2δaZð2Þlm
− þHlm

a− ; ð124cÞ

Δhð2Þlm∘ ¼ 2rrcζcð2Þlm − lðlþ 1Þr2Zð2Þlm
þ þHlm∘ ; ð124dÞ

Δhð2Þlm� ¼ 2r2Zð2Þlm
� þHlm

� : ð124eÞ
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The mode decompositions of the quadratic quantityHαβ are
obtained through the following steps:
(1) Write Eq. (120) in 2þ 2D form using Eq. (118).

(2) Substitute the harmonic expansions of hð1Þαβ and ξαð1Þ.
(3) Use Eqs. (90), (91), (99), (100), (C2), and (C3) to

express tensor harmonics and their covariant deriv-
atives as sums of spin-weighted harmonics.

(4) Use Eq. (108) to pick out the tensor-harmonic
coefficients of the result.

(5) Use Eq. (92) to express the result in terms of the
constants Clms

l0m0s0l00m00s00 .
(6) Use the symmetries (94) and relabel summation

indices to minimize the number of constants
Clms
l0m0s0l00m00s00 .

This gives us the final expressions:

Hlm
ab ¼

X
l0m0l00m00
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0H

l0m0s0l00m00−s0
ab ; ð125aÞ

Hlm
a� ¼

X
l0m0l00m00
s0¼1;2

λl0;s0λl00;1−s0

λl;1
Clm1
l0m0s0l00m00;1−s0H

l0m0s0l00m00;1−s0
a� ;

ð125bÞ

Hlm∘ ¼
X

l0m0l00m00
s0¼0;1;2

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0H

l0m0s0l00m00−s0∘ ; ð125cÞ

Hlm
� ¼

X
l0m0l00m00
s0¼1;2;3

λl0;s0λl00;2−s0

λl;2
Clm2
l0m0s0l00m00;2−s0H

l0m0s0l00m00;2−s0
� ;

ð125dÞ

where the quantities Hl0m0s0l00m00s00
· are made up of quadratic

products of first-order mode coefficients hð1Þl0m0
· , hð1Þl00m00

· ,
ζað1Þl0m0 , ζað1Þl00m00 , Z�

ð1Þl0m0 , and Z�
ð1Þl00m00 . We give those

products, which we refer to as coupling functions, explic-
itly in Eq. (D2).
Equation (125) has the appearance of a quintuple sum

X∞
l0¼0

X∞
l00¼0

Xþl0

m0¼−l0

Xþl00

m00¼−l00

Xs0max

s0¼0

: ð126Þ

However, these summation ranges are restricted by the
factors Clms

l0m0s0l00m00s00 , which enforce the conditions in
Eq. (95). The definitions of tensor harmonics also auto-
matically enforce l0 ≥ s0 and we additionally require
s ¼ s0 þ s00. Together these restrictions reduce the sums to

Xs0max

s0¼0

X∞
l0¼s0

Xlþl0

l00¼maxðjs−s0 j;
jl−l0 jÞ

Xþl0

m0¼−l0
δm00;m−m0 : ð127Þ

B. Common gauge choices

There are several common gauge conditions in
Schwarzschild spacetime. These include the RWZ gauge
[77,78], the ingoing and outgoing radiation gauges (IRG
and ORG), and the Lorenz gauge:

RWZ∶ hmm ¼ 0 ¼ ðham − ham� Þ: ð128aÞ

IRG∶ hαβlβ ¼ 0 ¼ gαβhαβ: ð128bÞ

ORG∶ hαβnβ ¼ 0 ¼ gαβhαβ: ð128cÞ

Lorenz∶ ∇βh̄αβ ¼ 0: ð128dÞ

Here and below, we do not distinguish between hð1Þαβ and

hð2Þαβ . The gauge conditions can be applied to either or both
of them, and one can “mix and match” by adopting a

different condition for hð2Þαβ than for hð1Þαβ .
The RWZ gauge is the most common because it greatly

simplifies the field equations. Following MP, we will make
extensive use of it in the sections below.
The radiation gauges,which reduce to so-called light-cone

gauges [37,79] for specific choices of null basis, are
particularly useful for studying ingoing or outgoing radia-
tion. If the Kinnersley tetrad is used, then the IRG condition
ensures that radially outgoing null cones have the same
coordinate description in the perturbed spacetime as in the
background spacetime: surfaces of constant retarded time u
are null cones, and r is an affine parameter along the
generators of the cones. If the Hartle-Hawking tetrad is
used, then the ORG condition ensures that the analogous
statements apply to ingoingnull cones.2 The radiation gauges
also ensure that r remains an areal radius in the perturbed
spacetime. This follows from the fact that if hαβlβ ¼ 0 or
hαβnβ ¼ 0, then the traceless condition gαβhαβ ¼ 0 is equiv-
alent to ΩABhAB ¼ 0; since ΩABhAB is proportional to the
perturbation of the area element on the sphere of constant r,
the surface area of the sphere remains 4πr2.
Finally, the Lorenz gauge condition is useful for putting

the perturbative field equations in the symmetric hyperbolic
form [(20) and (21)].

2The traditional names and geometrical features of the radi-
ation gauge conditions may appear antithetical: the outgoing
radiation gauge preserves ingoing null cones, which should make
it ideal for studying ingoing waves, while the ingoing radiation
gauge preserves outgoing null cones, which should make it ideal
for studying outgoing waves. This clash stems from the particular
metric reconstruction method traditionally used to obtain the
metric perturbation in these gauges, reviewed in Sec. VII B
below. Despite the geometrical features of the gauge conditions,
the reconstruction method yields metric perturbations that match
the gauges’ names: outgoing (ingoing) radiation is asymptotically
regular in the ORG (IRG), while ingoing (outgoing) radiation is
asymptotically irregular in the ORG (IRG) [80].
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In mode-decomposed form, the gauge conditions
become

RWZ∶ hlm� ¼ hlmaþ ¼ 0: ð129aÞ

IRG∶
�
hlmla ¼ hlml� ¼ 0;

hlm∘ ¼ 0:
ð129bÞ

ORG∶
�
hlmna ¼ hlmn� ¼ 0;

hlm∘ ¼ 0:
ð129cÞ

Lorenz∶

8>><
>>:

δbh̄lmab ¼ 1
r3 ðλ2l;1rh̄lmaþ þ 2rah̄lm∘ − 2r2rbh̄lmab Þ;

δbh̄lmbþ ¼ 1
2r2 ðμ2lh̄lmþ − 4rrbh̄lmbþ − 2h̄lm∘ Þ;

δbh̄lmb− ¼ 1
2r2 ðμ2lh̄lm− − 4rrbh̄lmb− Þ;

ð129dÞ

where μl is defined in Eq. (85). Note that MP denote this
same quantity as μ, meaning μMP ¼ μ2l.
All four conditions leave residual gauge freedom, mean-

ing in each case one can find gauge perturbations ∇ðαξβÞ
that satisfy the relevant gauge conditions. Specifically, the
RWZ gauge condition does not constrain l ¼ 0 modes or
the l ¼ 1 mode h1ma− ; the radiation gauges can be altered
by a gauge vector satisfying lβ∇ðαξβÞ ¼ 0 (IRG) or
nβ∇ðαξβÞ ¼ 0 (ORG) and ∇αξ

α ¼ 0; and the Lorenz gauge

can be altered by a gauge vector satisfying ∇β∇ðαξβÞ ¼ 0

(which is equivalent to □ξα ¼ 0). In the next sections, we
will specifically analyze (and remove) the gauge freedom in
the l ¼ 0, 1 modes.

C. Gauge-fixing procedure and residual
gauge freedom

It is common in perturbation theory to construct gauge-
invariant metric perturbations using a gauge-fixing pro-
cedure; see, for example, Refs. [47,48,55,81–85] and
Nakamura’s recent series of papers exploring this method
in Schwarzschild spacetime [86–90]. The idea is to identify
gauge conditions that completely fix the gauge, leaving no
residual gauge freedom. The gauge vectors, call them ξ̃μðnÞ,
that transform from a generic gauge to the fixed gauge are
then determined by the perturbations in the generic gauge,

call them hðnÞμν . Referring to the transformation rule (37), we

can then construct gauge-invariant perturbations h̃ðnÞμν that
are simply the metric perturbations in the fixed gauge

expressed in terms of the perturbations hðnÞμν in the generic
gauge:

h̃ð1Þμν ¼ hð1Þμν þ Lξ̃ð1Þgμν; ð130aÞ

h̃ð2Þμν ¼ hð2Þμν þ Lξ̃ð2Þgμν þ H̃μν; ð130bÞ

where

H̃μν ≔ Lξ̃ð1Þ

�
hð1Þμν þ 1

2
Lξ̃ð1Þgμν

�
: ð131Þ

Analogously, referring to the transformation rule (38), we
construct invariant stress-energy perturbations,

T̃ð1Þ
μν ¼ Tð1Þ

μν ; ð132aÞ

T̃ð2Þ
μν ¼ Tð2Þ

μν þ Lξ̃ð1ÞT
ð1Þ
μν : ð132bÞ

The most obvious examples of such invariants are the
variables used byMP, which use the RWZ gauge conditions

to specify h̃ð1Þμν . We review those RWZ-based invariant
variables in Sec. V D below.
To our knowledge, this procedure has always specified

the fixed gauge through conditions on h̃ðnÞμν , which then
determines ξ̃μð1Þ ¼ ξ̃μð1Þ½hð1Þ� and ξ̃μð2Þ ¼ ξ̃μð2Þ½hð1Þ; hð2Þ� via

Eq. (130). If hðnÞμν happens to already be in the fixed gauge,

then ξ̃μðnÞ ¼ 0 and h̃ðnÞμν ¼ hðnÞμν . But if h
ðnÞ
μν is in any other

gauge, then the quantities h̃ðnÞμν are invariants constructed

from hðnÞμν ; no matter the choice of gauge used to calculate

hðnÞμν , h̃ðnÞμν take the value of the perturbations in the
fixed gauge.
However, such a procedure is necessarily incomplete

because conditions on the metric perturbation cannot fully
specify the gauge. This is because of the Killing sym-
metries of the background. If ξμð1Þ is a Killing vector of the

background, then the gauge transformation Δhð1Þμν ¼
Lξð1Þgμν vanishes. This means any gauge condition on

h̃ð1Þμν can only fix the gauge up to infinitesimal isometries
of the background.
In linear perturbation theory, this incomplete gauge

fixing is not problematic. Since the lm modes decouple
from each other, one can fully fix the l > 1 gauge freedom

through conditions on the l > 1 pieces of h̃ð1Þμν . The gauge
ambiguity is then confined to the l ¼ 0 and l ¼ 1
perturbations. Those perturbations are very often simply
ignored because in vacuum they are only perturbations
toward another stationary black hole solution (specifically,
a linear-in-spin Kerr solution).
However, at second order the residual gauge ambiguity

does manifest itself in the metric perturbation. If ξμð1Þ is a
Killing vector of the background, then it induces a non-

trivial transformation Δhð2Þμν ¼ Lξð1Þh
ð1Þ
μν . This implies that if

ξ̃μð1Þ is only determined up to the addition of a background

Killing vector, then h̃ð2Þμν is not invariant.
Appendix A analyzes the general transformation proper-

ties of ξ̃μðnÞ and h̃ðnÞμν and the implications of residual gauge
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freedom. In the body of the paper, we outline a specific type
of gauge-fixing prescription that eliminates the residual
freedom. Our prescription differs from others by enforcing

a condition on T̃ð2Þ
μν ; through Eq. (132), this imposes

additional conditions on ξ̃μð1Þ. We then obtain vectors ξ̃μð1Þ ¼
ξ̃μð1Þ½hð1Þ; Tð2Þ� and ξ̃μð2Þ ¼ ξ̃μð2Þ½hð1Þ; hð2Þ� and fully invariant

perturbations h̃ðnÞμν and T̃ðnÞ
μν . This restricts our prescription to

nonvacuum perturbations. In global vacuum, without a
matter distribution to refer to, fixing the residual gauge
freedom would require specifying a value of time and
angular position at some physically identifiable event in the
perturbed spacetime.
We detail a particular gauge-fixing scheme in the

remainder of this section. Our procedure for l > 1 follows
tradition, while our procedure for l ¼ 0 and l ¼ 1 appears
here for the first time.

D. Gauge fixing for l > 1

We follow MP and Brizuela et al. [48] by putting the

l > 1 pieces of h̃ðnÞμν in the RWZ gauge, setting

h̃ðnÞlm� ¼ 0 ¼ h̃ðnÞlmaþ : ð133Þ

At first order, the analog of Eqs. (123b) and (123e) then
implies that the vector ξ̃μð1Þ has l > 1 modes given by

ζ̃ð1Þlma ¼ −hð1Þlmaþ − r2δaZ̃
ð1Þlm
þ ; ð134aÞ

Z̃ð1Þlm
� ¼ −

hð1Þlm�
2r2

: ð134bÞ

Substituting these formulas into the analogs of Eqs. (123a),
(123c), and (123d), we find the nonzero l > 1 pieces of

h̃ð1Þμν are

h̃ð1Þlmab ≔ hð1Þlmab þ 2δðaζ̃
ð1Þlm
bÞ ; ð135aÞ

h̃ð1Þlma− ≔ hð1Þlma− þ r2δaZ̃ð1Þlm
− ; ð135bÞ

h̃ð1Þlm∘ ≔ hð1Þlm∘ þ 2rrcζ̃
c
ð1Þlm − lðlþ 1Þr2Z̃ð1Þlm

þ : ð135cÞ

These are the equivalent of MP’s Eqs. (4.10), (4.11), and
(5.7). The fields h̃ð1Þlm· are invariant regardless of what we
do with l ¼ 0; 1 modes.
At second order, the analogs of Eqs. (124b) and (124e)

imply that the vector ξ̃μð2Þ has l > 1 modes given by

ζ̃ð2Þlma ¼ −hð2Þlmaþ − H̃lm
aþ − r2δaZ̃

ð2Þlm
þ ; ð136aÞ

Z̃ð2Þlm
� ¼ −

hð2Þlm� þ H̃lm
�

2r2
; ð136bÞ

and the analogs of Eqs. (124a), (124c), and (124d) imply

that the nonzero l > 1 modes of h̃ð2Þμν are

h̃ð2Þlmab ≔ hð2Þlmab þ H̃lm
ab þ 2δðaζ̃

ð2Þlm
bÞ ; ð137aÞ

h̃ð2Þlma− ≔ hð2Þlma− þ H̃lm
a− þ r2δaZ̃ð2Þlm

− ; ð137bÞ

h̃ð2Þlm∘ ≔ hð2Þlm∘ þ H̃lm∘ þ 2rrcζ̃
c
ð2Þlm − lðlþ 1Þr2Z̃ð2Þlm

þ :

ð137cÞ

As per the discussion in the preceding section and
Appendix A, these fields are not yet invariants. They only
become invariant once we fix the l ¼ 0; 1 modes of the

first-order field h̃ð1Þμν .

E. Gauge fixing for l= 0

For l ¼ 0, the only nonvanishing pieces of hðnÞμν are the

scalar-harmonic modes hðnÞ00ab and hðnÞ00∘ . Equation (130)
reduces to

h̃ð1Þ00ab ¼ hð1Þ00ab þ ζ̃cð1Þ00∂cgab þ 2∂ðaζ̃cð1Þ00gbÞc; ð138aÞ

h̃ð1Þ00∘ ¼ hð1Þ00∘ þ 2rrcζ̃
c
ð1Þ00 ð138bÞ

at first order. It reduces to the same equations at second
order with the replacement hð1Þ00· → hð2Þ00· þ H̃00

· on the
right-hand side. Given this simple replacement, we only list
results at first order in this and the next two sections below.
In these sections, we streamline the analysis by restrict-

ing ourselves to perturbations that are asymptotically flat at
spatial infinity.3 For the monopole mode, this implies

hðnÞ00ab ¼ cðnÞab

r
þOðr−2Þ; ð139Þ

hðnÞ00∘ ¼ r2
�
cðnÞ∘
r

þOðr−2Þ
�

ð140Þ

for some t-independent constants cðnÞab and cðnÞ∘ . Note that

this restricts the gauge of hðnÞμν in addition to restricting the

3Lifting this restriction is straightforward. If perturbations are
not asymptotically flat, or are in a gauge that does not manifest
the asymptotic flatness, then integrals such as the one in Eq. (144)
become ill defined. One can then take the Hadamard finite part
of such integrals [91]. As an example, suppose an integrand of
the form

Pkþ1
j¼0 ajr

k−j þ γðt; rÞ, where γðt; rÞ falls off faster
than 1=r. We can define the integral as

P
k
j¼0

aj
k−jþ1

rk−jþ1þ
akþ1 ln rþ

R
r
∞ f−1ðr0Þγðt; r0Þdr0. Any length scale in the loga-

rithm can be absorbed into ϱð1ÞðtÞ.
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asymptotic geometry. Moreover, we make the simplifying

assumption that the gauge of hðnÞμν satisfies cðnÞtr ¼ 0.
We are not aware of any work that has constructed gauge

invariants h̃ðnÞ00ab and h̃ðnÞ00∘ that are local functions of ðt; rÞ.
We will instead allow one of the components to be a
nonlocal function that takes the form of a radial integral.
However, at least at first order we are able to construct a
local invariant from it through differentiation.
We adopt the following gauge-fixing conditions:

h̃ðnÞ00∘ ¼ 0; ð141aÞ

h̃ðnÞ00tr ¼ 0; ð141bÞ

lim
r→∞

h̃ðnÞ00tt ¼ 0; ð141cÞ

where the limit is taken at fixed t.
Now, the trace condition (141a), with Eq. (138b), fully

determines ζ̃rð1Þ00 to be

ζ̃rð1Þ00 ¼ −
1

2r
hð1Þ00∘ : ð142Þ

With Eq. (138), this in turn determines

h̃ð1Þ00rr ¼ hð1Þ00rr þ M
r3f2

hð1Þ00∘ −
1

f
∂r

�
1

r
hð1Þ00∘

�
: ð143Þ

The quantity h̃ð1Þ00rr is invariant even without specifying the

remaining component ζ̃tð1Þ00. The quantity h̃
ð2Þ00
rr is given by

the same formula with hð1Þ00· → hð2Þ00· þH00
· , but it is not

invariant until ζ̃tð1Þ00 is specified.
Next, the condition (141b), with the t-r component of

Eq. (138), restricts ζ̃tðnÞ00 to be

ζ̃tð1Þ00 ¼ ϱð1ÞðtÞ þ
Z

r

∞
ðf−1hð1Þ00tr þ f−2∂tζ̃

r
ð1Þ00Þdr0; ð144Þ

where ϱð1Þ is an arbitrary function of t.
The condition (141c), with the t–t component of

Eq. (138), then implies

ϱð1Þ ¼ ϱð1Þ0 ð145Þ

for some constant ϱð1Þ0 . This represents a time translation; it
is a timelike Killing vector of the background, which we

cannot fix using conditions on h̃ð1Þμν . To fix this remaining
freedom, we examine the transformation of the stress-
energy tensor. We defer that procedure to Sec. V H.

The remaining nonzero component of h̃ð1Þ00ab is now a
nonlocal invariant given by

h̃ð1Þ00tt ¼ hð1Þ00tt −
2M
r2

ζ̃rð1Þ00 − 2f∂tζ̃
t
ð1Þ00: ð146Þ

It is nonlocal because of the radial integral in ζ̃tð1Þ00.
However, we can immediately construct a local invariant
from it:

φð1Þ ≔ ∂r

�
f−1h̃ð1Þ00tt

	
; ð147Þ

or more explicitly,

φð1Þ ¼ ∂rðf−1hð1Þ00tt Þ − 2f−1∂th
ð1Þ00
tr þ ∂r

�
M
r3f

hð1Þ00∘
�

þ 1

rf2
∂
2
t h

ð1Þ00∘ : ð148Þ

Our local invariants h̃ð1Þ00rr and φð1Þ are related to the

quantities ψ0 and o0 in Ref. [92] by h̃ð1Þ00rr ¼ 2ψ0

and φð1Þ ¼ 2f−1o0.
At second order, the above formulas remain valid if we

replace hð1Þ00· with hð2Þ00· þ H̃00
· . However, the invariant φð2Þ

is not manifestly local because H̃00
· depends on the non-

local quantity ζ̃tð1Þ00. It might be possible to express H̃00
· in

terms of local quantities, or to construct alternative second-
order invariants that are manifestly local, but we leave this
for interested readers to explore.

F. Gauge fixing for l= 1: Even parity

For even-parity l ¼ 1 perturbations, the only nonvan-

ishing pieces of hðnÞμν are the scalar- and vector-harmonic

modes hðnÞ1mab , hðnÞ1m∘ , and hðnÞ1maþ . Equation (130) reduces to

h̃ð1Þ1mab ¼ hð1Þ1mab þ ζ̃cð1Þ1m∂cgab þ 2∂ðaζ̃cð1Þ1mgbÞc; ð149aÞ

h̃ð1Þ1maþ ¼ hð1Þ1maþ þ ζ̃ð1Þ1ma þ r2δaZ̃
ð1Þ1m
þ ; ð149bÞ

h̃ð1Þ1m∘ ¼ hð1Þ1m∘ þ 2rrcζ̃
c
ð1Þ1m − 2r2Z̃ð1Þ1m

þ ; ð149cÞ

at first order and to the same equations at second order with
the replacement hð1Þ1m· → hð2Þ1m· þH1m

· . Our assumption of
asymptotic flatness implies

hðnÞ1mab ¼ cðnÞmab

r2
þOðr−3Þ; ð150aÞ

hðnÞ1maþ ¼ r

�
cðnÞmaþ
r2

þOðr−3Þ
�
; ð150bÞ

hðnÞ1m∘ ¼ r2
�
cðnÞm∘
r2

þOðr−3Þ
�

ð150cÞ
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for r → ∞ at fixed t, where cðnÞmab , cðnÞmaþ , and cðnÞm∘ are
constants.
A convenient set of gauge-fixing conditions is

h̃ðnÞ1maþ ¼ 0; ð151aÞ

h̃ðnÞ1m∘ ¼ 0; ð151bÞ

lim
r→∞

�
h̃ðnÞ1mtt

	
¼ 0; ð151cÞ

lim
r→∞

�
rh̃ðnÞ1mtr

	
¼ 0; ð151dÞ

lim
r→∞

�
r2h̃ðnÞ1mrr

	
¼ 0: ð151eÞ

The first of these determines ζ̃ð1Þ1ma in terms of Z̃ð1Þ1m
þ ,

ζ̃ð1Þ1ma ¼ −hð1Þ1maþ − r2δaZ̃
ð1Þ1m
þ ; ð152Þ

and the second determines a radial differential equation for

Z̃ð1Þ1m
þ ,

2r2∂r
�
rfZ̃ð1Þ1m

þ
	
¼ hð1Þ1m∘ − 2rfhð1Þ1mrþ : ð153Þ

The solution to this equation is

Z̃ð1Þ1m
þ ¼ κð1ÞmðtÞ

rf
þ 1

rf

Z
r

∞

�
hð1Þ1m∘
2r02

−
fhð1Þ1mrþ

r0

�
dr0; ð154Þ

where κ is an arbitrary function of t.
κ represents an asymptotic translation of the coordinate

system. The condition (151c) imposes ∂
2
t κ ¼ 0, which

enforces that the fixed gauge is not asymptotically accel-
erating. The condition (151d) imposes ∂tκ ¼ 0; the fixed
gauge is asymptotically stationary with respect to the

asymptotic frame of hðnÞμν . Finally, the condition (151e)
imposes

κð1Þm ¼ 1

3M

�
cð1Þm∘ − 2cð1Þmrþ

	
: ð155Þ

The nonzero invariants are now

h̃ð1Þ1mtt ¼ hð1Þ1mtt −
2M
r2

ζ̃rð1Þ1m − 2f∂tζ̃
t
ð1Þ1m; ð156aÞ

h̃ð1Þ1mtr ¼ hð1Þ1mtr þ f−1∂tζ̃
r
ð1Þ1m − f∂rζ̃

t
ð1Þ1m; ð156bÞ

h̃ð1Þ1mrr ¼ hð1Þ1mrr −
2M
r2f2

ζ̃rð1Þ1m þ 2f−1∂rζ̃
r
ð1Þ1m: ð156cÞ

Again these are nonlocal. They depend on a radial integral,
and through κð1Þm they depend explicitly on the values

hð1Þ1m· at spatial infinity. But again we can construct a set of
local invariants through differentiation:

φð1Þm
tt ¼ ∂r

h
r4∂r

�
r−1fh̃ð1Þ1mtt

	i
; ð157aÞ

φð1Þm
tr ¼ ∂r

�
rf2h̃ð1Þ1mtr

	
; ð157bÞ

φð1Þm
rr ¼ ∂r

�
r2f3h̃ð1Þ1mrr

	
: ð157cÞ

Explicitly, in terms of hð1Þ1m· ,

φð1Þm
tt ¼ 1

r2
½Mr2f∂2rh∘−Mð5r− 12MÞ∂rh∘ − r4∂2t ∂rh∘

− 2r3∂2t h∘þ 2Mr2f∂rhrþ þ 2r5f∂2t ∂rhrþ
þ 2r3ð3r− 4MÞ∂2t hrþ− 2Mð3r− 8MÞhrþ
− 2r5f∂t∂2rhtþ þ 4r3f∂thtþ− 4r4∂t∂rhtþ þ r5f∂2rhtt

þ 2r4∂rhtt− 2r3fhtt� þ
4M
r3

ð2r− 5MÞh∘; ð158aÞ

φð1Þm
tr ¼ 1

r2
½−r2f∂t∂rh∘ þM∂th∘ þ rfðr − 4MÞ∂thrþ

þ r3f2∂t∂rhrþ − r3f2∂2rhtþ − r2f∂rhtþ

þ r3f2∂rhtr þ rfðrþ 2MÞhtr� −
2M
r3

ðr − 4MÞhtþ;
ð158bÞ

φð1Þm
rr ¼ −

f
r
½r2f∂2rh∘ − ðr − 3MÞ∂rh∘ þ 2r2f∂rhrþ

þ 2ðr −MÞhrþ − r3f2∂rhrr − 2rfðrþMÞhrr�

þ 2Mf
r2

h∘: ð158cÞ

Here, for readability, we have omitted superscript “ð1Þlm”
labels on the right-hand side.
Again, at second order we replace hð1Þ1m· with

hð2Þ1m· þ H̃1m
· .

G. Gauge fixing for l= 1: Odd parity

For odd-parity l ¼ 1 perturbations, the only nonvanish-

ing piece of hðnÞμν is the vector-harmonic mode hðnÞ1ma− . At
first order, Eq. (130) reduces to

h̃ð1Þ1ma− ¼ hð1Þ1ma− þ r2δaZ̃ð1Þ1m
− : ð159Þ

Our assumption of asymptotic flatness at spatial infinity
implies the falloff condition

hðnÞ1ma− ¼ r

�
cðnÞa−

r2
þOðr−3Þ

�
ð160Þ

for some t-independent constants cðnÞa− .
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We impose conditions

h̃ðnÞ1mr− ¼ 0; ð161aÞ

lim
r→∞

�
h̃ðnÞ1mt−

	
¼ 0: ð161bÞ

The first implies

Z̃ð1Þ1m
− ¼ ϖð1ÞmðtÞ −

Z
r

∞

hð1Þ1mr−

r02
dr0; ð162Þ

and the second implies

ϖð1Þm ¼ ϖð1Þm
0 ð163Þ

for some constant ϖð1Þm
0 . This constant represents the

rotational Killing vector of the background, and once again

we are unable to determine it through conditions on h̃ð1Þμν .
The nonzero invariant component is

h̃ð1Þ1mt− ¼ hð1Þ1mt− þ r2∂tZ̃ð1Þ1m
− : ð164Þ

This is a nonlocal invariant, but we can construct a local
invariant from it:

φð1Þm
− ≔ ∂r

�
r−2h̃ð1Þ1mt−

	
: ð165Þ

Explicitly,

φð1Þm
− ¼ ∂rðr−2hð1Þ1mt− Þ − ∂tðr−2hð1Þ1mr− Þ: ð166Þ

This local invariant is related to the quantityW1 in Ref. [92]
by φð1Þm

− ¼ −W1=r4.

At second order, we replace hð1Þ1ma− with hð2Þ1ma− þ H̃1m
a− in

these formulas.

H. Residual Killing freedom and comments
on gauge fixing

We have now fully fixed the gauge freedom at first and
second order, up to the Killing vectors represented by the

constants ϱð1Þ0 and ϖð1Þm
0 in Eqs. (144) and (162). To fix

those remaining constants, we can impose conditions on
the stress-energy tensor.
We decompose ξ̃μð1Þ into the Killing and non-Killing

pieces, denoting the former by Kμ
ðtÞ (for the timelike Killing

vector) and Kμ (for the rotational Killing vector), and

denoting the latter by ξ̂μð1Þ. The invariant T̃ð2Þ
μν defined in

Eq. (132b) is then

T̃ð2Þ
μν ¼ Tð2Þ

μν þ Kα
ðtÞ∂αT

ð1Þ
μν þ LKT

ð1Þ
μν þ Lξ̂ð1ÞT

ð1Þ
μν : ð167Þ

Imposing conditions on T̃ð2Þ
μν allows us to rearrange this to

obtain equations for the constants in Kμ
ðtÞ and Kμ.

The full list of now fully fixed invariants is (135), (143),
(146), (156), and (164).
Having now completed our gauge-fixing procedure, we

consider its merits relative to the obvious alternative:
simply adopting a convenient gauge and solving the
perturbative Einstein equations in that gauge. We first
enumerate some merits of the gauge-fixing scheme.
(1) It fully elucidates and isolates the gauge-invariant

degrees of freedom in the metric perturbation. By
removing all gauge degrees of freedom, we have
reduced the metric perturbation to the set of invariant

fields h̃ðnÞ00tt and h̃ðnÞ00rr for l ¼ 0; h̃ðnÞ1mab and h̃ðnÞ1mt−

for l ¼ 1; and h̃ðnÞlmab , h̃ðnÞlma− , and h̃ðnÞlm∘ for l > 1.
(2) Although the invariants are, in general, nonlocal

functionals of the metric perturbation, the method
also provides a simple recipe for deriving local
invariants, at least at first order in perturbation
theory. It might be possible to write the field
equations entirely in terms of these local invariants
(although we leave that possibility unexplored).

(3) Even if we wish to work with the gauge-dependent
metric perturbations and choose some convenient
gauge, it can be expedient to derive the field
equations for the invariant variables. From them,
field equations for the gauge-dependent metric
perturbations can be obtained simply by substituting
the definitions of h̃ðnÞlm· in terms of hðnÞlm· .

Contrast this with a clear disadvantage:
(1) Writing the Einstein equations in terms of the

invariant metric perturbation components is equiv-
alent to simply adopting the fixed gauge as one’s
working gauge. This might very well be an un-
fortunate choice, as it is often useful to choose a
gauge that is well adapted to one’s particular
problem.

Note that this last point does not mean that working in a
convenient gauge is always equivalent to working in some
fully fixed gauge. If one works in a gauge with residual
gauge freedom, such as the Lorenz gauge, then the residual
freedom is eliminated through a choice of boundary
conditions rather than at the level of the field equations.
In this paper, part of our motivation for presenting a

gauge-fixing formalism is to remain in the tradition of MP.
However, we recognize the merits of both approaches and
therefore provide field equations both for invariant varia-
bles and for raw, gauge-dependent metric perturbations.

VI. MODE DECOMPOSITION OF THE FIRST-
AND SECOND-ORDER EINSTEIN EQUATIONS

Having assembled the necessary tools, we now apply
them to the Einstein field equations (16) and (17).
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Sections VI A and VI B present the harmonic expansions of
the quantities appearing in the field equations, relegating
lengthy expressions to Appendixes B and D. Section VI D
then summarizes the field equations in various forms, and
Sec. VI E presents the mode-decomposed conservation
equations that constrain the field equations. The special
case of the field equations for l ¼ 0; 1 is discussed in
Appendix E.
We decompose the quantities in Eqs. (16) and (17)

following the steps outlined above Eq. (125). In the body of
the paper we present mode-decomposed formulas for the
linear quantities Eμν½h� and F μν½h� and the quadratic
quantities Aμν½h�, Bμν½h�, and Cμν½h�; the companion pack-
age PerturbationEquations includes also the decompositions of
the field equations in the form (22) and (23).
We present our results in terms of the invariant fields

h̃ðnÞμν . However, in PerturbationEquations we also provide the raw
results, without the gauge-fixing procedure. As mentioned
in the Introduction, to the best of our knowledge, this is the
first time a complete mode decomposition has been
presented for the second-order Einstein equations, with
arbitrary first-order mode content and in an arbitrary gauge.

A. Linear curvature terms

Equation (9) expresses the linearized Ricci tensor
δRμν½h� in terms of the quantities Eμν½h� and F μν½h� defined
in Eqs. (11) and (12). The 2þ 2D decomposition of those
quantities is given in Eqs. (B1) and (B2). Substituting
the mode expansion (113), we obtain the modes Elm

· ½hlm· �
and F lm

· ½hlm· �. We then make the replacement hμν → h̃μν,
with h̃lm� ¼ 0 ¼ h̃lmaþ.
The results are

Elm
ab ¼ □M2 h̃lmab þ 4M

r5
gab

�
2r2h̃lm• − h̃lm∘

	
−

4

r2
h̃lmcðarbÞr

c

þ 4

r4
h̃lm∘ rarb −

1

r2
h̃lmab

�
λ2l;1 þ

4M
r

�
þ 2

r
rcδch̃

lm
ab ;

ð168aÞ

Elm
aþ ¼ −

2

r3
rah̃

lm∘ þ 2

r
h̃lmab r

b; ð168bÞ

Elm
a− ¼ □M2 h̃lma− −

1

r2
h̃lma−

�
λ2l;1 −

2M
r

�
−

4

r2
h̃lmb−rar

b;

ð168cÞ

Elm∘ ¼□M2 h̃lm∘ −
λ21
r2
h̃lm∘ −

4M
r

h̃lm• þ2h̃lmab r
arb−

2

r
raδah̃

lm∘ ;

ð168dÞ

Elm
� ¼ 4

r
rah̃lma�; ð168eÞ

where

□M2 ≔ gabδaδb; ð169Þ

and

F lm
ab ¼ −2δðaδch̃lmbÞc þ 2δaδbh̃

lm
• þ 2

r2
δaδbh̃

lm∘ −
4

r
rcδðah̃lmbÞc

−
2

r3
rðaδbÞh̃lm∘ −

4M
r3

h̃lmab þ 4

r2
rcrðah̃lmbÞc; ð170aÞ

F lm
aþ ¼ −δbh̃lmab þ 2δah̃

lm
• þ 1

r2
δah̃

lm∘ −
2

r
rah̃

lm
• −

2

r
rbh̃lmab ;

ð170bÞ

F lm
a− ¼ −δaδbh̃lmb− þ 2

r
raδbh̃

lm
b− −

2

r
rbδah̃

lm
b− −

2M
r3

h̃lma−

þ 6

r2
rarbh̃

lm
b− ; ð170cÞ

F lm∘ ¼ −2rraδbh̃lmab þ 2rraδah̃
lm
• − 4h̃lmab r

arb − λ2l;1h̃
lm
•

þ 2

r
raδah̃

lm∘ ; ð170dÞ

F lmþ ¼ 2h̃lm• ; ð170eÞ

F lm
− ¼ −2δah̃lma− −

4

r
rah̃lma− : ð170fÞ

Here we have written the expressions for a generic sym-

metric tensor h̃μν, which can be either h̃ð1Þμν or h̃ð2Þμν .
At first order, these expressions are valid in all gauges

since (i) they are valid in at least one gauge (the gauge in

which hð1Þμν ¼ h̃ð1Þμν ), and (ii) they express the invariant
quantity δRμν½hð1Þ� in terms of invariant fields. If desired,

we can express these quantities in terms of hð1Þμν in any
gauge by substituting the explicit expressions (135), (143),

(146), (156), and (164) for h̃ð1Þμν in terms of hð1Þμν .
Alternatively, we can solve the field equations directly
for the invariant fields.
At second order, δRμν½hð2Þ� is not invariant, and the above

expressions are valid only in the gauge for which

hð2Þμν ¼ h̃ð2Þμν . However, the second-order field equation (17),
taken as a whole, is invariant, meaning it will remain

valid in all gauges after the replacements hðnÞμν → h̃ðnÞμν and

Tð2Þ
μν → T̃ð2Þ

μν .

B. Quadratic curvature terms

Equation (10) expresses the second-order Ricci tensor
δ2Rμν½h� in terms of the quantitiesAμν½h�, Bμν½h�, and Cμν½h�
defined in Eqs. (13)–(15). The 2þ 2D decomposition of
those quantities is given in Eqs. (B3)–(B5). Substituting the
mode expansion (113), and following the same steps that
led to Eq. (125), for Aμν we obtain
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Alm
ab ¼

X
l0m0l00m00
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0A

l0m0s0l00m00−s0
ab ; ð171aÞ

Alm
a� ¼

X
l0m0l00m00
s0¼1;2

λl0;s0λl00;1−s0

λl;1
Clm1
l0m0s0l00m00;1−s0A

l0m0s0l00m00;1−s0
a� ;

ð171bÞ

Alm∘ ¼
X

l0m0l00m00
s0¼0;1;2

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0A

l0m0s0l00m00−s0∘ ; ð171cÞ

Alm
� ¼

X
l0m0l00m00
s0¼1;2

λl0;s0λl00;2−s0

λl;2
Clm2
l0m0s0l00m00;2−s0A

l0m0s0l00m00;2−s0
� ;

ð171dÞ

where the quantities Al0m0s0l00m00s00
· are made up of products

of hð1Þl0m0
· and hð1Þl00m00

· . We display these quantities in

Eq. (D3) in terms of the invariants h̃ð1Þμν . If Aμν is calculated

in a generic gauge in terms of hð1Þμν , then s0max in the above
sums is increased by 1 because of the involvement of the

tensor modes hð1Þl
0m0

� and hð1Þl
00m00

� ; in the invariant form of
the field equations, those higher-spin terms appear instead
on the left-hand side of the field equations, hidden

within h̃ð2Þμν .
Similarly, Blm

· and Clm· are given by the sums

Blm
ab ¼

X
l0m0l00m00
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0B

l0m0s0l00m00−s0
ab ; ð172aÞ

Blm
a� ¼

X
l0m0l00m00
s0¼1;2

λl0;s0λl00;1−s0

λl;1
Clm1
l0m0s0l00m00;1−s0B

l0m0s0l00m00;1−s0
a� ;

ð172bÞ

Blm∘ ¼
X

l0m0l00m00
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0B

l0m0s0l00m00−s0∘ ; ð172cÞ

Blm
� ¼

X
l0m0l00m00
s0¼1;2

λl0;s0λl00;2−s0

λl;2
Clm2
l0m0s0l00m00;2−s0B

l0m0s0l00m00;2−s0
� ;

ð172dÞ

Clmab ¼
X

l0m0l00m00
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0C

l0m0s0l00m00−s0
ab ; ð173aÞ

Clma� ¼
X

l0m0l00m00
s0¼1

λl0;s0λl00;1−s0

λl;1
Clm1
l0m0s0l00m00;1−s0C

l0m0s0l00m00;1−s0
a� ;

ð173bÞ

Clm∘ ¼
X

l0m0l00m00
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00−s0C

l0m0s0l00m00−s0∘ ; ð173cÞ

Clm� ¼
X

l0m0l00m00
s0¼1;2

λl0;s0λl00;2−s0

λl;2
Clm2
l0m0s0l00m00;2−s0C

l0m0s0l00m00;2−s0
� ;

ð173dÞ

where the quantities Bl0m0s0l00m00s00
· and Cl

0m0s0l00m00s00
· are made

up of products of hð1Þl0m0
· and hð1Þl00m00

· . We display these
quantities in Eqs. (D4) and (D5) in terms of the invariants

h̃ð1Þμν . In all cases, the sums run over the restricted range of
mode numbers displayed in Eq. (127).

C. Stress-energy terms

The stress-energy terms in the field equations (26)
are more straightforwardly decomposed. In the first-order
equation we have

T̃ ð1Þlm
· ¼ T̄ð1Þlm

· ; ð174Þ

where T̄ð1Þlm
· are related to Tð1Þlm

· by Eq. (116). In the
second-order equation we have the harmonic modes of

the invariant T̃ ð2Þ
μν ¼ T ð2Þ

μν þ Lξ̃ð1Þ T̄
ð1Þ
μν . Expressed in terms of

the invariants T̃ðnÞ
μν and h̃ð1Þμν , this quantity reads

T̃ ð2Þ
μν ¼ T̃ð2Þ

μν −
1

2
gμνgαβT̃

ð2Þ
αβ þ 1

2

�
gμνh̃

ð1Þ
αβ − h̃ð1Þμν gαβ

�
Tαβ
ð1Þ:

ð175Þ

Its mode expansion is given in Eq. (D6).

D. Summary of the decomposed field equations

1. Field equations in terms of invariant variables

In summary, we can write our covariant, gauge-invariant,
tensor-harmonic decomposition of the Einstein equa-
tions (16) and (17) as

δRlm
· ½h̃ð1Þlm· � ¼ 8πT ð1Þlm

· ; ð176aÞ

δRlm
· ½h̃ð2Þlm· � ¼ 8πT̃ ð2Þlm

· − δ2Rlm
· ½h̃ð1Þ�; ð176bÞ

using the shorthand introduced below Eq. (107). The mode-
decomposed operator on the left-hand side is

δRlm
· ½h̃ðnÞlm· � ¼ −

1

2
ðElm

· ½h̃ðnÞlm· � þ F lm
· ½h̃ðnÞlm· �Þ; ð177Þ

with Elm
· ½h̃ðnÞlm· � and F lm

· ½h̃ðnÞlm· � as given in Eqs. (168)
and (170).
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The stress-energy source terms on the right-hand side are
given in Eqs. (174) and (D6). The quadratic source term is

δ2Rlm
· ½h̃ð1Þ� ¼ 1

2
ðAlm

· ½h̃ð1Þ� þ Blm
· ½h̃ð1Þ� þ Clm· ½h̃ð1Þ�Þ;

ð178Þ

where the quantitiesAlm
· , Blm

· , and Clm· are infinite sums of

products of modes of h̃ð1Þμν . These sums take the form (171)
for all three calligraphic quantities (with differing s0max),
where (i) the sums run over the range in Eq. (127),
(ii) Clms

l0m0s0l00m00s00 is given in Eq. (93), and (iii) (as an
example) the quadratic coupling functions Al0m0s0l00m00s00

·
are given in Eq. (D3).
The even- and odd-parity sectors of these field equations

decouple at each order. This is because on the left-hand side
of the field equations, the even-parity terms δRlm

ab , δR
lm∘ ,

δRlm
aþ, and δRlmþ only depend on the even-parity perturba-

tions h̃lmab and h̃lm∘ ; and odd-parity terms δRlm
a− and δRlm

−
only depend on the odd-parity perturbations h̃lma− .
However, due to the quadratic source term, the even- and

odd-parity first-order fields do become coupled in the
second-order field equation (176b). The even-parity fields

h̃ð2Þlmab and h̃ð2Þlm∘ are sourced by “even × even” products

(h̃ð1Þl
0m0

ab and h̃ð1Þl
0m0

∘ multiplying h̃ð1Þl
00m00

ab and h̃ð1Þl
00m00

∘ ) as

well as by “odd × odd” products (h̃ð1Þl
0m0

a− multiplying

h̃ð1Þl
00m00

a− ). The odd-parity fields h̃ð2Þlma− are sourced by “even

× odd” products (h̃ð1Þl
0m0

ab and h̃ð1Þl
0m0

∘ multiplying h̃ð1Þl
00m00

a− ).
Similarly, the lm modes decouple from one another at

each order, but the first-order modes couple to one another
in the second-order source. A second-order mode h̃ð2Þlm·
with any given l value is generically sourced by all first-
order modes h̃ð1Þl

0m0
· from l0 ¼ 0 to ∞.

The modes of the trace-reversed field equations (27) can
be obtained from these modes using the relations (116).

2. Field equations in a generic gauge

If we do not make the replacement hðnÞlm· → h̃ðnÞlm· , then
we arrive at the raw field equations

δRlm
· ½hðnÞlm· � ¼ S̄ðnÞlm· ; ð179Þ

which have all the same features as Eq. (176) but are
substantially more complicated due to the nonvanishing

hðnÞlma� and hðnÞlm� . The sources are

S̄ð1Þlm· ¼ 8πT ð1Þlm
· ¼ 8πT̄ð1Þlm

· ; ð180aÞ

S̄ð2Þlm· ¼ 8πT ð2Þlm
· − δ2Rlm

· ½hð1Þ�: ð180bÞ

We can also obtain these equations by starting from
Eq. (176) and substituting the expressions (135), (143),

(146), (156), and (164) for h̃ðnÞlm· in terms of hðnÞlm· .
Additional manipulations (involving the Bianchi identities,
for example) are required to put the result in precisely the
form of Eq. (179), but the equations are necessarily
equivalent.

3. Field equations in the Lorenz gauge

In the Lorenz gauge, where the fieldsF μν and Cμν vanish,
the field equations (179) reduce to

Elm
· ½hðnÞlm· � ¼ −2S̄ðnÞlm· ; ð181Þ

with the same first-order source S̄ð1Þlm· ¼ 8πT̄ð1Þlm
· and

with

S̄ð2Þlm· ¼ 8πT ð2Þlm
· −

1

2

�
Alm

· ½hð1Þ� þ Blm
· ½hð1Þ�

	
: ð182Þ

The Lorenz-gauge field equations (at first order) in the
MP harmonic basis are described in detail in Ref. [93].
Most self-force calculations in the Lorenz gauge have
instead been in the closely related Barack-Lousto-Sago
harmonic basis; see Table II and Appendix F.

E. Conservation equations

Because of stress-energy conservation, the source terms
SðnÞlm· in the field equations (and therefore the field
equations themselves) are not all independent. They are
related by the mode decomposition of the conservation
equation (34), which divides into the three equations

δbSlmab ¼ 1

r3
ðλ2l;1rSlmaþ þ 2raSlm∘ − 2r2rbSlmab Þ; ð183aÞ

δbSlmbþ ¼ 1

2r2
ðμ2lSlmþ − 4rrbSlmbþ − 2Slm∘ Þ; ð183bÞ

δbSlmb− ¼ 1

2r2
ðμ2lSlm− − 4rrbSlmb− Þ: ð183cÞ

The quantity μ2l appearing here is defined in Eq. (85).

VII. MASTER SCALARS AND METRIC
RECONSTRUCTION

As an alternative to directly solving the Einstein equa-
tions, a common approach in black hole perturbation theory
is to instead solve one or more scalar field equations for
master scalar variables. The metric perturbation is then
reconstructed from the master scalar(s).
Here we summarize the formulation of this approach at

second order. We specifically describe the most common
variants of the approach: the RWZ formalism and the
Teukolsky formalism [94,95]. Both of these are intimately
related to the Weyl scalars of the perturbed spacetime,
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although the RWZ formalism is less often described in
those terms.
The formalisms in this section are broadly identical at

first and second order, with the only difference being the
source terms. We therefore omit the label n that indicates a
quantity’s perturbative order. However, we do emphasize
some particular features that distinguish the second-order
problem from the first-order one.

A. Regge-Wheeler-Zerilli formalism

For the RWZ formalism we adopt the conventions of MP
and Ref. [96]. Our treatment at second order differs from
that of Brizuela et al. [48] through our choice of master

scalars and our inclusion of low (l ¼ 0; 1) modes in hð1Þμν .

1. Master functions

The RWZ formalism has two master functions, one for
even-parity perturbations and one for odd-parity perturba-
tions, each of them only defined for l > 1. We specifically
adopt the Zerilli-Moncrief function Ψlm

even [78,97] in the
even-parity sector and the Cunningham-Price-Moncrief
function Ψlm

odd [98] in the odd-parity sector, with MP’s
choice of normalizations. They are closely related to the
real and imaginary parts, respectively, of the linearized
Weyl scalar δψ2 [99].
In terms of our invariant metric perturbations, these

functions are

Ψlm
even ¼

2r
ðλl;1Þ2

�
r−2h̃lm∘ þ 2

Λl

�
rarbh̃lmab −rraδaðr−2h̃lm∘ Þ

��

ð184Þ

and

Ψlm
odd ¼

2r
μ2l

ϵab
�
δah̃

lm
b− −

2

r
rah̃

lm
b−

�
; ð185Þ

with

Λl ≔ μ2l þ
6M
r

: ð186Þ

The even-parity master function satisfies the 2D scalar
wave equation

ð□M2 − Vl
evenÞΨlm

even ¼ Slmeven; ð187Þ

with the potential

Vl
even ¼

1

Λ2
l

�
μ4l
r2

�
λ2l;1 þ

6M
r

�
þ 36M2

r4

�
μ2l þ

2M
r

��
:

ð188Þ

The source term is constructed from the source in the
Einstein equation according to

Slmeven ¼
8

Λl
raS̃lmaþ −

2

r
S̃lmþ þ 2

λ2l;1Λl

�
24M
Λl

rarbS̃lmab

− 4r2raδaS̃
lm
• þ 4f

r
S̃lm∘ þ 2r

Λl

�
μ2lðμ2l − 2Þ

þ 12M
r

ðμ2l − 3Þ þ 84M2

r2

�
S̃lm•



: ð189Þ

The odd-parity master function likewise satisfies a 2D
scalar wave equation,

ð□M2 − Vl
oddÞΨlm

odd ¼ Slmodd; ð190Þ

with the potential

Vl
odd ¼

lðlþ 1Þ
r2

−
6M
r3

ð191Þ

and a source term

Slmodd ¼ −
4r
μ2l

ϵabδaS̃
lm
b− : ð192Þ

2. Metric reconstruction

From Ψlm
even and Ψlm

odd, we can reconstruct the invariants
h̃lm· for l > 1. They are given by [96]

h̃lmtt ¼ f2h̃lmrr þ 2fS̃lmþ ; ð193aÞ

h̃lmtr ¼ r∂t∂rΨlm
evenþ rBl∂tΨlm

evenþ
2r2

λ2l;1

�
S̃lmtr −

2r
Λlf

∂tS̃
lm
tt

�
;

ð193bÞ

h̃lmrr ¼ 1

4r2f2

�
Λl

�
λ2l;1rΨlm

even−2h̃lm∘ Þþ4r3raδaðr−2h̃lm∘
��

;

ð193cÞ

h̃lma− ¼ 1

2
ϵa

bδbðrΨlm
oddÞ þ

2r2

μ2l
S̃lma− ; ð193dÞ

h̃lm∘ ¼ r2raδaΨlm
even þ r2AlΨlm

even −
4r4

λ2l;1Λl
S̃lmtt ; ð193eÞ

where

Al ≔
1

2rΛl

�
λ2l;2 þ

6M
r

�
μ2l þ

4M
r

��
; ð194Þ

Bl ≔
1

rfΛl

�
μ2l

�
1 −

3M
r

�
−
6M2

r2

�
: ð195Þ
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As pointed out by Brizuela et al. [48], this metric
reconstruction is problematic at large r. For a linear metric
perturbation that is geometrically asymptotically flat, the

quantities h̃ð1Þμν blow up at large r. If the second-order source
is constructed from those quantities, it is also asymptoti-
cally singular. Dealing with such a source is problematic
numerically but also makes the choice of physical, retarded
boundary conditions unclear. We can trace the emergence

of this poor behavior starting from Ψð1Þlm
even . If the first-order

source is spatially bounded and we impose retarded
boundary conditions, then an outgoing mode with fre-

quency ω behaves as Ψð1Þlm
even ∼ e−iωu at large r. The

reconstruction formula (193) then implies h̃ð1Þlm∘ ∼
r2e−iωu and h̃ð1Þlmab ∼ re−iωu; this contrasts with the natural

behavior hð1Þlm∘ ∼ re−iωu and hð1Þlmab ∼ r−1e−iωu in a well-
behaved gauge. The second-order Einstein tensor then
behaves as δ2Gμν½h̃ð1Þ; h̃ð1Þ� ∼ r2, and the source (189)
constructed from it blows up even more rapidly.
One possible route around this is to work with alternative

master variables at second order. Another route, suggested
by an analysis in Ref. [100], is to work with alternative

variables at first order (or equivalently, work with hð1Þμν in a

particular, nice gauge, rather than working with h̃ð1Þμν ). We
defer further discussion of asymptotics to the Conclusion
and to Ref. [101], where we will provide a thorough
treatment of the problem.

B. Teukolsky formalism

For the Teukolsky formalism we follow the conventions
of Ref. [21]; most equations in this section are mode-
decomposed, Schwarzschild specializations of equations in
that reference. Our treatment also incorporates recent work
on nonvacuum metric reconstruction by Green, Hollands,
and Zimmerman (GHZ) [102]. Although the overarching
formalism here was detailed in our earlier Ref. [100], this is
the first time (to our knowledge) that a second-order
Teukolsky equation has appeared in mode-decomposed
form with generic first-order mode content.

1. Master scalars

We first introduce some additional tools from Geroch,
Held, and Penrose (GHP) [72]. In analogy with spin-
weighted quantities, a tensor v is said to have boost weight
b if it transforms as v → γbv under the boost ðla; naÞ →
ðγla; γ−1naÞ. In practice, this means v’s boost weight is the
number of factors of la appearing in it minus the number of
factors of na appearing in it. We next define derivatives Þ
and Þ0 that act on boost-weighted tensors just as ð and ð0 act
on spin-weighted ones, meaning

Þv ¼ ðlaδa − bδalaÞv; ð196aÞ

Þ0v ¼ ðnaδa þ bδanaÞv: ð196bÞ

Here and below we simplify definitions using the GHP
prime operation:

0∶ mA ↔ mA�; la ↔ na: ð197Þ

Þ raises the boost weight by 1, while Þ0 lowers it by 1. They
satisfy the Leibniz rule [e.g., ÞðuvÞ ¼ vÞuþ uÞv even for
u and v of differing boost weights], and Eq. (60) ensures
they annihilate la and na:

Þla ¼ Þ0la ¼ Þna ¼ Þ0na ¼ 0: ð198Þ

They satisfy the commutation relation

ðÞ0Þ − ÞÞ0Þ ¼ −ϵabδaδb −
2Mb
r3

; ð199Þ

and the anticommutation relation

ðÞ0Þþ ÞÞ0Þ ¼ −□M2 − 2b2ðδalaÞðδbnbÞ þ b½2ðδbnbÞlaδa
− 2ðδblbÞnaδa þ ðlaδaδbnbÞ − ðnaδaδblbÞ�:

ð200Þ
They commute with ð and ð0 and with all other background
quantities on S2:

ÞΩAB ¼ Þ0ΩAB ¼ ½Þ; DA� ¼ ½Þ0; DA� ¼ 0: ð201Þ

In the Kinnersley basis in retarded coordinates ðu; rÞ,
Þ ¼ ∂r when acting on a scalar; in the Hartle-Hawking
basis in advanced coordinates ðv; rÞ, Þ0 ¼ −∂r when acting
on a scalar.
The field variable in this formalism can be the linear

perturbation of either of the Weyl scalars ψ0 or ψ4,

δψ0½h� ≔ δCαμβν½h�lαmμlβmν; ð202aÞ

δψ4½h� ≔ δCαμβν½h�nαmμ�nβmν�; ð202bÞ

where δCαμβν½h� is the linearized Weyl tensor. These vari-
ables are related by the GHP prime operation δψ4 ¼ δψ 0

0.
At first order, they are the first-order perturbations of

the Weyl scalars, ψ ð1Þ
0 ¼ δψ0½hð1Þ� and ψ ð1Þ

4 ¼ δψ4½hð1Þ�.
However, at second order they form only part of the
second-order perturbations of the Weyl scalars,

ψ ð2Þ
0 ¼ δψ0½hð2Þ� þ δ2ψ0½hð1Þ; eð1Þ�; ð203aÞ

ψ ð2Þ
4 ¼ δψ4½hð2Þ� þ δ2ψ4½hð1Þ; eð1Þ�: ð203bÞ

Here eαð1Þ represents the first-order perturbations of the

tetrad legs, flαð1Þ; nαð1Þ; mα
ð1Þ; m

α�
ð1Þg. The quantities δ2ψ0 and
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δ2ψ4 are quadratic in the tetrad perturbations and in h
ð1Þ
αβ . In

Ref. [100], we discuss some of the merits of working with

δψ0½hð2Þ� or δψ4½hð2Þ� rather than with ψ ð2Þ
0 or ψ ð2Þ

4 .
For easy reference in the following sections, it will be

convenient to write the four-dimensional Teukolsky equa-
tions prior to mode decomposition. Written in compact
form, they read

Ôδψ0 ¼ ŜαβSαβ; ð204aÞ

Ô0δψ4 ¼ Ŝ0αβSαβ; ð204bÞ

where we use a hat to denote linear differential operators,
Sαβ is the source in the Einstein equation δGαβ½h� ¼ Sαβ,
and we again use the GHP prime to show the manifest
symmetry between the two equations. The operators Ô and
Ŝαβ are given explicitly in four-dimensional form in
Eqs. (58) and (59) of Ref. [21] (with the conversions
in Table III and τ ¼ τ0 ¼ 0 in Schwarzschild). When
acting on δψ0 and δψ4, respectively, these reduce in the
Schwarzschild case to

Ô ¼ ðÞ − 5ρÞðÞ0 − ρ0Þ − 1

2r2
ðð0 þ 3M

r3
; ð205aÞ

Ô0 ¼ ðÞ0 − 5ρ0ÞðÞ − ρÞ − 1

2r2
ð0ðþ 3M

r3
; ð205bÞ

where we have introduced

ρ ¼ −
rala

r
and ρ0 ¼ −

rana

r
: ð206Þ

We will also refer to their adjoints, Ô† and Ŝ†αβ and their
GHP primes, adopting Wald’s definitionZ

AÛBdV ¼
Z

ðÛ†AÞBdV ð207Þ

for any linear differential operator Û and tensor test fields A
and B of appropriate ranks. The operator Ô† is related
to Ô0 by

Ô† ¼ r4Ô0r−4; ð208Þ

and Ŝ†αβ is given explicitly in Eq. (60) of Ref. [21] (again
with the conversions in Table III and τ ¼ τ0 ¼ 0).
Expanded in spin-weighted harmonics, δψ0 and δψ4 read

δψ0 ¼
X
lm

δψlm
0 2Ylm; ð209aÞ

δψ4 ¼
X
lm

δψlm
4 −2Ylm; ð209bÞ

with coefficients

δψlm
0 ¼ −

1

4r2

h
λl;2hlmll þ 23=2μlrðÞ − ρÞhlmlm

þ 2r2ðÞ − ρÞ2hlmmm

i
ð210Þ

and

δψlm
4 ¼ −

1

4r2

h
λl;2hlmnn − 23=2μlrðÞ0 − ρ0Þhlmnm�

þ 2r2ðÞ0 − ρ0Þ2hlmm�m�

i
: ð211Þ

Note that the formulas for δψlm
0 and δψlm

4 differ only by an
application of the GHP prime operation and a change in
sign of the term proportional to μl; the latter change stems
from the sign difference between Eqs. (88b) and (88c).
This pattern carries over to the equations for the source
modes below.
At the level of these lm modes, the Teukolsky equa-

tions (204) become

�
ðÞ − 5ρÞðÞ0 − ρ0Þ þ μ2l

2r2
þ 3M

r3

�
δψlm

0 ¼ Slm0 ; ð212aÞ

�
ðÞ0 − 5ρ0ÞðÞ − ρÞ þ μ2l

2r2
þ 3M

r3

�
δψlm

4 ¼ Slm4 ; ð212bÞ

with source terms

Slm0 ¼ −
λl;2
4r2

Slmll −
1ffiffiffi
2

p
r
μlðÞ − 3ρÞSlmlm

−
1

2
ðÞ − 5ρÞðÞ − ρÞSlmmm; ð213aÞ

Slm4 ¼ −
λl;2
4r2

Slmnn þ 1ffiffiffi
2

p
r
μlðÞ0 − 3ρ0ÞSlmnm�

−
1

2
ðÞ0 − 5ρ0ÞðÞ0 − ρ0ÞSlmm�m� : ð213bÞ

2. Green-Hollands-Zimmerman metric reconstruction

Metric reconstruction from δψ0 or δψ4 has traditionally
followed a method due to Chrzanowski, Cohen, and
Kegeles [103–105], neatly explained by Wald [106].
That method was specialized to homogeneous solutions
with Sαβ ¼ 0, but it has recently been extended to generic
sourced perturbations by GHZ.
The method writes the metric perturbation in a radiation

gauge in terms of a Hertz potential Φ and a “corrector
tensor” xαβ. We first focus on reconstruction in the IRG, in
which case the perturbation reads

hIRGαβ ¼ 2Re
�
Ŝ†αβΦIRG

	
þ xIRGαβ : ð214Þ
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The traditional, source-free reconstruction method uses
only the first term; the corrector tensor then corrects for
the failure of that method in the presence of sources.
For convenience below, we define

kIRGαβ ≔ 2Re
�
Ŝ†αβΦIRG

	
: ð215Þ

It satisfies

kIRGαβ lβ ¼ 0 ¼ kIRGαβ gαβ; ð216Þ

while xIRGαβ satisfies

xIRGαβ lβ ¼ 0 but xIRGαβ gαβ ≠ 0: ð217Þ

xIRGαβ satisfies the Einstein equation

δGαβ½xIRG�lβ ¼ Sαβlβ; ð218Þ

and it is only nonzero if Sαβlβ ≠ 0. kIRGαβ then satisfies the
remainder of the Einstein equation,

δGαβ½kIRG� ¼ Sαβ − δGαβ½xIRG� ð219Þ

(implying δGαβ½kIRG�lβ ¼ 0). Unlike xIRGαβ , kIRGαβ is nonzero
so long as δψ0 is nonzero, even if Sαβ vanishes. The Hertz
potential itself satisfies the adjoint Teukolsky equa-
tion Ô†ΦIRG ¼ ηIRG, where the source ηIRG vanishes if
Sαβ ¼ 0, but we will not require ηIRG explicitly.
At the level of modes, the nonzero components of kIRGαβ

are given by

klmnn ¼ −
λl;2
4r2

ðΦlm
IRG þ Φ̄lm

IRGÞ; ð220aÞ

klmnm� ¼ μl
2

ffiffiffi
2

p
r
ðÞþ 2ρÞΦlm

IRG; ð220bÞ

klmm�m� ¼ −
1

2
ðÞ − ρÞðÞþ 3ρÞΦlm

IRG ð220cÞ

together with

klmnm ¼ ð−1Þmþ1ðkl;−mnm� Þ�; ð221aÞ

klmmm ¼ ð−1Þmðkl;−mm�m�Þ�: ð221bÞ

We suppress the IRG label on the left-hand side to avoid
overcrowded notation. The modes of the Hertz potential
can be found by solving the inversion relation

1

4
Þ4Φ̄lm

IRG ¼ δψlm
0 : ð222Þ

Note that for the Hertz potential (and no other quantity) we
use a bar to denote the complex conjugate; modes of Φ can
be obtained from modes of Φ̄ using Eq. (111), which in this
case implies

Φlm
IRG ¼ ð−1ÞmðΦ̄l;−m

IRG Þ�: ð223Þ

Because Þ is a derivative along la, Eq. (222) is a fourth-
order ordinary differential equation along outgoing null
rays. In the Kinnersley tetrad in retarded coordinates, it
reduces to 1

4
∂
4
rΦ̄lm

IRG ¼ δψlm
0 .

Like the Hertz potential, the corrector tensor can be
obtained by solving ordinary differential equations along
outgoing null rays. The Einstein equation (218) reduces to
the following hierarchical sequence of differential equa-
tions for the nonzero components of xIRGαβ :

ρ2Þðρ−2Þxlmmm�Þ ¼ −Slmll ; ð224aÞ

Þ½ρ2Þðρ−2xlmnmÞ� ¼ −2Slmlm þ λl;1ffiffiffi
2

p
r
Þxlmmm� ; ð224bÞ

ρ2Þðρ−1xlmnn Þ ¼ −Slmln þ
�
λ2l;1
2r2

−
2M
r3

þ 2ρρ0

− 2ðρ0Þþ ρÞ0Þ þ Þ0Þ
�
xlmmm�

−
λl;1
23=2r

ðÞ − 3ρÞðxlmnm − xlmnm� Þ; ð224cÞ

together with

xlmnm� ¼ ð−1Þmþ1ðxl;−mnm Þ�; ð225Þ

again suppressing the IRG label. We again recall that
Þ ¼ ∂r in the Kinnersley tetrad in retarded coordinates.
Reconstruction in the ORG is precisely analogous. All of

its formulas can be obtained from those above by applying
the GHP prime together with μl → −μl and λl;1 → −λl;1,
beginning with the prime of Eq. (214),

hORGαβ ¼ 2ReðŜ0†αβΦORGÞ þ xORGαβ : ð226Þ

The primed analogs of Eqs. (222) and (224) are ordinary
differential equations along ingoing null rays. In this case
the differential equations simplify in the Hartle-Hawking
tetrad in ingoing null coordinates, for which Þ0 ¼ −∂r.

VIII. CONCLUSION

In this paper we have attempted a comprehensive treat-
ment of the second-order perturbative field equations in a
Schwarzschild background.
With tensor spherical harmonics defined in Eqs. (99) and

(100) and first- and second-order metric perturbations hð1Þμν
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and hð2Þμν expanded as in Eq. (113), the harmonic coefficients
hðnÞlm· satisfy the first- and second-order Einstein equa-
tions (179). Those equations apply in all gauges, but the
left-hand side of the equations, as well as the source terms
in the second-order field equation, will take different values
depending on the choice of gauge. If we specialize to the
Lorenz gauge, the field equations reduce to Eq. (181). If we
adopt gauge-invariant field variables, as defined in Sec. V
C, then the field equations instead reduce to Eq. (176).
As an alternative to directly solving the Einstein equa-

tions, one can solve master equations for scalar variables
and then reconstruct the metric perturbation. This is
described in Sec. VII A within a RWZ formalism and in
Sec. VII B within a Teukolsky formalism.
Regardless of which formulation is adopted, the essential

ingredient in each of the second-order field equations is a
coupling formula: a formula for each mode of the second-
order source as an infinite sum over products of modes of
the first-order field. In previous literature, such coupling
formulas were presented for the Regge-Wheeler and Zerilli
equations, omitting l ¼ 0; 1modes from both the first- and
second-order fields and restricting l ≥ 2 modes to the
RWZ gauge (or equivalently, adopting gauge-fixed invari-
ant RWZ variables for l ≥ 2). We have presented a number
of extensions and generalizations: (i) the sources in the
Einstein equations in “raw” form without any gauge fixing
and with arbitrary mode content, (ii) the sources in the
Einstein equations in terms of invariant fields, including
invariant l ¼ 0; 1 modes derived using a novel gauge-
fixing method, (iii) the second-order RWZ sources includ-
ing l ¼ 0; 1 first-order input modes, and (iv) the source in
the second-order Teukolsky equation in a convenient
“reduced” form. We have also, as far as possible, attempted
to cast all of these in a unified framework. Most impor-
tantly, we have created the package PerturbationEquations to
work with these sources in a variety of conventions.
A crucial question in all of these formulations is how

quickly, if at all, the coupling formulas converge. The
answer, as analyzed in Ref. [107], is that the convergence is
dictated by the smoothness of the first-order field. If the
first-order field contains a singularity, then its harmonic
modes decay slowly in a neighborhood of the singularity,
and evaluating the sum of products in the coupling
formulas becomes infeasible. This challenge is critical in
the self-force context, where the convergence becomes
arbitrarily slow at points arbitrarily close to the particle.
This has been overcome in practice using the strategy
described in Ref. [107], which requires knowledge of the
four-dimensional singularity structure. More efficient strat-
egies are likely possible.
Another important question is how well the source terms

behave at large distances and near the horizon. Poor
behavior there will represent an obstacle to numerical
integration of the field equations and difficulties in estab-
lishing physically correct boundary conditions. This has

posed a problem in most second-order calculations. As
reviewed in Sec. VII A, the RWZ metric variables are not
asymptotically flat, which causes poor behavior of the
second-order sources in the RWZ equations. This can be
ameliorated by working with modified master functions.
However, even in asymptotically well-behaved gauges,
such as the Lorenz gauge, practical implementations can
encounter nonconvergent retarded integrals [108]. This
problem has been addressed by developing post-
Minkowskian and near-horizon expansions that can be
used to derive physical boundary conditions in the Lorenz
gauge, as described in Ref. [108] and in forthcoming work.
A superior method of eliminating nonconvergent integrals,
explained in Refs. [100,101], is to work with variables
adapted to the physical light-cone structure of the perturbed
spacetime.
Follow-up papers will detail how the second-order self-

force results in Refs. [30,56–58] were obtained by combin-
ing (i) the coupling formulas derived in this paper, (ii) the
two-timescale expansion of the Lorenz-gauge field equa-
tions in Ref. [109], (iii) the strategies developed in
Refs. [107,108] to overcome slow convergence of the
coupling formulas and nonconvergence of two-timescale
retarded integrals, (iv) an extension of the “puncture
scheme” in Ref. [110], and (v) the punctures in Ref. [53].
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APPENDIX A: TRANSFORMATIONS OF ξ̃αðnÞ
AND h̃ðnÞαβ

In Sec. V C we discuss the construction of invariant

perturbations h̃ðnÞμν through a procedure of gauge fixing.
These invariants depend on vector fields ξ̃αðnÞ. Here we show

how ξ̃αðnÞ and h̃
ðnÞ
μν transform under a gauge transformation in

the case of a fully fixed gauge and in the case of an only
partially fixed gauge.
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1. Fully fixed gauge

First we review the derivation of the standard trans-
formation rules for metric perturbations, as displayed in

Eq. (37). Perturbations hðnÞμν are defined by an identification
between the background spacetime manifold and the
perturbed spacetime manifold. An identification is speci-
fied by the flow of a vector field X through the one-
parameter family of spacetimes, where ϵ is the parameter;
see Fig. 1 of Ref. [63] for an illustration. The nth-order
metric perturbation is then the nth-order term in the Taylor
expansion along this flow,

hðnÞμν ¼ 1

n!
Ln
Xgμν; ðA1Þ

evaluated on the background manifold. If we instead work

in a gauge specified by a vector field Y, then hðnÞμν is instead
1
n!L

n
Ygμν. The two quantities differ by

ΔhðnÞμν ¼ 1

n!
Ln
Ygμν −

1

n!
Ln
Xgμν: ðA2Þ

Basic manipulations of the Lie derivatives put ΔhðnÞμν in the
form (37) with the definitions

ξμð1Þ ≔ Yμ − Xμ; ðA3Þ

ξμð2Þ ≔
1

2
½X; Y�μ: ðA4Þ

Now suppose h̃ðnÞμν is the nth-order metric perturbation in

a gauge specified by a vector field Z, and hðnÞμν is in the
gauge specified by X. Then

h̃ðnÞμν ¼ hðnÞμν þ ΔX→Zh
ðnÞ
μν ; ðA5Þ

where

ΔX→Zh
ðnÞ
μν ¼ 1

n!
Ln
Zgμν −

1

n!
Ln
Xgμν: ðA6Þ

This can be written in the form (130) with definitions
analogous to (A3) and (A4):

ξ̃μð1Þ ≔ Zμ − Xμ; ðA7Þ

ξ̃μð2Þ ≔
1

2
½X; Z�μ: ðA8Þ

If hðnÞμν is instead in a gauge specified by Y, then the vectors
ξ̃μðnÞ become ξ̃μð1Þ ≔ Zμ − Yμ and ξ̃μð2Þ ≔

1
2
½Y; Z�μ. Therefore,

under the transformation from X to Y, they transform as

Δξ̃μð1Þ ≔ ðZμ − YμÞ − ðZμ − XμÞ; ðA9Þ

Δξ̃μð2Þ ≔
1

2
½Y; Z�μ − 1

2
½X; Z�μ: ðA10Þ

Expressing these in terms of ξμðnÞ and ξ̃μðnÞ, we obtain

Δξ̃μð1Þ ¼ −ξμð1Þ; ðA11Þ

Δξ̃μð2Þ ¼ −ξμð2Þ −
1

2
½ξ̃ð1Þ; ξð1Þ�μ: ðA12Þ

We now show that these transformation rules for ξ̃μðnÞ
imply the invariance of h̃ðnÞμν . Referring to the definition of

h̃ðnÞμν in Eq. (130), we see that at first order we have

Δh̃ð1Þμν ¼ Δhð1Þμν þ LΔξ̃ð1Þgμν ¼ Lξð1ÞþΔξ̃ð1Þgμν; ðA13Þ

where we used Δhð1Þμν ¼ Lξð1Þgμν. If the gauge of h̃
ð1Þ
μν is fully

fixed, then Lξð1ÞþΔξ̃ð1Þgμν trivially vanishes because in that

case Δξ̃μð1Þ ¼ −ξμð1Þ.

Again referring to the definition of h̃ðnÞμν in Eq. (130), we
see that at second order, the gauge transformation is

Δh̃ð2Þμν ¼ Δhð2Þμν þ LΔξ̃ð2Þgμν þ ΔH̃μν; ðA14Þ

where

ΔH̃μν ¼ Lξ̃ð1ÞþΔξ̃ð1Þ

�
hð1Þμν þ Δhð1Þμν þ 1

2
Lξ̃ð1ÞþΔξ̃ð1Þgμν

�

− Lξ̃ð1Þ

�
hð1Þμν þ 1

2
Lξ̃ð1Þgμν

�
: ðA15Þ

This can be manipulated into the form

Δh̃ð2Þμν ¼ Lðξð2ÞþΔξ̃ð2Þþ1
2
½ξ̃ð1Þ;ξð1Þ�Þgμν þ Lξð1ÞþΔξ̃ð1Þ h̃

ð1Þ
μν

þ 1

2
L2
ξð1ÞþΔξ̃ð1Þ

gμν þ
1

2
L½ξ̃ð1Þ−ξð1Þ;ξð1ÞþΔξ̃ð1Þ�gμν: ðA16Þ

If the gauge of h̃ðnÞμν is fully fixed, then this immediately
vanishes by virtue of Eqs. (A11) and (A12) for Δξ̃μðnÞ.

2. Partially fixed gauge

In many instances, the gauge is only partially (or
“mostly”) fixed. The most pervasive such case, discussed
in Sec. V C, is when the partially fixed gauge is specified up
to transformations generated by a Killing vector of the

background. The gauge of h̃ðnÞμν in this scenario depends on

the gauge of hðnÞμν .
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In the geometrical description from the previous section,

the vector field Z itself now depends on the gauge of hðnÞμν .
We can label it ZX in the X gauge and ZY in the Y gauge. A
short calculation leads to the following modified versions
of Eqs. (A11) and (A12):

Δξ̃μð1Þ ¼ −ξμð1Þ þ ημð1Þ; ðA17Þ

Δξ̃μð2Þ ¼ −ξμð1Þ −
1

2
½ξ̃ð1Þ; ξð1Þ�μ þ ημð2Þ þ

1

2
½ξð1Þ − ξ̃ð1Þ; ηð1Þ�μ;

ðA18Þ

where ημð1Þ ≔ Zμ
Y − Zμ

X and ημð2Þ ≔
1
2
½ZX; ZY �μ are the gen-

erators of the transformation from the gauge defined by ZX

to the gauge defined by ZY. If the gauge conditions on h̃ðnÞμν

specify Z up to an isometry of the background, then ημð1Þ
and ημð2Þ must be Killing vectors of the background.
Given these results, we can now assess the transforma-

tions of h̃ðnÞμν using Eqs. (A13) and (A16), which remain
valid in this scenario. A trivial calculation shows

Δh̃ð1Þμν ¼ Lηð1Þgμν; ðA19Þ

Δh̃ð2Þμν ¼ Lηð2Þgμν þ Lηð1Þ h̃
ð1Þ
μν þ 1

2
L2
ηð1Þgμν: ðA20Þ

This is simply the expected transformation from the ZX
gauge to the ZY gauge. If ημðnÞ are Killing vectors of the

background, then

Δh̃ð1Þμν ¼ 0 ðA21Þ

because Lηð1Þgμν ¼ 0. Therefore h̃ð1Þμν is invariant even if the
gauge fixing is only specified up to background Killing
symmetries. On the other hand, Eq. (A16) reduces to

Δh̃ð2Þμν ¼ Lηð1Þ h̃
ð1Þ
μν : ðA22Þ

Here we see that h̃ð2Þμν is only invariant if (i) the first-order
metric perturbation possesses the same Killing symmetries

as gμν and (ii) the gauge of h̃ð1Þμν respects that symmetry.
The same considerations apply for more generic unfixed

low (l ¼ 0, 1) modes. If we fix the gauge of the l > 1

modes of h̃ð1Þμν but leave the gauge of the low modes entirely
unfixed, then ημðnÞ are generic l ¼ 0, 1 vector fields. More

concretely, if ξ̃μð1Þ;l≤1 ¼ 0, then

Δξ̃μð1Þ ¼ −ξμð1Þ;l>1 ¼ −ξμð1Þ þ ξμð1Þ;l≤1; ðA23Þ

that is, ημð1Þ is simply the l ¼ 0, 1 piece of ξμð1Þ. The l > 1

modes of h̃ð1Þμν are invariant because, by virtue of Eq. (A19),

Δh̃ð1Þμν is confined to l ¼ 0; 1 modes. But the l > 1 modes

of h̃ð2Þμν are not invariant because the term Lηð1Þ h̃
ð1Þ
μν ¼

Lξð1Þ;l≤1 h̃
ð1Þ
μν in Eq. (A20) generically contributes nonzero

amounts to all modes of Δh̃ð2Þμν .

APPENDIX B: DECOMPOSITION OF
CURVATURE TENSORS INTO TENSORS

ON M2 × S2

In this appendix we provide the 2þ 2D decompositions
of the linear and quadratic quantities appearing in the
Einstein equations (16) and (17), following the decom-
position procedure described in Sec. III A.

1. Linear terms

The linear quantities in Eqs. (16) and (17) are Eμν½h� and
F μν½h�, defined in Eqs. (11) and (12). For a generic
perturbation hμν with components hab, haA, and hAB, the
2þ 2D decomposition of Eμν is

Eab½h� ¼ δcδ
chab þ

1

r2
DADAhab þ

2

r4
hAArarb þ

2

r
rcδchab −

4

r3
DAhðaArbÞ −

4

r2
hcðarbÞrc þ 2R½δ�acbdhcd −

2M
r5

hAAqab;

ðB1aÞ

EaA½h� ¼ δbδ
bhaA þ

1

r2
DBDBhaA þ

2

r
rbDAhab −

2

r3
raDBhAB −

fhaA þ 4hbArarb
r2

; ðB1bÞ

EAB½h� ¼ δaδ
ahAB þ 1

r2
DFDFhAB −

4MhAB
r3

þ 2habrarbΩAB þ 2

r
rað2DðAhBÞa − δahABÞ þ

2

r2
R½D�AFBGhFG

þ 2

r2
fhAB −

2

r2
fhFFΩAB −

2M
r

haaΩAB: ðB1cÞ

Recall that hab, haA, and hAB are defined with indices down, and their indices are raised with gab and ΩAB, such that
haA ≔ gabΩABhbB, for example.
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F μν is defined in Eq. (12). Its components are found to be

F ab½h� ¼
2M
r5

h̄AAgab −
6

r4
h̄AArarb − 2δðaδchbÞc −

4

r
rcδðah̄bÞc þ

2

r2
ð2h̄cðarbÞrc − δðaDAh̄bÞAÞ −

4M
r3

h̄ab

þ 2

r3
rðaðδbÞh̄AA þ 2DAh̄bÞAÞ; ðB2aÞ

F aA½h� ¼ −δaδbh̄bA −
2

r
½rbðδah̄bA þDAh̄abÞ − raδbh̄bA� −DAδbh̄ab þ

6

r2
h̄bArarb −

1

r2
δaDBh̄AB −

1

r2
DADBh̄aB

−
2M
r3

h̄aA þ
1

r3
raðDAh̄BB þ 4DBh̄ABÞ; ðB2bÞ

FAB½h� ¼ −4h̄abrarbΩAB − 2rarΩABδbh̄ab − 2DðAδah̄BÞa þ
2f
r2

h̄FFΩAB −
2

r2
DðADFh̄BÞF −

2

r
rað2DðAh̄BÞa þ ΩABDFh̄aFÞ;

ðB2cÞ
where we have opted to not explicitly express h̄μν in terms of hμν, and parentheses around indices indicate symmetrization.

2. Quadratic terms

The quadratic quantities in Eq. (17) are Aμν½h�, Bμν½h�, and Cμν½h�, defined in Eqs. (13)–(15). Decomposing them in the
same manner as we did the linear terms, we find for Aμν,

Aab½h� ¼ 2r−6hABhABrarb þ
1

2
δahcdδbhcd − 2r−5hABrðaδbÞhAB þ 2δ½dhc�bδdhac þ 2r−4D½BhA�bDBhaA

− 2r−3hcArðaðδbÞhcA − δjcjhbÞA þDjAjhbÞcÞ þ r−2δahcAδbhcA þ r−2δchbAδchaA

− 2r−2δchðaADjAjhbÞc þ r−2DAhbcDAhac þ 2r−4hcAhcArarb þ
1

2
r−4δahABδbhAB; ðB3aÞ

AaA½h� ¼ −δbhacδchbA þ δchabδchbA þ 1

2
δahbcDAhbc − r−1hbArcð2δ½ahb�c þ δchabÞ þ r−1hbcrbDAhac

þ r−1hbcrbðδahcA − δchaAÞ − r−5hBFraDAhBF − r−3hABrbðδahbB þ δbhaBÞ þ r−3hABrbDBhab

þ 2r−3hbBðrðbδaÞhAB þDAhB½arb� −DBhAðarbÞÞ − 2r−2hbAhbcrarc þ r−2δbhABδbhaB þ r−2δahbBDAhbB

− r−2δbhaBDBhbA − r−2δbhABDBhab þ r−2DBhabDBhbA − 2r−4hbBhABrarb þ
1

2
r−4δahBFDAhBF

þ 2r−4D½FhB�ADFhaB; ðB3bÞ

AAB½h� ¼ 2hachbcrarbΩAB − δahbBδbhaA þ δbhaBδbhaA þ r−1haBrbð2δ½ahb�A −DAhabÞ þ 2fr−4hAFhBF

þ 2r−1rað2habDðAhbBÞ − habδbhABÞ þ r−1haArbð2δ½ahb�B −DBhabÞ þ
1

2
DAhabDBhab − 2r−3hðAFraδjajhBÞF

− 2r−3hFðAraDBÞhaF þ 4r−3haFraDðAhBÞF − 2r−3haFraDFhAB þ 2r−3hFðAraDFhBÞa þ 2fr−2haBhaA

þ 2r−2haFhbFrarbΩAB þ r−2δahBFδahAF þ r−2DAhaFDBhaF − 2r−2δahFðADFhaBÞ þ r−2DFhaBDFhaA

þ 1

2
r−4DAhFGDBhFG þ 2r−4D½GhF�BDGhAF; ðB3cÞ

where square brackets indicate antisymmetrization and vertical bars indicate that the enclosed indices are excluded from the
symmetrization or antisymmetrization. For Bμν,

Bab½h� ¼ −2Mr−7hABhABgab þ 2r−6hABhABrarb − 2Mr−5hcAhcAgab − 2r−5hABrðaδbÞhAB

þ hcdðδbδahcd − δdδahbc − δdδbhac þ δdδchabÞ − r−3hAArcð2δðahbÞc − δchabÞ
þ r−3hcA½2rcð2δðahbÞA −DAhabÞ − 2rðaðδbÞhcA þ δjcjhbÞA −DjAjhbÞcÞ� þ r−2hcAð2δbδahcA − 2δcδðahbÞA

− 2DAδðahbÞc þ 2DAδchabÞ þ r−4hABðδbδahAB þDBDAhabÞ − 2r−4hABDBδðahbÞA; ðB4aÞ
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BaA½h� ¼ hbcðδcδbhaA − δcδahbAÞ þ 2Mr−3hbAhab þ r−1hbArcð2δðahbÞc − δchabÞ þ r−3hABrbδahbB

− r−1hbc½rbðδahcA þ δchaAÞ − 2raδchbA� þ r−1hbcrbDAhac − r−1hbcraDAhbc þ 2hbcDAδ½ahc�b
þ 2r−3hbBrðaδbÞhAB − r−3hABrbδbhaB þ 6r−3hbBr½bDjAjha�B − r−3hBBrbð2δ½ahb�A þDAhabÞ
þ 6r−3hbBr½aDjBjhb�A þ r−3hABrbDBhab − r−2hbBðδbδahAB þ 2δbD½AhB�a − 2DAδahbB þ 2DBδ½ahb�A

þDBDAhabÞ þ 2Mr−5haBhAB þ 4r−5hBFraD½FhA�B − 4r−4hbBhABrarb þ 2r−4hbAhBBrarb

þ r−4hBFDAδahBF − r−4hBFDFδahAB − r−4hBFDFDAhaB þ r−4hBFDFDBhaA; ðB4bÞ

BAB½h� ¼ −2habδbDðAhaBÞ þ 2r−3hFðAraDFhBÞa þ hbcrarΩABðδahbc − 2δchabÞ þ habðδbδahAB þDBDAhabÞ
− 2Mr−1habhabΩAB þ 2r−1haArbδ½ahb�B − 4r−1haFrbΩABδ½ahb�F − 2r−1habraδbhAB

þ r−1haBrbð2δ½ahb�A þDAhabÞ þ r−1haArbDBhab − 2r−1haFrbΩABDFhab − 4r−2haAhbBrarb

þ 4r−2habhABrarb þ 4r−2haFhbFrarbΩAB − 2r−2habhFFrarbΩAB þ 2r−2fðhaBhaA − haFhaFΩABÞ
− 2r−2haFδaDðAhBÞF − 4r−3haFraDFhAB þ r−2haFδaDFhAB þ 2r−2haFDBDAhaF þ r−2haFDFδahAB

− 2r−2haFDFDðAhBÞa − 2r−3hFGraΩABDGhaF þ 2fr−4ðhAFhBF − hFGhFGΩABÞ
þ r−4hFGðDBDAhFG − 2DGDðAhBÞF þDGDFhABÞ − 2Mr−3haFhaFΩAB − 2r−3hðAFraδjajhBÞF

þ r−3hFGraΩABδahFG þ 2r−3hFðAraDBÞhaF þ 4r−3haFraDðAhBÞF þ r−3hFFraðδahAB − 2DðAhBÞaÞ: ðB4cÞ

For Cμν,

Cab½h� ¼ −2r−1hcdrcð2δðahbÞd − δdhabÞ þ
1

2
ð2δðahbÞc − δchabÞðδchdd − 2δdhcdÞ − 2r−3hcArcð2δðahbÞA −DAhabÞ

þ 1

2
r−2½2δðahbÞcδchAA − δchAAδchab − 4δðahbÞcDAhcA þ 2δchabDAhcA þ 2δchcADAhab

þ 2δðahbÞAðDAhcc − 2δchcAÞ −DAhccDAhab� þ
1

2
r−4ð2δðahbÞA −DAhabÞðDAhBB − 2DBhABÞ; ðB5aÞ

CaA½h� ¼ −r−1rahbAðδbhcc − 2δchbcÞ − 2r−1rbhbcðδahcA − δchaAÞ − r−5hABraðDBhFF − 2DFhBFÞ

− 2r−1rbhbcDAhac þ
1

2
½δahbAðδbhcc − 2δchbcÞ − δbhccδbhaA þ 2δbhaAδchbc − 2δbhbcDAhac

þ δchbbDAhac� − 2r−3hbBrbðδahAB þ 2D½AhB�aÞ þ r−3ra½2hABδbhbB − hbAðδbhBB − 2DBhbBÞ − hABDBhbb�

þ 1

2
r−2½8hbAhbcrarc − 2δahABδbhbB þ δahbAδbhBB − δbhBBδbhaA − 2δbhbBDAhaB þ δbhBBDAhab

þ 2δbhbBDBhaA − 2δahbADBhbB þ 2δbhaADBhbB − 2DAhabDBhbB þ δahABDBhbb þDAhaBDBhbb

−DBhbbDBhaA� þ 4r−4hbBhABrarb þ
1

2
r−4ðδahAB þDAhaB −DBhaAÞðDBhFF − 2DFhBFÞ; ðB5bÞ

CAB½h� ¼ habrarΩABðδbhcc − 2δchbcÞ þ
1

2
ð2δahabδbhAB − 8hachbcrarbΩAB − δbhABδbhaa þ 2δahbbDðAhaBÞ

− 4δbhabDðAhaBÞÞ þ r−1ra½habð2δbhAB þ ΩABδbhFFÞ − 2habð2DðAhbBÞ þ ΩABDFhbFÞ�

þ r−1haFraΩABðDFhbb − 2δbhbFÞ þ
1

2
r−4ð2DðAhBÞF −DFhABÞðDFhGG − 2DGhFGÞ

−
1

2
r−2½8haFhbFrarbΩAB þ 4δahaFDðAhBÞF − δahFFð2DðAhaBÞ − δahABÞ þ 4DðAhaBÞDFhaF

− 2δahABDFhaF − 2δahaFDFhAB − 2DðAhBÞFDFhaa þDFhABDFhaa�
þ r−3rahaFð2DFhAB − 4DðAhBÞF þ ΩABDFhGG − 2ΩABDGhFGÞ: ðB5cÞ
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APPENDIX C: COVARIANT DERIVATIVES OF SCALAR HARMONICS

Our method of decomposing the Einstein equation requires expressing covariant derivatives of Ylm in terms of spin-
weighted harmonics. We do so by noting that each covariant derivative in DA1

� � �DAs
Ylm acts on a tensor of spin weight 0,

such that Eqs. (79a) and (79b) imply DA ¼ 1
2
ðm̃Að0 þ m̃�

AðÞ. Using this along with Eq. (80), we find

DA1
� � �DAs

Ylm ¼ 1

2s
ðm̃A1

ð0 þ m̃�
A1
ðÞ � � � ðm̃As

ð0 þ m̃�
As
ðÞYlm ðC1aÞ

¼ 1

2s

X
σðsÞ

Ys
j¼1

αsi;jðm̃Aj
ð0ÞYlm ðC1bÞ

¼ 1

2s
½m̃A1

� � � m̃As
ð0sYlm þ m̃�

A1
� � � m̃�

As
ðsYlm þ � � ��: ðC1cÞ

The sum runs over all of the 2s distinct products of m̃Aj
ð0 and m̃�

Aj
ð (with s total factors) acting on Ylm. This is made precise

in the second line, where σðsÞ is the set of s-tuples with all elements either 0 or 1, σðsÞi;j is the jth element of the ith s-tuple,
αsi;jðm̃Aj

ð0Þ ¼ m̃Aj
ð0 if σðsÞi;j ¼ 0, and αsi;jðm̃Aj

ð0Þ ¼ m̃�
Aj
ð if σðsÞi;j ¼ 1.

This sum is straightforwardly written in terms of spin-weighted harmonics using the definition (83) and the identities
(88). For s ¼ 1 and s ¼ 2, the results are Eqs. (90) and (91). For s ¼ 3 and s ¼ 4, the results are

DADBDCYlm ¼ 1

8
λl;3ð−3Ylmm̃Am̃Bm̃C − 3Ylmm̃

�
Am̃

�
Bm̃

�
CÞ þ

1

8
λl;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1Þ

p
ð1Ylmm̃Am̃�

Bm̃
�
C −−1 Ylmm̃�

Am̃Bm̃CÞ

−
1

4
λ3l;1ð−1Ylmm̃A − 1Ylmm̃

�
AÞΩBC; ðC2Þ

and

DADBDCDDYlm ¼ 1

16
λl;4ð−4Ylmm̃Am̃Bm̃Cm̃D þ 4Ylmm̃

�
Am̃

�
Bm̃

�
Cm̃

�
DÞ −

1

16
λl;2f2Ylm½ðlþ 3Þðl − 2Þm̃Am̃�

B

þ ðlþ 2Þðl − 1Þm̃�
Am̃B�m̃�

Cm̃
�
D þ −2Ylm½ðlþ 3Þðl − 2Þm̃�

Am̃B þ ðlþ 2Þðl − 1Þm̃Am̃�
B�m̃Cm̃Dg

−
1

8
λ3l;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1Þ

p
ð−2Ylmm̃Am̃B þ 2Ylmm̃

�
Am̃

�
BÞΩCD þ 1

4
λ4l;1ΩABΩCDYlm

þ 1

16
λ2l;2ðm̃Am̃Bm̃�

Cm̃
�
D þ m̃�

Am̃
�
Bm̃Cm̃DÞYlm: ðC3Þ

Equation (C1) can also be used to derive the relationships (98) between tensor and spin-weighted harmonics. Ylm
A1���As

is
the symmetric trace-free piece of Eq. (C1), which picks out the two terms that contain only m̃’s or only m̃�’s. Equation (98a)
then immediately follows from the definition (83). Given the identity (71), the definition (97) of Xlm

A1���As
likewise picks out

the two terms that contain only m̃’s or only m̃�’s in Eq. (C1), and Eq. (98b) then immediately follows.

APPENDIX D: QUADRATIC COUPLING FUNCTIONS

In this appendix we list the coupling functions appearing in the decompositions of quadratic quantities. We only provide
expressions for even-parity coupling functions: for example, Al0m0s0l00m00s00

aþ and Al0m0s0l00m00s00þ . Odd-parity analogs can be
obtained using the rule

Al0m0s0l00m00s00
a− ¼ −iAl0m0s0l00m00s00

aþ
Al0m0s0l00m00s00

− ¼ −iAl0m0s0l00m00s00þ
with σ� → −σ∓: ðD1Þ

The quantities σ ≔ ð−1Þlþl0þl00 and σ� ≔ σ � 1 arise from use of Eq. (94).
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1. Gauge transformation

The coupling functions appearing in Eq. (125) are

Hl0m00l00m000
ab ¼ 2hl

00m00
cða δbÞζcl0m0 þ ζcl00m00δchl

0m0
ab þ δðaζcl0m0δbÞζl

00m00
c þ ζcl00m00δcδðaζl

0m0
bÞ þ δðaζl

0m0
jcj δcζl

00m00
bÞ ; ðD2aÞ

Hl0m01l00m00−1
ab ¼ −

i
2

�
hl

00m00
ab ðZ−

l0m0 − iZþ
l0m0 Þ − hl

0m0
ab ðZ−

l00m00 þ iZþ
l00m00 Þ þ 2ðhl00m00

ðaþ − ihl
00m00

ða− ÞðδbÞZ−
l0m0 − iδbÞZþ

l0m0 Þ

− 2ðhl0m0
ðaþ þ ihl

0m0
ða− ÞðδbÞZ−

l00m00 þ iδbÞZþ
l00m00 Þ

�
þ r2ðδðaZ−

l00m00 þ iδðaZþ
l00m00 ÞðiδbÞZþ

l0m0 − δbÞZ−
l0m0 Þ

−
i
2

�
ζl

00m00
ða ðδbÞZ−

l0m0 − iδbÞZþ
l0m0 Þ − ζl

0m0
ða ðδbÞZ−

l00m00 þ iδbÞZþ
l00m00 Þ − ðZ−

l00m00 þ iZþ
l00m00 Þδðaζl0m0

bÞ

þ ðZ−
l0m0 − iZþ

l0m0 Þδðaζl00m00
bÞ

�
; ðD2bÞ

Hl0m01l00m000
aþ ¼ 1

4

�
2σþhl

00m00
ac ζcl0m0 þ λ2l00;1

�
iσ−hl

00m00
aþ Z−

l0m0 − σþhl
0m0

a− Z−
l00m00 − iσ−hl

0m0
aþ Z−

l00m00 − σþhl
00m00

aþ Zþ
l0m0

þ hl
00m00

a− ðσþZ−
l0m0 þ iσ−Z

þ
l0m0 Þ þ iσ−hl

0m0
a− Zþ

l00m00 − σþhl
0m0

aþ Zþ
l00m00

�
− 2iσ−hl

00m00
∘ δaZ−

l0m0

þ 2σþhl
00m00

∘ δaZ
þ
l0m0 − 2iσ−hl

0m0
c− δaζ

c
l00m00 þ 2σþhl

0m0
cþ δaζ

c
l00m00 − 2iσ−ζcl00m00δchl

0m0
a− þ 2σþζcl00m00δchl

0m0
aþ




− rrcζcl00m00 ðiσ−δaZ−
l0m0 − σþδaZþ

l0m0 Þ þ 1

8

�
λ2l00;1ð−iσ−Z−

l00m00ζl
0m0

a − σþZþ
l00m00ζl

0m0
a þ iσ−Z−

l0m0ζl
00m00

a

− σþZþ
l0m0ζl

00m00
a Þ þ 2σþζcl0m0δaζ

l00m00
c þ 2σþζcl0m0δaζ

l00m00
c þ 2σþζcl00m00δcζ

l0m0
a þ 2σþζcl0m0δcζ

l00m00
a

�

þ 1

8
r2
�
−Z−

l00m00λ2l00;1ðσþδaZ−
l0m0 þ iσ−δaZ

þ
l0m0 Þ þ 3Zþ

l00m00λ2l00;1ðiσ−δaZ−
l0m0 − σþδaZþ

l0m0 Þ

þ λ2l00;1½ðσþZ−
l0m0 þ iσ−Z

þ
l0m0 ÞδaZ−

l00m00 þ ðiσ−Z−
l0m0 − σþZþ

l0m0 ÞδaZþ
l00m00 � þ 2σþζcl00m00δcδaZ

þ
l0m0

− 2iσ−δaðζcl00m00δcZ−
l0m0 Þ þ 2σþδaζcl00m00δcZ

þ
l0m0



; ðD2cÞ

Hl0m02l00m00−1
aþ ¼ −

1

4
hl

00m00
a− ðσþZ−

l0m0 þ iσ−Z
þ
l0m0 Þ þ i

4

�
hl

00m00
aþ ðσ−Z−

l0m0 þ iσþZþ
l0m0 Þ − σ−hl

0m0
aþ Z−

l00m00 þ iσþhl
0m0

aþ Zþ
l00m00

þ hl
0m0

a− ðiσþZ−
l00m00 þ σ−Z

þ
l00m00 Þ þ iσþhl

0m0
− δaZ−

l00m00 − σ−hl
0m0

þ δaZ−
l00m00 þ ðσ−hl0m0

− þ iσþhl
0m0

þ ÞδaZþ
l00m00

�

−
1

8

�
ðiσ−Z−

l00m00 þ σþZþ
l00m00 Þζl0m0

a − ðiσ−Z−
l0m0 − σþZþ

l0m0 Þζl00m00
a

�

−
1

8
r2
�
3ðσþZ−

l0m0 þ iσ−Z
þ
l0m0 ÞδaZ−

l00m00 þ Z−
l00m00 ðσþδaZ−

l0m0 þ iσ−δaZ
þ
l0m0 Þ

− Zþ
l00m00 ðiσ−δaZ−

l0m0 − σþδaZþ
l0m0 Þ − 3iðσ−Z−

l0m0 þ iσþZþ
l0m0 ÞδaZþ

l00m00

�
; ðD2dÞ

Hl0m00l00m000∘ ¼ −hl00m00
∘ Zþ

l0m0λ2l0;1 þ ζcl00m00δchl
0m0

∘ þ rarcζcl0m0ζal00m00 þM
r
ζl

0m0
c ζcl00m00 − rcrð2Zþ

l0m0ζcl00m00λ2l0;1

− ζal00m00δaζ
c
l0m0 Þ þ 1

2
r2λ2l0;1ðZþ

l0m0Zþ
l00m00λ2l00;1 − ζcl00m00δcZ

þ
l0m0 Þ; ðD2eÞ
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Hl0m01l00m00−1∘ ¼ i
2

�
hl

00m00
∘ ðiZþ

l0m0 − Z−
l0m0 Þ þ hl

0m0
∘ ðZ−

l00m00 þ iZþ
l00m00 Þ þ ðhl00m00

c− þ ihl
00m00

cþ Þζcl0m0 − ðhl0m0
c− − ihl

0m0
cþ Þζcl00m00

�

−
1

2
ζcl0m0ζl

00m00
c þ i

2
rcr½ðZ−

l00m00 þ iZþ
l00m00 Þζcl0m0 − ðZ−

l0m0 − iZþ
l0m0 Þζcl00m00 �

þ 1

4
r2
�
−iZ−

l00m00Zþ
l0m0λ2l0;1 þ Zþ

l00m00 ½iZ−
l0m0λ2l00;1 þ Zþ

l0m0 ðλ2l0;1 þ λ2l00;1Þ�

− ζcl00m00 ðiδcZ−
l0m0 þ δcZ

þ
l0m0 Þ þ iζcl0m0 ðδcZ−

l00m00 þ iδcZ
þ
l00m00 Þ



; ðD2fÞ

Hl0m02l00m00−2∘ ¼ 1

4

�
ðhl00m00

− þ ihl
00m00

þ ÞðZ−
l0m0 − iZþ

l0m0 Þ þ ðhl0m0
− − ihl

0m0
þ ÞðZ−

l00m00 þ iZþ
l00m00 Þ

�

þ 1

2
r2ðZ−

l0m0 − iZþ
l0m0 ÞðZ−

l00m00 þ iZþ
l00m00 Þ; ðD2gÞ

Hl0m01l00m001þ ¼ 1

4
μ2l0 ½ðσþhl

0m0
− þ iσ−hl

0m0
þ ÞZ−

l00m00 þ ðiσ−hl0m0
− − σþhl

0m0
þ ÞZþ

l00m00 � − ðiσ−hl00m00
c− − σþhl

00m00
cþ Þζcl0m0

þ 1

2
σþζcl0m0ζl

00m00
c þ 1

4
r2
�
μ2l0 ½Z−

l0m0 ðσþZ−
l00m00 þ iσ−Z

þ
l00m00 Þ þ Zþ

l0m0 ðiσ−Z−
l00m00 − σþZþ

l00m00 Þ�

− 2ζcl0m0 ðiσ−δcZ−
l00m00 − σþδcZþ

l00m00 Þ


; ðD2hÞ

Hl0m02l00m000þ ¼ −
i
2

�
2hl

00m00
∘ ðσ−Z−

l0m0 þ iσþZþ
l0m0 Þ þ σ−hl

0m0
þ Z−

l00m00λ2l00;1 − iσþhl
0m0

þ Zþ
l00m00λ2l00;1

− hl
0m0

− ðiσþZ−
l00m00 þ σ−Z

þ
l00m00 Þλ2l00;1 þ σ−ζ

c
l00m00δchl

0m0
− þ iσþζcl00m00δchl

0m0
þ

�

− 2rcrðiσ−Z−
l0m0 − σþZþ

l0m0 Þζcl00m00 −
1

2
r2
�
iσ−Z−

l00m00Zþ
l0m0λ2l00;1 þ 2σþZþ

l0m0Zþ
l00m00λ2l00;1

þ Z−
l0m0 ðσþZ−

l00m00 − 2iσ−Z
þ
l00m00 Þλ2l00;1 þ iσ−ζcl00m00δcZ−

l0m0 − σþζcl00m00δcZ
þ
l0m0

�
; ðD2iÞ

Hl0m03l00m00−1þ ¼ −
1

4
½ðσþhl0m0

− þ iσ−hl
0m0

þ ÞZ−
l00m00 − ðiσ−hl0m0

− − σþhl
0m0

þ ÞZþ
l00m00 � − 1

4
r2½Z−

l00m00 ðσþZ−
l0m0 þ iσ−Z

þ
l0m0 Þ

− ðiσ−Z−
l0m0 − σþZþ

l0m0 ÞZþ
l00m00 �: ðD2jÞ

2. Ricci tensor

The quantities appearing in Eq. (171) are

Al0m00l00m000
ab ¼ 4h̃l

0m0
∘ h̃l

00m00
∘ rarb
r6

þ 1

2
δah̃

l0m0
cd δbh̃

l00m00
ef gcegdf −

4h̃l
00m00

∘ rðaδbÞh̃l
0m0

∘
r5

þ h̃l
0m0

b− h̃l
00m00

a− λ2l0;1λ
2
l00;1

r4
þ δah̃

l0m0
∘ δbh̃

l00m00
∘

r4

þ 2δ½dh̃l
0m0

c�b δdh̃l
00m00

ae gce; ðD3aÞ

Al0m01l00m00−1
ab ¼ −

2h̃l
0m0

c− h̃l
00m00

d− gcdrarb
r4

−
rðagcdðih̃l0m0

bÞc − δbÞh̃l
0m0

c− þ δjcjh̃l
0m0

bÞ− Þh̃l
00m00

d−

r3

þ
rðagcdðih̃l00m00

bÞc þ δbÞh̃l
00m00

c− − δjcjh̃l
00m00

bÞ− Þh̃l0m0
d−

r3
−
gcdðh̃l0m0

cða h̃l
00m00

bÞd þ δðah̃l
00m00

jcj− δbÞh̃l
0m0

d− Þ
r2

−
δch̃

l0m0
ða− δ

ch̃l
00m00

bÞ− − iðh̃l00m00
cða δch̃l

0m0
bÞ− − h̃l

0m0
cða δch̃l

00m00
bÞ− Þ

r2
; ðD3bÞ
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Al0m01l00m000
aþ ¼ −

σþh̃l
0m0

∘ h̃l
00m00

∘ ra
r5

þ iσ−h̃
l0m0
b− h̃l

00m00
∘ rarb

r4
þ 1

2r4
h̃∘l

0m0 ðiσ−h̃l00m00
a− λ2l00;1 þ σþδah̃l

00m00
∘ Þ

−
1

2r3
h̃l

0m0
b− rbðσþh̃l00m00

a− λ2
1;l00 þ iσ−δah̃∘l

00m00 Þ þ 1

2r3
h̃l

00m00
∘ rbðσþh̃l0m0

ab þ 2iσ−δðah̃l
0m0

bÞ− Þ

−
1

2r3
iσ−h̃

l0m0
b− raδbh̃

l00m00
∘ þ 1

r2
iσ−h̃

l00m00
bc h̃l

0m0
d− ragbdrc −

1

2r2
σþh̃l

00m00
b− λ2l00;1g

bcδðah̃l
0m0

cÞ−

−
1

4r2

�
2iσ−δbh̃

l00m00
∘ δbh̃l

0m0
a− − h̃l

0m0
ab gbc

�
iσ−h̃

l00m00
c− λ2l00;1 − 2σþδch̃l

00m00
∘

��

þ 1

2r
iσ−h̃

l0m0
b− gbdrc

�
δah̃

l00m00
cd − 2δ½dh̃l

00m00
c�a

�
þ 1

2r
h̃l

00m00
bc rbgcd

�
σþh̃l

0m0
ad − 2iσ−δ½ah̃l

0m0
d�−

�

þ 1

4
gbdðσþh̃l0m0

bc δah̃
l00m00
de gce þ 4iσ−δ½bh̃l

00m00
c�a δch̃l

0m0
d− Þ; ðD3cÞ

Al0m02l00m00−1
aþ ¼ σþh̃l

0m0b
b− h̃l

00m00
c− gbcra

2r3
þ
h̃l

0m0
b− gbcðiσ−h̃l00m00

ac þ 2σþδ½ch̃l
00m00

a�− Þ
4r2

; ðD3dÞ

Al0m00l00m000∘ ¼ 2h̃l
0m0

ad h̃l
00m00

bc gcdrarb þ 2fh̃l
0m0

∘ h̃l
00m00

∘
r4

−
2h̃l

00m00
∘ raδah̃

l0m0
∘

r3
þ h̃l

0m0
a− h̃l

00m00
b− gabλ2l0;1λ

2
l00;1

2r2

þ δah̃
l00m00
∘ δah̃l

0m0
∘

r2
−
2h̃l

00m00
ab raδbh̃l

0m0
∘

r
; ðD3eÞ

Al0m01l00m00−1∘ ¼ −
h̃l

0m0
∘ h̃l

00m00
∘

r4
−
ðfgab þ 2rarbÞh̃l0m0

a− h̃l
00m00

b−

r2
−

i
2r

rbgach̃l
00m00

c−

�
h̃l

0m0
ab − 2iδ½ah̃l

0m0
b�−

�

þ i
2r

rbgach̃l
0m0

c−

�
h̃l

00m00
ab þ 2iδ½ah̃l

00m00
b�−

�
−
1

4
gac

�
h̃l

0m0
ab h̃l

00m00
cd gbd − 4δ½ah̃l

00m00
b�− δbh̃l

0m0
c−

�
; ðD3fÞ

Al0m02l00m00−2∘ ¼ gabh̃l
0m0

a− h̃l
00m00

b−

2r2
; ðD3gÞ

Al0m01l00m001þ ¼ −
2iσ−h̃

l00m00
a− h̃l

0m0
∘ ra

r3
−
σþfh̃l

0m0
a− h̃l

00m00
b− gab

r2
þ h̃l

00m00
a− gacrbðiσ−h̃l0m0

bc þ 2σþδ½bh̃l
0m0

c�− Þ
r

þ 1

4
σþgacðh̃l0m0

ab h̃l
00m00

cd gbd þ 4δ½ah̃l
00m00

b�− δbh̃l
0m0

c− Þ; ðD3hÞ

Al0m02l00m000þ ¼ −
2iσ−h̃

l00m00
ab h̃l

0m0
c− rbgac

r
þ iσ−h̃

l0m0
a− δah̃l

00m00
∘

r2
: ðD3iÞ

The quantities appearing in Eq. (172) are

Bl0m00l00m000
ab ¼ 4ðrrarb −MgabÞh̃l0m0

∘ h̃l
00m00

∘
r7

−
4h̃l

00m00
∘ rðaδbÞh̃l

0m0
∘

r5
þ h̃l

00m00
∘ ð2δaδbh̃l0m0

∘ − λ2l0;1h̃
l0m0
ab Þ

r4

−
2h̃l

00m00
∘ rcð2δðah̃l0m0

bÞc − δch̃
l0m0
ab Þ

r3
þ h̃l

00m00
ef gcegdfðδbδah̃l0m0

cd þ δdδch̃
l0m0
ab − 2δdδðah̃l

0m0
bÞc Þ; ðD4aÞ
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Bl0m01l00m00−1
ab ¼ 2Mgcdh̃l

0m0
c− h̃l

00m00
d− gab

r5
−
rc½h̃l0m0

c− ð2δðah̃l00m00
bÞ− − ih̃l

00m00
ab Þ þ h̃l

00m00
c− ð2δðah̃l0m0

bÞ− þ ih̃l
0m0

ab Þ�
r3

þ gcdrða½ðδbÞh̃l0m0
d− þ δjdjh̃l

0m0
bÞ− þ ih̃l

0m0
bÞd Þh̃l

00m00
c− þ ðδbÞh̃l00m00

d− þ δjdjh̃l
00m00

bÞ− − ih̃l
00m00

bÞd Þh̃l0m0
c− �

r3

þ
gcdh̃l

00m00
c− ½2δdδðah̃l0m0

bÞ− − 2δbδah̃
l0m0
d− þ 2iðδdh̃l0m0

ab − δðah̃l
0m0

bÞd Þ�
2r2

þ gcdh̃l
0m0

c− ½2δdδðah̃l00m00
bÞ− − 2δbδah̃

l00m00
d− − 2iðδdh̃l00m00

ab − δðah̃l
00m00

bÞd Þ�
2r2

; ðD4bÞ

Bl0m01l00m000
aþ ¼ −

ðσþh̃l0m0
∘ ra þ iMσ−h̃

l0m0
a− Þh̃l00m00

∘
r5

þ ðσþδah̃l0m0
∘ þ iσ−λ2l0;1h̃

l0m0
a− Þh̃l00m00

∘
2r4

þ σþ½3λ2l00;1h̃l
0m0

b− ðgbch̃l00m00
c− ra − rbh̃l

00m00
a− Þ − rbh̃l

0m0
ab h̃l

00m00
∘ �

2r3
þ σþgbdgceh̃l

00m00
bc δ½ah̃l

0m0
d�e

þ iσ−½h̃l00m00
∘ rbδ½ah̃l

0m0
b�− − gbch̃l

0m0
b− ðMh̃l

00m00
ac þ rðaδcÞh̃l

00m00
∘ Þ�

r3
þ iσ−gcdδbδ½ah̃l

0m0
c�− h̃l

00m00
bd

þ 6σþλ2l00;1g
bch̃l

0m0
b− δ½ch̃l

00m00
a�− − iσ−gbch̃

l0m0
b− ðλ2l00;1h̃l

00m00
ac − 2δcδah̃

l00m00
∘ Þ

4r2
þ σþgbdgcer½bh̃l

0m0
a�c h̃l

00m00
de

r

þ
iσ−gcd½2ðrbδðah̃l0m0

cÞ− − raδbh̃
l0m0
c− Þh̃l00m00

bd − h̃l
0m0

c− rbð2δðah̃l00m00
dÞb − δbh̃

l00m00
ad Þ�

2r
; ðD4cÞ

Bl0m02l00m00−1
aþ ¼

gbch̃l
00m00

b− ðiσ−h̃l0m0
ac − 2σþδðah̃l

0m0
cÞ− Þ

4r2
; ðD4dÞ

Bl0m00l00m000∘ ¼ −
1

2
λ2l0;1g

acgbdh̃l
0m0

ab h̃l
00m00

cd −
h̃l

0m0
∘ h̃l

00m00
∘ ð2f þ λ2l0;1Þ

r4
þ 2h̃l

00m00
∘ raδah̃

l0m0
∘

r3
þ h̃l

00m00
ab δbδah̃l

0m0
∘

−
2Mgacgbdh̃l

0m0
ab h̃l

00m00
cd þ 2h̃l

00m00
ab raδbh̃l

0m0
∘

r
þ rragbdgceh̃l

00m00
bc ðδah̃l0m0

de − 2δeh̃
l0m0
ad Þ; ðD4eÞ

Bl0m01l00m00−1∘ ¼ 2Mgabh̃l
0m0

a− h̃l
00m00

b− − iraðh̃l00m00
a− h̃l

0m0
∘ − h̃l

0m0
a− h̃l

00m00
∘ Þ

r3
−
2rarbh̃l

0m0
a− h̃l

00m00
b−

r2

−
2iðh̃l0m0

a− δah̃l
00m00

∘ − h̃l
00m00

a− δah̃l
0m0

∘ Þ − ð4f þ μ2l0 þ μ2l00 þ λ2l0;1 þ λ2l00;1Þgabh̃l
0m0

a− h̃l
00m00

b−

4r2

þ
gabrc½h̃l00m00

a− ð2δ½bh̃l0m0
c�− − ih̃l

0m0
bc Þ þ h̃l

0m0
a− ð2δ½bh̃l00m00

c�− þ ih̃l
00m00

bc Þ�
2r

; ðD4fÞ

Bl0m01l00m001þ ¼ −
2iσ−rah̃

l00m00
a− h̃l

0m0
∘

r3
þ σþ½4rarb − gabð2f þ μ2l0 þ λ2l0;1Þ�h̃l

0m0
a− h̃l

00m00
b− þ 2iσ−h̃

l00m00
a− δah̃l

0m0
∘

2r2

þ
ragbch̃l

00m00
c− ð2σþδ½ah̃l0m0

b�− − iσ−h̃
l0m0
ab Þ

r
; ðD4gÞ

Bl0m02l00m000þ ¼ 1

2
h̃l

00m00
ab gacðσþgbdh̃l0m0

cd þ 2iσ−δbh̃
l0m0
c− Þ: ðD4hÞ

The quantities appearing in Eq. (173) are

Cl
0m00l00m000

ab ¼ 2δðah̃l
0m0

bÞc δ
ch̃l

00m00
• − δch̃

l00m00
ab δch̃l

0m0
• −

δch̃
l00m00
ab δch̃l

0m0
∘ − 2δðah̃l

0m0
bÞc δ

ch̃l
00m00

∘
r2

−
2rcgdeh̃l

00m00
cd ð2δðah̃l0m0

bÞe − δeh̃
l0m0
ab Þ

r

− gcdð2δðah̃l0m0
bÞc − δch̃

l0m0
ab Þδeh̃l00m00

de ; ðD5aÞ
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Cl
0m01l00m00−1

ab ¼
rc½h̃l00m00

c− ð2δðah̃l0m0
bÞ− þ ih̃l

0m0
ab Þ þ h̃l

0m0
c− ð2δðah̃l00m00

bÞ− − ih̃l
00m00

ab Þ�
r3

þ
ðh̃l00m00

ab þ 2iδðah̃l
00m00

bÞ− Þðh̃l0m0
• − iδch̃l

0m0
c− Þ þ ðh̃l0m0

ab − 2iδðah̃l
0m0

bÞ− Þðh̃l
00m00

• þ iδch̃l
00m00

c− Þ
2r2

; ðD5bÞ

Cl
0m01l00m000

aþ ¼ −
2iσ−rarbh̃

l0m0
b− h̃l

00m00
∘

r4
þ σþðλ2l00;1rbh̃l

0m0
b− h̃l

00m00
a− − rah̃

l0m0
• h̃l

00m00
∘ Þ

r3

þ iσ−½rbh̃l0m0
b− δah̃

l00m00
∘ − raðh̃l00m00

∘ δbh̃l
0m0

b− − h̃l
0m0

b− δbh̃l
00m00

∘ Þ�
r3

þ 1

2
ðσþh̃l0m0

ab þ iσ−δbh̃
l0m0
a− Þδbh̃l00m00

•

þ
iσ−½δah̃l00m00

∘ δbh̃l
0m0

b− þ 2δbh̃l
00m00

∘ δ½bh̃l
0m0

a�− − 4rarbgcdh̃
l00m00
bc h̃l

0m0
d− − λ2l00;1h̃

l00m00
a− h̃l

0m0
• �

2r2

þ σþ½h̃l0m0
• δah̃

l00m00
∘ þ λ2l00;1h̃

l00m00
a− δbh̃l

0m0
b− þ h̃l

0m0
ab δbh̃l

00m00
∘ �

2r2
−
1

2
σþgbch̃l

0m0
ab δdh̃l

00m00
cd −

1

2
iσ−ðδah̃l0m0

b− δbh̃l
00m00

•

þ 2gbcδ½bh̃l
0m0

a�− δdh̃l
00m00

cd Þ −
σþgbcrdh̃l

0m0
ab h̃l

00m00
cd − iσ−½rah̃l0m0

b− ðδbh̃l00m00
• − gbcδdh̃l

00m00
cd Þ þ 2gbcrdδ½ah̃l

0m0
b�− h̃l

00m00
cd �

r
;

ðD5cÞ

Cl
0m00l00m000∘ ¼ δah̃l

00m00
∘ δbh̃l

0m0
ab − 4rarbgcdh̃l

0m0
ac h̃l

00m00
bd − δah̃

l0m0
∘ δah̃l

00m00
• þ 2rraðh̃l00m00

ab δbh̃l
0m0

• − gbch̃l
00m00

ab δdh̃l
0m0

cd Þ

−
δah̃

l00m00
∘ δah̃l

0m0
∘

r2
þ 4h̃l

00m00
ab raδbh̃l

0m0
∘

r
; ðD5dÞ

Cl
0m01l00m00−1∘ ¼ 4rarbh̃l

0m0
a− h̃l

00m00
b−

r2
þ ra½h̃l00m00

a− ðδbh̃l0m0
b− þ ih̃l

0m0
• Þ þ h̃l

0m0
a− ðδbh̃l00m00

b− − ih̃l
00m00

• Þ�
r

; ðD5eÞ

Cl
0m01l00m001þ ¼ 2iσ−rah̃

l00m00
a− h̃l

0m0
∘

r3
þ h̃l

0m0
∘ ðσþh̃l00m00

• þ iσ−δah̃
l00m00
a− Þ

r2
; ðD5fÞ

Cl
0m02l00m000þ ¼ 2iσ−ragbch̃

l00m00
ab h̃l

0m0
c−

r
−
iσ−h̃

l0m0
a− δah̃l

00m00
∘

r2
− iσ−h̃

l0m0
a− ðδah̃l00m00

• − gabδch̃l
00m00

bc Þ: ðD5gÞ

3. Stress-energy terms

The mode decomposition of Eq. (175) is

T̃ ð2Þlm
ab ¼ T̃ð2Þlm

ab − gabðT̃ð2Þlm
• þ r−2T̃ð2Þlm∘ Þ þ

X
l0m0
l00m00

X
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00;−s0T

l0m0s0l00m00;−s0
ab ; ðD6aÞ

T̃ ð2Þlm
a� ¼ T̃ð2Þlm

a� þ
X
l0m0
l00m00

λl0;1
λl;1

Clm1
l0m01l00m000T

l0m01l00m000
a� ; ðD6bÞ

T̃ ð2Þlm∘ ¼ −r2T̃ð2Þlm
• þ

X
l0m0
l00m00

X
s0¼0;1

λl0;s0λl00;s0Clm0
l0m0s0l00m00;−s0T

l0m0s0l00m00;−s0∘ ; ðD6cÞ

T̃ ð2Þlm
� ¼ T̃ð2Þlm

� : ðD6dÞ

The coupling functions T l0m0s0l00m00;s00
· are

T l0m00l00m000
ab ¼ 1

2
gabgcegdfh̃

l0m0
cd Tl00m00

ef −
1

2
h̃l

0m0
ab gcdTl00m00

cd þ r−4gabh̃
l00m00
∘ Tl0m0

∘ − r−2h̃l
00m00

ab Tl0m0
∘ ; ðD7aÞ
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T l0m01l00m00;−1
ab ¼ −

1

2r2
gabgcd½h̃l00m00

c− ðTl0m0
d− − iTl0m0

dþ Þ þ h̃l
0m0

c− ðTl00m00
d− þ iTl00m00

dþ Þ�; ðD7bÞ

T l0m01l00m000
aþ ¼ i

4
σ−h̃

l0m0
a− gbcTl00m00

bc þ i
2r2

σ−h̃
l0m0
a− Tl00m00

∘ ; ðD7cÞ

T l0m00l00m000∘ ¼ 1

2
r2gacgbdh̃l

0m0
ab Tl00m00

cd −
1

2
h̃l

0m0
∘ gabTl00m00

ab þ r−2h̃l
00m00

∘ Tl0m0
∘ − r−2h̃l

0m0
∘ Tl00m00

∘ ; ðD7dÞ

T l0m01l00m00;−1∘ ¼ −
1

2
gab

�
h̃l

00m00
a− ðTl0m0

b− − iTl0m0
bþ Þ þ h̃l

0m0
a− ðTl00m00

b− þ iTl00m00
bþ Þ

�
: ðD7eÞ

APPENDIX E: FIELD EQUATIONS FOR LOW
MULTIPOLES

In this appendix we summarize the special cases of the
field equations (176) for l ¼ 0 and l ¼ 1. We specifically
discuss the l ¼ 0 and odd-parity l ¼ 1 equations, which
we are able to relate to the evolution of mass and spin.
We have not found a new or illuminating form for the
even-parity l ¼ 1 equations, which are associated with a
displacement of the center of mass [55].

1. l= 0

The l ¼ 0 field equations, with lm labels omitted for
visual simplicity, are

δRab½h̃ð1Þ· � ¼ 8πT ð1Þ
ab ; ðE1aÞ

δR∘½h̃ð1Þ· � ¼ 8πT ð1Þ∘ ; ðE1bÞ

and their analogs at second order. These can be written
entirely in terms of the invariant variables h̃rr and φ defined
in Eqs. (143) and (148). However, we opt to replace h̃rr
with an effective mass perturbation δM, defined from

h̃rr ¼
∂grr
∂M

δM ¼ 2δM
rf2

: ðE2Þ

In terms of δM and φ,

δRtt ¼
MδM
fr4

−
∂
2
t δM
fr

−
M∂rδM

r3
−
fð2r −MÞφ

2r2
−
1

2
f2∂rφ;

ðE3aÞ

δRtr ¼
2

r2f
∂δM
∂t

; ðE3bÞ

δRrr ¼ −
2r − 3M
f3r4

δM þ ∂
2
t δM
f3r

þ 2r − 3M
f2r3

∂rδM

þ 3Mφ

2f2r2
þ 1

2
∂rφ; ðE3cÞ

δR∘ ¼ r−1∂rðrδMÞ þ 2M
r2f

δM þ 1

2
rfφ: ðE3dÞ

We can further reduce these field equations by elimi-
nating φ. Solving δR∘ ¼ 8πT ∘ for φ yields

φ ¼ −
2∂rδM
rf

−
2δM
r2f2

þ 16πT ∘
rf

; ðE4Þ

which reduces the remaining three components of the
field equations to equations for δM. The tr component,
δRtr ¼ 8πT tr, reads

∂

∂t
δM ¼ 4πr2fTtr; ðE5Þ

where we have used T tr ¼ Ttr. Equation (E5) is a flux-
balance equation, equating the rate of change of the mass at
radius r to the flux of energy crossing the r ¼ const
surface. This determines δM up to a time-independent
function of r. The function of r can be determined up to a
constant from the “antitrace” piece of the field equations,

f−1δRtt þ fδRrr ¼ 8πðf−1T tt þ fT rrÞ; ðE6Þ

which can be simplified to

∂

∂r
δM ¼ 4πr2f−1Ttt ðE7Þ

after using (E4) and expressing T αβ in terms of Tαβ.
Equation (E7) relates the mass within a sphere of radius
r to the total energy within that sphere. Equations (E5)
and (E7) together determine δM up to a constant δM0,
corresponding to a trivial perturbation toward another
Schwarzschild solution with mass M þ ϵδM0.
In this way, the entire invariant content of the l ¼ 0

solution is placed in δM, which satisfies physical energy-
balance equations. The remaining piece of the field
equations is the trace piece,

1

2
gabδRab ¼ 4πgabT ab ≔ 8πT •: ðE8Þ
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After using Eq. (E4), we can simplify this to a wave
equation for δM,

□M2δM ¼ 8π

�
f∂rT ∘ þ

M
r2

T ∘ − rfT •

�
: ðE9Þ

This final equation is redundant due to the Bianchi
identities, but it shows that the mass perturbation prop-
agates causally according to a hyperbolic equation.
The same calculations apply at second order with the

obvious replacements of source terms. As a final comment
in this section, we note that at second order the quadratic
source terms dramatically simplify for l ¼ 0 due to
Eq. (96). Equation (171), for example, reduces to

Xs0max

s0¼0

X∞
l0¼s0

Xþl0

m0¼−l0
λl0;s0λl00;s0

ð−1Þm0þs0ffiffiffiffiffiffi
4π

p Al0m0s0l0;−m0;−s0
· : ðE10Þ

2. l= 1, odd parity

The l ¼ 1, odd-parity field equations, with lm labels
omitted for visual simplicity, are

δRa−½h̃ð1Þ· � ¼ 8πT ð1Þ
a− ; ðE11Þ

and their analogs at second order. These can be written
entirely in terms of the invariant variable φ− defined in
Eq. (165). However, we opt to write it in terms of an
effective angular momentum variable δJ defined by

φ− ¼ δJ
r4

: ðE12Þ

Explicitly, the field equations reduce to

∂

∂r
δJ ¼ −

16πr2

f
Tt−; ðE13aÞ

∂

∂t
δJ ¼ −16πr2fTr−: ðE13bÞ

In analogy with Eqs. (E5) and (E7), Eq. (E13b) can be
interpreted as the statement that the angular momentum
within a sphere of radius r changes at a rate equal to the
instantaneous flux of angular momentum into the sphere,
while Eq. (E13a) can be interpreted as the statement that the
total angular momentum within the sphere is equal to the
integrated angular momentum density within the sphere.
These two equations determine δJ up to a constant. The
constant represents a perturbation toward a Kerr solution
with spin parameter δJ

M.
In analogy with Eq. (E9), from Eq. (E13) we can derive a

wave equation for δJ:

□M2δJ ¼ −16πϵabδaðr2Tb−Þ: ðE14Þ

APPENDIX F: FIELD EQUATIONS IN
BARACK-LOUSTO-SAGO CONVENTIONS

For self-force computations in the Lorenz gauge, the
most common set of conventions are those of Barack and
Lousto [69] as modified by Barack and Sago [70].4 These
conventions were used at first order in Refs. [70,110,111]
(among others) and in all second-order calculations
[30,56,57,109]. In this appendix we describe the translation
of our results into these conventions.
The Barack-Lousto-Sago conventions use a set of

harmonics Yilm
μν , where i runs from 1 to 10, with non-

vanishing components given by

Y1lm
ab ¼ 1ffiffiffi

2
p ðtatb þ f−2rarbÞYlm; ðF1aÞ

Y2lm
ab ¼ f−1ffiffiffi

2
p ðtarb þ ratbÞYlm; ðF1bÞ

Y3lm
ab ¼ −

1ffiffiffi
2

p gabYlm; ðF1cÞ

Y4lm
aA ¼ rffiffiffi

2
p

λl;1
taYlm

A ; ðF1dÞ

Y5lm
aA ¼ rf−1ffiffiffi

2
p

λl;1
raYlm

A ; ðF1eÞ

Y6lm
AB ¼ r2ffiffiffi

2
p ΩABYlm; ðF1fÞ

Y7lm
AB ¼

ffiffiffi
2

p
r2

λl;2
Ylm
AB; ðF1gÞ

Y8lm
aA ¼ −

rffiffiffi
2

p
λl;1

taXlm
A ; ðF1hÞ

Y9lm
aA ¼ −

rf−1ffiffiffi
2

p
λl;1

raXlm
A ; ðF1iÞ

Y10lm
AB ¼ −

ffiffiffi
2

p
r2

λl;2
Xlm
AB: ðF1jÞ

These harmonics are orthogonal (but not ortho-
normal) with respect to the inner product hSμν; Qμνi ≔R
ηαμηβνS�αβQμνdΩ, where ημν ≔ diagð1; f2; r−2ΩABÞ.5

If we expand a tensor vμν as

4The Barack-Lousto-Sago basis is related to the Barack-
Lousto basis by Y3lmðBLSÞ

μν ¼ fY3lmðBLÞ
μν , leading to coefficients

related by SðBLÞ3lm ¼ fSðBLSÞ3lm .
5The definition of ημν corrects a typo in Ref. [69], as previously

noted in Ref. [110].
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vμν ¼
X
ilm

vilmYilm
μν ; ðF2Þ

then the coefficients are given by6

vilm ¼ κi

Z
Yilm�
αβ ηαμηβνvμνdΩ; ðF3Þ

where κ3 ¼ f−2 and κi ¼ 1 for i ≠ 3.
An advantage of these harmonics is that they are well

suited to assessing (or imposing) the regularity of a tensor
at the future horizon. A tensor vμν ¼

P
ilm vilmYilm

μν has
continuous components in ingoing Eddington-Finkelstein
coordinates ðv; rÞ at r ¼ 2M if and only if
(1) each coefficient vilm is continuous there,
(2) v2lm ¼ v1lm þOðf2Þ, and
(3) vilm ¼ viþ1;lm þOðfÞ for i ¼ 4; 8.

If each vilm is a smooth function of v and r at r ¼ 2M, then
the above conditions are equivalent to smoothness of vμν at
the future horizon.
Another advantage of this set of harmonics is that it

makes trace reversals trivial. If we expand a tensor vμν as in
Eq. (F2) and its trace reverse as v̄μν ¼

P
ilm v̄ilmYilm

μν , then
the coefficients in the two expansions are related by

v̄ilm ¼ vilm if i ≠ 3; 6; ðF4aÞ

v̄3lm ¼ v6lm; ðF4bÞ

v̄6lm ¼ v3lm: ðF4cÞ

Hence, a trace reversal is accomplished by the simple
switch i ¼ 3 ↔ i ¼ 6.
The coefficients vilm are related to the tensor-harmonic

coefficients in the body of the paper according to

v1lm ¼ 1ffiffiffi
2

p ðvlmtt þ f2vlmrr Þ; ðF5aÞ

v2lm ¼
ffiffiffi
2

p
fvlmtr ; ðF5bÞ

v3lm ¼ −
1ffiffiffi
2

p gabvlmab ; ðF5cÞ

v4lm ¼
ffiffiffi
2

p
λl;1
r

vlmtþ ; ðF5dÞ

v5lm ¼
ffiffiffi
2

p
λl;1f
r

vlmrþ ; ðF5eÞ

v6lm ¼
ffiffiffi
2

p

r2
vlm∘ ; ðF5fÞ

v7lm ¼ λl;2ffiffiffi
2

p
r2

vlmþ ; ðF5gÞ

v8lm ¼ −
ffiffiffi
2

p
λl;1
r

vlmt− ; ðF5hÞ

v9lm ¼ −
ffiffiffi
2

p
λl;1f
r

vlmr− ; ðF5iÞ

v10lm ¼ −
λl;2ffiffiffi
2

p
r2
vlm− : ðF5jÞ

These relations can be used to obtain the linear and
quadratic quantities in the Lorenz-gauge field equations
(Eilm, Ailm, and Bilm) from their counterparts Elm

· , Alm
· ,

and Blm
· given in the body of the paper. However, the

results will be expressed in terms of the field variables hlm· ,
which must be translated to Barack-Lousto-Sago variables.
Instead of directly using coefficients in an expansion of

hðnÞμν of the form (F2), the Barack-Lousto-Sago convention
is to scale those coefficients by convenient factors.
Specifically, the trace-reversed field is expanded as

h̄ðnÞμν ¼ 1

r

X
ilm

ailh̄
ðnÞ
ilmY

ilm
μν ; ðF6Þ

where

ail ≔
1ffiffiffi
2

p

8>><
>>:

1 for i ¼ 1; 2; 3; 6;
1
λl;1

for i ¼ 4; 5; 8; 9;

1
λl;2

for i ¼ 7; 10:

ðF7Þ

The nth-order field variables are then the coefficients h̄ðnÞilm.
We can express our field variables hðnÞlm· in terms of these
by inverting the relations (F5), accounting for the rescaling,
and performing the trace reversal i ¼ 3 ↔ i ¼ 6. The result
is given in Table II.
If we begin from a field equation of the form (27) and

specialize to the Lorenz gauge, we reduce the equation to
Eq. (28), reproduced here for convenience: Eμν½h̄ðnÞ� ¼
−2SðnÞμν . Obtaining Eilm from Elm

· using Eq. (F5), substitut-
ing Eq. (F6) into Eilm, and then adding terms proportional
to the gauge condition, as described in Ref. [69], leads to
the Barack-Lousto-Sago formulation of the linearized
Einstein equation in the Lorenz gauge, which is written as

□2d
sc h̄

ðnÞ
ilm þMj

ilh̄
ðnÞ
jlm ¼ rf

2ail
SðnÞilm: ðF8Þ

Here □2d
sc ¼ ∂u∂v þ Vl is a two-dimensional scalar wave

operator with potential Vl ¼ 1
4
f½2M=r3 þ lðlþ 1Þ=r2�,

6This corrects Eq. (2.7) in Ref. [110], which omitted the factor
of Ni, as previously noted in Ref. [109].
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and the terms Mj
ilh̄

ð1Þ
jlm are given in Eqs. (A1)–(A10) of

Ref. [70]. SðnÞilm is obtained from SðnÞlm· via Eq. (F5).
At first order, Eq. (F8) becomes

□2d
sc h̄

ð1Þ
ilm þMj

ilh̄
ð1Þ
jlm ¼ 4πrf

ail
Tð1Þ
ilm: ðF9Þ

At second order, it becomes

□
2d
sc h̄

ð2Þ
ilm þMj

ilh̄
ð2Þ
jlm ¼ 4πrf

ail
Tð2Þ
ilm −

rf
2ail

δ2Gilm½hð1Þ�

ðF10Þ

or, more explicitly, in terms of the sources appearing in
Sec. VI D,

□
2d
sc h̄

ð2Þ
ilm þMj

ilh̄
ð2Þ
jlm ¼ 4πrf

ail
T̄ ð2Þ

ilm −
rf
4ail

ðĀilm þ B̄ilmÞ:

ðF11Þ

The source terms T̄ ð2Þ
ilm, Āilm, and B̄ilm can be obtained

explicitly by (i) constructing T ð2Þ
ilm, Ailm, and Bilm from

T ð2Þlm
· , Alm

· , and Blm
· using Eq. (F5), (ii) replacing the

variables hð1Þlm· with the variables h̄ð1Þilm using Table II, and

(iii) performing the trace reversal i ¼ 3 ↔ i ¼ 6 of T ð2Þ
ilm,

Ailm, and Bilm to obtain T̄ ð2Þ
ilm, Āilm, and B̄ilm.

In self-force computations, Tð1Þ
μν is the stress-energy

tensor of a point mass. At second order, rather than working
with a stress-energy tensor and solving directly for the
physical retarded field, we instead use a puncture scheme.
A singular piece of the metric perturbation, representing the
particle’s local self-field that diverges at the particle’s
position, is moved to the right-hand side of the field
equation, and one solves for the regular residual field.
The field equations in that case then become

□
2d
sc h̄

ð2ÞR
ilm þMj

ilh̄
ð2ÞR
jlm ¼ −ð□2d

sc h̄
ð2ÞP
ilm þMj

ilh̄
ð2ÞP
jlm Þ

−
rf
4ail

ðĀilm þ B̄ilmÞ; ðF12Þ

where h̄ð2ÞPilm are the harmonic coefficients in the expansion

of the 4D puncture field given in Ref. [53], and h̄ð2ÞRilm ≔
h̄ð2Þilm − h̄ð2ÞPilm are the residual field modes. No stress-energy
terms appear in Eq. (F12), and the total source on the right-
hand side is defined on the puncture’s worldline by taking
the limit from off the worldline; see the discussion around
Eqs. (13)–(17) in Ref. [112]. The field equations are
also further modified using a two-timescale expansion,
as described in Ref. [109].
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