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We initiate a general investigation into gravitational wave signatures of modifications to scattering of
gravitational radiation from black holes. Such modifications may be present due to the quantum dynamics
that makes black holes consistent with quantum mechanics, or in other models for departures from classical
black hole behavior. We propose a parameterization of the corrections to scattering as a physically
meaningful, model-independent, and practical bridge between theoretical and observational aspects of the
problem; this parametrization can incorporate different models in the literature. We then describe how these
corrections influence the gravitational wave signal, e.g. of a body orbiting a much more massive black hole.
In particular, they generically change the rate of energy emission; this effect can be leveraged over many
orbits of inspiral to enhance the sensitivity to small corrections, as has been noticed in simple models. We
provide preliminary estimates of the sensitivity of future gravitational wave observations to these
corrections, and outline further work to be done to connect both to a more fundamental theory of
quantum black holes, and to realistic observational situations.
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I. INTRODUCTION

We have good reasons to believe that black holes in our
quantum Universe behave differently from their classical
idealization in general relativity. A particularly strong
reason is that a leading order attempt to incorporate
quantum behavior leads to Hawing radiation [1], whose
description ultimately produces a massive violation of
quantum-mechanical unitarity [2]. There has been around
50 years of wide ranging debate about this problem, which
yields the “information paradox” or “unitarity crisis.” There
is still no consensus on the resolution to this problem, and
much controversy remains. But, one point on which there is
a near consensus, represented by a wide variety of
proposals,1 is that there should be some modification to
the classical physics of black holes at horizon scales, and
not just at Planck distances deep within the black hole.
We have also entered an era where we have gained

observational access to the strong-field regions at the
horizon scale of black holes, via two channels: very long
baseline interferometry, as with the Event Horizon
Telescope [3,4], and gravitational wave detection, as with
LIGO/VIRGO/KAGRA [5–8], and in the future LISA [9].
These two points combined suggest that we investigate

possible observational signatures of new physics associated

with a quantum-consistent description of black holes. Of
course, conventional wisdom holds that any new effects
of quantum gravity will only appear at short, perhaps
Planckian, scales, and should not be manifest in the weakly
curved vicinity of a large black hole horizon. But, this is the
same conventional wisdom that results in the inconsistency
and ultimate crisis.
Different proposals and models for what could modify

the black hole description of general relativity are made
both at the classical level and quantum level, with greater or
less motivation. Without assessing their intrinsic merits, we
can ask in what cases they could produce observational
signatures. This paper will focus on the gravitational wave
case.
Of course, if we had experimental access to a black hole,

one way to probe its behavior would be to scatter radiation
from it, and see whether this scattering is modified from
that of the classical description; this is also the safest way to
investigate a black hole. Instead what we have is gravita-
tional waves from binaries involving black holes. However,
a basic point which we will develop in this paper is that
gravitational wave production in a binary inspiral can be
connected to gravitational wave scattering from an isolated
black hole—the binary dynamics provides a somewhat
complicated source term for gravitational waves that both
scatter and contribute to the observable signal.
Specifically, we suggest that a good starting point for

investigation of possible departures from classical black
hole behavior is a principled parametrization of the
resulting deviations in scattering behavior. We will then
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investigate how to connect this to deviations in the
gravitational wave signal. Our description of scattering is
model-agnostic. We imagine that classical black holes are
replaced by compact objects with a description that is
consistent with quantum mechanics, “compact quantum
objects” or CQOs, to abbreviate.2 Of course, the description
of a CQO should have many of the features of a classical
black hole, in particular since we now have various
observations in which there have been no anomalous
deviations from classical behavior [16–18].3 In particular
we imagine that the description of such a CQO is
essentially the same as that of a classical black hole outside
a radius Ra which may be comparable to the horizon radius
R, but that there are modifications to that classical behavior
within Ra which can alter the scattering behavior. This is
illustrated in Fig. 1.
Propagation of classical waves in the region outside Ra

is then the same as that for a classical black hole, but there
will be deviations in the scattering of waves from the region
inside Ra; e.g. absorption and reflection may be modified.
For a simplified example, consider scattering of incoming
massless scalar waves of definite frequency and angular
momentum, which we can parametrize in the region outside
Ra as

ϕωlm ¼ ϕBH
ωlmþ

X
l0m0

Z
dω0ffiffiffiffiffiffiffi
2ω0p ΔT lm;l0m0 ðω;ω0Þϕup

ω0l0m0 : ð1:1Þ

Here ϕBH
ωlm describes the incoming plus scattered wave

from a classical black hole (BH), and we parametrize
departures from this scattering via the amplitudes ΔT for
corresponding purely outgoing modes ϕup

ωlm which we will
describe further later; in general the scattered waves may
have different frequencies and angular momenta. For
gravitational waves, a corresponding expression for metric
perturbations is

HωAμν ¼ HBH
ωAμν þ

X
A0

Z
dω0ffiffiffiffiffiffiffi
2ω0p ΔT AA0 ðω;ω0ÞHup

ω0A0μν;

ð1:2Þ

where the indices A, A0 collect the other mode quantum
numbers (angular momenta/polarizations).
These expressions give a model-independent parametri-

zation of scattering due to modified dynamics within Ra; in
practice a similar description could be used if the object
were, e.g., a neutron star, with a correspondingly larger Ra.
This description extends other model independent para-
metrizations via multipole moments [22–26], tidal deform-
abilities (Love numbers) [27–30], and quasinormal modes
[31–37]. Examples of models for the physics altering the
scattering include additional reflection near the horizon as
in “echo” models [19] [10,38,39], other modifications to
effective potentials [40–43], boson clouds [44–47], dirty
black holes [48], and nonviolent unitarization [49–55].
Such a principled parametrization of departures from the
classical BH null hypothesis should be useful either for
investigating possible deviations, or for constraining the
dynamics of CQOs if deviations are found. Of course if
anomalies do present themselves, it will be a challenge to
disentangle their origin, even if astrophysical sources [56]
and systematic modeling uncertainties can be excluded
[57–59], and in that case such a parametrization is expected
to be useful.
An effective description like this is partly motivated by a

separation of scales; for example one often considers
gravitational radiation with wavelength significantly longer
than the horizon radius. Moreover, details of the internal
dynamics of the black hole are expected not to have a large
effect on coarser-grained observables such as signals from a
binary inspiral.
One of our present goals is to quantify the dependence of

gravitational wave signals on any such modified dynamics,
and the sensitivity to such modifications, through this
generic intermediary of the modification to the scattering
from a CQO. We do so by relating the modified scattering
to the gravitational wave signal from an inspiral. We will
describe how to do so in the extremal mass ratio case, using
Green’s function methods; as we will discuss further, a

FIG. 1. Illustration of scattering from a compact quantum
object. A source emits radiation that propagates like in a classical
black hole geometry outside a radius Ra. Departures from
classical black hole behavior within Ra can however alter the
scattering from the CQO, as compared to that of the classical
geometry. (The figure should not be taken too literally; for
example the wavelength of the illustrated gravitational radiation
is not to scale for an orbiting source; it should be significantly
longer and, relatedly, the region in which it is sourced is not as
localized.).

2Wedonot use the “exotic compact object” terminology [10–14]
both because it is commonly used to refer to horizonless
modifications of black holes [15], and because once we
understand the quantum description there should be nothing
exotic about it. In particular, it may be that CQOs deviate from
classical black hole behavior only in small corrections to most
physical quantities.

3There was a claim of some statistical significance for an
“echo” observation [19] which was likely premature [20,21].
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corresponding treatment is also expected to apply pertur-
batively to the case of comparable masses. This will give a
relation between the generic modification to scattering
parametrized by ΔT AA0 ðω;ω0Þ, and the corresponding
gravitational wave signal e.g. as would be observed
by LISA.
Small deviations in scattering behavior are expected to

lead to small changes in gravitational wave signals that may
be hard to observe. However, there also are possible
“amplifiers” for such deviations. Specifically, if such a
deviation alters the rate at which energy is radiated from the
binary, and one considers its effect over many orbits of the
inspiral, the resulting gravitational wave signal can accu-
mulate a significant net phase shift. This basic point was
made in [60], who considered a simple model with
modified reflection from a black hole; it was further
investigated in [61,62]. As we will further describe, this
gives an in-principle enhanced sensitivity to even relatively
small departures from classical black hole scattering. In the
process we will clarify and correct the relation of energy
loss to the reflection amplitude given in [60].
Much of the basic treatment of these effects is the same

for scalar radiation as for gravitational waves; scalars are
important guides to understanding the basic physics. The
scalar case is simpler since one does not need to account for
polarizations, which are typically expected to only give
Oð1Þ corrections. For that reason, we will give a more
complete treatment in the scalar case, and leave further
discussion of certain aspects of the case of gravitational
radiation for future work. The case of a nonrotating black
hole is also simpler, so some of this initial exploration of
the sensitivity to modifications through such dephasing
also will focus on that case.
The structure of the remainder of the paper is as follows.

First, in the next section, we derive how the modifications
to scattering parametrized in (1.1) affect a scalar wave
signal arising from a source such as an orbiting body, and
from that derive the change in the rate of energy emission
from the orbiting source. Following [60], we parametrize
this modified rate in terms of a ratio to the rate of energy
absorption of a classical black hole. Section III then extends
this analysis to the case of gravitational radiation, and
derives a parametrization of the change in emitted energy in
terms of an analogous ratio, as well as giving a brief
discussion of the relation to a description in terms of
Teukolsky variables. Section IV then connects our general
analysis in terms of scattering amplitudes to simple
examples of models for scattering. Section V gives a
preliminary analysis of possible sensitivity of gravitational
wave observations to the deviations in scattering ampli-
tudes, through dephasing, showing significant sensitivity to
small deviations. The final section briefly discusses some
of the future directions and generalizations of this work.
Some technical aspects of the Green’s functions and time-
averaging procedures are presented in the appendixes.

II. MODIFICATIONS TO SCATTERING, WAVE
FORMS, AND ENERGY LOSS: SCALAR EXAMPLE

A. General framework

In an inspiralling binary, absorption and reflection of
gravitational waves from the individual objects can contrib-
ute to the rate at which energy is lost from the orbital motion.
We would like to know the contribution of departures in this
absorption/reflection, as described in (1.2), from that of
classical black holes. This is simplest to study in the case of
an extremal mass ratio inspiral (EMRI), although we expect
lessons to extend to the case of comparable masses. In the
EMRI limit, the smaller object can be thought of as a
pointlike orbiting source for gravitational radiation, see
Fig. 1, in the background of the larger object. To investigate
the basic approach to solving this problem, we will focus on
the technically simpler case of scalar radiation, (1.1).
Specifically, consider a minimally coupled scalar field

with Lagrangian density

L ¼ −
1

2
j∇Φj2: ð2:1Þ

We assume this describes the dynamics in a region r >
Ra > R where modifications to the BH geometry are
assumed to be insignificant. We initially consider the
nonspinning case with S ¼ 0, although the discussion
readily generalizes. For r > Ra the geometry is then well
described as that of Schwarzschild,

ds2 ¼ −
�
1 −

R
r

�
dt2 þ

�
1 −

R
r

�
−1
dr2 þ r2dΩ2

2; ð2:2Þ

with R ¼ 2M and dΩ2
2 the metric on the unit two-sphere.

We assume that there is a source JðxÞ in this region, which
will ultimately be taken to describe coupling to the orbiting
body, contributing an additional term −JΦ to the
Lagrangian, and resulting in the equation of motion

□Φ ¼ 1ffiffiffiffiffijgjp ∂μðgμν
ffiffiffiffiffi
jgj

p
∂νΦÞ ¼ JðxÞ; ð2:3Þ

valid for r > Ra. Our basic approach will be to solve this
equation by finding a Green’s function, with boundary
conditions at small r determined by the modification to
scattering of (1.1). Then, we can calculate the total energy
carried from the source by this radiation field, and its
dependence on the scattering modificationΔT lm;l0m0 ðω;ω0Þ.
Solutions to (2.3) are naturally described using the

partial wave expansions

ΦðxÞ ¼
X
lm

ulmðt; rÞ
r

Ylmðθ;ϕÞ;

JðxÞ ¼
X
lm

jlmðt; rÞ
r − R

Ylmðθ;ϕÞ: ð2:4Þ
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Then (2.3) reduces to the (scalar) Regge-Wheeler equation

LRWulmðt; rÞ≡ ½∂2r� − ∂
2
t − VRW

l ðrÞ�ulmðt; rÞ ¼ jlmðt; rÞ;
ð2:5Þ

with tortoise coordinate

dr�
dr

¼
�
1 −

R
r

�
−1
; ð2:6Þ

and potential

VRW
l ðrÞ ¼

�
1 −

R
r

��
lðlþ 1Þ

r2
þ R
r3

�
: ð2:7Þ

We will generally suppress the angular mode indices l and
m when there is no possibility for confusion.
The partial wave solutions of the homogeneous

Regge-Wheeler equation nicely illustrate features of the
general solutions. These depend on the boundary condi-
tions. Important solutions are the “in” and “out” solutions,
characterized by their behavior at the horizon, r� → −∞;
there they take pure ingoing or outgoing forms

uinωlðt; rÞ ∝ e−iωðtþr�Þ; uoutωl ðt; rÞ ∝ e−iωðt−r�Þ: ð2:8Þ
An alternative basis is that of the “up” and “down”
solutions, which are characterized by their behavior at
asymptotic infinity, r� → ∞, where they are pure outgoing
or ingoing, respectively:

uupωlðt; rÞ → e−iωðt−r�Þ; udownωl ðt; rÞ → e−iωðtþr�Þ: ð2:9Þ
The in modes are appropriate for describing scattering

where an incident unit-amplitude wave scatters from a
classical BH, and with this normalization takes the form

uinωlðt; rÞ → e−iωðtþr�Þ þ Rωle−iωðt−r�Þ; ð2:10Þ

in the asymptotic region r� → ∞, with Rωl a reflection
coefficient due to the potential (2.7); the out modes are

likewise chosen to have a unit-amplitude up wave in this
region. Then, approaching the horizon, r� → −∞,

uinωlðt; rÞ → Tωle−iωðtþr�Þ; ð2:11Þ

where Tωl is the transmission coefficient through the
potential barrier. With our normalization convention, the
up modes behave at the horizon, r� → −∞, as

uupωlðt; rÞ →
e−iωðt−r�Þ þ R̃ωle−iωðtþr�Þ

Tωl
; ð2:12Þ

where we introduce an internal reflection coefficient R̃ωl.
The relation between the sets of modes is then given by the
transmission and reflection coefficients for the potential
barrier surrounding the BH. For example, with the preced-
ing normalizations

uinωlðt; rÞ ¼ udownωl ðt; rÞ þ Rωlu
up
ωlðt; rÞ: ð2:13Þ

In Fig. 2 we illustrate the functions Rωl for the mode
l ¼ 2. Note also that with the definition uωlðt; rÞ ¼
expf−iωtguωlðrÞ, the spatial wave functions satisfy

uin�ωl ðrÞ ¼ uoutωl ðrÞ; uup�ωl ðrÞ ¼ udownωl ðrÞ: ð2:14Þ

Next, if we consider modifications to this scattering
due to CQO corrections to the classical geometry, we can
parametrize their form in the region r > Ra where the
corrections are negligible in terms of modifications to
the reflection/transmission, as was described in the
Introduction:

ϕsc
ωlmðxÞ ¼

uinωlðt; rÞ
r

Ylme−iωt þ
X
l0m0

Z
∞

0

dω0ffiffiffiffiffiffiffi
2ω0p

× ΔT lm;l0m0 ðω;ω0Þ u
up
ω0l0 ðt; rÞ

r
Yl0m0e−iω

0t; ð2:15Þ
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FIG. 2. Real (left) and imaginary (right) parts of the reflection amplitude for a black hole as defined in (2.10) for the mode l ¼ 2.
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where we include the possibility of a scattered contribution
with unequal frequency and l, m. A special case is the
“elastic” case, with equal frequencies, which we para-
metrize as

uscωl ¼ uinωl þ ΔT lðωÞuupωl: ð2:16Þ

To determine how the scattering correction ΔT
influences the waveform and the rate at which a body
orbiting the CQO at r > Ra radiates energy in ϕ, we first
find a Green’s function for the problem (2.3) with the
modified boundary condition (2.15). If this Green’s func-
tion satisfies the equation

□Gðx; x0Þ ¼ δ4ðx − x0Þffiffiffiffiffijgjp ; ð2:17Þ

the solution to (2.3) is

ΦJðxÞ ¼
Z

dV 0
4Gðx; x0ÞJðx0Þ; ð2:18Þ

with dV4 ¼
ffiffiffiffiffijgjp

d4x.
Let Gbhðx; x0Þ denote the Green’s function with the BH

boundary conditions, i.e. ΔT ¼ 0; for r < r0 this can be

expanded in the form

Gbhðx; x0Þ ¼
X
lm

Z
∞

0

dωK<
ωlmðx0Þϕin

ωlmðxÞ þ cc; ð2:19Þ

where we use the general definition

ϕωlmðxÞ ¼ e−iωt
uωlðrÞ

r
Ylmðθ;ϕÞ; ð2:20Þ

and cc denotes complex conjugate. Using a matching
procedure to solve for the BH Green’s function (see
Appendix A) gives the expression

K<
ωlmðx0Þ ¼

1

4πiω
ϕdown�
ωlm ðx0Þ; ð2:21Þ

and the r > r0 expression

Gbhðx; x0Þ ¼
X
lm

Z
∞

0

dω
ϕout�
ωlmðx0Þϕup

ωlmðxÞ
4πiω

þ cc: ð2:22Þ

The difference between any two Green’s functions is a
solution of the homogeneous equation. Given the BH result
(2.19), (2.21), the expression

Gscðx; x0Þ ¼ Gbhðx; x0Þ þ
"X
ll0mm0

Z
∞

0

dωdω0ffiffiffiffiffiffiffi
2ω0p ϕdown�

ωlm ðx0Þ
4πiω

ΔT lm;l0m0 ðω;ω0Þϕup
ω0l0m0 ðxÞ þ cc

#
; ð2:23Þ

valid for both r < r0 and r > r0, satisfies both the Green’s function equation (2.17) and the boundary conditions (2.15), and
so is the correct Green’s function with the CQO boundary conditions; to reduce notational clutter in subsequent formulas we
restrict to the equal l case, which then easily generalizes. This in turn gives the solution

ΦJðxÞ ¼ Φbh
J ðxÞ þ

(X
lm

Z
∞

0

dωdω0ffiffiffiffiffiffiffi
2ω0p Zdown

ωlm ½J�ΔT lðω;ω0Þϕup
ω0lmðxÞ þ cc

)
≡Φbh

J ðxÞ þ ΔΦJðxÞ; ð2:24Þ

to the sourced equation (2.3), where we define

Zdown
ωlm ½J� ¼

Z
dV4

ϕdown�
ωlm ðxÞ
4πiω

JðxÞ and Zup
ωlm½J� ¼

Z
dV4

ϕup�
ωlmðxÞ
4πiω

JðxÞ: ð2:25Þ

The black hole contribution as r → ∞ is given by

Φbh
J ðxÞ →

X
lm

Z
dωZout

ωlm½J�ϕup
ωlmðxÞ þ cc; Zout

ωlm½J� ¼
Z

dV4

ϕout�
ωlmðxÞ
4πiω

JðxÞ: ð2:26Þ

The coefficients Zout
ωlm½J�, Zup

ωlm½J�, Zdown
ωlm ½J� are not inde-

pendent; writing the defining integrals in terms of t → −t,
ϕ → −ϕ, and using (2.14) and (2.13), gives

Zup
ωlm½J� ¼ Zout

ωlm½J� − Zdown
ωlm ½J�Rωl: ð2:27Þ

Equation (2.24) describes how to find the change in the
scalar waveform for a given source, e.g. corresponding to
an orbiting body, in terms of the modifications to scattering
parametrized by ΔT lðω;ω0Þ. One important effect of this
change is a change in the rate of energy emission; as wewill
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discuss, this can accumulate to enhance sensitivity to small
scattering corrections.
To find how the boundary condition of (2.15) modifies

the energy emitted by the source, we compute the stress
tensor

Tμν ¼ ∇μΦ∇νΦ −
1

2
gμν∇λΦ∇λΦ ð2:28Þ

of the scalar radiation. For a free theory, this is a bilinear
expression in the field, which with (2.24) becomes

TμνðΦJ;ΦJÞ ¼ TμνðΦbh
J ;Φbh

J Þ þ TμνðΔΦJ;ΔΦJÞ
þ 2TμνðΦbh

J ;ΔΦJÞ; ð2:29Þ

where we have used symmetry of the bilinear. Let the
source be bounded by inner (outer) radii r1 (r2); the net
power emitted from this region containing the source J is
then given by

−
dE
dt

¼ −
�Z

r2

r2dΩ −
Z
r1

r2dΩ
�
Tr
t ðΦJ;ΦJÞ: ð2:30Þ

However, since ΔΦJ is a homogeneous solution,

∇μTμνðΔΦJ;ΔΦJÞ ¼ 0; ð2:31Þ

and so this term has no net effect on the emitted power; in
steady state the two flux contributions cancel. As a result
the change in the power emitted due to the CQO boundary
conditions is linear in ΔΦJ, and hence in ΔT l, and is
given by

−Δ
dE
dt

¼−2
�Z

r2

r2dΩ−
Z
r1

r2dΩ
�
Tr
t ðΦbh

J ;ΔΦJÞ: ð2:32Þ

The linearity arises from the change in power being an
interference effect.
From (2.19) and (2.13), we see that for r < r1, the black

hole solution Φbh
J has a direct down piece

ϕbh;<direct
J ¼

X
lm

Z
∞

0

dωZdown
ωlm ½J�ϕdown

ωlm ðxÞ þ cc; ð2:33Þ

and a reflected up piece

ϕbh;reflect
J ¼

X
lm

Z
∞

0

dωZdown
ωlm ½J�Rωlϕ

up
ωlmðxÞ þ cc: ð2:34Þ

And, for r > r2, we see that Φbh
J has a direct up piece,

ϕbh;>direct
J ¼

X
lm

Z
∞

0

dωZup
ωlm½J�ϕup

ωlmðxÞ þ cc; ð2:35Þ

plus the continuation of the reflected up piece, (2.34).
Consider the contributions of these different pieces
to (2.32).
First consider the expression TrtðΦbh;direct

J ;ΔΦJÞ at r1. If
we expand in terms of contributions of definite frequency,

ϕω1
¼ ϕ1ðrÞe−iω1t þ ϕ�

1ðrÞeiω1t;

ϕω2
¼ ϕ2ðrÞe−iω2t þ ϕ�

2ðrÞeiω2t; ð2:36Þ

then

Trtðϕω1
;ϕω2

Þ ¼ 1

2
ð∂rϕω1

∂tϕω2
þ ∂rϕω2

∂tϕω1
Þ

¼ i
2
ðω2∂rϕ1ϕ

�
2 − ω1∂rϕ

�
2ϕ1Þe−iðω1−ω2Þt

þ ð� � �Þe−iðω1þω2Þt þ cc: ð2:37Þ

Wewill focus on the time-averaged power, over a long time
T. With this averaging, the second expression on the right
vanishes. The first term has average given in terms of

ΔTðω1 − ω2Þ ¼
1

T

Z
T=2

−T=2
dte−iðω1−ω2Þt; ð2:38Þ

in the long time limit, this is ∝ δðω1 − ω2Þ. (For further
discussion of time averaging, see Appendix B.) In this
approximation where the frequencies are equal,

hTrtðϕω1
;ϕω2

Þi ≃ −
iω1

2
Wrðϕ1;ϕ�

2ÞΔTðω1 − ω2Þ þ cc;

ð2:39Þ

where Wr is the Wronskian, defined by

Wrðϕ1;ϕ2Þ ¼ ϕ1∂rϕ2 − ∂rϕ1ϕ2 ¼
Wrðu1; u2Þ

r2
; ð2:40Þ

with ϕi ¼ ui=r as in (2.4). The angular integral likewise
equates the angular quantum numbers. Thus this contribu-
tion only has terms proportional to

Wrðudownωlm ; uup�ωlmÞ; ð2:41Þ

which vanishes as can be seen by constancy of the
Wronskian Wr� ¼ Wrðdr=dr�Þ and its evaluation at
r� ¼ ∞ using the boundary conditions (2.9).
Next consider the expression TrtðΦbh;reflected

J ;ΔΦJÞ. We
again consider the case of definite frequency components;
these frequencies are again equal for a nonzero contribution
to the time average, and angular integration equates the
angular momenta. So, we again find (2.39), with both
arguments now being up solutions. This expression is
conserved by the equations of motion, and so for it the
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two terms of (2.32) cancel, as can also be explicitly seen
from the behavior of the Wronskian.
The result is that the change in average radiated power is

−Δ
�
dE
dt

�
¼ −2

Z
r2

r2dΩhTr
t ðϕbh;>direct

J ;ΔΦJÞi: ð2:42Þ

To evaluate this, combine (2.35) with (2.24), which then
gives the nonvanishing contribution

−Δ
�
dE
dt

�
¼ −

X
lm

Z
∞

0

dωdω0 dω00ffiffiffiffiffiffiffiffi
2ω00p Zup�

ωlm½J�Zdown
ω0lm ½J�

×ΔT lðω0;ω00Þ
�
2r2Tr

t

�
uup�ωl

r
;
uupω00l

r

��
jr2
þ cc:

ð2:43Þ
Then (2.39), together with evaluating the constant
Wronskian Wr� at infinity,

Wr�ðuup�ωl ; u
up
ωlÞ ¼ 2iω; ð2:44Þ

give the result

−Δ
�
dE
dt

�
¼

X
lm

Z
∞

0

dωdω0 dω00ffiffiffiffiffiffiffiffi
2ω00p 4ω2RefΔTðω − ω00Þ

× Zup�
ωlm½J�Zdown

ω0lm ½J�ΔT lðω0;ω00Þg: ð2:45Þ

The formula (2.45) is a general expression giving the
change to the emitted power in terms of the quantities
ΔT lðω;ω0Þ parametrizing CQO modifications to classical
black hole scattering. While it has been derived in the
example of Schwarzschild, the same derivation applies for
black hole spin S > 0, with an analogous result. For long-
time averages, ΔTðω − ω0Þ becomes a delta function on
frequencies (see Appendix B for further discussion of time
averaging), and the factors Zup½J� and Zdown½J� are overlaps
of the source J with the respective wave functions for the
classical BH, given in (2.25). As we have noted, the change
of radiated power is linear in ΔT , one explanation being
this is due to an interference effect. As we will discuss later,
this is important for potential observability of the mod-
ifications, since for a small modification ΔT a quadratic
effect would be more highly suppressed.4

We can decompose ΔT into equal and unequal fre-
quency pieces,

ΔT lðω0;ωÞ ¼
ffiffiffiffiffiffi
2ω

p
ΔT lðωÞδðω − ω0Þ þ ΔT ≠

l ðω0;ωÞ;
ð2:46Þ

where

lim
ϵ→0

Z
ωþϵ

ω−ϵ
dω0ΔT ≠

l ðω;ω0Þ ¼ 0: ð2:47Þ

In the pure equal-frequency case, (2.45) simplifies to

−Δ
�
dE
dt

�
¼

X
lm

Z
∞

0

dωdω04ω2RefΔTðω − ω0Þ

× Zup�
ωlm½J�Zdown

ω0lm ½J�ΔT lðω0Þg: ð2:48Þ

A useful phenomenological parameter is the ratio of the
change in the energy loss given by either (2.45) or (2.48) to
the total rate of energy loss in the BH case, (A22),

Δ
�
dE
dt

�	�
dE
dt

�
BH;tot

; ð2:49Þ

or, as in [60], its ratio to the energy loss (A21) to the would-
be BH horizon,

C ¼ Δ
�
dE
dt

�	�
dE
dt

�
BH;hor

: ð2:50Þ

Time averaging for more general sources is discussed in
Appendix B, but consider the special case where the source
can be approximated as having discrete frequencies, as with
a periodic orbit:

J ¼
X∞
n¼0

Jnðx⃗Þe−iωnt þ cc: ð2:51Þ

In this case

Zωlm½J� ¼
X
n

Znlm½J�δðω − ωnÞ; ð2:52Þ

where

Znlm½J� ¼
Z ffiffiffiffiffiffiffiffi

jgttj
p

dV3

u�ωnl
ðrÞ

2iωnr
Y�
lmðθ;ϕÞJnðx⃗Þ: ð2:53Þ

Then the energy loss formula (2.48) simplifies to

−Δ
DdE
dt

E
¼

X
nlm

4ω2
nRefZup�

nlm½J�Zdown
nlm ½J�ΔT lðωnÞg; ð2:54Þ

and the ratios (2.49) and (2.50) correspondingly simplify.
In particular, the latter becomes

C ¼
X
nlm

ω2
n · 2RefZup�

nlm½J�Zdown
nlm ½J�ΔT lðωnÞg=X

nlm

ω2
njTωnlj2jZdown

nlm ½J�j2; ð2:55Þ
4This differs from an assumption relating the change in power

to the square of the change of absorption. Such a parametrization
was effectively taken in [60], although in the end this only affects
the interpretation of their results.
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where we have used (A21), (A23) to determine the
denominator.

B. Orbiting bodies and the circular case

We next apply the preceding formalism to the example of
a source corresponding to a body executing an orbit in the
background spacetime. In the limit where the orbiting
object can be treated as a pointlike scalar charge q, the
corresponding source is

J ¼ q
Z

dτ
δ4ðx − xðτÞÞffiffiffiffiffijgjp ; ð2:56Þ

where xðτÞ is the orbital trajectory, and τ is the
body’s proper time. Parametrizing the orbit in terms of
Schwarzschild time, this becomes

JðxÞ ¼ q
r2 sin θ

dτ
dt

δðr − rðtÞÞδðθ − θðtÞÞδðϕ − ϕðtÞÞ:
ð2:57Þ

A particular illustrative example is that of a circular orbit
of radius r0 and frequency ω0, which we take to be in the
plane θ ¼ π=2, giving

JðxÞ ¼ q
r20

dτ
dt






r0

δðr − r0Þδðθ − π=2Þδðϕ − ω0tÞ: ð2:58Þ

In terms of the relevant wave functions (up, down), this
then yields, from the definitions (2.25),

Zωlm½J� ¼
q

utðr0Þ
u�ωlðr0Þ
2iωr0

Y�
lmðπ=2; 0Þδðω −mω0Þ

¼
X
n

q
utðr0Þ

u�nω0l
ðr0Þ

2inω0r0
Y�
lmðπ=2; 0Þδmnδðω − nω0Þ

ð2:59Þ

where ut ¼ dt=dτ, and ω > 0.
These yield a change in energy loss from (2.54),

−Δ
�
dE
dt

�
¼ q2

r20½utðr0Þ�2
X
nl

jYlnðπ=2; 0Þj2

× Re½uup2nω0;l
ðr0ÞΔT lðnω0Þ� ð2:60Þ

and a fractional change compared to the energy absorbed
by a classical BH

Cðω0Þ ¼ 2

P
nljYlnðπ=2; 0Þj2Re½uup2nω0;l

ðr0ÞΔT lðnω0Þ�P
nljYlnðπ=2; 0Þj2jTnω0;lj2juupnω0;l

ðr0Þj2
:

ð2:61Þ

This can then be computed, given a model for the
departures ΔT lðωÞ from classical BH scattering, in terms
of known BH wave functions and transmission coefficients.

III. GRAVITATIONAL RADIATION

The treatment of gravitational radiation is directly
analogous in structure to that of scalar radiation, with
the additional complications of the tensor polarizations.
The starting point is the expansion of Einstein’s equations

Gμν ¼ 8πGTμν; ð3:1Þ

in a perturbation hμν about the BH background. Solution of
the linearized equations is possible after choosing a gauge;
for example, we can define the trace-reversed metric
perturbation Hμν and impose the Lorenz gauge,

Hμν ¼ hμν −
1

2
ðgλσhλσÞgμν; ∇μHμν ¼ 0; ð3:2Þ

resulting in the linearized equation

ð□ðLÞHÞμν ¼ □Hμν þ 2Rλ
μ
σ
νHλσ ¼ −16πGTμνðxÞ: ð3:3Þ

This equation, with Lichnerowicz Laplacian □ðLÞ, is the
tensor analog to the Klein-Gordon equation (2.3).

A. Modes and fluxes

Equations (3.3) are no longer in general separable,
requiring greater care; the polarization structure, particu-
larly in a rotating background, is complicated. However,
we can define modes using the asymptotics as r → ∞,
where (3.3) reduces to the flat space homogeneous equa-
tion, and we can consider transverse traceless vacuum
solutions. For example, we can define up modes of definite
frequency, which are pure outgoing at infinity,

Hup
ωAμνðxÞ ∼

e−iωðt−rÞ

r
YAμν; ð3:4Þ

here A is a mode label characterizing the asymptotic
behavior of the solution, and YAμν are tensor harmonics.5

For example, one may label the modes by the total
asymptotic angular quantum numbers, A ¼ ðjm�Þ, and
the YA’s will be the tensor spherical harmonics. We will not
need to describe these in detail, however, it is important to

5As this would lead us too far, we do not go into subtleties such
as how to deal with nonpropagating modes, etc.
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note these tensors can be chosen to be orthonormal (with
respect to the relevant two-sphere measure), transverse, and
trace-free. Moreover, we have defined these harmonics

such that YðsÞ
αβ ∼ r2, with α, β labeling angular components.

Therefore, the overall scaling is consistent with the
expected radiative asymptotic fall-off, which in Cartesian
coordinates is h ∼ 1=r. As a result, in spherical coordinates
one has hab ∼ 1=r, hαb ∼ 1 and hαβ ∼ r, if a, b run over t, r.
One likewise defines down modes to be pure ingoing at
infinity,

Hdown
ωAμνðxÞ ∼

e−iωðtþrÞ

r
YAμν: ð3:5Þ

We fix the normalization of these modes in terms of
their asymptotic energy fluxes. Of course there is no local
stress tensor for dynamical gravity. However, one can
still construct a useful conserved energy current τμ for a
massless spin-two field on a fixed background with a
timelike Killing vector field, e.g. as a Nöther current, whose
asymptotics can meaningfully be interpreted in terms of a
physical energy flux [63,64]. This can for example be
found from a pseudostress energy tensor as τμ ¼ τμνξ

ν,
with possible ambiguities not affecting the physical flux at
infinity; we leave the precise choice of τμν at finite r
implicit (but see for instance [65,66]). Then we choose
norms so that the asymptotic flux of the real or imaginary
part of a mode is given by the time-averaged value

lim
r→∞

Z
S2

hτrðHωA þH�
ωAÞir2dΩ

¼ lim
r→∞

Z
S2

−
1

8πG
hGð2Þ

tr ir2dΩ ¼ ∓ω2; ð3:6Þ

with the sign depending on the choice of “up” or “down,”
and where we can express the asymptotic flux in terms of
the second order piece of the Einstein tensor. (The time
averaging also helps provide a well-defined notion of
stress-energy for gravitational waves [67,68].)
As with scalars, τμν can be extended to a symmetric

bilinear, and (3.6) generalizes to

lim
r→∞

Z
S2

τrðHup
ωA;H

up�
ωA0 Þr2dΩ ¼ −

1

2
ω2δAA0 ; ð3:7Þ

and

lim
r→∞

Z
S2

τrðHdown
ωA ;Hdown�

ωA0 Þr2dΩ ¼ 1

2
ω2δAA0 : ð3:8Þ

We also need to evaluate analogous expressions with
different modes as arguments. For example, analogous to
the scalar case, we have

lim
r→∞

Z
S2

τrðHdown
ωA ;Hup�

ωA0 Þr2dΩ

¼ lim
r→∞

Z
S2

τrðHup
ωA;H

down�
ωA0 Þr2dΩ ¼ 0: ð3:9Þ

One can check this by explicit computation from (3.6).
Alternatively, one can observe that the up and down modes
are related to each other by time reversal together with
complex conjugation, taking t → −t and ω → −ω. This
flips the sign of the energy-momentum flux. In particular

lim
r→∞

Z
S2

τrðHdown
ωA0 ; H

up�
ωA Þr2dΩ

¼ − lim
r→∞

Z
S2

τrðHup�
ωA0 ; Hdown

ωA Þr2dΩ: ð3:10Þ

On the other hand, from symmetry and the asymptotic
separation of variables

lim
r→∞

Z
S2

τrðHdown
ωA0 ; H

up�
ωA Þr2dΩ

¼ lim
r→∞

Z
S2

τrðHdown
ωA ;Hup�

ωA0 Þr2dΩ: ð3:11Þ

Together this implies (3.9).
As with the scalar case, expressions with unequal

frequencies are also needed for our calculations of the
energy fluxes. Here, too, time averaging is needed for the
key relations. For example, with time averaging as in
the scalar case, and as is described further in Appendix B,
we have for ω ≠ ω0

lim
r→∞

Z
S2

hτrðHup
ωA;H

up�
ω0A0 Þir2dΩ ¼ 0; ð3:12Þ

and analogous expressions for other unequal-frequency
modes.
It is also useful to define the analog of the scalar in and

out modes. These can be defined in terms of the up and
down modes, analogously to (2.13), as

Hin
ωAμνðxÞ ¼ Hdown

ωAμνðxÞ þ
X
A0

Rbh
AA0 ðωÞHup

ωA0μνðxÞ; ð3:13Þ

that is, these modes have a unit-amplitude [in our nor-
malization (3.6)] incoming wave, and an outgoing reflected
wave fixed by the BH boundary conditions at the horizon.
Modes Hout

μνωAðxÞ are then related to these by time reversal,
complex conjugation, and a corresponding relabelling of
indices.
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B. Modified scattering, waveforms, and energy loss

With these preliminaries we can now parametrize the
scattering modifications to the classical BH case, and their
resulting energy fluxes. Interactions near the BH can alter
the scattered signal, modifying (3.13) to [compare (2.15)]

Hsc
ωAμνðxÞ ¼ Hin

ωAμνðxÞ

þ
Z

∞

0

dω0ffiffiffiffiffiffiffi
2ω0p

X
A0

ΔT AA0 ðω;ω0ÞHup
ω0A0μνðxÞ;

ð3:14Þ

the incoming unit-amplitude signal scatters into different
outgoing waves, not necessarily preserving A0.
For a given source Tμν, the signal with modified

scattering is expected to be determined by a Green’s
function,

Hμν
T ðxÞ ¼

Z
dV 0

4G
μν;λσðx; x0ÞTλσðx0Þ: ð3:15Þ

Outside the scattering region, r > Ra, the difference
between any two Green’s functions

Gsc
μν;λσðx; x0Þ − Gbh

μν;λσðx; x0Þ ¼ ΔGμν;λσðx; x0Þ ð3:16Þ

is again a solution of the homogeneous equation in x.
Consider the BH Green’s function for r < r0, where it is a
solution of the homogeneous equation, and thus may be
expanded in terms of the solutions Hin (enforcing the BH
boundary conditions),

Gbh
μν;λσðx;x0Þ¼

X
A

Z
∞

0

dωK<ωA
λσ ðx0ÞHin

ωAμνðxÞþcc; ð3:17Þ

with coefficient functions K< in principle determinable
by a matching procedure like the scalar case. Then, the
boundary conditions corresponding to scattering modifica-
tions (3.14) of the CQO lead to the modification

ΔGμν;λσ ¼
X
A

Z
∞

0

dωK<ωA
λσ ðx0Þ

Z
∞

0

dω0ffiffiffiffiffiffiffi
2ω0p

×
X
A0

ΔT AA0 ðω;ω0ÞHup
ω0A0μνðxÞ þ cc; ð3:18Þ

to the Green’s function, as in (2.23). As in that case, since
ΔG is a homogeneous solution, we once again expect this
expression to extend to r > r0. For r > r0, we also expect an
expression of the form

Gbh
μν;λσðx;x0Þ¼

X
A

Z
∞

0

dωK>ωA
λσ ðx0ÞHup

ωAμνðxÞþcc; ð3:19Þ

with coefficient functions K> again determined by a
matching procedure.
The source Tμν produces a perturbed solution

HTðxÞ ¼ HbhTðxÞ þ ΔHTðxÞ; ð3:20Þ

analogous to the scalar (2.24). From (3.15), (3.16),
and (3.18), the perturbation tensor signal is

ΔHT
μν ¼

X
AA0

Z
∞

0

dωdω0ffiffiffiffiffiffiffi
2ω0p Zdown

ωA ½T�ΔT AA0 ðω;ω0ÞHup
ω0A0μνðxÞ

þ cc; ð3:21Þ

where we define

Zdown
ωA ½T� ¼

Z
dV4K<ωA

λσ ðxÞTλσðxÞ: ð3:22Þ

We likewise define, using the scalar analogy,

Zout
ωA½T� ¼

Z
dV4K>ωA

λσ ðxÞTλσðxÞ: ð3:23Þ

Equation (3.21) gives us a prescription to calculate the
change in the gravitational wave signal due to a given
source such as an orbiting body, in terms of the parameters
ΔT AA0 ðω;ω0Þ that we have introduced to describe mod-
ifications to scattering. In principle the signal deviation
could be directly measurable, but in practice this may be
difficult if ΔT and the resulting change in signal is small.
However, these changes in the waveform will also generi-
cally result in a change in the rate at which energy is
emitted, and over many orbits this can accumulate to
enhance the significance of the corrections in their con-
tribution to the phase. We therefore turn to the question of
the change in emitted energy.
The argument for the modification to the energy loss also

follows that of the scalar case. The energy flux of the
perturbed signal is described by

τμðHT;HTÞ ¼ τμðHbhT;HbhTÞ þ τμðΔHT;ΔHTÞ
þ 2τμðHbhT;ΔHTÞ: ð3:24Þ

Again let the source Tμν be bounded between radii r1 < r2;
this is valid at leading order in perturbation theory in G,
but of course is violated at higher order. Since ΔHT is a
solution of the homogeneous equations in this region, the
second term in (3.24) is conserved in steady state (or when
time averaged) and does not contribute to the total power
emitted by the source,

−
dE
dt

¼ −
�Z

r2

ρ2dΩ −
Z
r1

ρ2dΩ
�
τrðHT;HTÞ ð3:25Þ
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where we have introduced ρ2 ¼ r2 þ a2 cos2 θ to general-
ize to the rotating case with a ¼ S=M. Again the change in
power emitted due to the CQO boundary conditions is
linear in ΔT , and given by

−Δ
dE
dt

¼ −2
�Z

r2

ρ2dΩ −
Z
r1

ρ2dΩ
�
τrðHbhT;ΔHTÞ:

ð3:26Þ

We evaluate this power as in the scalar case. For r < r1,
we see from the Green’s function form (3.17) and the
solutions (3.13) that the BH background solution HbhT has
a direct down piece, superposing Hdown

ωA ’s, and a reflected
up piece, superposing Hup

ωA’s. For r > r2, we see from
(3.19) and (3.15) that the up signal may be decomposed
into the continuation of the up signal from r < r1, plus a
direct up signal [compare (2.35)],

Hbh;>directT
μν ¼

X
A

Z
∞

0

dωZup
ωA½T�Hup

ωAμν þ cc; ð3:27Þ

where for present purposes we define

Zup
ωA½T� ¼ Zout

ωA½T� −
X
A0

Zdown
ωA0 ½T�Rbh

A0A: ð3:28Þ

This is the tensor version of (2.27).
Next note that if H1 and H2 are homogeneous solutions,

then

∇μτμðH1; H2Þ ¼ 0 ð3:29Þ

follows from vanishing of ∇μτμðH1 þH2; H1 þH2Þ.
Thus, after averaging hτrðHbh;reflected;T ;ΔHTÞi is con-
served, and does not contribute to the difference between
r1 and r2 in (3.26). Also, as in the scalar case, the
contribution from τrðHbh;directT;ΔHTÞ at r1 vanishes
under time averaging, since it involves τrðHdown; HupÞ,
τrðHdown; Hup�Þ or their complex conjugates. Time averag-
ing eliminates the first, and projects the second on equal
frequencies, where it is time independent. Then conserva-
tion (3.29) applied to the integral

R
ρ2dΩhτrðHdown; Hup�Þi

relates it to its value at infinity, where it vanishes by (3.9).
As a result the change in average radiated power is simply

−Δ
�
dE
dt

�
¼ −2

Z
r2

ρ2dΩhτrðHbh;>directT;ΔHTÞi: ð3:30Þ

Combining this with the expressions (3.27) and (3.21) then
gives the result [compare (2.45)]

−Δ
�
dE
dt

�
¼ 2

X
AA0

Z
∞

0

dωdω0 dω00ffiffiffiffiffiffiffiffi
2ω00p ω2RefΔTðω − ω00Þ

× Zup�
ωA ½T�Zdown

ω0A0 ΔT A0Aðω0;ω00Þg; ð3:31Þ

where we have used the normalization (3.7), and time
averaging enters through ΔTðω − ω00Þ, which sets the
frequencies equal, as in the scalar case (see Sec. II and
Appendix B for more discussion).
As in the scalar case, we can decompose ΔT into equal

and unequal frequency cases,

ΔT A0Aðω0;ωÞ ¼
ffiffiffiffiffiffi
2ω

p
ΔT A0AðωÞδðω−ω0Þ þΔT ≠

A0Aðω0;ωÞ:
ð3:32Þ

If we focus on the equal frequency case, the emitted power
becomes

−Δ
�
dE
dt

�
¼ 2

X
AA0

Z
∞

0

dωdω0ω2RefΔTðω − ω0ÞZup�
ωA ½T�

× Zdown
ω0A0 ½T�ΔT A0Aðω0Þg: ð3:33Þ

We can describe its relative effect by comparing this to the
power absorbed by the would-be classical BH, again with
the definition (2.50). In the special case where Tμν has
discrete frequencies, as with a periodic orbit,

Tμν ¼
X∞
n¼0

Tnμνðx⃗Þe−iωnt þ cc; ð3:34Þ

the energy loss formula reduces to

−Δ
�
dE
dt

�
¼

X
nAA0

ω2
n · 2RefZup�

nA ½T�Zdown
nA0 ½T�ΔT A0AðωnÞg;

ð3:35Þ

where

ZωA ¼
X
n

ZnA½T�δðω − ωnÞ: ð3:36Þ

We then find the ratio

C ¼
X
nAA0

ω2
n · 2RefZup�

nA ½T�Zdown
nA0 ½T�ΔT A0AðωnÞg=

X
nAA0

ω2
njTωnAA0 j2Zdown

nA ½T�Zdown�
nA0 ½T�; ð3:37Þ

where we have written the energy flux expression into
the BH in terms of an effective transmission coefficient
defined in terms of the time average and angular integral of
τrðHin�

A ;Hin
A0 Þ at the horizon.
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The direct comparison of the expressions for C in the
scalar and tensor cases, exemplified by comparing (2.55)
and (3.37), indicate that the scalar versions, which are
simpler to compute and handle, serve as a useful proxy for
the more complicated tensor case. Specifically, we find that
the ratio C involves closely similar ratios of wave function
factors integrated against sources, with source strengths
that cancel in the ratio, and similar appearance of the
parameters ΔT describing the CQO perturbation to
classical BH scattering. The primary difference in the
tensor case is the more complicated polarization structure.
We do expect this to introduce extra factors into the ratios,
but expect these to be order one factors. For purposes of
understanding the sensitivity of gravitationalwave signatures
to the scattering perturbations at an order-of-magnitude level,
this therefore motivates working with the much simpler
scalarmodels as a simple example.Of course, a fully accurate
calculation must take into account the full tensor structure,
e.g., as described in this section.

C. Teukolsky variables

In order to translate the analysis from metric perturba-
tions to Teukolsky variables, we need to compute the
associated linearized (Weyl) curvature perturbations
δCμ

ναβ½H; g� and project onto a principal null frame [69]

ψ4½H�¼ψ4½h;g;flμ;nμ;mμ;m̄μg�¼nμm̄νnαm̄βδCμ
ναβ½H;g�;

ð3:38Þ

indicating with the first equality explicitly all the back-
ground input: the background metric g and principal null
frame flμ; nμ; mμ; m̄μg. We could have also introduced
ψ0½H� by simply replacing nμ → lμ, m̄μ → mμ.
By linearity, if we define

ψ sc
ωA ¼ ψ4½Hsc

ωA�; ψ in
ωA ¼ ψ4½Hin

ωA�; ψup
ωA ¼ ψ4½Hup

ωA�
ð3:39Þ

(or similarly for ψ0) then (3.14) becomes

ψ sc
ωA ¼ ψ in

ωA þ
Z

∞

0

dω0ffiffiffiffiffiffiffi
2ω0p

X
A0

ΔT AA0 ðω;ω0Þψup
ω0A0 : ð3:40Þ

On the other hand, ψ in
ωA and ψup

ωA would generically not be
the separated, single mode solutions to the Teukolsky
equation [69]. If Ψin

ωb, Ψ
up
ωb are a basis of such single mode

solutions with the appropriate boundary conditions, we can
write

Ψin
ωb ¼

X
A

M−1
bAðωaÞψ in

ωA; ψup
ωA ¼

X
b

NAbðωaÞΨup
ωb

ð3:41Þ

with a ¼ S=M. M−1
bAðωaÞ and NAbðωaÞ encode the change

of basis, which are frequency and spin dependent, as are the
angular Teukolsky mode functions. A subtlety with the
former is that, even if Hin

ωA is a proper basis for the ingoing
modes, ψ in

ωA may be overcomplete. For instance, one could
have metric perturbations related by “completion” pieces
of [70,71]. Those however, would correspond to non-
propagating modes alluded to earlier. Then, defining
ΔT bb0 ðω;ω0Þ as

Ψsc
ωb ¼ Ψin

ωb þ
Z

∞

0

dω0ffiffiffiffiffiffiffi
2ω0p

X
b0
ΔT bb0 ðω;ω0ÞΨup

ω0b0 : ð3:42Þ

one has the change of basis relation

ΔT bb0 ðω;ω0Þ ¼
X
A

X
A0

M−1
bAðωaÞΔT AA0 ðω;ω0ÞNA0b0 ðω0aÞ;

ð3:43Þ

connecting the parametrization in terms of metric pertur-
bations to that in terms of Teukolsky variables.

IV. RELATION TO MODELS FOR SCATTERING

We have given in (1.1) and (1.2) a very general para-
metrization of modifications to scattering from a would-be
black hole due to departures from the standard classical
black hole geometry. An important question is what
such corrections a given underlying detailed model of
the physics produces. For present purposes of illustration
we consider only some particularly simple models, which
involve new scattering contributions in the vicinity of the
would-be horizon, which can be parametrized in terms of
effective reflection coefficients. Other models that exist in
the literature include modification of the Regge-Wheeler
potential [40,42,43]. And, if the scattering arises from new
interactions associated with restoration of unitarity, such as
in nonviolent unitarization [49–55], then the scattering
might for example be described as arising from interaction
terms in an effective Hamiltonian. From the point of
view of the asymptotic observer, the scattering amplitudes
are the more directly physically accessible quantities.
Moreover, related phenomena such as modifications to
Love numbers [29] and quasinormal modes [34] can be
directly encoded in such amplitudes.

A. Near-horizon boundary conditions

In recent literature, a common model for modifications
to classical BH behavior assumes the existence of a
modified boundary condition for scattering very close to
the would-be horizon [19,60–62,72,73]. This can be
heuristically motivated by comparing to physically realized
systems like neutron stars [32,74,75]. However, one chal-
lenge for this approach is to give a physical realization of a
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matter or other classical configuration that only departs
from the BH vacuum geometry very near the horizon. For
example, a fluid with positive pressure and energy density
gives solutions satisfying the Buchdahl bound [76], giving
radius Rc > 9M=4; enforcing causal propagation of sound,
at a speed less than that of light, gives the more restrictive
[77] Rc > 2.82M. This type of model does however serve
as a useful illustration of our more general approach to
parametrizing deviations from classical BH behavior.
Specifically consider imposing a boundary condition at a

radius r ¼ ð1þ ϵÞR in the Schwarzschild geometry, with
ϵ ≪ 1. This value of r will correspond to a value r� ≪ −R.
Here the effective potential (2.7) asymptotes to zero, and
BH boundary conditions for the in modes are given in (2.8).
These are modified by assuming nonzero reflection at
r� ¼ r�ϵ, which in general may be taken to depend on
frequency and angular momentum. For r�ϵ ≪ −R, where
the solutions are well approximated as plane waves in r�, a
good approximate form of the reflecting boundary con-
dition arises by assuming that near r� ¼ r�ϵ,

uωlðrÞ ∝ e−iωr� þ R̂ωleiωðr�−2r�ϵÞ; ð4:1Þ

with reflection coefficient R̂ωl. This is also well approxi-
mated near r� ¼ r�ϵ by taking the solutions to be of the form

uωlðrÞ ∝ uinωlðrÞ þ R̂ωle−2iωr�ϵuin�ωl ðrÞ; ð4:2Þ

to simplify, define

R̃ωl ¼ R̂ωle−2iωr�ϵ : ð4:3Þ

The boundary condition may be written in the form
described in Sec. II by first using the relations (2.13)
and (2.14) to write

uoutωl ðrÞ ¼ uin�ωl ðrÞ ¼ ð1 − jRωlj2ÞuupωlðrÞ þ R�
ωlu

in
ωlðrÞ

¼ jTωlj2uupωlðrÞ þ R�
ωlu

in
ωlðrÞ ð4:4Þ

where the last equality uses jRωlj2 þ jTωlj2 ¼ 1, which
follows from constancy of the Wronskian Wr� . Then, (4.2)
becomes

uωlðrÞ ∝ uinωlð1þ R̃ωlR�
ωlÞ þ R̃ωljTωlj2uupωl; ð4:5Þ

or, normalizing to unit amplitude in at r� ¼ ∞,

uωl ¼ uinωl þ
R̃ωljTωlj2
1þ R̃ωlR�

ωl

uupωl: ð4:6Þ

Comparing to our definitions (2.15) and (2.46) gives

ΔT lðωÞ ¼
R̃ωljTωlj2
1þ R̃ωlR�

ωl

ð4:7Þ

for models with the near-horizon reflecting boundary
conditions (4.2). This may then be used directly in the
formula (2.48) for the change in the energy loss.
The scattering amplitude (4.7) exhibits various notable

features. To interpret the denominator in (4.7), consider
expanding it in R̃,

ΔT lðωÞ ¼ R̃ωljTωlj2
�
1þ

X∞
k¼1

ð−R̃ωlR�
ωlÞk

�
: ð4:8Þ

This has an intuitive interpretation as a sum of contributions
from multiple reflections in the near-horizon region,
between the reflecting surface and the potential, followed
by transmission. This directly connects to the phenomenon
of “echoes” in gravitational wave signals [78,79] [19],
which is therefore incorporated in this analysis. Of course,
for small R̃ and away from zeroes of the denominator
of (4.7), this reduces to the linear result

ΔT lðωÞ ≈ R̃ωljTωlj2: ð4:9Þ

A related observation is that, from (4.9), we find that to
leading order the change in the energy loss (2.48), (3.33) is
linear in R̃. This contrasts with the assumptions of [60] [see
e.g. their Eq. (12)] that the change in energy loss is
quadratic in such a reflection coefficient. This does not
have major consequences for their analysis, which is
effectively giving bounds on C (see the next section),
but rather affects the interpretation of the parameter they
call R.
In addition to the echo phenomenon, an ϵ ≪ 1 near-

horizon boundary condition also gives rise to a related
universal family of “trapped” quasinormal modes. These
correspond to zeroes of the denominator of (4.7), so occur at

R̃ωlR�
ωl ¼ −1: ð4:10Þ

For r�ϵ → −∞, these are low-frequency modes which can in
principle be excited in the binary inspiral. Following related
work for neutron star binaries [80–82], such excitations have
been the subject of separate studies [83,84]. These studies
indicate that, while potentially interesting, they often present
themselves as unobservable “glitches” in the gravitational
wave signal.
Reference [61] extends the analysis of [60] to derive

corresponding bounds on the reflection parameters R̃ωl.
We will discuss such bounds in the next section, but note a
few aspects of that discussion here.
A simplest model is frequency-independent R̃ωl. This

clearly exhibits the resonant phenomena we have just
described. In addition, note that at high frequencies, these
crude models significantly change the entire scattering, as
parametrized by ΔT . This arises since the transmission
coefficients Tωl become unity at large ω. However, such
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frequencies are not effectively probed by energy loss during
quasicircular inspiral, as is seen e.g. from (2.61) in which
the maximum frequency lω0 enters (see further discussion
in the next section). At such low frequencies, the trans-
mission coefficients lead to significant suppression; in this
context, one should not overemphasize that the classical
general relativistic black hole is a perfect absorber as there
is still a significant dynamical barrier separating one from
the horizon where this is strictly true.
An alternate model for frequency dependence assumes

Boltzmann behavior [85,86], with parameters determined
by Hawking temperature TH and angular velocity ΩH of
the classical BH solution with the same parameters as the
underlying quantum object,

R̃Boltzmann
ωlm ¼ Re−

jω−mΩH j
2TH : ð4:11Þ

Such a model suppresses the high-frequency deviation in
ΔT , found via (4.7). Bounds on such models are also
studied in [61], with similar results to the frequency-
independent models for slowly rotating black holes. At
significant spin, the high-frequency suppression kicks in,
even for low orbital frequencies, due to the relative high
frequency with respect to the black hole rotational fre-
quency. This model thus presents a mechanism preventing
higher spin from improving the observational prospects.

B. Scattering from a black hole “quantum halo”

It is a difficult challenge to give a detailed model of the
underlying physics in which modifications to the classical
black hole geometry only appear a microscopic distance
above the horizon. One can think of this as partly due to a
type of naturalness problem; since a natural scale in the
problem is the horizon radius R, restricting new physics to a
region of size Δr ≪ R requires some new scale and/or fine-
tuning in the physics. Isolating new physics to such a
narrow region also has the consequence that such physics is
seen to be extremely “hard” to infalling observers, corre-
sponding to a large violation of the equivalence principle;
in the quantum context, this is exemplified in the firewall
proposal [87].
There are strong indications that in order to unitarize

black hole quantum evolution, resolving the “information
paradox,” some new physics is needed outside the horizon.
However, it appears that this new physics can represent
both a less extreme violation of the equivalence principle
and have a less violent effect on infalling observers if it
occurs at much larger distances than a Planck distance from
the horizon; this permits it to be “softer.” In particular, if
new interactions are present on scales separated by ∼Rp

from the horizon, with 0 < p ≤ 1, the violation and the
violence become less extreme for larger black holes. The
proposal of “nonviolent unitarization [49–55]” is that
the full quantum description can be parametrized as having
interactions on such scales, in what might be called a

“quantum halo,” that are responsible for reinstating uni-
tarity in BH evaporation. The resulting compact quantum
object has many of the coarse-grained properties of a black
hole; scattering from it is very similar to that of a black
hole, but there are deviations associated with the physics
restoring unitary quantum evolution. We will focus on the
example of p ¼ 1; it is notable that there are good reasons
to think of the Hawking radiation as also produced at such
scales [88].6

Microscopic models for such interactions have been
considered elsewhere [53–55], and will be investigated
further in the future, but for present purposes we seek a
simple model to explore the possible sensitivity of gravi-
tational wave observations to such interactions. Such a
simple model is provided by assuming that interactions
introduce some additional elastic reflection of incident
partial waves at a radius Ra. Unit magnitude reflection
at Ra can for example be described by imposing Dirichlet
boundary conditions on (2.16),

uinωlðRaÞ þ ΔT lðωÞuupωlðRaÞ ¼ 0; ð4:12Þ

implying

ΔT lðωÞ ¼ −uinωlðRaÞ=uupωlðRaÞ: ð4:13Þ

Likewise, partial reflection at Ra may be parametrized by
an effective reflection coefficient RωlðRaÞ, analogously
defined by

ΔT lðωÞ ¼ RωlðRaÞ
uinωlðRaÞ
uupωlðRaÞ

: ð4:14Þ

The factors of the wave function in the relation between
Rωl and ΔT lðωÞ account for tunneling factors to and from
the scattering radius Ra; this definition is clearly analogous
to the relation (4.7), without the explicit multiple reflections
which we expect in that case. This means that RωlðRaÞ
serves as a useful parametrization of the strength of the
interaction inducing scattering if it occurs at radius ∼Ra;
observational bounds on ΔT lðωÞ may be converted into
bounds on this effective parameter via the relation (4.14).

V. PROSPECTIVE OBSERVATIONAL BOUNDS

For simplicity, we consider bounds arising from circular
orbits, as described in Sec. II B, and investigated in
[60,61,73]. From the formulas (3.37), (2.61) for C, we
see that the bounds on deviations in energy emission from
that of the BH case will provide constraints on the basic
scattering parameters ΔT AA0 ðωnÞ, or in the simple scalar
example, ΔT lðnω0Þ, with n ≤ l, where the orbital fre-
quency is given by

6Recent work of [89] has argued instead for p ¼ 1=2.
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ω0 ¼
M1=2

r3=20

ð5:1Þ

in terms of the central mass7 M and the orbital radius r0.
The bound on n means that we can constrain scattering for
incident waves at frequencies ω ≤ ω0l. An effective impact
parameter for the highest frequency of these waves
is l=ω ¼ 1=ω0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffi
r0=M

p
.

In a quasicircular inspiral, the orbital phase increases at a
rate set by the instantaneous orbital frequency, whose
evolution in turn is set by the energy-flux and the gradient
in the orbital energy E0

dϕ0

dt
¼ ω0;

dω0

dt
¼

�
dE
dt

��
dE0

dω0

�
−1
: ð5:2Þ

The difference in phase compared to that for a central BH,
accumulated from a reference orbital frequency ωref, is
given to leading order by

Δϕ0 ¼ −
Z

ω

ωref

dω0ω0

�
dE
dt

�
−2

BH;tot

�
dE0

dω0

�
Δ
�
dE
dt

�

¼
Z

ω

ωref

dω0

dϕBH

dω0

−ΔhdEdti
hdEdtiBH;tot

; ð5:3Þ

where −hdEdt iBH;tot is the total power radiated by the object
orbiting a classical BH, and where we have defined the BH
phase evolution

dϕBH

dω0

¼ ω0

	�
dω0

dt

�
BH

: ð5:4Þ

Instead of normalizing the perturbed energy loss to the total
emitted energy, [60] normalizes it to the energy absorbed
into the BH horizon; we have followed this in defining C
in (2.50). Introducing the ratio

ρBH;abs ¼
�
dE
dt

�
BH;hor

	�
dE
dt

�
BH;tot

ð5:5Þ

the dephasing associated to a compact quantum object
parametrized by C is then given by

Δϕ0 ¼ −
Z

ω

ωref

dω0

dϕBH

dω0

ρBH;absC: ð5:6Þ

The analysis of [60] effectively took the quantity C to be
constant in frequency; as we have described, the relation to
an underlying reflection amplitude differs from what [60]

assumed, so for purposes of summarizing their bounds we
treat C as the physical parameter that we are bounding by
measurements of the gravitational wave phase. For a
frequency range corresponding to an inspiral into a
Schwarzschild BH from r0 ¼ 10M to ISCO at r0 ¼ 6M,
such a constant C would give Δϕ0 ∼ −10−3 M

μ C, with μ the
mass of the lighter inspiraling object, as can be found from
numerical evaluation of (5.6). This evaluation is accom-
plished by using a continued fraction method from the
Black Hole Perturbation Toolkit [92] for the energy fluxes.8

The mass ratio dependence arises from the ratio between
the orbital energy, which is proportional to μ, and the
energy-flux ∝ μ2, analogously to how the q2 dependence
arises in (2.60). See Fig. 3 for more fine-grained results on
Δϕ0 for constant C; this reproduces (parts of) Fig. 2 of [60],
but also includes the Schwarzschild case.
If one assumes a mass ratio of a supermassive black hole

to a stellar mass black hole of about 105 and a detection
threshold of about 2Δϕ0 ∼ 1 [97], the example discussed
above would yield an achievable sensitivity C ≲ 10−2. As
long as the full inspiral from 10M to the innermost stable
orbit is observed, these results are readily scaled for
different mass ratios.
However, rotation can significantly improve such a

bound, as was found in [60]. There they assumed a
dimensionless spin χ ¼ S=M2 of χ ≈ 0.8, as well as using
a slightly more sophisticated measure, and estimated one
could achieve C ≲ 10−4. One can see this improvement in
sensitivity directly from numerical integration of (5.6),
which for χ ¼ 0.8 yields the phase shift 2Δϕ0 ≈ 10−1 M

μ C.
Comparison to the previous result for Schwarzschild
directly illustrates the improvement in sensitivity to C by
a factor ∼102. This enhancement can be understood as
being due to a combination of the larger relative horizon
absorption at a given (corotating) orbital radius, as well as
to the smaller innermost stable orbit; see Fig. 3 where the
phase shifts are higher early on due to the former effect and
last longer because of the latter.
Similar results are found in simple models based on a

direct implementation of near-horizon reflecting boundary
conditions [61], as were discussed in Sec. IVA. In that case
we see from (4.7), aside from the possible resonant
structure arising from the denominator, that jΔT lðnω0Þj ∝
jTnω0;lj2 gives the leading behavior, resulting in a fre-
quency-independent jCj ∼ jR̃j from (2.61). Possible reso-
nant features arising from the subleading corrections in
(4.7), (4.8) have been argued to be too sharp to be
observable [61,83,84]. Then, the bounds jR̃j ≲ 10−4

from [61], also found in the case of spin χ ¼ 0.8, compare

7The masses and spins of the black holes in the binary will
change during the inspiral; for instance by absorption of gravita-
tional radiation. However, we treat them as constant because this
change is subleading in our analysis [90]. See also [91].

8The relevant energy-flux data is also made directly available
in the Black Hole Perturbation Toolkit based on [93] and can be
verified against [94], who use a Sasaki-Nakamura formulation of
Teukolsky equations [95]. See also [96].
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directly with those of [60].9 Reference [73] likewise
investigated models with near-horizon reflection, giving
similar results for sensitivity to the reflection coefficient.
One can ask the question of what range of orbits, if any,

dominates the sensitivity. While higher-frequency, small r0
orbits will be more sensitive to the near-horizon physics,
fewer such orbits will contribute to the signal. In the
constant C examples, the interplay between both effects
ensures that no one specific frequency contributes particu-
larly strongly to the bound. However, a significant drop
occurs around the innermost stable circular orbit, where the
binding energy reaches a minimum.
In more general models, one expects C to be frequency

dependent, and so such considerations are model depen-
dent. They also depend on the astrophysics. Aside from
the dependence of frequencies that are probed on the
spin [98], it has been proposed that binary systems with
mass ratio 108 could be detectable in the LISA band [99].
These would hardly evolve over years of LISA data.
Therefore, they would yield bounds on C without needing
extra theoretical input on the frequency dependence. On
the other hand, this would limit the parameter space that
can be tested.
We would like to use sensitivity to C to investigate

possible values of the scattering parameters ΔT AA0 ðω;ω0Þ
representing the deviations from classical BH behavior,
and ultimately constrain the parameters of the underlying
interactions responsible for such deviations. Prior to inves-
tigating models for such physics, we can give a preliminary
analysis of the possible sensitivity to such interactions via
this approach.

While it is not possible in full generality to invert the
bounds on C for the individual parameters ΔT AA0 ðω;ω0Þ,
we can begin to better understand constraints by consid-
ering the case where a single mode provides the dominant
contribution. Focusing on the simpler scalar case, which we
have argued provides a useful proxy with much of the same
structure as the gravitational wave case, consider the
situation where a single mode, say with values l�, m�, is
dominant. If this is the case, let us introduce the relative
contribution of that single mode to the black hole horizon
flux El�m� ðω0Þ

El�m� ¼
jYl�m� ðπ=2; 0Þj2juupm�ω0;l� ðr0Þj2jTm�ω0;l� j2P

lnjYlnðπ=2; 0Þj2juupnω0;l
ðr0Þj2jTnω0;lj2

: ð5:7Þ

Then the relation between the dominant ΔT l�ðωÞ and jCj is

jCj ∼ El�m�

jTm�ω0;l� j2
jΔT l� ðm�ω0Þj; ð5:8Þ

where instead of the contribution from a relative phase,
which is likely highly model dependent, we have used the
root mean square over such phases.
To give an example, at around r0 ¼ 10M, using10 E22 ∼

1 and jT2ω0;2j2 ∼ 10−7 (values for the gravitational case),
one observes that the conservative percent level bounds on
C, as argued for from the phase shift above, would lead to
sensitivity to jΔT 2j≲ 10−9. The key observation here is
that, due to the small transmission factor, even rather weak
bounds on C translate into very tight constraints on jΔT lj.
We can also investigate sensitivity to models for scatter-

ing from a halo of a BH, which we argued in Sec. IV B may
more realistically represent the range of quantum inter-
actions responsible for unitary evolution of quantum black

FIG. 3. Accumulating phase difference for an inspiral of a 30M⊙ black hole into a M ¼ 106M⊙ supermassive black hole starting at
10M for various values of the supermassive black hole spin and constant C ¼ 1 (left) and the same but as a function of orbital radius of
the black hole inspiral (right); see also Fig. 2 of [60].

9To compare results, it is important to be careful with
definition of the physical quantities. We have shown that C is
to leading order linear in the reflection coefficient R̃, as seen
from (4.7) and (2.55). Reference [60] instead assumed that C was
quadratic in the reflection coefficient. Comparison in terms of C
thus yields approximate agreement, modulo the detailed structure
of possible resonances arising from the denominator of (4.7).

10In fact, this is only true if one accounts for both m ¼ �2
which contribute equally. One finds E22 þ E2−2 ≈ 0.9.
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holes. In the simple halo model of Sec. IV B, with C
given by combining (2.61) and (4.14), one likewise finds
that the influence of the scattering parameters RωlðRaÞ on
ΔT lðωÞ is relatively enhanced by the absence of a full
suppression by jTω;lj2; this is understood as due to the
scattering wave having to tunnel less far before interacting,
and the resulting scattered wave also correspondingly
having a smaller tunneling suppression. This “gain factor”
can be seen from (4.14) in terms of the relative ratio
½uinωlðRaÞ=uupωlðRaÞ�=jTω;lj2. For orbits ranging from r0 ¼
6M to r0 ¼ 10M and a range of Ra we present this ratio in
Fig. 4. Notice also that the difference is more pronounced
for lower frequencies.
As a representative example one can take Ra to be near

the photon ring. In this case, for given interaction strength,
ΔT l is well over an order of magnitude bigger in the halo
model compared to a near-horizon boundary model with an
equal reflectivity parameter. To translate this to C, let us
assume a constant RðRaÞ in (4.14) and set Ra ¼ 3M.
For frequencies associated to r0 ≈ 10M, one finds, using
(2.61), (4.14), and again numerically evaluating black hole
quantities using the Black Hole Toolkit, jCj ∼ 102jRðRaÞj.
Closer to r0 ≈ 6M, this may be about a factor of 2 less, as
illustrated in Fig. 4. Nevertheless, integrating (5.6) between
these ranges, we find 2Δϕ0 ∼ 10−1 M

μ jRðRaÞj, so for an
EMRI with central Schwarzschild BH, this would corre-
spond to a sensitivity down to jRðRaÞj≲ 10−4. If one
compares to the case of a rotating BH with spin χ ∼ 0.8, as
discussed above, the preceding discussion and bounds of
[60,61] suggest an Oð102Þ enhancement of sensitivity,
which would give a sensitivity down to the range
jRðRaÞj ≲ 10−6. These are of course preliminary estimates,
which should be further explored in study of more complete
models for interactions, and more thorough treatment of
their gravitational wave signals. It is also important to better
understand the extent to which such sensitivity can be

achieved when faced with more realistic data and
astrophysics.
Eccentric and inclined orbits are one aspect of more

general situations, resulting in a richer frequency content
[100–102]. Based on the behavior of the transmission
factors Tωl, the resulting additional power in higher
frequency modes suggests one might expect to find even
stronger constraints for scattering effects from quantum
black holes in these cases.

VI. CONCLUSION AND OUTLOOK

We have described a general parametrization of the
physical effects of deviations of a compact quantum object
from a classical black hole, in terms of the scattering
properties of the object. This extends and generalizes study
of specific models for modifications of classical black hole
behavior. Such scattering is in principle observable in
idealized circumstances, but is not directly observable with
current experimental circumstances. However, this descrip-
tion of the modification to scattering can then be related to
an effect on the gravitational wave signal from a binary of
such objects. In particular, we have found that the effect on
the signal deviation is linear in the scattering deviation.
This, together with the “amplifier” of many orbital cycles
during inspiral, indicates a potential sensitivity to small
deviations that we have begun to quantify in this paper. In
doing so, we have made connection to related results in
specific models, beginning with the work of [60].
The current work leaves a number of projects for future

research.
First, much of the analysis of this paper was carried out

for the simplifying case of scalar radiation on a static,
spherically symmetric background. However, as seen in
Sec. III, gravitational radiation for a CQO with angular
momentum does not present major conceptual differences;
the setup is entirely analogous. That still leaves work to be

FIG. 4. The “gain factor” of the halo model compared to the near-horizon boundary condition ½uinωlðRaÞ=uupωlðRaÞ�=jTω;lj2 as a function
of the halo scale Ra for a range of orbital radii (bottom to top: 6M, 7M, 8M, 9M, 10M). On the left for the l ¼ m ¼ 2-mode while on the
right for the l ¼ 2, m ¼ 1 mode.
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done, specifically connecting our treatment more directly to
the Teukolsky formalism, and to numerical methods for
studying gravitational wave signals, including for the case
of objects of nonzero spin. Moreover, treatment of inclined
and eccentric orbits is also needed to compare with typical
astrophysical examples. Such treatment should then, in
turn, connect to a more detailed analysis of possible
observational constraints from inspirals expected to be
observed by LISA and other future detectors.
This paper has also focused on the simplifying EMRI

limit, and it is important to translate this treatment to the
comparable mass binaries relevant for LIGO. The post-
Newtonian and post-Minkowskian modeling of the early
binary inspiral should be well suited for this [103–123] and
could be of direct use after relating ΔT lðωÞ in the limit
ωM ≪ 1 to the adiabatic tidal deformabilities entering into
those approaches. A proposed approach is to parametrize
the absorption into both bodies separately, and take into
account the implied change in the binary binding energy,
and resulting corrections to the gravitational wave signal.
Going beyond this to a treatment of merger seems more
difficult, though perhaps progress near the merger can be
made with a suitable extension of the effective one-body
(EOB) formalism [124–128]. Modifications to the quasi-
normal modes that govern the ringdown may also be
encoded in the poles of ΔT lðωÞ.
Finally, going beyond this work, it is important to

understand better the connection of detailed physical
models for quantum black holes (or other modifications
to classical black holes) to the scattering amplitudes para-
metrized in this paper. Such a relation has been illustrated
in the simplified model of scattering from a potential barrier
near the black hole, but such models are expected to be
oversimplified. A similar analysis could be performed for
more complicated models in the literature now or arising in
future work. In particular, it has been argued [53] that
interactions needed to unitarize black hole evolution can
also have an Oð1Þ effect on propagating gravitons near a
black hole. An important topic for future work is additional
characterization of these interactions, and relating these to
the resulting modifications to scattering amplitudes, as for
example parametrized in this paper.

Note added. As this paper was being finalized, we received
[129], studying eccentric orbits and describing roughly
similar constraints to [60].
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APPENDIX A: BLACK HOLE GREEN’S
FUNCTION AND ENERGY LOSS

In this appendix we review the calculation of the energy
emitted by a source to the scalar wave equation, (2.3) in a
black hole background. This can be calculated by using a
Green’s function to derive the scalar solution to (2.3), and
calculating the resulting energy-momentum tensor and
fluxes.
The scalar Green’s function satisfies the defining equa-

tion (2.17) and gives the solution (2.18), where the back-
ground metric and boundary conditions are those of the
BH. The Green’s function can be calculated by a matching
procedure. If x ¼ ðt; r; θ;ϕÞ, then for either r > r0 or r < r0
it is a solution of the homogeneous equation (2.3) with
J ¼ 0. This means it can be expanded in terms of
homogeneous solutions (2.20) of the Regge-Wheeler equa-
tion (2.5) in the two regions,

Gbhðx; x0Þ

¼
8<
:

G< ¼ P
lm

R∞
0 dωK<

ωlmðx0Þϕ<
ωlmðxÞ þ cc r < r0

G> ¼ P
lm

R
∞
0 dωK>

ωlmðx0Þϕ>
ωlmðxÞ þ cc r > r0

:

ðA1Þ
Boundary conditions are enforced by requiring a pure
outgoing solution at infinity, and pure ingoing at the
horizon, which correspond to

ϕ<
ωlmðxÞ ¼ ϕin

ωlmðxÞ; ϕ>
ωlmðxÞ ¼ ϕup

ωlmðxÞ: ðA2Þ
Continuity in G at r ¼ r0 implies

X
lm

Z
∞

0

dωK<
ωlmðr; t0; θ0;ϕ0Þϕin

ωlmðxÞ þ cc

¼
X
lm

Z
∞

0

dωK>
ωlmðr; t0; θ0;ϕ0Þϕup

ωlmðxÞ þ cc ðA3Þ

or

K<
ωlmðr; t0; θ0;ϕ0ÞuinωlðrÞ ¼ K>

ωlmðr; t0; θ0;ϕ0ÞuupωlðrÞ; ðA4Þ
using (2.20). A second equation follows from integrating
(2.17) across r ¼ r0, which gives�

1 −
R
r

�
r2½∂rG>ðx; x0Þ − ∂rG<ðx; x0Þ�r¼r0

¼ δðt − t0Þ δðθ − θ0Þδðϕ − ϕ0Þ
sin θ

; ðA5Þ

Integrating over t, Ω against eiωtY�
lmðθ;ϕÞ and using the

normalization Z
dΩY�

lmYl0m0 ¼ δll0δmm0 ðA6Þ
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then yields at r ¼ r0

K>
ωlmðx0Þ∂r�uupωl − K<

ωlmðx0Þ∂r�uinωl ¼
eiωt

0

2πr
Y�
lmðΩ0Þ: ðA7Þ

Equations (A4) and (A7) imply that

Kωlmðx0Þ ¼
kωlðr0Þ
2πr

eiωt
0
Y�
lmðΩ0Þ; ðA8Þ

with

k>ωlu
up
ωl ¼ k<ωlu

in
ωl; k>ωl∂r�u

up
ωl − k<ωl∂r�u

in
ωl ¼ 1: ðA9Þ

Equations (A9) are then solved by

k>ωl ¼
uinωl

Wr� ½uinωl; uupωl�
; k<ωl ¼

uupωl
Wr� ½uinωl; uupωl�

: ðA10Þ

Here the Wronskian

Wr� ½uinωl; uupωl� ¼ uinωl∂r�u
up
ωl − ∂r�u

in
ωlu

up
ωl ¼ 2iω ðA11Þ

is a constant by the Regge-Wheeler equation (2.5), and
thus may be evaluated using the asymptotic solutions at
r� ¼ ∞ with the normalization conventions given in (2.9)
and (2.10). We then find

K>
ωlm ¼ 1

4πiω
ϕout�
ωlm; K<

ωlm ¼ 1

4πiω
ϕdown�
ωlm ; ðA12Þ

where we have used uout�ωl ðrÞ ¼ uinωlðrÞ and udown�ωl ðrÞ ¼
uupωlðrÞ from (2.14).
The result is the BH Green’s function

Gbhðx; x0Þ ¼

8>><
>>:

G< ¼ P
lm

R
∞
0

dω
4πiω ϕ

down�
ωlm ðx0Þϕin

ωlmðxÞ þ cc r < r0

G> ¼ P
lm

R
∞
0

dω
4πiω ϕ

out�
ωlmðx0Þϕup

ωlmðxÞ þ cc r > r0
: ðA13Þ

This gives a solution to the inhomogeneous equation (2.3) in the BH background of the form

Φbh
J ðxÞ ¼

Z
dV 0

4G
bhðx; x0ÞJðx0Þ ¼

8>><
>>:

P
lm

R∞
0 dωZdown

ωlm ½J�ϕin
ωlmðxÞ þ cc r < r0

P
lm

R
∞
0 dωZout

ωlm½J�ϕup
ωlmðxÞ þ cc r > r0

ðA14Þ

where Zdown
ωlm ½J� was defined in (2.25), and Zout

ωlm½J� in (2.26).
Given the source JðxÞ, say corresponding to an orbiting body, we would like to calculate the radiated energy carried by

the fieldΦbh
J . As in the main text, we assume that the source J has support within a range of radii r1 < r < r2. The outward

energy flux through a sphere of radius r is

−
Z
S2

r2dΩTr
t; ðA15Þ

with stress tensor (2.28), and we have such contributions at radii above and below the source, decreasing the energy E in the
source region. Consider the contribution at radius r ≥ r2. Inserting the lower line of (A14) into Tμν and time averaging over
long time T gives the radiated power

−
�
dE
dt

ðrÞ
�

>
¼ i

X
lm

Z
∞

0

dωdω0Zout
ωlm½J�Zout�

ω0lm½J�r
�
ωuupωl∂r�

�
uup�ω0l

r

�
− ω0

∂r�

�
uupωl
r

�
uup�ω0l

�
ΔTðω − ω0Þ ðA16Þ

where we drop contributions that average to zero in the long time limit, and the angular average matches angular quantum
numbers. We have also used the definition (2.38), which gives in the long-time limit ΔTðω − ω0Þ ∝ δðω − ω0Þ, as discussed
in Sec. II and Appendix B. This results in

−
�
dE
dt

ðrÞ
�

>
¼ i

X
lm

Z
∞

0

dωdω0ΔTðω − ω0ÞjZout
ωlm½J�j2ωWr� ðuupωl; uup�ωl Þ: ðA17Þ
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The Wronskian is

Wr� ðuupωl; uup�ωl Þ ¼ −2iω: ðA18Þ
Correspondingly, we have

−
Z
S2
dΩTr

t ðϕup
ωlm;ϕ

up�
ωlmÞ ¼ ω2; −

Z
S2
dΩTr

t ðϕdown
ωlm ;ϕdown�

ωlm Þ ¼ −ω2; ðA19Þ

which are r-independent due to conservation. Equation (A17) becomes

−
�
dE
dt

ðrÞ
�

>
¼

X
lm

Z
∞

0

dωdω0ΔTðω − ω0Þ2ω2jZout
ωlm½J�j2; ðA20Þ

which can be interpreted by saying that each mode contributes 2ω2 to −dE=dt (in our normalization), and the Zωlm give the
amplitudes for excitation of individual modes.
An analogous calculation for r < r1, with a sign change to account for energy escaping the source region, likewise gives

−
�
dE
dt

ðrÞ
�

<
¼

X
lm

Z
∞

0

dωdω0ΔTðω − ω0Þ2ω2jZdown
ωlm ½J�j2jTωlj2 ¼ −

�
dE
dt

�
BH;hor

ðA21Þ

where the transmission coefficient Tωl enters the Wronskian through the normalization (2.11), resulting in a total average
power emitted

−
�
dE
dt

�
BH;tot

¼
X
lm

Z
∞

0

dωdω0ΔTðω − ω0Þ2ω2fjZout
ωlm½J�j2 þ jTωlj2jZdown

ωlm ½J�j2g: ðA22Þ

In the case of a periodic orbit, as described in Sec. II A, this
becomes

−
�
dE
dt

�
¼
X
nlm

2ω2
nfjZout

nlm½J�j2þjTωnlj2jZdown
nlm ½J�j2g: ðA23Þ

In comparing the scalar radiated energy to that of metric
perturbations, it may be helpful to consider the relative
contribution of the l ≥ 2 modes to the total. In Fig. 5 we
present as an example the energy lost to the scalar wave

emission from circular orbits as a function of radius (up to
the overall ratio q2=M2, with q the scalar charge), with and
without the l < 2 contributions.

APPENDIX B: ADIABATIC OR TWO-
TIMESCALE TIME AVERAGES

In this appendix, some further comments are made on the
time-averaging procedure in the main text. On timescales
small compared to the radiation reaction timescale
Trad ∼M2=μ, with M the mass of the supermassive object
and μ the mass of the stellar mass companion, the source
associated to an extreme mass-ratio black hole binary
would be (multiply) periodic; with periods related to the
radial, longitudinal, and azimuthal motion. The frequency
content is thus effectively discretized, as described in the
main text. A caveat is that ωn is in fact spread out over a
frequency range ∼1=Trad; only for a test mass is the orbital
frequency content truly discrete.
In the periodic case, one naturally averages over the

period

he−iðωn−ωn0 Þtiperiod ¼
1

T

Z
T

0

e−iðωn−ωn0 Þt ¼ δnn0 ; ðB1Þ

where ω1 ¼ 2π=T represents the fundamental frequency.
Equation (B1) still holds if we average over NT for
arbitrary positive integer N. If there are multiple but

5 10 20 50

10–11

10–10

10–9

10–8

10–7

10–6

10–5

FIG. 5. Energy lost to a scalar particle of charge q circularly
orbiting a black hole at radius r, both including l < 2 contribu-
tions (blue) and ignoring them (orange).
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commensurate fundamental frequencies, one would use the
smallest common period. If the fundamental frequencies
are not commensurate or a continuum of frequencies is
relevant for other reasons, say by mixing due to scattering
as in the main text, one can take a limit where N → ∞; let
ωn ≠ ω then

he−iðωn−ωÞtiN period ¼ lim
N→∞

1

NT

Z
NT

0

e−iðωn−ωÞt ∼
1

NT
≪ 1:

ðB2Þ

However, as mentioned above, even for exactly discrete
test-mass orbital frequencies, the radiation reaction time-
scale Trad provides a natural physical cutoff, suggesting
instead

heiðω0−ωÞtirad ¼
1

Trad

Z
Trad=2

−Trad=2
dteiðω0−ωÞt ¼ sinc

�
ðω0−ωÞTrad

2

�
ðB3Þ

with

sincðxÞ ¼ sin x
x

;
Z

∞

−∞
dxsincðxÞ ¼ π: ðB4Þ

This has the well-known limit [130]

lim
Trad→∞

Trad

2
sinc

�
ðω0 − ωÞTrad

2

�
¼ πδðω0 − ωÞ: ðB5Þ

Therefore, as Trad→∞ or more precisely ðω0−ωÞTrad→∞,
one finds

heiðω0−ωÞtirad ¼ sinc

�
ðω0−ωÞTrad

2

�
→

2π

Trad
δðω0 −ωÞ: ðB6Þ

On the other hand, one ideally chooses an averaging
timescale Tav intermediate between the characteristic
dynamical timescale, and the radiation reaction scale Trad

Tdyn ≪ Tav ≪ Trad: ðB7Þ

Consequently, in the main text, we use a time-averaging

hfðtÞi ¼ 1

Tav

Z
Tav=2

−Tav=2
dtfðtÞ: ðB8Þ

For a circular orbit Tdyn ∼ r3=20 =
ffiffiffiffiffi
M

p
, this can be done

without much ambiguity. Therefore, we have in fact kept
the choice implicit by introducing

ΔTðω1 − ω2Þ ¼
1

T

Z
T=2

−T=2
dte−iðω1−ω2Þt: ðB9Þ

Nevertheless, key features are the limit (B6) and (B1); ΔT
behaves as a δ-function for a continuous spectrum as
Tradðω0 − ωÞ ≫ Tavðω0 − ωÞ → ∞, and it recovers the
periodic result. For the latter note the “discrete” frequencies
are considered “equal” only if ωn0 − ωn ≲ 2π

Trad
, then

sinc

�
ðωn0 − ωnÞ

Tav

2

�
∼ 1þO

��
Tav

Trad

�
2
�
; ðB10Þ

If they are not equal and not resonant in any way, one
should instead expect ωn0 − ωn ∼ 2π

Tdyn
or

sinc

�
ðωn0 − ωnÞ

Tav

2

�
∼O

�
Tdyn

Tav

�
; ðB11Þ

Therefore, in the discrete case as Tradðωn0 − ωnÞ ≫
Tavðωn0 − ωnÞ → ∞,

sinc

�
ðωn0 − ωnÞ

Tav

2

�
→ δn0n; ðB12Þ

as desired. While we have thus shown that the choice (B9)
for ΔT is a good one, the result in the main text does not
depend on the details of this choice.
Let us conclude by pointing out that, when additional

orbital frequencies are involved, subtleties arise related to
orbital resonances. In essence, a low beating frequency
develops between otherwise high-frequency orbital modes,
leading to a breakdown of the hierarchy of scales (B7).
The implications of such resonances for gravitational wave
astronomy are under active investigation [131–137].
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