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We propose the use of automatic differentiation through the programming framework JAX for
accelerating a variety of analysis tasks throughout gravitational wave (GW) science. Firstly, we
demonstrate that complete waveforms which cover the inspiral, merger, and ringdown of binary black
holes (i.e., IMRPhenomD) can be written in JAX and demonstrate that the serial evaluation speed of the
waveform (and its derivative) is similar to the lalsuite implementation in C. Moreover, JAX allows for
graphics processing unit–accelerated waveform calls which can be over an order of magnitude faster than
serial evaluation on a CPU. We then focus on three applications where efficient and differentiable
waveforms are essential. Firstly, we demonstrate how gradient descent can be used to optimize the ∼200
coefficients that are used to calibrate the waveform model. In particular, we demonstrate that the typical
match with numerical relativity waveforms can be improved by more than 50%. Secondly, we show that
Fisher forecasting calculations can be sped up by ∼3–5× (on a CPU) with no loss in accuracy. This
increased speed makes Fisher forecasting for a population of events substantially simpler. Finally, we show
that gradient-based samplers like Hamiltonian Monte Carlo lead to significantly reduced autocorrelation
values when compared to traditional Monte Carlo methods. Since differentiable waveforms have
substantial advantages for a variety of tasks throughout GW science, we propose that waveform developers
use JAX to build new waveforms moving forward. Our waveform code, ripple, can be found on GitHub
website and will continue to be updated with new waveforms as they are implemented.

DOI: 10.1103/PhysRevD.110.064028

I. INTRODUCTION

The first detection of gravitational waves (GWs) [1]
from inspiraling and merging compact objects (COs) has
revolutionized our understanding of both fundamental
physics and astronomy (e.g., [2–4]). Although the data
volumes from GW detectors such as Advanced LIGO [5]
and Virgo [6] are relatively small, analyzing the data is a

computationally demanding task. In addition, this compu-
tational cost will substantially increase when next gener-
ation detectors come online [7–9].
The complexity begins even before data taking, since

GW searches using the matched-filtering technique [10,11]
require the generation of large banks of template wave-
forms. Once potential candidates are found, parameter
estimation (PE) is performed to extract the detailed source
properties of each event [12–19]. For binary black holes
with nonaligned spins, this requires a Markov chain
Monte Carlo (MCMC) on a 15-dimensional parameter
space. More general binary inspirals, such as those involv-
ing neutron stars, can lead to a significant increase in
dimension. Beyond these simple scenarios, more complex
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waveform models with additional parameters may be used
to include calibration errors [20,21], model the tides of
neutron stars [22], and test for deviations from general
relativity [23–28]. Finally, using the results of PE, pop-
ulation synthesis models constrain the progenitor systems
from which the black holes we see merging today began
their journey [4,29,30]. Overall, GW data analysis therefore
requires significant computation. In this paper, we will
argue that differentiable waveforms (and more generally
differentiable pipelines) can play a useful role in alleviating
this computational demand.
Derivatives are ubiquitously useful throughout data

analysis tasks. For instance, during PE, derivative infor-
mation can be used to guide an optimizer toward higher-
likelihood values (e.g., using gradient descent [31]) or
allow a sampler to rapidly explore parameter space [e.g.,
using Hamiltonian Monte Carlo (HMC) [32,33] ].
Gradients are particularly valuable for high-dimensional
spaces. Unfortunately, in the field of GW data analysis,
analytic derivatives of the necessary quantities (such as the
likelihood) have historically required a significant amount
of work to obtain [34]. With waveforms only increasing in
complexity, calculating analytic derivatives will become
even trickier. Numerical derivatives also suffer from accu-
racy issues stemming from rounding or truncation errors.
However, recent progress in automatic differentiation (AD)
has shown promise in allowing general, fast derivative
calculations for gravitational waveforms, with applications
to constructing template banks [35] and computing the
Fisher information for forecasting [36,37].
Automatic differentiation is a family of methods used to

compute machine-precision derivatives with little computa-
tional overhead. AD’s recent ascendance is primarily driven
by its use in machine learning, particularly for derivative
computations of neural networks which use gradient
descent during training. The core idea of AD is that any
mathematical function can be broken down into a small set
of basic operations, each with a known differentiation rule.1

The full derivative can then be constructed using the chain
rule [38]. There are now a variety of AD implementations,
most notably in deep learning frameworks such as
pytorch [39] and tensorflow [40]. More general
frameworks exist in julia [41,42], although julia’s
limited use in GW analysis software precludes its general
use. Here we make use of JAX [43] due to its easy
integration with python libraries, seamless support for
running code on different hardware accelerators, such as
graphical processing units (GPUs), and its just-in-time
(JIT) compiler, which can substantially accelerate code.
There are a variety of gravitational waveforms currently

used in analysis pipelines. They are generally structured
into different families, the most common of which are the

effective one body (EOB) [44–54], the phenomenological
inspiral-merger ringdown (IMRPhenom) [55–61], and
numerical relativity surrogate (NRsurrogate) [62–64]. Of
these, the IMRPhenom family serves as a natural starting
point for an AD implementation in JAX. Models like the
nonprecessing IMRPhenomD [58] model studied here and
the precessing, higher-mode model IMRPhenomXPHM
[59,60] are written in the frequency domain using
closed-form expressions. This makes a JAX implementa-
tion that complies with the constraints of JIT compilation
simple. NRsurrogate models, which interpolate directly
over waveforms produced by numerical relativity (NR)
simulations, are in principle also straightforward to imple-
ment in JAX and will be explored in the future. EOB
waveforms on the other hand are produced by evolving the
dynamics of an effective one body Hamiltonian, and are
therefore more difficult to implement in JAX.2 For EOB
waveforms, frequency-domain reduced-order models may
therefore be a more convenient target (e.g., [49]).
In this paper we argue that automatically differentiable

waveforms may be a useful tool for the future of GW data
analysis. In addition, we present ripple, a small GW
python package which, at the time of writing, includes a
JAX implementation of the IMRPhenomD waveform and
will be continually updated with new waveforms as they are
implemented. The remainder of this paper is structured as
follows. In Sec. II we discuss the automatically differ-
entiable IMRPhenomD waveform implemented in rip-
ple and perform some benchmarks to demonstrate its
speed and accuracy. In Sec. III we discuss three distinct
applications using differentiable waveforms. Firstly, we
illustrate how the coefficients that form part of the
IMRPhenomD waveform model could be improved by
high-dimensional fitting enabled by an automatically dif-
ferentiable waveform. Secondly, we implement differen-
tiable detector response functions and show that the speed
of Fisher matrix calculations can be substantially accel-
erated using AD. Finally, we run an illustrative injection
example using HMC to demonstrate that the autocorrela-
tion of derivative samplers is substantially smaller than that
of traditional MCMCs. The associated code can be found at
ripple [66].

II. IMPLEMENTATION AND BENCHMARKING

A variety of waveform families have been developed to
accurately model the GW emission from COs [67]. When
the COs are relatively well separated, the dynamics of the
system can be well approximated by a post-Newtonian

1Of course, nondifferentiable functions exist and care must be
taken when treating these special cases.

2In particular, the dynamically chosen time step for solving
ordinary differential equations (ODEs) accurately makes JIT
compilation in JAX difficult. However, the diffrax package
[65] has shown good performance for ODE solving in a variety of
settings and could potentially be used to implement EOB
waveforms in JAX.
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expansion. However, close to merger, NR simulations are
required to accurately model the binary. Unfortunately,
these numerical simulations are computationally expensive
and cannot be run in conjunction with data analysis.
Approximate, phenomenological waveforms have there-
fore been constructed to enable relatively fast waveform
generation at sufficient accuracy.
As mentioned in the previous section, the three major

waveform families that have been developed to date
are EOB, NRsurrogate, and IMRPhenom. EOB wave-
forms require one to model the binary system using a
Hamiltonian and are typically slow to evaluate, whereas
IMRPhenom waveforms are constructed with simple
closed-form expressions. IMRPhenom waveforms are
therefore ideally suited for AD, especially using JAX. In
this paper we focus on the aligned-spin, circular-orbit
model IMRPhenomD [57,58].
The implementation of IMRPhenomD in lalsuite

[68] is in C, and therefore needs to be rewritten natively into
python to be compatible with JAX. We have rewritten
IMRPhenomD from scratch using a combination of pure
python and JAX derivatives. In addition, we have
restructured the code for readability and evaluation speed
as well as exposing the internal fitting coefficients to the
user (which we will use later in Sec. III).
To demonstrate that our implementation of

IMRPhenomD is faithful to the lalsuite implementa-
tion, we start by defining the noise weighted inner product:

ðh1jh2Þ≡ 4Re
Z

∞

0

df
h�1ðfÞh2ðfÞ

SnðfÞ
; ð1Þ

where Sn is the (one-sided) noise power spectral density
(PSD) and h1 and h2 are the frequency-domain waveforms
which are to be compared. We can then normalize the inner
product through

½h1jh2� ¼
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ

p : ð2Þ

Now we are ready to define the match which is given by

mðh1jh2Þ≡ max
Δtc;Δϕc

½h1jh2� ð3Þ

whereΔtc andΔϕc are, respectively, the differences in time
and phase of coalescence between the two waveforms.
Finally, we can define the mismatch as

Mðh1jh2Þ≡ 1 −mðh1jh2Þ: ð4Þ

Since the match is a measure of the difference between
two waveforms, we can use it to demonstrate that the
implementation of IMRPhenomD in ripple accurately
matches the lalsuite implementation. For this com-
parison, we use the Sn presented in GWTC-2 [69] from the

Livingston detector (the most sensitive of the detectors).3

This is shown in Fig. 1, where we have calculated the
Mðh1jh2Þ across the entire parameter space.4 Here, h1
corresponds to the ripple waveform implementation and
h2 is the lalsuite implementation, evaluated at the same
point in parameter space. From Fig. 1, it is clear that the
ripple waveform matches with the lalsuite wave-
form close to numerical precision across the entire param-
eter space. In fact, the scale in Fig. 1 is clipped such that
points which give M ¼ 0 (up to numerical precision) are
plotted as the lowest value in the color bar.
Note that in general relativity (GR) the total mass M ¼

m1 þm2 of a binary black hole simply serves as an overall
scale for the system, so that the frequency evolution can be
trivially rescaled. The total mass only impacts the match
because the chosen PSD and frequency limits fix a
reference scale. If we instead use a flat PSD in Eq. (1)
and rescale the frequency grid to units of Mf, all depend-
ence with M seen in Fig. 1 vanishes. This figure instead
illustrates a more realistic PSD where at low masses the
waveform signal to noise is dominated by the inspiral but at
high masses it is dominated by the merger.
There remains some slight deviation between the two

waveform implementations at high total mass. This is partly
due to the fact that cubic interpolators, which are used

FIG. 1. Match between the ripple and lalsuite imple-
mentations of the IMRPhenomD waveform as a function of
total mass and effective spin. Points which give M ¼ 0 (up to
numerical precision) are plotted as the lowest value in the
color bar. It is clear that the ripple waveform matches the
lalsuite implementation many of orders of magnitude more
than necessary for all data analysis tasks across the entire
parameter space.

3See https://dcc.ligo.org/LIGO-P2000251/public.
4Specifically, we use 104 points with varying component

masses m1, m2 and spin parameters χ1, χ2 in the ranges m1;2 ¼
ð1; 100ÞM⊙ and χ1;2 ¼ ð−1; 1Þ. In addition, we evaluated the
waveforms on a frequency grid from 32 to 1024 Hz with
frequency spacing Δf ¼ 0.0125 Hz.
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within IMRPhenomD to calculate the ringdown and damp-
ing frequencies, are not currently supported in JAX.
Instead, we initially use scipy’s cubic interpolator to
create a fine grid of 5 × 105 values, which we then linearly
interpolate during waveform generation. Unfortunately, we
cannot make the initial cubic interpolation arbitrarily fine as
this would add additional computational overhead when
loading the data during waveform evaluation. Note, how-
ever, that the differences are well below the accuracy
requirements of the waveforms and will have no noticeable
effect for realistic data analysis tasks. This is demonstrated
in Fig. 4 where the mismatch between NR waveforms and
IMRPhenomD is always above 10−5.
For maximum utility, a waveform needs to be fast to

evaluate. Fortunately, the IMRPhenom waveforms are
constructed from simple closed-form expressions which
are computationally efficient. Even though the lalsuite
implementation of IMRPhenomD is written in C, the serial
evaluation of the waveform in ripple is comparably fast.
The evaluation time of a single waveform (averaged over
103 calls) is shown in Fig. 2 as a function of the total mass.
In particular, we use 16 and 1024 Hz for the lowest and
highest frequencies respectively. To calculate the frequency
spacing, we first estimate the length of time taken for the
binary to merge using Eq. (29) from [70]. Following LIGO
convention, we take the closest factor of two higher than
this time estimate as T. The frequency spacing is then given
as Δf ¼ 1=T.
For the CPU benchmarks we use a MacBook Pro with an

M1 Max Apple Silicon processor. Although similar on a
CPU benchmark, JAX has a few key advantages. First, its
ability to JIT compile allows for significant performance
gains (the above benchmark is already JIT compiled).
Second, automatic vectorization can be achieved using

the vmap function which leads to a noticeable speedup
when evaluating a batch of waveforms. Finally, JAX can
natively run on a GPU which allows for highly parallellized
waveform evaluations.
Again, performing the same benchmark as above on an

NVIDIA A100 with 40 GB of memory, we find that
waveform evaluations are over an order of magnitude
faster than serial CPU evaluations. Generalizing
lalsuite waveforms to run on a GPU would be a
significant undertaking. Note that JIT for both CPU and
GPU evaluations adds an additional overhead to the first
evaluation of the waveform which is not included in the
above benchmarks. Note also that the GPU benchmark
does not include the time taken to move the evaluated
waveform from the GPU to the CPU.
One of the primary aims of this paper is to show that

waveform derivatives will also be highly valuable to data
analysis tasks. AD provides two big advantages when it
comes to evaluating derivatives compared to numerical
differentiation. First, the accuracy of derivatives from AD is
significantly more stable than finite-difference methods. In
particular, finite differences suffer from both rounding and
truncation errors, meaning that the user is required to tune
the width over which the difference is taken. On the other
hand, AD produces machine-precision derivatives with no
tuning. Second, AD scales favorably with the dimension-
ality of the function. In particular, for every input dimen-
sion added, D, one would need to evaluate the function at
least 2D times to calculate finite-difference derivatives for
all input parameters. For reverse-mode AD [38], one only
needs two function calls to evaluate the derivative of all
input parameters, regardless of the number of dimensions.5

In gravitational wave physics one typically wants to
compute derivatives of a scalar quantity (e.g., the like-
lihood) with respect to the intrinsic parameters of the binary
(e.g., the masses and spins). Reverse-mode AD is therefore
ideal for this task. For a review of AD methods see [38].
Since the parameter space of GWs in GR has Oð10Þ
dimensions, the speed of derivative evaluation is less
crucial than the numerical stability. However, this might
change for waveforms in beyond-GR models, waveforms
involving equation of state parameters for neutron stars,
and models which account for calibration and waveform
uncertainties. In these cases many more parameters can
be added.
Overall, we argued that the IMRPhenom waveform

family is well suited for AD, showing it explicitly for
IMRPhenomD. Moreover, we have shown that our imple-
mentation of IMRPhenomD in ripple is accurate and
quick to evaluate, especially when hardware acceleration
is available. In the next section, we will discuss a variety

FIG. 2. Benchmarking the evaluation time of a single IM-
RPhenomD waveform as a function of the total mass. As the total
mass increases, the time to merger decreases leading to a coarser
frequency grid and shorter evaluation times. The details of the
benchmarks are given in the text.

5Note that although the number of function calls is small,
reverse-mode AD does add memory overhead. We have not
found this to be limiting in any of the situations tested so far.
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of potential use cases of automatically differentiable
waveforms.

III. APPLICATIONS

Here, we illustrate how differentiable waveforms can
contribute to the improvement of three core tasks in GW
science. In this paper we primarily look at toy examples,
leaving more careful analyses to future work. The three
tasks discussed here cover a wide range of GW science,
starting with waveform development all the way to Fisher
forecasting and PE.

A. Fine-tuning waveform coefficients

Having an accurate waveformmodel is essential for many
data analysis tasks throughout GW science. While wave-
forms generated using NR simulations are in principle the
highest fidelity signal model, they are too computationally
expensive to be used in any practical data analysis tasks. The
community therefore utilizes waveform “approximants”
(such as those discussed in the Introduction) which can be
evaluated much faster and in regions not covered by
numerical simulations, such as extremes of parameter space
or earlier phases of the binary inspiral.
Waveform approximants generally have free coefficients

which are calibrated to NR waveforms to achieve high
accuracy. In the case of IMRPhenomD, there are 209 fitting
coefficients used to capture the separate behavior of the
amplitude and phase as a function of themass ratio and spins.
Any inaccuracy in obtaining the fitting coefficients leads

to a misrepresentation of the NR waveform, which can
translate to systematic error in downstream data analysis
tasks. For example, sufficiently large systematic errors in
the waveform would cause the recovered source parameters
to be biased in the case of PE.
Previously in the construction of IMRPhenomD [58],

waveform coefficients for the amplitude and phase were
fitted independently. Furthermore, IMRPhenomD is di-
vided into three fitting segments: inspiral, merger, and
ringdown. Each of these segments has its own set of fitting
coefficients. After obtaining the fitting coefficient for
individual segments, they are then “stitched” together such
that both the phase and amplitude are continuous in the first
derivative. The process of stitching introduces some addi-
tional inaccuracy in the waveform model, as the connec-
tions affect the originally fitted segments.
Since the coefficients for each segment are tuned

individually, the correlations between different parameters
are ignored, meaning that the provided best-fit solution
may not be the global optimum. We therefore aim to
improve the accuracy of the waveform by jointly fitting all
coefficients at once.6

In general, optimization problems in a high-dimensional
space benefit from having access to the gradient of the
objective function. Since we can differentiate through the
entire waveform model against the fitting parameters, one
can use gradient descent to more efficiently find the local
best fitting parameters.
The first step is to define a loss function that measures

the goodness of fit of the current waveform coefficients.
Here, we choose it to be the mismatch between the NR
waveform and the approximant waveform:

MðλÞ ¼ 1 −mðhIMR
θ ðλÞjhNRθ Þ; ð5Þ

where λ is a vector of the fitting coefficients, hIMR
θ is the

waveform generated by IMRPhenomD, and hNRθ is the
waveform generated by the NR simulation. Given the loss
function, we use gradient descent to update the fitting
coefficients:

λ ← λ − α∇M; ð6Þ

where α is the learning rate and we can compute∇M using
AD. We set α to be 10−6.
To generalize the loss function to a collection of wave-

forms we use the average of the mismatch of individual
waveforms, given by

L ¼ 1

N

XN
i¼1

Mi; ð7Þ

where Mi is the mismatch of an individual training
waveform and N is the total number of training waveforms
used in the optimization.7 This optimization is more dif-
ficult since we are now applying the same set of coefficients
to waveforms with different intrinsic parameters, such as
mass ratio and spins. From Eq. (7), we can see the
averaging between waveforms with different intrinsic
parameters implies there are trade-offs in performance
for different regions of the intrinsic parameter space.
Additionally, this means our best-fit points will generally
depend on the distribution of training waveforms across the
parameter space.
To evaluate Eq. (7) we use a flat PSD and a frequency

array which is scaled by the total mass.8 Since the NR
waveforms do not have a total mass associated with them,
we assign a fixed total mass to compare with the ripple
waveform.

6For a further breakdown of how the optimization changes
across the parameter space, see our accompanying paper [71].

7Of course, now we replace M with L in the gradient descent
update (6).

8In particular, we use Mfl ¼ 2.5 × 10−3, Mfu ¼ 1.2fRD (fRD
is defined in [58]), and MΔf ¼ 2.5 × 10−6 for the dimensionless
lower, upper, and frequency spacing respectively. We fixM to be
50M⊙ throughout this section.
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For training, we use the publicly available subset (11
waveforms) of the 19 waveforms used in the original
IMRPhenomD paper [58]. These 11 waveforms are taken
from the SXS catalog [72]. We then run gradient descent, as
described above, until the validation loss stops decreasing
(the validation loss is calculated using the NR waveforms
discussed below). Figure 3 shows the relative error (against
a test NR waveform; see below) of the original and
optimized waveform as a function of dimensionless fre-
quency. The vertical dashed lines indicate the stitching
points for the phase, i.e., when the inspiral is joined onto
the merger. We can see the error of the optimized waveform
is lower than that of the original waveform for most of the
domain. In particular, the relative error in the merger region
(in between the two vertical dashed lines) is decreased by
half while other regions also show good improvement in
accuracy.
In Fig. 4, we show the distribution of log mismatches

for a set of test waveforms. In particular, we use 536
waveforms from the SXS catalog, i.e., all waveforms
with aligned spins, jχx;yj < 5 × 10−3, and eccentricity
<2 × 10−3 [72]. One can see that the distribution of
mismatches after optimization is generally shifted to lower
mismatch compared to the original waveform. In particular,
the median mismatch (shown as vertical dashed lines in
Fig. 4) is reduced by ∼50%, indicating that our AD-assisted
optimization procedure provides an improved implemen-
tation of the model.
While we focused on IMRPhenomD here, the ability to

apply AD to the calibration parameters may assist in other
approaches to calibration, such as that used for the aligned-
spin EOB model in Bohé et al. [45]. Automatic derivatives,
if implemented for EOB waveforms, could allow for the

application of other sampling methods such as HMC, or
possibly optimization over the entire set of NR waveforms
at once.

B. Fisher forecasting

Forecasting the sensitivity of future experiments is a
routine task in GW science. Due to its theoretical simplicity
and evaluation speed, the Fisher matrix formalism (see,
e.g., [73]) is commonly deployed to estimate how well
a binary system’s parameters could be measured. The
Fisher matrix approach is built around the assumption
of a Gaussian likelihood [74]. Although in practice this
assumption is often violated for realistic detector noise, the
results obtained using a Fisher analysis can provide quick
and useful diagnostics in evaluating sensitivities for a
variety of models and detector configurations.
Computing the Fisher matrix requires one to evaluate

derivatives of the likelihood, which in turn involves
derivatives of the waveform model and detector projection
functions. AD is therefore perfectly suited for computing
Fisher matrices accurately and efficiently. Forecasting with
Fisher matrices for third generation detectors has already
been extensively explored in [36,37]. Here we purely want
to illustrate the simplicity and speed of AD for forecasting
rather than providing new physics insights. We therefore
consider a simple, three-detector setup corresponding to the
two LIGO detectors in addition to Virgo.
The Fisher information matrix for a single detector is

typically given by

Ik
ij ¼ ð∂ihkj∂jhkÞ; ð8Þ

FIG. 4. Distribution of 536 log mismatches [see Eq. (5)] for the
original (blue) and optimized (red) IMRPhenomD. Overall, the
optimized distribution shifts to lower mismatches and therefore a
better waveform model. More quantitatively, the median mis-
match (shown as vertical dashed lines) is reduced by ∼50%.

FIG. 3. Relative error between the numerical relativity and
IMRPhenomD waveform amplitudes. The blue line shows the
relative error of the IMRPhenomD model with the original model
coefficients whereas the red line uses the IMRPhenomD model
after optimization using gradient descent. Interestingly, the error
is reduced across the frequency range, demonstrating that high-
dimensional optimization is useful for all parts of the waveform.
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where k indicates the detector, ∂i ¼ ∂=∂θi, and hk is the
strain measured by the detector which is given by

hkðθÞ ¼ FkþðϕÞhþðΞÞ þ Fk
×ðϕÞh×ðΞÞ: ð9Þ

Note that here we have separated out the extrinsic (ϕ) and
intrinsic (Ξ) variables as well as introduced the detector
projection functions for the plus and cross polarizations as
Fkþ and Fk

× respectively. Since we are considering a three
detector setup we simply add the Fisher matrices from the
individual detectors to get the combined Fisher matrix:

I ij ¼ IHanford
ij þ ILivingston

ij þ IVirgo
ij : ð10Þ

Finally, we invert the Fisher matrix to calculate the
covariance matrix, which provides forecasted measurement
errors and parameter covariances for a signal with param-
eters θ observed by the given detector network in the high
signal-to-noise limit.
To illustrate the computational speed of computing

Fisher matrices with AD, we consider a population
of binaries and compute the 1σ chirp mass error.9 Since
the Fisher matrix approach is known to have both theo-
retical issues as well as numerical instabilities for low
signal-to-noise events, we restrict our population to only
nearby (high SNR) systems. A full list of the distributions
used to generate the various parameters in our population
is given in Table I. Additionally, we use 20 Hz, 2048 Hz,
and 16 s for the minimum frequency, sampling frequency,
and sample length. Our noise curves correspond to the
design PSDs for LIGO Hanford, LIGO Livingston
(SIMNOISEPSDALIGOZERODETHIGHPOWER), and Virgo
(SIMNOISEPSDADVVIRGO).10 The resulting population
produces binaries with signal-to-noise ratios ranging from
Oð10 − 102Þ.
The distribution of chirp mass errors from a population

of 5 × 103 binaries can be seen in Fig. 5. We have verified
that our errors agree with a separate dedicated Fisher
forecasting code [75] to within 30%.11 This demonstrates
that AD can be used to accurately do Fisher forecasting for
a large population of events.
Moreover, each error calculation (including computing

the Fisher matrices for each detector and the inversion
process) is substantially faster. In particular, we find that
after compilation, each Fisher calculation takes approx-
imately 1 s on a single computing core. GWBENCH [75],
on the other hand, takes Oð3–5 sÞ for each Fisher calcu-
lation using the same detector setup and frequency grid.

This factor of 3–5 speedup is substantial considering the
fact that a single core evaluation of the ripple waveform
is similar to lalsuite which is used by GWBENCH. On a
MacBook Pro with an M1 Max Apple Silicon processor,
JIT compilation takes ∼70 s and computing chirp mass
errors for the full population takes less than Oð2 hÞ. As
discussed above, performance can be further improved by
utilizing hardware acceleration such as parallel GPU
processing. AD therefore represents a fast and accurate
way of performing population level analyses, and should be
utilized for testing the capabilities of next generation
detectors.

C. Derivative-based samplers—Hamiltonian
Monte Carlo

After the search algorithms have constructed a list of
confidently detected binaries, the next step is to sample

TABLE I. Priors for the 11-dimensional parameter space used
for the Fisher forecasting population analysis in Sec. III B.
U indicates a uniform distribution between the two variables
in the brackets. The distance prior ensures that the binaries are
uniformly distributed in volume.

m1, m2 U½20; 60�M⊙
χ1, χ2 U½−0.8; 0.8�
D (uniform in volume) [600, 900] Mpc
tc 0.0
ϕc 0.0
Inclination angle, cosðιÞ U½−1; 1�
Polarization angle, ψ U½0; 2π�
Right ascension, α U½0; 2π�
Declination, sinðδÞ U½−1; 1�

FIG. 5. Distribution of Fisher information chirp mass error for a
population of nearby binaries. Automatic differentiation (AD)
was used to compute the derivatives in Eq. (8). As emphasized in
the text, after JIT compilation, each error calculation was between
3 and 5 times faster than a numerical derivative forecasting code
GWBENCH [75].

9Note that we include all 11 parameters when computing the
covariance matrix, and only plot the chirp mass error for
illustrative purposes.

10See https://lscsoft.docs.ligo.org/lalsuite/lalinspiral/psds_8py_
source.html.

11Note that since Ref. [75] is based on numerical derivatives,
the agreement is not expected to be close to machine precision.
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from the posterior of each source parameter—so-called PE.
To do this, one typically uses an MCMC or nested sampler
[76–78]. Although robust, both MCMC and nested sam-
pling are slow to converge and are known to perform poorly
in high-dimensional parameter spaces. For example, sam-
pling the 15-dimensional parameter space for a binary
black hole (BBH) system can take Oð10Þ h, while binary
neutron star systems can take up to weeks. Dedicated fast
samplers have been designed to get approximate posteriors

on the sky localization to facilitate follow-up electromag-
netic observations (e.g., BAYESTAR [79]). Moreover, a
number of methods have been developed to speed up
PE well below the numbers quoted above [80–86].
Nevertheless, these do not present the whole picture; fast,
general PE therefore remains a key aim of GW data
analysis.
A primary issue with both MCMC and nested sampling

is that neither utilizes information about the likelihood’s

FIG. 6. Corner plot for the posteriors (see text for details) on simulated noise with injected signal using HMC (blue) and RWMH
(black). Blue lines indicate the true values of the injection. Although not fully converged, it is clear that we find posteriors consistent
with the injected parameters.
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derivative and must therefore randomly walk toward areas
of highest likelihood. Derivative-based samplers, on the
other hand, have been shown to extrapolate well to higher
dimensions although they sometimes come with their own
drawbacks. Here we simply aim to demonstrate the utility
of a derivative-based sampler and its efficiency on a small
test problem. In particular, we will show that the autocor-
relation of an HMC sampler is significantly lower than a
traditional MCMC algorithm [87,88].
For our basic example we perform an injection recovery

test on a seven-dimensional parameter space with the
two LIGO detectors in our network. Our noise curves
correspond to the design PSDs for LIGO Hanford and
Livingston (SIMNOISEPSDALIGOZERODETHIGHPOWER). We
use 20 Hz, 1024 Hz, and 16 s for the minimum frequency,
sampling frequency, and sample length. More specifically,
we generate Gaussian noise consistent with the measured
PSDs for each detector and then inject a BBH signal with
parameters: chirp mass Mc ¼ 23.82M⊙, symmetric mass
ratio η ¼ 0.248, primary spin parameter χ1 ¼ 0.3, secon-
dary spin parameter χ2 ¼ −0.4, luminosity distance
D ¼ 1.6 Gpc, coalescence time tc ¼ 0.0, and coalescence
phase ϕc ¼ 0.0.12 Using a standard Gaussian likelihood,
we then run the HMC sampler implemented in flowMC
[89] for 2 × 105 steps and the random walk Metropolis
Hastings (RWMH) sampler [90] for 1.5 × 106 steps (each
with four randomly initialized independent chains). The
number of steps and mass matrix used for each example
was hand tuned to give good performance for the specific
sampler. The additional steps for the RWMH sampler were
required to achieve a similarly converged posterior.
We note at this point that neither pure HMC nor RWMH

are the most modern versions of gradient- and nongradient-
based samplers. For example, for gradient-based samplers
one could use a No-U-Turn sampler [91] or the Metropolis-
adjusted Langevin algorithm [92]. Traditional MCMC
methods such as nested sampling [76–78] or the Affine
Invariant MCMC Ensemble sampler implemented in
emcee [93] will also lead to more efficient sampling of
the posterior than basic RWMH. Here we instead seek to
demonstrate the simplicity with which HMC can be
implemented within a differentiable pipeline. In addition,
as we discuss below, we find that a basic HMC algorithm
will produce significantly more efficient sampling that
RWMH, motivating further exploration of gradient-based
samplers for GW PE [94].
In Fig. 6, the blue contours show the posterior recov-

ered by HMC using the best chain (i.e., one that reached
the highest log-likelihood values). The blue lines show the
true parameters of the injected signal. From the one-
dimensional histograms along the diagonal, it is clear that
we consistently recover all seven parameters apart from ϕc

(which is known to be measured poorly). This is expected
since the injected binary is relatively nearby with an SNR
of ∼13.
Although further stepswould be required to achieve a fully

converged posterior, these chains are sufficient to show the
increased efficiency associated with HMC. To further illus-
trate this, in Fig. 7we plot the autocorrelation as a function of
lag13 for both the HMC and RWMH samplers. The HMC
autocorrelation is substantially lower than that of the
RWMH. In particular, we see that the autocorrelation reaches
close to zero at around300 lag,meaning that samples become
efficiently uncorrelated. This is in contrast to RWMHwhich
remains highly correlated even at 1000 lag. We therefore
expect gradient-based samplers to converge significantly
faster than typical samplers, especially in higher dimensions.
In addition, we found that the effective number of samples
[95], (a measure of the number of independent samples)14

is between 2 and 7 times larger for HMC across the different
dimensions of the parameter space.
In our companion paper we demonstrate that minute

scale PE can be achieved by combining normalizing flows
[89,96], GPU acceleration, and a derivative-based sampler
[94]. We therefore expect JAX waveforms to be beneficial
to future PE efforts in GW astronomy, particularly for low-
latency pipelines and higher-dimensional analyses.

IV. DISCUSSION AND CONCLUSION

In this paper we introduced and discussed the various
benefits of differentiable waveforms in JAX for GW data

FIG. 7. Autocorrelation as a function of lag for HMC and
RWMH on the same simulated data as discussed in Fig. 6.
The smaller autocorrelation of the HMC leads to a larger number
of independent samples and therefore a faster converging
Monte Carlo.

12The remaining parameters (inclination angle ι, polarization
angle ψ , right ascension α, declination δ) are set to π=3.

13Lag here corresponds to the number of steps between
samples.

14Computed using ARVIZ (https://python.arviz.org/en/stable/
api/generated/arviz.ess.html).
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analysis. First, we demonstrated the speed and accuracy of
our implementation of the aligned-spin IMRPhenomD
waveform. In particular, we showed that it matches the
lalsuite implementation to near machine precision and
can be easily parallelized on a GPU. Parallelization on a
GPU provides substantial speed increases; on an A100
40 GB GPU we found that waveform evaluations are over
an order of magnitude faster than serial CPU evaluations.
Second, we discussed three data analysis tasks which can
all be substantially improved by utilizing derivative infor-
mation of the waveform. In particular, we showed that AD
can be used to fine-tune waveform coefficients,15 perform
efficient and accurate Fisher forecasting, and enhance the
efficiency of sampling algorithms during parameter
estimation.
Although we primarily discuss toy examples in this

paper, each can be extended to the full data analysis task,
some of which will be shown in upcoming papers [71,94].
Differentiable waveforms therefore represent a useful
advancement toward efficient GW science.
In this paper, we primarily focused on the IMRPhenom

family of waveforms as their closed form expression is
perfectly suited for a JAX implementation. A differentiable
NRsurrogate implementation is under development [97],
but it currently seems difficult to implement EOB wave-
forms in JAX. As mentioned in the Introduction, the
evolution of the Hamiltonian required to evaluate an
EOB waveform is both inherently slow to differentiate

and difficult to implement in JAX, although some progress
has been made [65]. Since EOB methods are used to
produce state-of-the-art waveforms for many applications,
more work is required to see if a fast, differentiable
implementation is possible.
Currently the biggest constraint to adopting differentia-

ble waveforms is the need to rewrite the most commonly
used waveforms into JAX (or pure python). In order to
showcase the benefits of differentiable waveforms as
quickly as possible, at the time of writing, we have only
implemented an aligned-spin GW model (IMRPhenomD).
We plan on adding a variety of different waveforms to
ripple in the near future with the primary goal of
reaching a JAX version of a fully precessing, higher-order
mode waveform such as IMRPhenomXPHM [60]. Ideally,
future waveforms should be implemented under an AD
framework such as JAX. This would ensure that the
community can easily utilize differentiability and hardware
acceleration in the future.
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