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We start this paper by concisely rederiving ModMax, which is nothing but the unique nonlinear
extension of Maxwell’s equations preserving conformal and duality invariance. The merit of this new
derivation is its transparency and simplicity since it is based on an approach where the elusive duality
invariance is manifest. In the second part, we couple the ModMax electrodynamics to Einstein gravity with
a cosmological constant together with a standard conformal scalar field, and new stationary spacetimes
with dyonic charges are found. These solutions are later used as seed configurations to generate nonlinearly
charged (super-)renormalizably dressed spacetimes by means of a known generating method that we extend
to include any nonlinear conformal electrodynamics. We end by addressing the issue of how to generalize
some of these results to include the recently studied non-Noetherian conformal scalar fields, whose
equation of motion still enjoys conformal symmetry even though its action does not. It turns out that the
static non-Noetherian conformally dressed black holes also become amenable to being charged by
ModMax.
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I. INTRODUCTION

It is certainly not an understatement to say that the
paradigm of all effective low-energy field theories is
due to the seminal works of Heisenberg, Euler, and
Weisskopf [1,2]. In more modern language, it is agreed
that by integrating out the degrees of freedom of the
electron field in quantum electrodynamics (QED), one
obtains an approximate description of the photon field
deviating from the standard linear regime [3]. This QED
vacuum behavior makes nonlinear electrodynamics a
semiphenomenological tool. As a result, several obser-
vational and experimental efforts have been deployed
over the years to probe possible nonlinear effects in
electrodynamics [4]. Well before these developments,
Born and Infeld constructed a theory in which the

electromagnetic field of a point charge is devoid of
singularities [5]. Indeed, by going beyond the principle
of superposition, they were able to solve the problem of
infinite self-energy, and they argued that there should be a
maximum field strength similar to the upper limit provided
by the speed of light in Special Relativity. This reasoning
was found to be consistent with string theory decades later,
where Born-Infeld theory reappears in the dynamics of
strings and branes, and this maximum field strength is
precisely associated with the fact that such extended objects
cannot move faster than the speed of light [6,7]. This result
further strengthens the interpretation of nonlinear electro-
dynamics as an effective field theory.
More recently, interest in nonlinear electrodynamics was

considerably increased since it was shown that these
theories not only tolerate the existence of finite self-energy
solutions but actually allow more involved self-gravitating
solutions free from any singularity [8–11]. In particular, the
peculiar properties of these regular black hole solutions
have motivated their study in the astrophysical settings by
employing horizon-scale imaging of black holes [12]. Of
course, almost all the involved electrodynamics become
linear at the weak field limit, but all depart from the
Maxwell behavior in a strong regime by exhibiting a
characteristic length responsible for the regularization.

*Contact author: eloy.ayon-beato@cinvestav.mx
†Contact author: danflores@unap.cl
‡Contact author: hassaine@inst-mat.utalca.cl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 064027 (2024)

2470-0010=2024=110(6)=064027(15) 064027-1 Published by the American Physical Society

https://orcid.org/0000-0002-4498-3147
https://orcid.org/0000-0001-7866-3531
https://orcid.org/0009-0003-3159-5916
https://ror.org/009eqmr18
https://ror.org/01hrxxx24
https://ror.org/01hrxxx24
https://ror.org/01s4gpq44
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.064027&domain=pdf&date_stamp=2024-09-09
https://doi.org/10.1103/PhysRevD.110.064027
https://doi.org/10.1103/PhysRevD.110.064027
https://doi.org/10.1103/PhysRevD.110.064027
https://doi.org/10.1103/PhysRevD.110.064027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The mentioned scale dependence is incompatible with
conformal symmetry, one of the key features of standard
Maxwell’s theory in four dimensions and in fact, of almost
thewhole standard model. Hence, it is also desirable to have
explicit self-gravitating configurations involving other
electrodynamics that depart from the Maxwell one but still
preserve the conformal invariance. It is worth mentioning
that static black holes are known for electromagnetism
theories with conformal symmetry for dimensions D ≠ 4,
which can be achieved by considering as Lagrangian a
power law of the single field strength invariant with a
dimension-dependent exponent [13]. These nonlinear mod-
els have also been shown to harmonize with conformally
coupled scalar fields [14], even to the point of producing
composite stealth configurations.1 It is natural to consider
scalar fields at the same time since they are precisely the
simplest way to realize conformal symmetry. In this respect,
we mention that the most general second-order conformally
invariant scalar field equation in four dimensions arising
from an action principle was recently found in [20] after the
precursor results of Ref. [21].
In the context of black holes the relevance of conformally

invariant fields has been evident since the pioneering and
independent works of Refs. [22,23], where the first example
of a black hole dressed by a conformal scalar field was
provided. This solution turns out to be pathological due to
the divergence of the scalar field at the event horizon [24].
Remarkably, this pathology can be cured just by turning on a
cosmological constant together with the unique conformally
invariant potential in four dimensions [25]. This spherical
black hole allows an electrically charged extension [25] and
an analogwhose event horizon is negatively curved [26]. For
completeness we also mention that they have been gener-
alized in several ways as solutions; see, e.g., [27–30]. Of
course, the dyonic extension of this so-called charged
Martínez-Troncoso-Zanelli (MTZ) black hole is straightfor-
ward thanks to the duality and conformal symmetries of the
standard Maxwell theory. Outstandingly, it turns out that
Maxwell electrodynamics is not the only one that shares
such properties. In fact, there exists a unique nonlinear
extension of the Maxwell theory that inherited both its
conformal and duality symmetry, which was recently
proposed in Ref. [31] and dubbedModMax. The main goal
of this paper is to explore if themere assumption of these two
ingredients, i.e., duality as well as conformal invariance, is
enough to find further generalizations of the known con-
formally dressed black holes. The results of our exploration
are positive and, in what follows we summarize the different
steps to achieve our objective.
The plan of the paper is organized as follows. In order to

be self-contained but also for usefulness, we start in Sec. II
by providing a survey of nonlinear electrodynamics à la
Salazar, García, and Plebański [32]. This step is needed

since it allows a transparent definition of duality-invariant
theories that we will carefully justify in Sec. III A. The
conformal symmetry is then characterized in Sec. III B and
later used beside the previous results to allow a clear
rederivation of the ModMax theory in Sec. III C. In Sec. IV,
we provide the dyonic generalization, supplemented with a
nontrivial Newman-Unti-Tamburino (NUT) parameter, of
the MTZ black hole nonlinearly charged through the
ModMax theory. Since we go beyond Maxwell theory
respecting power-counting renormalizability it makes total
sense to do something similar with the scalar field.
Fortunately, in Ref. [29] it was shown by means of a
generating technique that the charged MTZ solution allows
a generalization supported by a (super-)renormalizable self-
interaction potential. Here, we first extend this generating
technique to include any conformal nonlinear electrody-
namics and then construct new (super-)renormalizably
dressed spacetimes in Sec. V. This work is finally com-
pleted by adding to the scalar field a term that breaks its
conformal invariance at the level of the action but not at the
level of its equation of motion, i.e., we also address the
study of the so-called non-Noetherian conformal scalar
fields [20,21]. In Sec. VI we succeed to charge with
ModMax the static non-Noetherian conformally dressed
black holes originally found by Fernandes in Ref. [21].
The last section, VII, is devoted to our conclusions.

II. NONLINEAR ELECTRODYNAMICS

As is defined in the Plebański book [33], nonlinear
electrodynamics are described by the following action
principle

SE½g;A;P� ¼−
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
FμνPμν−H ðP;QÞ

�
;

ð1Þ
which depends on the metric gμν, the gauge potential Aμ

and the antisymmetric tensor Pμν. Here the structural
function H describes the precise nonlinear electrodynam-
ics and depends, in general, on the two Lorentz scalars that
can be constructed with Pμν [5]; see the first equality of
Eq. (9b). As usual, the field strength is related to the gauge
potential as F ¼ dA, ensuring the Faraday equations

dF ¼ 0: ð2Þ
On the other hand, the variation of action (1) with respect to
the gauge potential leads to the Maxwell equations

d⋆P ¼ 0; ð3Þ
where ⋆ stands for the Hodge dual, whereas varying (1)
with respect to the antisymmetric tensor Pμν yields the
constitutive relations

Fμν ¼ H PPμν þH Q ⋆Pμν; ð4Þ
1By stealth we mean nontrivial field configurations with a

vanishing energy-momentum tensor; see Refs. [15–19].

AYÓN-BEATO, FLORES-ALFONSO, and HASSAINE PHYS. REV. D 110, 064027 (2024)

064027-2



with the subindices of H indicating partial differentiation,
e.g., H P ¼ ∂H =∂P. Notice that Maxwell electrody-
namics is recovered forH ¼ P, giving linear constitutive
relations. Lastly, the corresponding energy-momentum
tensor reads

4πTE
μν ¼ FμαPν

α − gμν

�
1

2
FαβPαβ −H

�
: ð5Þ

The main motivation for the action principle (1) is that
now Maxwell equations (3) remain linear as the Faraday
ones (2) while the nonlinearity is encoded into the con-
stitutive relations (4). Consequently, Maxwell equations (3)
can be now understood just like the Faraday ones (2),
i.e., implying the local existence of a vector potential
⋆P ¼ dA�. Therefore, from the point of view of the action
principle (1), a solution to nonlinear electrodynamics can be
understood as a pair of vector potentialsA andA� compatible
with the constitutive relations (4). Additionally, since in four
dimensions both Faraday (2) and Maxwell (3) equations
define conservation laws, there are conserved quantities
related to them defined by the following integrals

p ¼ 1

4π

Z
∂Σ
F; q ¼ 1

4π

Z
∂Σ
⋆P; ð6Þ

where the integration is taken at the boundary of constant
time hypersurfaces Σ; obviously, these are nothing other
than the magnetic and electric charges, respectively.
After this brief and useful introduction, and in order to

prepare for what follows, we review a strategy that has
proved to be fruitful when nonlinear electrodynamics is
considered in General Relativity [33]. This strategy simply
consists of working in a null tetrad of the spacetime metric

g ¼ 2e1 ⊗s e2 þ 2e3 ⊗s e4; ð7Þ
aligned along the common eigenvectors of the electromag-
netic fields, i.e.,

Fþ i⋆P¼ðDþ iBÞe1 ∧ e2þðEþ iHÞe3 ∧ e4: ð8Þ
Here, the first pair of the tetrad is composed of complex
conjugates one-forms,while the last pair is real.Additionally,
it has been implicitly assumed that the electromagnetic
configuration is algebraically general; namely, the real
invariantsE,B,D, andHwhich are related to the eigenvalues
are not all zero at the same time. We also remark that the
scalars E and D are associated with the intensity of the
electric field and electric induction, respectively, as perceived
in the null frame, while H and B are their magnetic
counterparts. In terms of the aligned tetrad invariants (8),
the standard invariants take the form

F þ iG ≡ 1

4
FμνFμν þ i

4
Fμν ⋆Fμν ¼ −

1

2
ðEþ iBÞ2; ð9aÞ

Pþ iQ≡ 1

4
PμνPμν þ i

4
Pμν⋆Pμν ¼ −

1

2
ðDþ iHÞ2; ð9bÞ

resulting in a parabolic relation between them. Therefore,
the structural function is reparametrized as H ðP;QÞ ¼
H ðD;HÞ, which leads to a simpler version of the con-
stitutive relations (4) that now reads

Eþ iB ¼ ð−∂D þ i∂HÞH : ð10Þ

This is not theonly advantage of choosing an aligned tetrad, it
also results in a diagonalization of the energy-momentum
tensor allowingonly two independent components.The latter
are better expressed through the trace, trTE, of (5) together
with its traceless part, T̂E ≡ TE − 1

4
g tr TE, according to

2π tr TE ¼ DE − BH þ 2H ; ð11aÞ

4πT̂E ¼ ðDEþ BHÞðe1 ⊗s e2 − e3 ⊗s e4Þ: ð11bÞ

Here E and B must be determined from the constitutive
relations (10). This approach has been employed since the
seminal work of Plebański [33] to the formulations of
nonlinear electrodynamics pioneered in Ref. [32] which
we also review below. The power of this approach is such
that it has been instrumental in the derivation of the first
genuine example of a spinning nonlinearly charged black
hole [34–36].
The action principle (1) is concretely obtained as a

Legendre transform from a Lagrangian, − 1
4πL ðF ;G Þ,

which prompts dubbing the action structural function
H ðP;QÞ as the “Hamiltonian”. This total Legendre trans-
form is concretely given in terms of the new variables by

L ðE;BÞ ¼ BH −DE −H ðD;HÞ: ð12Þ

This highlights that in the more known Lagrangian for-
mulation the fundamental variables are instead E and B,
where the others must be determined from the constitutive
relations. Using (10) as dH ¼ −EdDþ BdH in the differ-
ential of (12), the constitutive relations acquire now the
alternative simple form

Dþ iH ¼ ð−∂E þ i∂BÞL : ð13Þ

Furthermore, the total Legendre transform (12) motivates
the definition of the following two partial Legendre trans-
forms

MþðD;BÞ ¼ BH −H ðD;HÞ; ð14aÞ

M−ðE;HÞ ¼ DEþH ðD;HÞ; ð14bÞ

which were first introduced in Ref. [32] and led to two
alternative dual descriptions of nonlinear electrodynamics,
using purely inductions or intensities as independent
variables. As was first pointed out and exploited in [32],
these dual formulations are precisely the ideal ones to
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transparently describe theories invariant under duality
rotations, a fact that will be reviewed in Sec. III A.
Additionally, they are indispensable to determine the
electrodynamics supporting the spinning nonlinearly
charged black holes of [34,35] as was shown in [36].
Correspondingly, the constitutive relations in the mixed
representations are written as

Eþ iH ¼ ð∂D þ i∂BÞMþ; ð15aÞ
Dþ iB ¼ ð∂E þ i∂HÞM−: ð15bÞ

Regarding the energy-momentum tensor, its traceless part is
formally written again as in (11b) but considering the new
constitutive relations above,while the trace changes accord-
ing to the partial Legendre transforms (14)

2π tr TE ¼ �ðDEþ BH − 2M�Þ: ð16Þ
After clearly defining duality-invariant theories through
these formalisms in the next section, we shall apply the
above expression to determine their zero trace subclass
defining the ModMax theory.

III. A SIMPLER DERIVATION
OF THE MODMAX ELECTRODYNAMICS

In this section, we follow the formalism of the previous
section to rederive the ModMax theory [31] in a novel and
comprehensive way. Our approach will be based on the
inductions and intensities formulations with structural
functionsMþ andM−, respectively, which in turn provide
a direct and transparent way of deriving the theory from its
defining symmetries. A symmetry-based approach was
previously undertaken in [37] but employed a Lagrangian
description. In contrast with the M� formulations, the
resulting condition is nonlinear as we will explain later, and
it allows no explicit general solution as recently emphasized
in [38].

A. Duality symmetry

The main challenge is how to implement the duality
symmetry. Fortunately, this problem was cleverly solved by
Salazar, García, and Plebański in [32]. We didactically
follow their approach to make evident its advantages.
Duality symmetry is related to the possibility of inter-
changing the Faraday (2) andMaxwell (3) equations, which
are preserved by the more general rotations

F̃ þ i⋆ P̃ ¼ eiφðF þ i⋆PÞ: ð17Þ

From the conserved charges (6), these rotations are a
covariant nonlinear realization of the well-known elec-
tric-magnetic duality

p̃þ iq̃ ¼ eiφðpþ iqÞ: ð18Þ

However, this is not the end of the story since the involved
fields are not independent as they are tied by the con-
stitutive relations (4). The circumstances under which the
latter also remain unchanged after the rotations above are
far from obvious, but we will show they are simpler to
analyze in theM� formalisms. In fact, as we plan to couple
the resulting duality-invariant nonlinear electrodynamics to
General Relativity, we first demand the invariance of the
energy-momentum tensor and show later that the emerging
duality conditions are enough to also ensure preserving the
constitutive relations.
Using an aligned tetrad (8), the duality rotations (17)

becomes

D̃þ iB̃ ¼ eiφðDþ iBÞ; ð19aÞ

Ẽþ iH̃ ¼ eiφðEþ iHÞ; ð19bÞ

while their infinitesimal version

D̃þ iB̃ ¼ Dþ iBþ φXðDþ iBÞ þ � � � ; ð20aÞ

Ẽþ iH̃ ¼ Eþ iH þ φXðEþ iHÞ þ � � � ; ð20bÞ

defines thegenerator of duality rotations in this representation

X ¼ −B∂D þD∂B −H∂E þ E∂H: ð21Þ

As previously announced, we shall demand now the invari-
ance of the energy-momentum tensor under duality rotations,
which infinitesimally requires the generator (21) to preserve
their two independent components. The traceless part (11b) is
already duality invariant since its single component identi-
cally satisfies

XðDEþ BHÞ ¼ 0: ð22Þ

Then the duality invariance of the trace (16) reduces to the
following conditions

XðM�Þ ¼ 0: ð23Þ

These last requirements are enough to also preserve the
constitutive relations (15) under duality rotations since the
corresponding infinitesimal conditions can be rewritten as

XðEþ iH− ½∂Dþ i∂B�MþÞ¼−ð∂Dþ i∂BÞXðMþÞ¼ 0;

XðDþ iB− ½∂Eþ i∂H�M−Þ¼−ð∂Eþ i∂HÞXðM−Þ¼ 0:

Notice that if one would have started by analyzing first the
invariance of the constitutive relations, one would have
obtained from the previous expressions the preliminary
conditions XðM�Þ ¼ const, which is exactly equivalent
by (15) to the preliminary duality condition DH − BE ¼
const obtained in Ref. [39]. Anyway, the later restriction on
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the energy-momentum tensor, also enforced in [39], finally
imposes the vanishing of this constant. The advantage here is
that the duality condition (23) is expressed as a constraint on
the structural functions which can be phrased as “a nonlinear
electrodynamics is duality invariant if and only if its structural
functions MþðD;BÞ and M−ðE;HÞ are preserved by
duality rotations.” This is equivalent to the following homo-
geneous linear first-order partial differential equation (PDE)

ð−B∂DþD∂BÞMþ ¼ 0; ð−H∂EþE∂HÞM−¼ 0; ð24Þ

whose general solutions are, respectively, of the form

Mþ ¼Mþ
�
D2þB2

2

�
; M−¼M−

�
E2þH2

2

�
: ð25Þ

Hence, aswas first realized in [32], a generic duality-invariant
nonlinear electrodynamics is necessarily described by the
above structural functions, each generally depending on a
single rotation-invariant variable builtwith the corresponding
aligned invariants.
We end this subsection by a last comment regarding

the duality condition BE ¼ DH in the Lagrangian and
Hamiltonian formulations. Using the constitutive relations,
(13) or (10), this duality requisite can be expressed in either
of the following two ways

∂EL ∂BL ¼−EB; ∂DH ∂HH ¼−DH: ð26Þ

These are nonlinear first-order PDE of Hamilton-Jacobi
type [39], and it is a nontrivial task to find their general
solutions. In the case of the above equations, it is possible
to find their general solutions depending on an arbitrary
function; see Ref. [19] for a recent account of the several
methods used to achieve this task. Unfortunately, as occurs
for all nonlinear first-order PDE, such general solutions are
only implicitly given (see the Appendix and the recent
Ref. [38]). This makes impossible a transparent treatment
of duality-invariant theories in the conventional formula-
tions, i.e., the occurrence or not of duality invariance needs
to be checked case by case.

B. Conformal invariance

We now turn to conformal invariance, the other defining
symmetry of the ModMax electrodynamics. It is easier to
implement since it is well-known that conformal symmetry
necessarily implies a traceless energy-momentum tensor.
Hence, we must set the trace (16) to zero, which by taking
into account the constitutive relations (15) yields the
following inhomogeneous linear first-order PDE

ðD∂D þ B∂BÞMþ ¼ 2Mþ; ð27aÞ

ðE∂E þH∂HÞM− ¼ 2M−: ð27bÞ

These linear PDE are easily solved and the result (which
can also be obtained in the other formulations) is that the
structural functions characterizing all the conformally
invariant nonlinear electrodynamics are necessarily homo-
geneous. For example, the degree of the previous functions
M� must be two, and by directly taking the trace of (5) it
follows that the degree ofH ðP;QÞ must be one. In order
to exhibit that such conditions are enough to guarantee the
conformal invariance of action (1), we explicitly write
down the conformal weights of its different ingredients

ðgμν; Aμ; PμνÞ ↦ ðΩ2gμν; Aμ;Ω−4PμνÞ: ð28Þ

They, together with the degree one homogeneity of the
Hamiltonian, imply the latter transforms with the appro-
priate weight, i.e.,

H ðP;QÞ↦H ðΩ−4P;Ω−4QÞ¼Ω−4H ðP;QÞ; ð29Þ

ensuring in this way the required conformal invariance of
action (1).

C. ModMax derivation

After having transparently characterized both duality and
conformal symmetries, it will turn out to easily derive the
ModMax theory [31]. The single-argument dependence of
duality-invariant theories (25) reduces the homogeneity
defining PDE (27), warranting conformal symmetry to the
simple ordinary equations

1

2
ðD2 þ B2ÞMþ0 ¼ Mþ; ð30aÞ

1

2
ðE2 þH2ÞM−0 ¼ M−; ð30bÞ

whose general solutions are given by

Mþ
MMðD;BÞ ¼ e−γ

2
ðD2 þ B2Þ; ð31aÞ

M−
MMðE;HÞ ¼ eγ

2
ðE2 þH2Þ: ð31bÞ

These structural functions define the so-called ModMax
electrodynamics, i.e., the generic family of duality-invariant
theories that enjoy conformal symmetry at the same time.
The difference between the above integration constants is
due to the fact that it is enough to integrate only one of the
structural functions, since the other is obtained from the
Legendre transforms (14) and results in the inverse inte-
gration constant of the former. In order to write the theory in
a more standard form, notice that due to the squared
dependence (31) the resulting constitutive relations (15)
become linear and trivially invertible
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Eþ iH ¼ e−γðDþ iBÞ: ð32Þ

That turns into a straightforward task to obtain the other
structural functions from the Legendre transforms (14)
and (12), also yielding a squared dependence in terms of
the aligned invariants

LMMðE;BÞ ¼ −
1

2
ðeγE2 − e−γB2Þ; ð33aÞ

H MMðD;HÞ ¼ −
1

2
ðe−γD2 − eγH2Þ: ð33bÞ

We are now ready to express the Lagrangian and
Hamiltonian in terms of the conventional invariants by
inverting the parabolic relations (9) between the two
families of invariants. This finally allows us to write down
the standard structural functions for ModMax theory in their
best known form [31]

LMMðF ;G Þ ¼ coshðγÞF − sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G 2

p
; ð34aÞ

H MMðP;QÞ¼ coshðγÞPþ sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2þQ2

p
: ð34bÞ

This is the precise family of electrodynamics we shall use in
the rest of the paper.

IV. NONLINEARLY CHARGING
THE MTZ BLACK HOLE VIA MODMAX

We now proceed to charge the conformally dressed MTZ
black holes [25,26] beyond the linear regime but still
preserving the conformal and duality symmetries of its
involved sources. In concrete terms, this means considering
the ModMax nonlinear electrodynamics [31] instead of
Maxwell, and hence dealing with the following action
principle

S½g;Φ;A;P�¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−2Λ
2κ

þLCSþLMM

�
; ð35aÞ

where the involved matter Lagrangian densities

LCS ¼ −
1

2
∇μΦ∇μΦ −

1

12
RΦ2 − λΦ4; ð35bÞ

−4πLMM ¼ 1

2
FμνPμν −H MMðP;QÞ; ð35cÞ

describe a conformal scalar field and theModMax nonlinear
electrodynamics, respectively. The structural function (34b)
of the last theory fixes the constitutive relations (4) to

F¼
�
coshðγÞþ sinhðγÞPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2þQ2
p

�
Pþ sinhðγÞQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2þQ2
p ⋆P; ð36aÞ

and since the role of Faraday (2) and Maxwell (3) equations
is to define a pair of vector potentials F ¼ dA and
⋆P ¼ dA�, the previous relations are the only restriction
these vector fields must satisfy. The remaining relevant
variations are thosewith respect to the conformal scalar field
and the metric tensor yielding

□Φ −
1

6
RΦ ¼ 4λΦ3; ð36bÞ

Gμν þ Λgμν ¼ κðTCS
μν þ TMM

μν Þ; ð36cÞ
respectively, where both conformal contributions to the
energy-momentum tensor are given by

TCS
μν ¼ ∇μΦ∇νΦ − gμν

�
1

2
∇αΦ∇αΦþ λΦ4

�

þ 1

6
ðgμν□ −∇μ∇ν þGμνÞΦ2; ð36dÞ

4πTMM
μν ¼

�
coshðγÞ þ sinhðγÞPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þQ2
p

�
ðPμαPν

α −PgμνÞ;

ð36eÞ

and the last expression is obtained from the generic energy-
momentum tensor for a nonlinear electrodynamics (5), after
substituting the ModMax structural function (34b).
We are interested in constructing at once stationary

solutions extended with a Taub-NUT parameter. This goal
is motivated by the fact that, on the one hand, the NUT
solution generalizing the conventionally charged confor-
mally dressed black hole is already known [28], and on the
other, we can exploit the fact that the NUT solutions were
generically obtained for all duality-invariant nonlinear
electrodynamics in the absence of the scalar field [32].
Regarding the latter, the precise case of ModMax was
recently reanalyzed in Refs. [40,41]. It is easy to incorpo-
rate a constant conformal scalar field on top of the previous
configurations [42], but the real challenge is to achieve the
goal with a nontrivial scalar field. All the previously
mentioned configurations are obviously inspired by the
vacuum spacetime solutions originally found and charac-
terized in Refs. [43–45]. Starting from this observation, we
will consider the following generic Taub-NUT ansatz for
our task

ds2 ¼ −fðrÞ
�
dtþ 4n

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ

�
2

þ dr2

fðrÞ þ ðr2 þ n2ÞdΩ2
k; ð37aÞ

Φ ¼ ΦðrÞ; ð37bÞ

A ¼ AtðrÞ
�
dtþ 4n

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ

�
; ð37cÞ
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A� ¼ A�
t ðrÞ

�
dtþ 4n

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ

�
; ð37dÞ

where the two-dimensional geometry,

dΩ2
k ¼ dθ2 þ 1

k
sin2ð

ffiffiffi
k

p
θÞdϕ2; ð37eÞ

describes a base space of constant curvature k, and n
denotes the NUT parameter.
The consistent self-gravitating solution of the conformal

composite described by Eqs. (36) for the above Taub-NUT
ansatz is given by

fðrÞ ¼ −
Λ
3
ðr2 þ n2Þ þ ðk − 4

3
Λn2Þðr −mÞ2
r2 þ n2

; ð38aÞ

ΦðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Λ
6λ

ðm2 þ n2Þ
r

1

r −m
; ð38bÞ

AtðrÞ ¼ hðr;p;−qÞ; ð38cÞ

A�
t ðrÞ ¼ hðr; q; pÞ; ð38dÞ

where the same family of functions,

hðr; q; pÞ≡ q
2n

cos

�
2e−γ arctan

�
n
r

��

þ p
2n

sin

�
2e−γ arctan

�
n
r

��
; ð38eÞ

determines the vector potentials with different parametri-
zations. Here, m, q, and p are integration constants that,
together with n, are tied via the coupling constants of the
theory through the following relation

e−γðq2 þ p2Þ ¼ 2π

9

�
k −

4

3
Λn2

�

×

�
36

κ
þ Λ

λ

�
ðm2 þ n2Þ: ð38fÞ

A careful examination of the solution reveals that, in
units where κ ¼ 8π, m is exactly the mass of the spherical
black holes resulting at k ¼ 1 in the static limit n ¼ 0 we
discuss later. This can be calculated using the successful
off-shell formalism proposed in [46] and discussed in detail
in [47]; see also [48]. Besides, q and p are nothing but the
electric and magnetic charges, respectively, which is
explicitly checked also in the spherical case k ¼ 1 by
integrating the right-hand sides of (6) as usual over a sphere
at infinity.
The electric-magnetic duality is explicitly manifested in

the solution since the change

ðp; qÞ ↦ ð−q; pÞ; ð39Þ

maps A� into A preserving the parametric constraint (38f),
which interchanges the roles of the magnetic and electric
charges (6). On the other hand, the metric and the scalar
field are unaffected by the duality transformation since they
are independent of the electromagnetic charges. Something
similar applies to the full duality rotations (18), which now
rotates the vector potentials and the result is that the
solution (38) is mapped to itself but with magnetic charge
p̃ and electric charge q̃.
As a comment regarding (anti-)self-duality, it can be

achieved as usual in the Euclidean continuation, which is
obtained by means of the following Wick rotations

ðt; n; q; A�Þ → ðit; in; iq; iA�Þ; ð40Þ

giving for the Euclideanvector potentialsAtðrÞ ¼ hðr;p; qÞ
and A�

t ðrÞ ¼ hðr; q; pÞ. The (anti-)self-dual points are
defined by m ¼ �n and p ¼ �q, yielding A ¼ �A� with
vanishing electromagnetic energy-momentum tensor and
making the scalar field trivial, thus reducing the Euclidean
metric to a vacuum configuration with (anti-)self-dual
curvature, in agreement with previous results [40,41,49,50].
Before continuing with the characterization of the sol-

utions,wewant to ponder themeaning of the constraint (38f).
Indeed, it has long been known that the Weyl tensor
decomposition in terms of electric and magnetic parts in
the paradigm of Taub-NUT spacetimes provides gravito-
electric and gravitomagnetic interpretations for the mass m
and the NUT parameter n, respectively [51]. In this sense the
dyonic character of solutions like (38) is twofold, since it is
not only described by the two electromagnetic charges but
also by the two gravitoelectromagnetic peers. This provides a
remarkable interpretation of the twofold dyonic version of
restriction (38f) as a proportionality relation, mostly via the
coupling constants, between a sort of total dyonic electro-
magnetic charge q2 þ p2 and its dyonic gravitational analog
m2 þ n2, i.e., establishing a correlation between both dyonic
counterparts.
One can also note that the coupling constants become

severely restricted in order to allow the existence of the
solution. Indeed, the reality conditionon the scalar field (38b)
will impose that the sign of the cosmological constant Λ and
the conformal self-interaction coupling constant λ must be
opposite, while the positiveness of the total dyonic counter-
parts in relation (38f) gives rise to the following extra
condition

�
k −

4

3
Λn2

��
36

κ
þ Λ

λ

�
> 0: ð41Þ

In the Maxwell limit γ ¼ 0 the electromagnetic vector
potentials become
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AtðrÞ ¼ −
qr

r2 þ n2
þ pðr2 − n2Þ
2nðr2 þ n2Þ ; ð42aÞ

A�
t ðrÞ ¼

pr
r2 þ n2

þ qðr2 − n2Þ
2nðr2 þ n2Þ ; ð42bÞ

generalizing to the dyonic case the purely electric, p ¼ 0,
conformal Taub-NUT solution of Ref. [28]. The correspond-
ing metric and scalar field are unaffected by those limits,
which brings up the following interesting curiosity of
solution (38). On the one hand, the metric and scalar field
behave exactly the same way as in the linearly charged case
of [28]. On the other hand, the electromagnetic fields of (38)
are exactly the same as those of ModMax without a scalar
field [40,41]. This peculiarity is a direct consequence of the
decoupling between both kinds of involved conformal
matter and, additionally, has roots in that the constitutive
relations (36a) turn out to have no information on the
particular gravitational potential of the background (37a).
In fact, only the constraint (38f) nontrivially merges all the
involved ingredients. This is in analogy with what occurs in
the linear casewhen the neutral topologicalMTZblack holes
are conventionally charged [25,26].
There are other two new nontrivial limits of solution (38),

within the list of its underlying properties. The first nontrivial
limit is to consider a vanishing cosmological constant, since
its naive application in (38) could yield a trivial scalar field. In
fact, the appropriate way to take this limit is by first solving
the constraint (38f) for the conformal coupling constant λ and
then evaluating the result in the scalar field (38b). Takingnow
Λ ¼ 0will additionally impose λ ¼ 0, and since the resulting
metric has only sense for spherical topology k ¼ 1, this
procedure gives rise to the following Taub-NUT generali-
zation of the Bekenstein black hole [23] but dyonically
charged via ModMax electrodynamics

ds2 ¼ −
ðr −mÞ2
r2 þ n2

�
dtþ 4nsin2

1

2
θdϕ

�
2

þ r2 þ n2

ðr −mÞ2 dr
2

þ ðr2 þ n2Þðdθ2 þ sin2θdϕ2Þ; ð43aÞ

Φ ¼
ffiffiffi
6

κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 − κ

8π e
−γðq2 þ p2Þ

q
r −m

; ð43bÞ

A ¼ hðr;p;−qÞ
�
dtþ 4n sin2

1

2
θdϕ

�
; ð43cÞ

A� ¼ hðr; q; pÞ
�
dtþ 4n sin2

1

2
θdϕ

�
: ð43dÞ

The other new nontrivial limit of solution (38) is the
static one n → 0. This limit should be taken with care in the
nonlinear electromagnetic sector, since constant contribu-
tions of order 1=n in the gauge potentials need to be gauged
away before taking the limit. After the static limit n → 0 is

taken with caution we obtain the promised dyonic non-
linearly charged black hole solutions generalizing the MTZ
configurations [25,26]

ds2 ¼ −
�
−
Λ
3
r2 þ k

�
1 −

m
r

�
2
�
dt2

þ
�
−
Λ
3
r2 þ k

�
1 −

m
r

�
2
�
−1
dr2 þ r2dΩ2

k; ð44aÞ

Φ ¼
ffiffiffiffiffiffiffiffiffi
−
Λ
6λ

r
m

r −m
; ð44bÞ

A ¼ −
qe−γ

r
dtþ 2p

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ; ð44cÞ

A� ¼ pe−γ

r
dtþ 2q

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ; ð44dÞ

where the constraint now reflects the loss of dyonic
character in the gravitational sector

e−γðq2 þ p2Þ ¼ 2πk
9

�
36

κ
þ Λ

λ

�
m2: ð44eÞ

The original charged MTZ black holes [25,26] are recov-
ered in the Maxwell limit γ ¼ 0, and for purely electric
configurations p ¼ 0. Let us stress a crucial difference in
the behavior of the solution beyond these further limits. It is
clear that in the linear Maxwell case, charged solutions can
be purely electric (or magnetic) or even dyonic. In the
ModMax case, the constitutive relations (36a) become
effectively linear when P or Q vanish. For the black
hole (44) we have

Q ¼ qpe−γ

r4
; ð45Þ

and its purely electric (or magnetic) limit would
imply Q ¼ 0. Thus, in order to ensure that the new black
holes (44) probe the fully nonlinear regime it is mandatory
to consider dyonic configurations, as those obtained in
Ref. [52] in the absence of the scalar field.
As a final comment, when both nontrivial limits are

taken simultaneously, i.e., Λ ¼ 0, which constrains λ ¼ 0
and k ¼ 1, together with n ¼ 0, one gets

ds2 ¼ −
�
1 −

m
r

�
2

dt2 þ
�
1 −

m
r

�
−2
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð46aÞ

Φ ¼
ffiffiffi
6

κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − κ

8π e
−γðq2 þ p2Þ

q
r −m

; ð46bÞ
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A ¼ −
qe−γ

r
dtþ 2p sin2ðθ=2Þdϕ; ð46cÞ

A� ¼ pe−γ

r
dtþ 2q sin2ðθ=2Þdϕ: ð46dÞ

This constitutes a dyonic ModMax charged generaliza-
tion of the Bekenstein black hole [23].

V. NEW (SUPER-)RENORMALIZABLY
DRESSED SPACETIMES

In the previous section, we were successful in charging
conformally dressed spacetimes beyond the Maxwell
theory without spoiling power-counting renormalizability.
A further harmless generalization that can be performed
now in the scalar sector is to improve its conformal
self-interaction potential precisely with power-counting
super-renormalizable contributions. The first explicit self-
gravitating scalar configurations allowing such contribu-
tions were found in Ref. [27], and its appearance was
intriguing at that moment since it had no precedent at all. It
was later explained in [29] how they can be generated from
the MTZ black hole [25,26]. The strategy of Ref. [29] was
to devise a generating method for mapping any self-
gravitating conformal scalar field with nontrivial self-
interaction and cosmological constant to a one-parameter
family of a similar system but supplemented with a (super-)
renormalizable potential. The devised one-parameter map
was the following

ḡμν ¼ ða
ffiffiffiffiffiffiffiffi
κ=6

p
Φþ 1Þ2gμν; ð47aÞ

Φ̄ ¼ 1ffiffiffiffiffiffiffiffi
κ=6

p
ffiffiffiffiffiffiffiffi
κ=6

p
Φþ a

a
ffiffiffiffiffiffiffiffi
κ=6

p
Φþ 1

: ð47bÞ

The method was also straightforwardly extended to include
the Maxwell theory [29], allowing them to find the charged
version of the original solutions of [27], only by scaling the
vector potential according to

Ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
A: ð47cÞ

Notice that the electromagnetic part of action (35a) is
unaffected by (47a) due to conformal invariance. Hence, as
pointed out in Ref. [29], for γ ¼ 0 when the Maxwell
theory studied there is recovered, the effect of the scaling
(47c) is just to scale the electromagnetic action by the
factor 1 − a2.
The aim of this section is to generalize the conformally

dressed spacetimes (38) to new (super-)renormalizably
dressed examples by exploiting the results already estab-
lished in Ref. [29]. In order to accomplish this goal, we need
to extend first the above map to other conformally charged
configurations not necessarily rigged by the linearity of

Maxwell theory. In particular, to those charged by the
ModMax electrodynamics where γ ≠ 0 in action (35a).
Since everything works by scaling the Maxwell action as
1 − a2, it is enough to demand that under the sought
transformation the same occurs for any conformal electro-
magnetic action. In doing so, we recall that the structural
functions of every conformally invariant nonlinear electro-
dynamics are necessarily homogeneous, as was explained in
Sec. III B. Concretely, let us remember that the degree of the
Hamiltonian as a function of the standard invariants must be
one; i.e., it satisfies H ðλ̂P; λ̂QÞ ¼ λ̂H ðP;QÞ. Hence, it
is clear that the appropriate transformation for the second
vector potential, generalizing the map of Ref. [29] to include
any conformal electrodynamics, must be necessarily given
by the same scaling law

Ā� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
A�: ð47dÞ

We are now ready to pursue the strategy of Ref. [29].
Applying the extended map (47) to ModMax charged
configurations transforms the full action (35a) to a new
action

S̄½ḡ; Φ̄; Ā; P̄� ¼ ð1 − a2ÞS½g;Φ; A; P�; ð48Þ

defined by

S̄½ḡ;Φ̄;Ā;P̄�¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄−2Λ̄
2κ

þ L̄SRþ L̄MM

�
; ð49aÞ

where R̄ refers to the scalar curvature associated with
the metric ḡ. Additionally, we have defined F̄ ¼ dĀ
and ⋆ P̄ ¼ dĀ�; accordingly, L̄MM is the ModMax
Lagrangian (35c) for these fields. At the same time, the
conformal scalar Lagrangian changes to

L̄SR ¼ −
1

2
∇μΦ̄∇μΦ̄ −

1

12
R̄Φ̄2

− λ1Φ̄ − λ2Φ̄2 − λ3Φ̄3 − λ4Φ̄4; ð49bÞ

keeping the conformal coupling to the Ricci scalar, but the
corresponding action is no longer conformally invariant
due to the new power-counting super-renormalizable con-
tributions improving the self-interaction potential, defined
by the emerging coupling constants λ1, λ2, and λ3. In
addition, the new cosmological constant is now given by

Λ̄ ¼ κΛþ 36a4λ
κð1 − a2Þ3 ; ð49cÞ

while the coupling constants of the potential read

λ1 ¼ −
2

ffiffiffi
6

p

3

aðκΛþ 36a2λÞ
κ3=2ð1 − a2Þ3 ; ð49dÞ
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λ2 ¼
a2ðκΛþ 36λÞ
κð1 − a2Þ3 ; ð49eÞ

λ3 ¼ −
ffiffiffi
6

p

9

aða2κΛþ 36λÞ
κ1=2ð1 − a2Þ3 ; ð49fÞ

λ4 ¼
1

36

a4κΛþ 36λ

ð1 − a2Þ3 ; ð49gÞ

and all are parametrized in terms of the couplings of the
starting theory together with the parameter a. In summary,
self-gravitating ModMax charged solutions of a conformal
scalar field generate by means of the transformation (47) a
one-parameter family of also self-gravitating ModMax
charged solutions of a conformally coupled scalar field
but now ruled by a (super-)renormalizable self-interaction.
Taking the solution (38) as a seed configuration for

the transformation (47), we are now able to generate a
(super-)renormalizably dressed solution that is an extreme
of action (49), and is given by

ds̄2 ¼

0
B@r −mþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− κΛ

36λ ðm2 þ n2Þ
q
r −m

1
CA

2

×

�
−fðrÞ

�
dtþ 4n

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ

�
2

þ dr2

fðrÞ þ ðr2 þ n2ÞdΩ2
k

�
; ð50aÞ

Φ̄ ¼
ffiffiffi
6

κ

r
aðr −mÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− κΛ

36λ ðm2 þ n2Þ
q

r −mþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− κΛ

36λ ðm2 þ n2Þ
q ; ð50bÞ

Ā ¼ hðr; p̄;−q̄Þ
�
dtþ 4n

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ

�
; ð50cÞ

Ā� ¼ hðr; q̄; p̄Þ
�
dtþ 4n

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ

�
; ð50dÞ

where the gravitational and vector potentials are again
determined by the functions (38a) and (38e), respectively.
The latter function is now parametrized by the new
constants q̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
q and p̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
p, which are

subject to the constraint

e−γðq̄2 þ p̄2Þ ¼ ð1 − a2Þ 2π
9

�
k −

4

3
Λn2

�

×

�
36

κ
þ Λ

λ

�
ðm2 þ n2Þ: ð50eÞ

These new constants are correspondingly the electromag-
netic charges in this context, as can be straightforwardly
checked in the spherical case k ¼ 1 where

p̄¼ 1

4π

Z
∂Σ
F̄; q̄¼ 1

4π

Z
∂Σ
⋆̄P̄; ð51Þ

with ∂Σ consequently taken as a sphere at infinity. It is
worth mentioning that for purely electric configurations,
p ¼ 0, of the Maxwell case, γ ¼ 0, the above solution
becomes that of Ref. [30]. Consequently, setting a ¼ 0 in
the (super-)renormalizably dressed solution (50) one recov-
ers the conformally dressed seed (38). The other way
around, taking as seeds all the special limits of (38)—
namely (43), (44), and (46)—new special (super-)renorma-
lizably dressed solutions are straightforwardly obtained;
since those limits commute with the map there is no need to
explicitly write them.

VI. NONLINEARLY CHARGING THE
NON-NOETHERIAN CONFORMAL SECTOR

It is certainly known now that the most general second-
order equation describing a conformally invariant scalar
field that is the extreme of an action principle is definitely
not Eq. (36b), as it has been recently proved in [20] inspired
in the previous work of [21]. In particular, it was originally
identified in Ref. [21] that a non-Noetherian conformal
contribution can be also considered in Eq. (36b). It comes
from the following additional piece to Lagrangian (35b)
that extends the action principle (35a) used in Sec. IV to

S½g;Φ; A; P� þ
Z

d4x
ffiffiffiffiffiffi
−g

p
LNN; ð52aÞ

with a non-Noetherian conformal Lagrangian density
defined by

LNN ¼ −
α

2

�
lnðΦÞG −

4

Φ2
Gμν∇μΦ∇νΦ

−
4

Φ3
ð∇μΦ∇μΦÞ□Φþ 2

Φ4
ð∇μΦ∇μΦÞ2

�
; ð52bÞ

where G ¼ R2 − 4RαβRαβ þ RαβμνRαβμν is the Gauss-
Bonnet density, Gμν the Einstein tensor, and □ the
d’Alembert operator, all being defined with the standard
metric gμν. With this new contribution, Eq. (36b) is
extended as

□Φ −
1

6
RΦ −Φ3

�
4λþ α

2
G̃

�
¼ 0; ð53Þ

where G̃ is the Gauss-Bonnet density again, but now
corresponding to the auxiliary metric g̃μν ¼ Φ2gμν, which
by construction is invariant under conformal transformations
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ðgμν;ΦÞ ↦ ðΩ2gμν;Ω−1ΦÞ: ð54Þ

Since the new term with the tilde in (53) behaves as a
constant under conformal transformations, the resulting
equation is again conformally invariant. However, the
action built from Lagrangian (52b) is not preserved under
the transformations (54) and consequently, the conformal
invariance of (53) is not due to the Noether theorem. This is
why Ref. [20] termed non-Noetherian conformal scalar
fields to those whose dynamic is governed by the previous
equation.2

As an Euler-Lagrange equation of a related action, the
second-order conformally invariant properties of (53) are
not spoiled by adding to Lagrangian (52b) arbitrary
nonminimal couplings to gravity build with the Weyl
tensor of the auxiliary metric g̃μν [20]. Nevertheless, only
the extension (52b) also gives rise to a second-order
addition to the energy-momentum tensor (36d), since the
Lagrangian (52b) remarkably belongs to the most general
family of second-order variational principles for the
scalar field and the metric which are defined by the
Horndeski action [55]. We do not write here the involved
explicit expression of the new contribution to the energy-
momentum tensor for the economy of space, but it can be
consulted in Ref. [21].
The static spherically symmetric non-Noetherian con-

formally dressed black holes, charged with the γ ¼ 0

Maxwell sector of action (52), were originally derived
in Ref. [21], where Fernandes showed the existence of
two independent branches of solutions. There is no
known Taub-NUT generalization of the Fernandes static
branches. Hence, here we focus on the solutions of the
non-Noetherianly extended conformal system derived
from action (52) in the static limit, n ¼ 0, of our
study ansatz (37). When the ModMax electrodynamics
is used to nonlinearly charge the two Fernandes branches
of non-Noetherian conformal black holes beyond
the Maxwell regime, such branches are generalized as
follows

ds2¼−

8<
:kþ r2

2κα

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4κα

�
Λ
3
þ2mðrÞ

r3

�s 3
5
9=
;dt2

þ
8<
:kþ r2

2κα

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4κα

�
Λ
3
þ2mðrÞ

r3

�s 3
5
9=
;

−1

dr2

þ r2dΩ2
k; ð55aÞ

A ¼ −
qe−γ

r
dtþ 2p

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ; ð55bÞ

A� ¼ pe−γ

r
dtþ 2q

k
sin2ð

ffiffiffi
k

p
θ=2Þdϕ; ð55cÞ

where the metric function and the scalar field are given in
one case as

mðrÞ ¼ m −
κ

16π

e−γðq2 þ p2Þ − 16πk2α
r

; ð56aÞ

ΦðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−12kα

p

r
; ð56bÞ

λα ¼ 1

144
; ð56cÞ

while the second branch depends on the sign of the non-
Noetherian conformal coupling constant α as

mðrÞ ¼ m −
κ

16π

e−γðq2 þ p2Þ
r

; ð57aÞ

ΦðrÞ ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffi
12kα

p

r sinh

� ffiffi
k

p h
c�
R

dr
r
ffiffi
f

p
i� ; α > 0;

ffiffiffiffiffiffiffiffiffiffi
−12kα

p

r cosh

� ffiffi
k

p h
c�
R

dr
r
ffiffi
f

p
i� ; α < 0;

ð57bÞ

λα ¼ 1

48
: ð57cÞ

Here c is a sort of non-Noetherian conformal hair and the
signs in the scalar field (57b) are independent of those of
the metric (55a).
For γ ¼ 0 and k ¼ 1 the conventionally charged spheri-

cally symmetric Fernandes black holes [21], dressed with a
non-Noetherian conformal scalar field, are recovered. In
order to ease the comparison, we make transparent the
relation between the Fernandes notations and ours

βF ¼ κ

6
; λF ¼ κλ; αF ¼ κα;

AF
μ ¼

1ffiffiffiffiffiffi
4π

p Aμ; QF
e ¼

ffiffiffiffiffiffi
4π

p
q; QF

m¼
ffiffiffiffiffiffi
4π

p
p: ð58Þ

We found it appropriate to emphasize the further
bifurcation (57b) of the second branch not reported in
Ref. [21], since the spherical α < 0 sector originally found
in that reference is not extensible to flat k ¼ 0 or hyperbolic
k ¼ −1 topologies, which are only covered by the new
α > 0 sector. In fact, the latter is the only non-Noetherian
conformally dressed solution at all surviving in the limit
k → 0. This is compatible with the recent results of
Refs. [56,57] for more general, non-necessarily symmetric,

2For the two-dimensional non-Noetherian analog see
Refs. [53,54].
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Horndeski theories allowing a similar branching structure
to the one first found by Fernandes in Ref. [21]. There,
generic planar solutions k ¼ 0 unavoidably require the
absence of the standard Noetherian conformal sector
LCS (35b), which is impossible here. Besides, if the limit
α ¼ 0 is assumed then the metric lower-sign solution
becomes the ModMax nonlinearly charged black holes
of [52] generalizing the dyonic Reissner-Nordström ones,
where the scalar field is absent.
Finally, the fact that the matter part of the new action (52)

is no longer conformally invariant makes it impossible to
straightforwardly apply the methods of Ref. [29] to explore
(super-)renormalizably dressed configurations. How such a
strategy can be extended to include the new non-Noetherian
conformal sector remains an open problem for the future.

VII. CONCLUDING REMARKS

In this work, we have considered self-gravitating con-
figurations of ModMax nonlinear electrodynamics together
with a self-interacting scalar field conformally coupled to
gravity. The distinctive feature of ModMax theory is that it
is the unique nonlinear extension of the Maxwell theory
enjoying its conformal invariance as well as its duality
symmetry [31]. We have taken advantage of this work to
present a novel and transparent derivation of this electro-
dynamics by employing the dual Legendre formulations
introduced in Ref. [32]. Of particular relevance is their
simple characterization of duality-invariant theories in
contrast with that allowed for the standard Lagrangian
formalism [38]. Our approach demands that the Legendre
duals themselves be invariant under duality and conformal
transformations. In doing so, we end up with elementary
linear first-order equations which straightforwardly yield as
unique solution the ModMax electrodynamics [31].
Correspondingly, a limitation of our work is the same as

the approach that we borrow from Ref. [32] to duality
invariance, i.e., it only applies to the most common
algebraically general electromagnetic configurations where
not all the eigenvalues vanish [33], making sense of the
alignment (8). This means that algebraically special or null
electromagnetic fields, where all the eigenvalues are
identically zero [33], are not included in our analysis.
Therefore, the use of different variables including the
particular case of null fields can still give rise to potentially
different realizations of duality invariance excluded from
those treated here. This seems to be the case of those
configurations rigged by the Białynicki-Birula electrody-
namics that is invariant under SLð2;RÞ transformations
more than duality rotations and additionally also respects
conformal symmetry [58,59].
Regarding the ModMax nonlinearly charged spacetimes,

our most general result is the family of solutions (50),
which describes nonstatic configurations whose back-
ground is dyonically charged by ModMax fields and is
simultaneously dressed by a conformally coupled and

(super-)renormalizable scalar field. Algebraically, the
spacetime is classified in the Petrov scheme as of type
D. Whereas, geometrically, it is conformally related to a
complex line bundle fibered on a Kähler manifold. As such,
the solution is closely related to the classical Taub-NUT
vacuum metric [43–45]. In the static limit, the fibration is
trivialized and also black hole solutions emerge. In that
case, the resulting black holes are nonlinearly charged
generalizations of those presented in Ref. [29], which in
turn has as neutral limits the ones found in Ref. [27].
In the more general stationary setup, many special

spacetimes were shown to exist in [30] for the purely
electric Maxwell case such as wormholes, cosmological
bounces, and regular black holes. The same configurations
also appear here since our metric is formally indistinguish-
able from theirs, except that it is now supported by a more
general content composed of dyonic nonlinearly charged
matter. Since such metrics were thoroughly studied in
Ref. [30] there is no need to repeat their analysis here.
The obtained (super-)renormalizably dressed spacetimes

are possible because the four coupling constants character-
izing the scalar field self-interaction potential are not all
independent. Indeed, only a one-parameter subspace of the
emerging strictly super-renormalizable sector is available to
the configuration. This is a direct consequence of the
solution-generating method proposed in Ref. [29] and
generalized here to any conformal electrodynamics, that
maps a self-gravitating conformal seed into the larger
parameter space of the self-gravitating (super-)renormaliz-
able theories.
In order to cover the whole spectrum of conformally

dressed black holes, we have also addressed the extension
to the ModMax regime of the recently discussed non-
Noetherian conformal scalar fields [20,21]. We were able to
nonlinearly charge the non-Noetherian conformally dressed
black holes of Ref. [21]. Instead, we leave open the
problem of generating (super-)renormalizably dressed
spacetimes in this context due to the impossibility of using
the generating methods of Ref. [29] by the non-Noetherian
origin of conformal symmetry in the scalar fields.
We expect the emergence of all the presented solutions

definitely encourages further research into the fertile subject
of scalar fields conformally coupled to gravity and supple-
mented by nonlinear electrodynamics, especially in light of
the recent developments discussed in Refs. [49,50,60,61]. A
very promising path within all the potential possibilities are
new results [62–66] on the celebrated Plebański-Demiański
solutions [67], since thanks to them the presence of accel-
eration and NUT parameter in Petrov type D spacetimes is
now better understood. This finally clarifies the puzzle of
why the accelerated NUT vacuum spacetimes originally
found in [68] are outside this special class, being in fact of
general Petrov type [69]. The connection with our work is
that on the one hand, the accelerated NUT spacetimes have
been recently extended to be sourced by free conformal
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scalar fields [70], and on the other hand, the first nonlinearly
charged accelerated spacetimes were precisely built with
ModMax [71].
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APPENDIX: GENERAL DUALITY-INVARIANT
LAGRANGIANS ARE NECESSARILY IMPLICIT

Using the methods recently revised in Ref. [19] it is
possible to show that, for example, the general solution to
the first of the nonlinear first-order PDE (26) determining
all duality-invariant Lagrangians is

L ðE;BÞ ¼ −
1

2
ðeΓE2 − e−ΓB2Þ þ JðΓÞ; ðA1aÞ

where ΓðE;BÞ is a function determined by the arbitrary
implicit dependence

J0ðΓÞ ¼ 1

2
ðeΓE2 þ e−ΓB2Þ: ðA1bÞ

It is straightforward to show that (A1) is a solution to the
first of PDE (26) if and only if the following conditions are
satisfied �

J0ðΓÞ − 1

2
ðeΓE2 þ e−ΓB2Þ

�
ΓE ¼ 0; ðA2aÞ

�
J0ðΓÞ − 1

2
ðeΓE2 þ e−ΓB2Þ

�
ΓB ¼ 0; ðA2bÞ

which are warranted by (A1b). Since this solution involves
the single-argument arbitrary function J, it is in fact the
general solution. Such implicit dependence generically
characterizes all duality-invariant nonlinear electrodynam-
ics in the Lagrangian formulation; see the recent results of
Ref. [38] for a similar representation in different variables
that we revise in a moment. It is important to emphasize

that, as conditions (A2) clearly indicate, the implicit
dependence (A1b) is strictly needed to have solutions only
when the function Γ is nontrivial. In the degenerate case
where such function is a constant, (A1b) is unnecessary and
solution (A1) becomes the standard sum separable solution.
This degenerate sum-separable case is precisely the one
corresponding to ModMax

ΓMM ¼ γ ¼ const ðA3Þ

where in all generality we can choose J ¼ 0 in (A1), to
avoid redefining the cosmological constant, recovering the
ModMax Lagrangian (33a). In terms of the standard
invariants the Lagrangian characterizing all duality-invari-
ant theories is written as follows

L ðF ;G Þ¼ coshðΓÞF −sinhðΓÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þG 2

p
þJðΓÞ;

ðA4aÞ

0¼ sinhðΓÞF − coshðΓÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG 2

p
þ J0ðΓÞ; ðA4bÞ

where the last relation implicitly determines the function
ΓðF ;G Þ for each theory defined by the single argument
function J. The only exception is the ModMax theory (A3),
as has already been explained.
ModMax is characterized differently in Ref. [38], where

their implicit representation for general duality-invariant
Lagrangians is based instead on the product separable
solutions giving

L ðE;BÞ¼B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ−E2

p
−vðτÞ; v̇ðτÞ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2τ−E2
p : ðA5Þ

As was emphasized in [38], within this context ModMax is
recovered by choosing the function

vMMðτÞ ¼ eγτ: ðA6Þ

We give the explicit relation between the notations of Russo
and Townsend in [38] with ours to facilitate the comparison

SRT¼−F ; PRT¼−G ; LRT¼−L ;

URT¼B2

2
; VRT¼E2

2
: ðA7Þ

Interestingly, both representations (A1) and (A5) are related
by a Legendre transform between the arbitrary functions

JðΓÞ ¼ eΓτ − vðτÞ; eΓ ¼ v̇: ðA8Þ

Notice that it becomes degenerate precisely in the
ModMax case.
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