
Topology change from pointlike sources

Yasha Neiman * and David O’Connell †

Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

(Received 22 March 2024; accepted 5 August 2024; published 9 September 2024)

In this paper we study topology-changing spacetimes occurring from pointlike sources. Following an old
idea of Penrose, we will opt for a non-Hausdorff model of topology change in which an initial pointlike
source is “doubled” and allowed to propagate along null rays into an eventual cobordism. By appealing to
recent developments in non-Hausdorff differential geometry, we will describe and evaluate gravitational
actions on these topology-changing spacetimes. Motivated by analogous results for the Trousers space, we
describe a sign convention for Lorentzian angles that will ensure the dampening of our non-Hausdorff
topology-changing spacetimes within a two-dimensional path integral for gravity.
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I. INTRODUCTION

In this paper we will concern ourselves with topology
changing spacetimes and their transition amplitudes within
a path integral for gravity. We consider perhaps the simplest
nontrivial setting, that is, a transition from one circle into
two.1 The customary model for this type of topology
change is the so-called trousers space, which is a smooth
two-dimensional manifold that traces out the splitting
process, as pictured in Fig. 1. The trousers space has long
served as the prototypical example of topology change and
has been discussed in various physical contexts [1–17].
Despite a broad discussion of topology change within

physics, there exists an interesting gap in the literature that
has remained unexplored for over half a century. When
discussing time asymmetry in [18], Penrose sketches a
particular type of topology change that is markedly differ-
ent from the trousers space. In his image, the manifold does
not change its topology at a single point in time, but at a
single point in spacetime. This means that a single point
changes its topology from one connected component to
two, and then this change is allowed to grow along null
rays. If taken within a compact universe, this will develop
into a full topology change of spacelike slices within finite
time, and thus may be used to model a possible transition
between S1 and S1 ⊔ S1.
Although a potentially interesting model for topology

change, Penrose correctly identifies an important technical
issue in his spacetimes: if one wants the pointlike splitting
to remain a manifold, then models such as those pictured

in Fig. 2 are necessarily non-Hausdorff. At that time it was
not clear how expressive a non-Hausdorff differential
geometry could be, and thus after musing for some time
and deviating wildly from the original scope of his paper,
he finishes his discussion with the now-famous quote2:

I have, in any case, strayed far too long from my
avowed conventionality in this discussion, and no
new insights as to the origin of time-asymmetry
have, in any case, been obtained. I must therefore
return firmly to sanity by repeating to myself
three times: ‘spacetime is a Hausdorff differ-
entiable manifold; spacetime is a Hausdorff....’

In the past half century a theory of non-Hausdorff manifolds
has emerged [19–24], and these discussions have occasion-
ally extended into non-Hausdorff spacetimes [25–30]. In this
paper we will leverage recent mathematical developments in
order to take seriously Penrose’s splitting spacetimes. As a
guiding reference, we will mimic the standard analysis of the
trousers space found in [1,31] by defining and evaluating
the gravitational action for a non-Hausdorff version of the
trousers space. We will then compare transition amplitudes
for the Hausdorff and non-Hausdorff trousers spaces, leading
to the eventual conclusion that the latter admits a similar
imaginary-strength action that yields a dampening in the
resulting path integral.
In the remainder of this introduction we will briefly

review some details of Hausdorff topology change and
provide an informal discussion of non-Hausdorff topology,
before outlining the paper in detail.*Contact author: yaakov.neiman@oist.jp

†Contact author: david.oconnell@oist.jp
1Our reason for this will become clear throughout the paper:

we will consider some unconventional types of topology change,
and their novelty should already manifest in the two-dimensional
regime where gravity is famously topological.

2We have decided to include it in full, since the latter half of
this quote is often misquoted as an argument against non-
Hausdorff manifolds.
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A. Topology change and path integrals

An n-dimensional spacetime M with boundary ∂M ¼
Σ1 ⊔ Σ2 exhibits topology change whenever the initial
boundary Σ1 and the final boundary Σ2 are not homeo-
morphic. In such a model, the initial data Σ1 is assumed to
smoothly evolve and change its topology through time.
Mathematically speaking, such interpolating manifolds are
known as cobordisms and have been studied extensively in
the literature.
Following [2,3,32], in a naive sum-over-histories

approach to quantum gravity we consider a path integral
whose sum may include multiple distinct geometries and
topologies. For topology change in Lorentzian signature,
the transition amplitude between a pair of nonhomeomor-
phic spacelike hypersurfaces ðΣ1; h1Þ and ðΣ2; h2Þ could be
represented symbolically as

hΣ1; h1jΣ2; h2i ¼
X
M

Z
D½g� expfiSðM; gÞg; ð1Þ

3 where here we sum over all physically-reasonable Lorentz
cobordisms interpolating between Σ1 and Σ2. With a naive

prescription such as the above, we are met with an
immediate principled question: which interpolating mani-
folds should we sum over in the domain of the path
integral?
Before considering such an question, it makes sense to

determine whether or not the sum is nonempty in the first
place. In general dimensions, there are several known
topological obstructions to the existence of Lorentz cobord-
isms, which are usually articulated as relationships between
Σ1 and Σ2. It is well known that any pair of (n − 1)-
dimensional manifolds will permit a smooth n-dimensional
cobordism provided that they are related by a procedure
known as Morse surgery [33,34]. Moreover, any smooth
compact manifold admits a well-defined Lorentzian metric
provided that it admits a globally nonvanishing vector field
[35]. This pair of observations may be taken in combination
to explicitly describe Lorentz cobordisms via Morse theory
[4,5,36–38]. Note that, in particular, Lorentz cobordisms
exist between any pair of manifolds with dimðΣiÞ ≤ 3.
After verifying the existence of Lorentz cobordisms, the

next step might be to impose some top-down causal
desiderata for the types of spacetimes we are willing to
sum over. The exact specifications of this causal behavior
are still subject to debate, but at the very least it seems
as though our spacetimes ought to admit a global time

FIG. 2. A simplification of Penrose’s non-Hausdorff topology changing spacetime (left), together with a sample of its level sets.
Although impossible to depict in ordinary Euclidean space, here there are two copies of the origin superimposed on top of each other,
together with two copies of the future null cone.

FIG. 1. The trousers space, together with a sample of its spacelike slices.

3Here we assume ℏ ¼ 1.
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function, since this is implicitly used in the formation
of (1). The existence of global time functions is known to
be equivalent to the property of stable causality [39].
Roughly put, a spacetime is stably causal provided it
contains no closed timelike curves, and neither does any
small perturbation of its metric. Such spacetimes lie
relatively high up in the causal hierarchy of [40,41].
At the apex of this causal hierarchy are the globally

hyperbolic spacetimes. These spacetimes are just about as
causally well behaved as possible, in that they always admit
Cauchy surfaces. However, it can be shown that any
globally hyperbolic spacetime is necessarily cylindrical,
in that both its topological and smooth manifold structure
are isomorphic (in the appropriate sense) to a product of the
Cauchy surface with either the real line or the unit interval
[42,43]. As such, we see that topology-changing space-
times may never be globally hyperbolic. Nonetheless, it
appears as though we may be able to include topology-
changing spacetimes within (1) if we relax our causality
requirements slightly and allow for stably-causal space-
times. However, we are then met with the following result
of Geroch (adapted from [44]).
Theorem (Geroch). Let M be a compact spacetime

with initial boundary Σ1 and final boundary Σ2. If Σ1

and Σ2 are not homeomorphic, then M admits a closed
timelike curve.
We are thus prompted to exclude topology-changing

spacetimes on causal grounds, since they are not stably
causal. A possible circumvention of this issue is to relax the
assumption that M admits a globally-defined Lorentzian
metric. Instead, we may allow an almost Lorentzian
manifold in which the metric is allowed to degenerate at
select points in the space. Within the context of topology
change, this approach seems quite reasonable, as it natu-
rally aligns with the Morse-theoretic view of smooth
cobordisms. Under this reading, we may consider what
is known as a Morse function, which has critical points
along which the topology of space will change. The
gradient of this Morse function will then provide us with
a vector field that vanishes only on the critical points, and
this vector field may be used to define an almost-Lorentzian
manifold.
Another causal requirement might be to suggest that the

almost-Lorentz cobordism induces a causal poset structure
on its light cones. According to the causality theory of
[3,40,41,45], we may induce a binary causal precedence
relation≤ on any almost-Lorentzian manifold. This relation
states a point p causally precedes a point q, written p ≤ q if
q lies in the future light cone of p. Causality properties may
then be paraphrased as order-theoretic properties of the
relation ≤. In particular, one may suggest including into (1)
all almost-Lorentz cobordisms in which the binary relation
≤ is reflexive, transitive and antisymmetric [3]. Note that
the requirement of antisymmetry excludes those spacetimes
admitting closed timelike curves.

B. The Trousers space

Topologically, the trousers space is homeomorphic to the
3-punctured sphere and may be seen as a cobordism from
S1 to S1 ⊔ S1. This manifold is almost-Lorentzian, in the
sense that it admits a nondegenerate Lorentzian metric
everywhere except at a single point (commonly called the
crotch singularity). Away from this point, the Trousers
space may be furnished with a Lorentzian metric that is
locally isometric to the flat cylinder [1,12].
It seems reasonable to suggests that one may avoid

Geroch’s theorem by simply removing this troublesome
point and allowing the manifold to be noncompact.
However, with transition amplitudes such as (1) in mind,
it seems that we would like to preserve compactness as best
as we can. An alternate resolution involves what is known
as a causal closure construction [46]. In this method one
chooses to maintain compactness, at the cost of an allowed
degeneracy in the metric at the crotch singularity. A light
cone structure may still be placed at the crotch singularity,
however, this structure will be irregular in the sense that
there will be double the amount of distinct light cones—
two future directed and two past directed [6]. Suggestive
depictions of the Trousers space and the origin of the
irregular causal structure of its crotch singularity can be
found in Fig. 2 of the recent paper [16].
With a causally-closed trousers space, we may still

evaluate the transition amplitude of (1). In two dimensions,
the gravitational action in vacuum is given by the total
scalar curvature of the manifold:

SðM; gÞ ¼ 1

2κ

Z
M
RdAþ 1

κ

Z
∂M

kdγ;

where here the latter term computes the geodesic curvature
of the boundary and κ is the gravitational constant. An
analysis of Louko and Sorkin shows that the above action
may still be evaluated for the Trousers space [1]. In their
work they employ an iϵ-regularization in which the
Lorentzian metric is perturbed into a complex one in a
controlled manner. Their conclusion is that the Trousers
space has a δ-like curvature localized to the crotch
singularity of strength �2πi, with the ambiguity being
controlled by the sign of the regularizer.
Alternatively, the curvature of the Trousers space may

be obtained via a certain Lorentzian Gauss-Bonnet theorem
[31]. We will discuss the details of the Lorentzian Gauss-
Bonnet theorem and its subtleties at length in Sec. III of
this paper, so for now we will merely deliver a brief
summary. In short: the notion of Lorentzian angle does not
make sense for vectors of different signatures, again it is
commonplace to employ the iϵ-regularization of [1] and
complexify the Minkowski metric. This gives a notion of
Lorentzian angle that is well defined, yet complex valued
[31,47–49]. The Lorentzian Gauss-Bonnet theorem then
loosely states that
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1

2

Z
M
RdAþ

Z
∂M

kdγ ¼ ∓2πiχðMÞ:

The imaginary coefficient on the right-hand side arises
from our complexification of the metric, with ∓2πi
being the periodicity of angles around a point in flat
two-dimensional Minkwoski space, and the sign ambiguity
again provided by the iϵ-regularizer. For the trousers space
the Euler characteristic equals −1, so we may conclude that
its total scalar curvature equals�2πi, in agreement with the
prior analysis of [1].
The sign ambiguity in the iϵ-regularizer may be resolved

in several ways. It is commonly argued that the correct sign
of the imaginary periodicity should be −2πi, since then

expfiSðM; gÞg ¼ exp

�
i

�
−2πiχðMÞ

κ

��

¼ exp

�
iðþ2πiÞ

κ

�
¼ exp

�
−2π
κ

�
< 1;

which would in turn cause the trousers space to be
suppressed relative to other spacetimes like the cylinder
or the 2-disk [1,31,47,48]. In this paper we will only focus
on transitions from S1 to S1 ⊔ S1. Within our context, a
similar argument is valid: creating some more complicated
trouserslike transition between circles by adding extra
genera to the bulk will always decrease the Euler character-
istic. The Lorentzian Gauss-Bonnet theorem roughly stated
above then implies that adding more and more genera to the
Trousers space will continually increase the imaginary part
of the action, and thus the transition amplitudes of (1) will
become exponentially small. In contrast, if we were to
choose the other sign convention, then we are left with a
periodicity of þ2πi in which higher genus trouserslike
spaces would be exponentially enhanced. In this sense, the
sign convention advocated in [1,31,47,48] indeed appears
to be the correct one.

C. A primer on non-Hausdorff topologies

The Hausdorff property states that any pair of distinct
points in a topological space may be separated by disjoint
open sets. Conversely, a topological space is called non-
Hausdorff whenever there exists a pair of points whose
open neighborhoods always intersect. Hausdorffness is
usually assumed in the definition of a manifold, however,
there still exist non-Hausdorff locally-Euclidean spaces.
For example, the right-hand side of Fig. 3 depicts a simple
one-dimensional non-Hausdorff manifold, commonly
called the branched line. In this space there are two copies
of the origin, and the topology is defined to be locally
equivalent to the real line. One can see that any pair of open
intervals around the Hausdorff-violating pair of origins will
necessarily intersect throughout the negative numbers.

In the manifold setting, Hausdorff violation may be
seen in many different ways. Perhaps the most instructive
is via the nonuniqueness of limits: it is well known that
any convergent sequence in a manifold has a unique
limit, provided that manifold is Hausdorff. In the non-
Hausdorff setting this is no longer true—in fact, a pair
of points will violate the Hausdorff property if and only if
they can be realized as distinct limits of the same
sequence [19].
Usually we include the Hausdorff property in the

definition of a manifold for technical convenience. In
particular, it can be shown that any open cover of a
Hausdorff manifold admits a partition of unity subordinate
to it [50]. These arbitrarily-existent partitions of unity are
used frequently in order to construct various geometric
structures of interest. In the non-Hausdorff case, such
partitions of unity do not exist in full generality, and thus
the various enjoyable features of Hausdorff manifolds may
appear to be in jeopardy. Put differently: without the
Hausdorff property we do not have access to the usual
constructive techniques, and prima facie it is not clear
whether non-Hausdorff manifolds are as expressive as their
Hausdorff counterparts.
Despite this issue with partitions of unity, it is nonethe-

less possible to describe a differential geometry of non-
Hausdorff manifolds. Underpinning this study is the
observation that non-Hausdorff manifolds may be con-
structed by gluing together ordinary Hausdorff manifolds
along open sets [19,26,27,51]. Intuitively, if one glues
together Hausdorff manifolds along an open subset but
leaves the boundary of this subset unidentified, then this
boundary may become Hausdorff-violating in the quotient
space. As an example: we may realize the branched line of
Fig. 3 by gluing together two copies of the real line along
the subset A ≔ ð−∞; 0Þ. In the resulting quotient space,
any sequence of negative numbers that would ordinarily
converge to the origin will now have two distinct limits,
thereby realizing Hausdorff-violation.

D. Outline of paper

In Sec. II we will provide a formal overview of
non-Hausdorff differential geometry. We will start with
matters topological and then move on to smooth structures,

FIG. 3. Hausdorff (left) and non-Hausdorff (right) topology
change in one dimension. The Hausdorff topology change is
necessarily singular, whereas the non-Hausdorff model blows up
the singularity into two distinct points and adjusts their sepa-
rability in order to ensure that the space remains locally
Euclidean.
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bundles, integrals and eventually curvature. Underpinning
our discussion is the aforementioned gluing concept—
essentially all of these geometric structures may be defined
on non-Hausdorff spaces by first defining them on
Hausdorff submanifolds and then by imposing some
consistency conditions on overlapping submanifolds. The
non-Hausdorff manifolds that we define will be locally
isomorphic to Hausdorff ones, however, their global
features will differ. In particular, we will see that their
notion of integration needs to include the extra Hausdorff-
violating data in order to be well defined, and this in turn
will have some far-reaching consequences for the rest of
the paper.
In Sec. III we will discuss various extensions of the

Gauss-Bonnet theorem. We start with the standard state-
ment for Riemannian manifolds found in say [52], and we
will then modify it in two orthogonal directions: firstly, we
will pass from Riemannian metrics to Lorentzian metrics,
and secondly, we will pass from Hausdorff surfaces to
non-Hausdorff ones. The result of our discussion will be a
non-Hausdorff version of the Gauss-Bonnet theorem in
Lorentzian signature. Here we will see a crucial novelty—
due to integration results of Sec. II, the non-Hausdorff
result will require an extra counterterm that computes the
geodesic curvature of the Hausdorff-violating submanifold
sitting inside the manifold. This counterterm is a sort of
“internal boundary” term that has no analogue in the
Hausdorff regime.
In Sec. IV we provide the primary contribution of this

paper. Here, we will study a non-Hausdorff version of the
trousers space. In essence, this “non-Hausdorff trousers
space” can be see as a version of Penrose’s spacetime of
Fig. 2 that has been compactified so that its initial and final
surfaces equal S1 and S1 ⊔ S1, respectively. To begin with,
in Sec. IV A we will analyze the causal properties of the
non-Hausdorff trousers space. Using the results of Sec. II,
we will argue that this space cannot be excluded from the
path integral (1) on the basis that it is not a rich-enough
geometric structure. We will then analyze its causal proper-
ties by confirming the existence of a global time function,
the nonexistence of closed timelike curves, the compact-
ness of its causal diamonds, and the poset structure of its
causality relation ≤.
In the remainder of Sec. IV we will then determine the

gravitational action for the non-Hausdorff trousers space.
As an organizational choice, we will first motivate the
Lorentzian action from its Euclidean cousin. In line with
the Gauss-Bonnet theorems of Sec. III, we will see that
the non-Hausdorff gravitational action requires another
Gibbons-Hawking-York term for the extra Hausdorff-
violating surface. We will argue that the non-Hausdorff
trousers space has zero curvature, meaning that in the
Euclidean theory there is no inherent mechanism that
would enable its suppression. In the Lorentzian theory,
however, wewill see that the presence of corner terms in the

action, together with the freedom to choose signs of the
iϵ-regulator, will allow us to suppress the non-Hausdorff
trousers space as desired. Finally, we finish with some
brief remarks regarding more elaborate non-Hausdorff
branching.

II. NON-HAUSDORFF DIFFERENTIAL
GEOMETRY

We start with a review of non-Hausdorff manifolds.
Throughout this section and the remainder of this paper,
we will reserve the term “manifold” for its ordinary usage,
that is, manifolds are taken to be Hausdorff, locally-
Euclidean and second-countable. In distinction to this,
we will use the term “non-Hausdorff manifold” to mean
a non-Hausdorff, locally-Euclidean, second-countable
space. Regarding notation, we will mostly follow the
notation of Lee in [50] for ordinary differential geometry
and [19–21] for non-Hausdorff variants. In particular, we
will use boldface letters to denote non-Hausdorff manifolds
and their geometric structures—for exampleM;N; ::would
denote non-Hausdorff manifolds whereas M;N;… would
denote Hausdorff ones.

A. Topological structure

To begin, we will describe a general technique for gluing
together manifolds. This formalism is known as an
adjunction space in the literature, though may take subtly
different forms depending on the context. We assume as
input two Hausdorff manifolds M1 and M2 of the same
dimension, a subset A of M1, and a continuous map
f∶ A → M2. We may then glue M1 to M2 along the
map f by quotienting the disjoint union M1 ⊔ M2 accord-
ing to the equivalence relation that identifies each point in A
to its image under f.
This notion of adjunction space is far too general and

may spoil the topological structure of A in the gluing
process. The following result [19] identifies some con-
ditions under which the adjunction space described above
will yield a non-Hausdorff manifold.
Theorem 2.1. Let M1 and M2 be two Hausdorff mani-

folds of the same dimension, and let A be an open subset of
M1. Suppose that f∶ A → M2 is an open topological
embedding. If f can be extended to a closed embedding
f∶ Ā → M2,

4 then the quotient space

M ≔
M1 ⊔ M2

a ∼ fðaÞ ¼ M1 ∪f M2

is a non-Hausdorff manifold in which the Hausdorff-
violating points occur precisely at the boundary of the
image of A in the quotient space.

4Here we use the notation Ā to denote the topological closure
of A within M1.
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At first glance, the above appears to be very similar to the
connected sum of manifolds (cf. [50]). However, there is an
important distinction: the connected sum assumes that the
gluing region A is topologically closed, which is necessary
in order to preserve the Hausdorff property. However, in
our context, wewant to take our gluing region to be an open
subset with a nonempty boundary. This assumption inten-
tionally spoils the Hausdorff property, since the boundaries
of these glued open sets remain unidentified, and thus serve
as distinct limits to the same sequences.
It should be noted at this point that the adjunction space

construction may also be phrased categorically—the quo-
tient construction ofM in the above result can be viewed as
the colimit of the upper-left corner of the diagram below in
the category of topological spaces.

In the above the map ι∶ A → M1 is the inclusion map, and
the ϕi∶ Mi → M are the canonical maps that send each
point to its equivalence class inM. It can be shown that the
maps ϕi are open topological embeddings, provided that f
is open and A itself is [19], and in fact this is precisely what
is used in order to transfer the local charts fromMi intoM.
By construction, any local chart ðU;φÞ of Mi defines a
chart ðϕiðUÞ;φ∘ϕ−1

i Þ on M, and it is in this sense that the
non-Hausdorff manifold M of Theorem 2.1 is locally
equivalent to the manifolds M1 and M2. Given that the
ϕi maps are open topological embeddings, we may see M1

and M2 as sitting inside M as maximal Hausdorff open
submanifolds.
The idea that the maps ϕi will be as equally well behaved

as the gluing map f may be extended beyond topology
alone. As the next result [20] illustrates, we may actually
pass this entire adjunction construction into an appropriate
smooth category.
Theorem 2.2. Suppose in addition to the criteria of

Theorem 2.1 that the Mi and A are all smooth manifolds,
and f∶ A → M2 is a smooth map. If f can be extended to a
smooth embedding f̄∶ Ā → M2, then M can be endowed
with a smooth atlas.
Once endowed with a smooth atlas, the canonical

embeddings ϕi∶ Mi → M now become smooth open
embeddings. Consequently, we may view the Hausdorff
manifoldsMi as smooth open submanifolds ofM, with the
ϕi acting as local diffeomorphisms.

It should be noted at this stage that the colimit formu-
lation of [19,20] is far more general than what we have
presented here, in that it may also be extended to colimits of
more than two manifolds. However, since we will only be
considering transitions from S1 to S1 ⊔ S1, we will not
require this formalism in full generality. Throughout the
remainder of this section, we will assume that M is a non-
Hausdorff manifold built according to Theorems 2.1
and 2.2.

B. Vector bundles

Smooth vector bundles over a non-Hausdorff manifold
can be described with an analogue of the colimit con-
struction of Theorems 2.1 and 2.2. The only major differ-
ence is that we must also require the existence of a gluing
map for the fibers of the part of the bundle that lies over the
gluing region A. Once this is correctly done, we may indeed
glue bundles along their fibers in order to form a non-
Hausdorff vector bundle. In a manner similar to that of
[19,27], a converse to this construction holds: any vector
bundle E fibered over M is in fact a colimit of ordinary
Hausdorff bundles Ei fibered over the Mi.
Intuitively speaking, we can represent any smooth

section s of a non-Hausdorff bundle E→
π
M by pulling

it back to the Hausdorff bundles ϕ�
iE → Mi and describing

it piecewise. Provided that the two pulled-back sections ϕ�
i s

agree once mutually restricted to the gluing region A, it is
then possible to canonically reconstruct s from Hausdorff
data. Figure 4 depicts a semilocal representation of a
non-Hausdorff section.
The pullback correspondence of Fig. 4 may also be

phrased algebraically. For any non-Hausdorff vector bundle
E over M, we may use pointwise addition and multipli-
cation by scalar functions to endow the space of sections
ΓðEÞ with the structure of a C∞ðMÞ-module. This can then
be related to the spaces of sections of the Hausdorff
submanifolds as follows [21].
Theorem 2.3. Let E be a vector bundle over M with

colimit representation E≅E1∪FE2 where F∶EA→E2

is a bundle isomorphism covering f∶ A → M2. Then the
space of smooth sections ΓðEÞ is canonically isomorphic to
the fiber product:

ΓðEÞ ≅ ΓðE1Þ ×ΓðEAÞ ΓðE2Þ
¼

n
ðs1; s2Þ∈ΓðE1Þ ⊕ ΓðE2Þ

���ι�As1 ¼ f�s2
o
:

On the level of an individual section, the above result is
stating that defining a smooth section s on E amounts to
defining a pair of sections si on the restricted bundles Ei
that agree once mutually pulled back to the bundle EA. On
the categorical level, the pullback of sections by smooth
maps allows us to see Γð·Þ as a contravariant functor. Once
applied to the colimit diagram used to construct/describe
the bundle E, we obtain a new diagram in a particular
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(Abelian) category of modules over rings. Theorem 2.3
then states that the contravariant functor Γð·Þ sends our
colimit E into the limit ΓðEÞ.
These abstract bundle-theoretic arguments can be

applied to the tangent bundle TM in order to describe
the vector fields over M. To begin with, one can show that
the tangent bundle TM is canonically isomorphic to the
colimit of the bundles TM1 and TM2, glued along TA via
the gluing (bundle) map df∶ TA → TM2. Since f is an
open embedding, its differential df is a bundle embedding
and thus falls under the scope of Theorem 2.3. We may then
conclude that any vector field v in ΓðTMÞ can be uniquely
described by a pair of vector fields vi in ΓðTMiÞ that agree
once restricted to A. The higher-rank tensorial bundles also
admit a similar colimit construction (cf. [[20], Sec. 2]), and
the tensor fields on the non-Hausdorff manifold M may
therefore be described with the fiber product formula of
Theorem 2.3.

C. Integration

In our discussions thus far we have been identifying
conditions under which locally-defined data may be
described in the non-Hausdorff case, ultimately by a
transfer of the Hausdorff data under the canonical maps
ϕi. Once the correct gluing conditions were identified, our
discussion was somewhat intuitive and unproblematic.
However, despite being locally equivalent to Hausdorff
manifolds, there is a significant issue when passing from
local to global structures.
In Hausdorff differential geometry, a useful method for

pasting together locally-defined objects is via partitions
of unity. The precise definition is not necessary for our
purposes, but their utility should not be understated:
partitions of unity are used in various constructions and
arguments for manifolds, including the locality of deriva-
tive operators, the construction of Riemannian metrics and
their Levi-Civita connections, and various arguments

involving de Rham cohomology. In the non-Hausdorff
case, we have the following inconvenient fact [21].
Theorem 2.4. If M be a non-Hausdorff manifold built

according to Theorems 2.1 and 2.2, then there is no
partition of unity subordinate to any cover of M by
Hausdorff open sets.
In Hausdorff differential geometry, the integral of a

compactly-supported differential form is performed by
decomposing the form into several local charts, performing
the integrals in Euclidean space and then summing over the
results via a partition of unity. In this context, the partition
of unity is required in order to avoid overcounting the
integral on overlapping charts.
In the non-Hausdorff setting we do not have access to

partitions of unity in full generality, so we will need to
define integration on a non-Hausdorff manifold by
alternate means. Instead of appealing to partitions of
unity, we will follow the so-called “integration over
parametrizations,” found in say [[50],Chpt. 13]. Roughly
put, in this scheme a total integral is broken down into
integrals over certain open sets whose closures cover the
support of the differential form, in such a way that
adjacent regions only intersect at their measure-zero
boundaries. With this intersection property there is no
risk of overcounting the integral, and thus partitions of
unity are not required.
Suppose that we have some compactly-supported

differential form ω on M, and consider a collection
fri∶ Ui → Mg of finitely-many open domains of integra-
tion Ui that are mapped diffeomorphically into M such
that orientations are preserved. Provided that the union
∪i riðUiÞ cover the support of ω and the sets riðUiÞ
pairwise intersect on, at most, their boundaries in M, we
may define the integral of ω in M to be

Z
M
ω ¼

X
i

Z
Ui

r�iω:

FIG. 4. A semilocal depiction of the formation of sections of non-Hausdorff bundles.
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Although the above is technically a well-defined notion of
integration, it is not particularly useful for our needs. What
is more helpful for us is the following, which relates the
integral of a form on M to the ordinary integrals over the
Hausdorff submanifoldsM1,M2 and A [19] (Theorem 2.6).
Theorem 2.5. Let ω be a compactly-supported differ-

ential form on M. Then

Z
M
ω ¼

Z
M1

ω1 þ
Z
M2

ω2 −
Z
Ā
ωA;

where Ā is the topological closure of A within M1, and
ωi ≔ ϕ�

iω and ωĀ ≔ ιĀ ∘ ϕ�
1ω ¼ f̄ ∘ ϕ�

2ω.
An important distinction between Theorem 2.5 and the

standard subadditivity property of Hausdorff integration is
the inclusion of the additional boundary of the subspace A.
Heuristically, we need to ensure that the restriction of ω to
A is compactly supported, and the only way to do this is to
include the boundary of A within the integral. It may seem
that the inclusion of this extra component is an innocuous
prescription, given that boundaries are of measure zero.
However, as we will see in Sec. III, this extra boundary
component will have some far reaching consequences for
the non-Hausdorff Gauss-Bonnet theorems.

D. Metrics and curvature

We may construct metrics of arbitrary signature on a
non-Hausdorff manifold by gluing together the spaces M1

andM2 along an isometry. In a global picture, we may view
two metrics on the Mi as sections of the appropriate tensor
bundle for which the overlap condition of Theorem 2.3
manifests as an isometric equivalence on the gluing
region A. It should be noted that there is no issue regarding
the regularity of the resulting non-Hausdorff metric—
Theorem 2.3 ensures that any Lorentzian metric, viewed
as a global section of the appropriate tensor bundle, is
indeed smooth everywhere.
Despite the nonexistence of partitions of unity, affine

connections may still be constructed in the non-Hausdorff
setting. In global notation, an affine connection on M is
defined as per usual, that is, as a bilinear operator

∇∶ ΓðTMÞ × ΓðTMÞ → ΓðTMÞ; ∇ðv;wÞ ↦ ∇vw

that is C∞ðMÞ-linear in the first argument and satisfies
the Leibniz rule: ∇vðfwÞ ¼ f∇vðwÞ þ LvðfÞw for all
f∈C∞ðMÞ and v;w∈ΓðTMÞ.5 As with the non-
Hausdorff sections of Sec. II B, it can be shown that
any connection ∇ on M will restrict to a pair affine

connections ∇i ≔ ϕ�
i∇ on Mi that agree once mutually

pulled back to A. As the following result [21] states, the
converse is also true: a pair of connections on Mi may be
“glued” together to define a connection on M.
Lemma 2.6. Suppose ∇i are a pair of affine connections

defined on the manifolds Mi. If ι�A∇1 ¼ f�∇2 on A, then ∇
defined by

ð∇vwÞðxÞ

¼
�ϕ1ðð∇1Þðϕ�

1
vÞðϕ�

1wÞðϕ−1
1 ðxÞÞÞ if x∈ϕ1ðM1Þ ⊆ M

ϕ2ðð∇2Þðϕ�
2
vÞðϕ�

2wÞðϕ−1
2 ðxÞÞÞ if x∈ϕ2ðM2Þ ⊆ M

is an affine connection on M.
Observe that in the above, the assumption ι�A∇1 ¼ f�∇2

is precisely what is needed to ensure that ∇ is well
defined, since by construction ϕ1ðM1Þ ∩ ϕ2ðM2Þ ¼ ϕ1ðAÞ ∩
ϕ2ðfðAÞÞ. Using the above prescription, it can be shown
that a Levi-Civita connection exists for any metric on M.
Heuristically, although we do not have full access to
partitions of unity for M, we do have full access for the
HausdorffmanifoldsMi. Therefore, wemay construct pieces
of the Levi-Civita connection on eachMi, and requiring that
f∶ A → M2 be an isometric embedding ensures that these
Hausdorff Levi-Civita connections may be transferred into
M. Followingon from this,wemaydefine familiar geometric
quantities such as the Riemann curvature tensor, the Ricci
tensor and the Ricci scalar in the non-Hausdorff case,
ultimately by appealing to the fact thatM is locally isometric
to both Mi [21].
In a similar spirit, orientations of the manifolds Mi may

be glued in a manner consistent with Theorem 2.3 to yield
an orientation of the non-Hausdorff manifold M. In such
a situation, the canonical maps ϕi∶ Mi → M become
orientation-preserving isometries.
With an eye towards Sec. IV, we finish this section with a

brief application of these ideas. Suppose for a moment
that M is a two-dimensional non-Hausdorff manifold with
Riemannian metric h. The canonical maps ϕi∶ Mi → M act
as isometric embeddings,whichmeans thatMmay be locally
isometric to either Mi, depending on where you are in the
manifold. According to the integral formula of Theorem 2.5,
the total scalar curvature of M may be written as

Z
M
RdA ¼

Z
M1

RdAþ
Z
M2

RdA −
Z
Ā
R dA; ð2Þ

where here the metrics on the Hausdorff manifolds are the
pullbacks ofh by the relevantmaps, and eachRicci scalar and
area form is computed via the pulled-back versions of h.

III. GAUSS-BONNET IN VARIOUS FORMS

The Gauss-Bonnet theorem is a powerful result that
relates the total scalar curvature of a two-dimensional
manifold to its Euler characteristic. As explained in the

5The Lie derivative used here is defined as in the Hausdorff
case, that is, via local flows of the vector fields. It can be shown
that in the non-Hausdorff case, the Lie derivative is still a local
operator that satisfies Lvw ¼ ½v;w�—see Sec. 3.1 of [21] for a
detailed discussion.
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Introduction, our main strategy for evaluating the gravita-
tional action of the non-Hausdorff trousers space will be via
this particular theorem. As such, we will now spend some
time discussing various versions of the Gauss-Bonnet
theorem. In distinction to Sec. II, throughout this section
we will assume that all manifolds, Hausdorff or otherwise,
are two dimensional.
In Euclidean signature, the Gauss-Bonnet theorem for a

manifold ðM; hÞwith boundarymay be stated as the equality

2πχðMÞ ¼ 1

2

Z
M
RdAþ

Z
∂M

kdγ þ
X

θext; ð3Þ

where here χðMÞ is the Euler characteristic of M,6 and the
boundary ∂M is assumed to consist of finitely many
piecewise-smooth connected components [52]. The expres-
sions θext denote the exterior angles between adjacent smooth
segments of a boundary component. Geometrically, these are
the angles by which a vector must instantaneously turn at the
nonsmooth corners, as pictured in Fig. 5. We will often
borrow from physics parlance and refer to these exterior

angles as corner terms. Given that the boundary ∂M is a
piecewise-smooth curve, the corner term θext at a vertex p is
computed by taking the one-sided derivatives of the adjacent
curves and computing the angle between the corresponding
vectors lying in the tangent space TpM.
We will now set about modifying this theorem in two

orthogonal directions: firstly, we will review the so-called
Lorentzian Gauss-Bonnet theorem, and then we will gen-
eralize everything to the non-Hausdorff setting. As men-
tioned in the Introduction, there is a conceptual difficulty
when proving the Lorentzian Gauss-Bonnet theorem,
ultimately stemming from the ill-defined notion of angle
within Minkowski space. So, before getting to any mod-
ifications of the Gauss-Bonnet theorem, we will first spend
some time reviewing the literature on Lorentzian angles.

A. Lorentzian angles

In a two-dimensional vector space with a fixed metric,
the convex angle between a pair of normalized vectors may
be determined from the parameter of the isometry trans-
formation that sends one vector into the other. When
working with the usual Euclidean metric, the isometry
transformation lying in SOð2Þ is an honest rotation of the
unit circle. Up to a preferred orientation, the convex angle
between two vectors in Euclidean space is uniquely
determined—ultimately because the action of SOð2Þ on
R2 is free and transitive.
This perspective also partially applies to Minkowski

space. When passing to the ð−;þÞ-signature of the
Minkowski metric, the orbit spaces under SOð1; 1Þ of
non-null vectors divide R1;1 into four disjoint quadrants.
As such, a pair of Minkowski vectors u and v will admit
an unambiguous and well-defined angle θuv provided that
they are both non-null and are related by a boost. We will
label the orbit space of the unit spacelike vector v ¼ ð0; 1Þ
as Q1 and count the quadrants anticlockwise from there.
Following [31], we introduce

Zðu; vÞ ≔ u · vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · vÞ2 − ðu · uÞðv · vÞ

q
and

Z̄ðu; vÞ ¼ u · v −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu · vÞ2 − ðu · uÞðv · vÞ

q

as useful shorthands. We may then express the angle θuv
between two spacelike vectors lying in the same quadrant
as follows:

θuv ¼ log
Zðu;vÞ
jujjvj

if u;v both spacelike and in the same quadrant: ð4Þ

This formula may be related to the familiar trigonometric
expression of boosts by standard identities—see [47] for
the alternate form. Note that for spacelike vectors, the norm
juj ¼ ffiffiffiffiffiffiffiffiffi

u · u
p

is real.

FIG. 5. Turning angles for a piecewise-smooth oriented closed
curve γ that bounds a flat disk embedded in R2. Here the total
geodesic curvature of γ equals

R
γ kdγ ¼

P
4
i¼1

R
γi
kdγ þP

θext.
The exterior angles (red) are computed using tangent vectors at
each marked vertex. Hopf’s Umlaufsatz states that the sum of
these exterior angles equals 2π, and the Gauss-Bonnet theorem
confirms that the Euler characteristic of the disk is equal to 1.

6Here we may define the Euler characteristic to be the
alternating sum of the ranks of the simplicial homology groups
of M, or equivalently as χðMÞ ¼ VT − ET þ FT for any tri-
angulation T of M.

TOPOLOGY CHANGE FROM POINTLIKE SOURCES PHYS. REV. D 110, 064026 (2024)

064026-9



Since no boost can change the signature of a Minkowski
vector, it may appear as though there is no meaningful
notion of angle between vectors lying in different quad-
rants. The now-standard remedy for this issue is to
analytically continue the meaningful fragments of angular
formulae into the complex plane. With such a procedure,
the result is a complex-valued notion of angle. Treatments
of complex-valued Minkowski angles exist in various
forms in the literature [31,47–49], though they typically
differ in both scope and convention. For the purposes of this
paper, we will opt for Sorkin’s approach [31], since his
treatment is sufficiently general so as to include both null
vectors and a Gauss-Bonnet theorem.
As an illustration, we will now outline the derivation of a

complex angle between two Lorentzian vectors a ≔ ð0; 1Þ
and b ≔ ð1; 0Þ. Using the null basis m ≔ ð1

2
;− 1

2
Þ and

n ≔ ð1
2
; 1
2
Þ, we may write a ¼ n −m and b ¼ nþm. An

interpolating vector c lying in the convex wedge between a
and b may be described as c ¼ mþ λn, where λ∈ ½−1; 1�.
Allowing λ to smoothly vary from −1 to 1 will trace out a
continuous transformation of a into b. As we do this, we

see that the expression Zða;cÞ
jajjcj will become singular as c

becomes null when crossing quadrants at λ ¼ 0. This pole
may be avoided by endowing the Minkowski metric with a
small positive-definite imaginary part (cf. [1]), which
adjusts the dot product by c · c → c · c� iϵ for vectors c
with norm close to zero. This allows us to circumvent the
singularity at λ ¼ 0 and continue into the adjacent quadrant
without issue.
There are two subtleties to consider here. Firstly, we are

trying to complexify the ratio Zða;cÞ
jajjcj , which means that we

need to select a branch of the complex logarithm that will
eventually be used as in (4). Following [31], we select the
principle branch of the logarithm, so that logð1iÞ ¼ −πi

2
.

Secondly, when performing the circumvention of the pole
at λ ¼ 0, the sign of the iϵ-regularizer will dictate the sign of
the (imaginary) norm for timelike vectors: juj ≔ ffiffiffiffiffiffiffiffiffi

u · u
p ¼

�i
ffiffiffiffiffiffiffiffiffiffiffiffiju · ujp

. With this in mind, the Lorentzian angle between
our chosen vectors a and b, will be purely imaginary:

θab ¼ log

�
Zða; bÞ
jajjbj

�
¼ log

�
1

�i

�
¼ ∓ iπ

2
;

the sign ofwhich depends on the choice of�iϵ. For a general
spacelike vector u in quadrant 1 and a timelike vector v lying
in quadrant 2, there may also be a real part of the Lorentzian
angle. The general angular formula will be

θuv ¼ log

�
Zðu; vÞ
jujjvj

�
¼ log

�
Zðu; vÞ
jjujjjjvjj

�
∓ πi

2
; ð5Þ

where here in the latter term we isolate the imaginary
component of the angle by taking jj · jj, the absolute value
of the norm j · j.

In similar spirit, the Lorentzian angle between a pair of
timelike vectors lying in the same quadrant may be
determined once we have fixed a sign for the complex
quantity juj ¼ ffiffiffiffiffiffiffiffiffi

u · u
p

. In contrast to (4), we have

θuv ¼ − log
Z̄ðu; vÞ
jujjvj

if u; v both timelike and in the same quadrant: ð6Þ

Using the above, one can interpret the imaginary contri-
bution of ∓ πi

2
in the formula (5) as a discrete “rotation” of

the spacelike vector into quadrant 2, followed by an
application of formula (6) to determine the remaining real
part of the angle.
Generally speaking, the iϵ-regularization causes a dis-

crete contribution of ∓ iπ
2
whenever we compute angles

between non-null vectors in adjacent quadrants of
Minkowski space. One can imagine a Euclidean rotation
in which we trace one vector through null rays into adjacent
quadrants (cf. Fig. 6). Every time a vector passes through a
null ray it receives a discontinuous contribution of∓ πi

2
. The

total angle around the origin will then equal ∓2πi, as
depicted in [47,48].
The iϵ-regularization of [1,31,47–49] may also be used

to define angles between null vectors. Combining Eq. (5)

FIG. 6. Sorkin’s derivation of the Lorentzian angle between
a spacelike and a timelike vector. Here we pick the light cone
basis m ≔ ð1

2
;− 1

2
Þ and n ¼ ð1

2
; 1
2
Þ, for which a ¼ n −m and

b ¼ nþm, and c ¼ nþ λm. We may then continuously trace
from a to b, using a parameter λ∈ ½−1; 1�. This parameter will

yield a singularity in Zða;cÞ
jajjcj at λ ¼ 0, which we may avoid via an

iϵ-regularization.
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with the additivity of angles, and proceeding via a case
distinction, the angle involving null vectors may take any of
the following forms:

θm;u ¼ log

�
m · u
l0jjujj

�
∓ iπ

4
if u spacelike ð7Þ

θm;v ¼ log

�
m · v
l0jjvjj

�
∓ iπ

4
if v timelike ð8Þ

θm;n ¼ log

�
m · n
l20

�
∓ iπ

2

if n null and m; n bound spacelike quadrant ð9Þ

θm;n ¼ − log

�
m · n
l20

�
∓ iπ

2

if n null and m; n bound timelike quadrant: ð10Þ

Here we follow [31] and introduced two more conventions.
Firstly, due to the additivity of angles, we need to choose
how to divvy up the imaginary contribution of ∓ πi

2
arising

from (5) into the two formulae (7) and (8). In the above we
have opted for a balanced contribution of ∓ πi

4
for either

side of the null vector. Secondly, we commit to an addi-
tional variable l0, which is an arbitrary length scale that is
required in order to make the angle formulae dimensionless
(cf. the 4d corner ambiguities in [53,54]). Although both of
these conventions are choices, they will ultimately not
affect the Gauss-Bonnet theorem once we keep them
consistently fixed.

B. A Gauss-Bonnet theorem for surfaces
with null boundaries

A Lorentzian version of the Gauss-Bonnet theorem was
originally proved implicitly by Chern in [55], who extended
his famous Chern-Gauss-Bonnet theorem to closed even-
dimensional Lorentzian manifolds. Various alternate ver-
sions of the result exist in the literature, and each varies in
scope and generality. Older resources such as [56–59] prove
the theorem by considering manifolds with either empty or
non-null boundary. This was generally due to an underde-
veloped notion of Lorentzian angles at their time of writing.
In recent years, however, Sorkin [31] extended the
Lorentzian Gauss-Bonnet theorem to include null boundary
components. Wewill now briefly overview his argument and
flesh out some of the more rigorous details.
We start by proving a Gauss-Bonnet theorem for the

Lorentzian triangle. This version, commonly called
the “local Gauss-Bonnet theorem” in Euclidean termi-
nology, ultimately follows from an analogue of Hopf’s
Umlaufsatz—cf. the Euclidean version in Fig. 5. In this
context, the Umlaufsatz states that the sum of turning
angles around the oriented boundary of a Lorentzian

triangle will always equal ∓2πi. Heuristically speaking,
we can imagine parallel transporting a vector around the
boundary of the triangle and summing up the discrete
jumps at the corners. Since the triangle is assumed to be
flat, the vector will return to itself with no real angular
defect, however, it will have collected a full rotation of
Minkowski angles along its journey.
Formally, the Lorentzian Umlaufsatz may be proved via

a case distinction on all the different types of triangles. For
triangles with non-null edges, the Umlaufsatz was dis-
cussed by both Jee [59] and Law [58]. For triangles
involving null edges, the discussion was continued in [31].
For the purposes of illustration, we consider the case of a
triangle Δ with two null edges m and n, and a spacelike
edge w. After orienting ∂Δ, we may consider the turning
angles by fixing null vectors with an affine length equal to
that of the corresponding edge of Δ. Using the additivity of
Lorentzian angles, we can represent the sum of turning
angles as a sum between purely null edges:

θmn þ θnw þ θwm

¼ θmn þ ðθnð−mÞ þ θð−mÞwÞ þ ðθwð−nÞ þ θð−nÞmÞ
¼ θmn þ θnð−mÞ þ θð−mÞð−nÞ þ θð−nÞm:

Heuristically, we may imagine parallel transporting all
three vectors to the same point and then using additivity
of angles to cancel out the terms containing the spacelike
vector w. This intuition is depicted in Fig. 7. From this
perspective, the Umlaufsatz for Δ is clear, provided that the
ambiguous length scale l0 is kept fixed throughout the sum
of the turning angles. We should also note that this version
of the Umlaufsatz is equivalent to Sorkin’s observation that
the interior angles of a Minkowskian triangle will sum up to
the flat half-value ∓iπ, since

∓2πi ¼
X3
i¼1

θext ¼
X3
i¼1

ð∓iπ − θintÞ ¼ ∓3πi −
X3
i¼1

θint:

Using this result for triangles in Minkowski space, we
may then triangulate a given almost-Lorentzian surface,
making sure to arrange any causal irregularities onto
vertices of the triangulation, and then derive a discrete
version of the Gauss-Bonnet by the same arguments found
in the Euclidean case—for instance, those of [[52],
Sec. 4.5]. Provided that we pick the same sign of the
iϵ-regularizer for all the vertices in a given triangulation,7

we can then express curvature via a Regge action which
sums over Lorentzian defect angles. This yields the
following version of the Gauss-Bonnet theorem, amenable
to two-dimensional Regge calculus in Lorentzian signature.

7This assumption is implicit within [31], though is explicitly
called the “global Wick rotation” in [47].
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Theorem 3.1. Let M be an almost-Lorentzian surface
with boundary, and let T be a triangulation of M in which
the degenerate points of M lie on vertices of T . Denote by
VM and V∂M the set of vertices of T that lie in the bulk and
boundary of M, respectively. Then

∓2πiχðMÞ ¼
X
p∈VM

δ2ðpÞ þ
X

q∈V∂M

δ1ðqÞ;

where δ2ðpÞ ¼ ∓2πi −
P

θðpÞ and δ1ðqÞ ¼ ∓πi −P
θðqÞ measure the defect angles in 2D and 1D,

respectively.
We may derive a continuum version of the above by

measuring curvature by different means. In the triangula-
tion argument of Regge calculus we flatten the triangles,
thereby localizing any curvature to vertices. Alternatively,
we could also determine the curvature of a triangle Δ by
measuring the defect in the sum of its interior angles.
Following [60], by taking a limit of smaller and smaller
triangles around a point, we may define an infinitesimal
notion of curvature which may then be integrated to
determine the total scalar curvature of the bulk.
Similarly, for each smooth boundary component, we
may determine its geodesic curvature via a limit of defect
angles of small lines surrounding points. Thus we obtain
the following (smooth) version of the Lorentzian Gauss-
Bonnet theorem.
Theorem 3.2. Let M be an almost-Lorentzian manifold

with boundary. Then

1

2

Z
M
RdAþ

Z
∂M

kdγ þ
X

θext ¼ ∓2πiχðMÞ:

C. Non-Hausdorff Gauss-Bonnet theorems

We can repeat the philosophy of Sec. II in order to prove
a Gauss-Bonnet theorem for non-Hausdorff manifolds.

Our approach will be to first relate the Euler characteristic
of a non-Hausdorff manifold to the Euler characteristics of
its Hausdorff submanifolds. After this, we may apply either
the Euclidean or Lorentzian Gauss-Bonnet Theorem to all
of these Hausdorff pieces and then collate the resulting
integrals into a global non-Hausdorff curvature term using
the subadditivity formula of Theorem 2.5.
In our discussion thus far we have assumed some

simplicial definitions of the Euler characteristic. However,
since all simplicial complexes are by construction Hausdorff
topological spaces, we do not have access to simplicial
homology for non-Hausdorff manifolds. There are several
ways to bypass this issue. It is reasonable to suggest that there
may be a non-Hausdorff version of simplicial homology,
with a well-defined boundary operator that may in turn yield
some kind of topological invariants. However, we will avoid
this line of inquiry and instead appeal to a broader definition
of Euler characteristic that holds for more-general topologi-
cal spaces. We define the Euler characteristic of a non-
Hausdorff n-dimensional manifold M as follows:

χðMÞ ¼
Xn
i¼1

ð−1ÞirankðHS
i ðMÞÞ;

where here we use the singular homology groupsHS
i ðMÞ. In

the Hausdorff setting, this definition of Euler characteristic
coincides with the ordinary definition via triangulations,
due to the equivalence between simplicial and singular
homology [61]. In the case of smooth non-Hausdorff mani-
folds, singular cohomology is known to be isomorphic to de
Rham cohomology for any manifold satisfying the condi-
tions of Theorem 2.2 [21].
Under this reading, we may now relate the Euler

characteristic of a non-Hausdorff manifold to those of its
Hausdorff constituents. The following result confirms that
the familiar “inclusion-exclusion principle” (cf. pg. 221
of [62]) holds for our non-Hausdorff manifolds.

FIG. 7. The intuition behind the Umlaufsatz of a Lorentzian triangle with two null edges. Here we use the point-vector correspondence
of flat space to transport all vectors to the same point and observe the manifest value of ∓2πi.
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Theorem 3.3 ([21]). Let M be a non-Hausdorff manifold, defined according to Theorem 2.1. Then

χðMÞ ¼ χðM1Þ þ χðM2Þ − χðAÞ:

Proof. We provide a sketch of the proof; for details, see [21]. Firstly, we may observe that the singular homology groups
of M may be related to the homology groups of the Hausdorff submanifolds by the Mayer-Vietoris sequence:

The precise description of these maps is not too important
for our purposes, but can be found in [21] (they are
essentially a reformulation of the pushforward maps found
in [[61], Sec. 2.2], descended to homology). The important
observation is that the above is a long exact sequence of
vector spaces that terminates. Crucially, for any long exact
sequence of vector spaces, the alternating sum of the
dimensions of all the entries of the sequence must be zero.
The result then follows by a rearrangement of this vanish-
ing alternating sum. ▪
In order to prove a non-Hausdorff Gauss-Bonnet theo-

rem, we need to make a subtle yet crucial observation. In
the integral formula of Theorem 2.5, we must integrate over

the topological closure of A, which in this context means
that we are integrating a manifold with boundary. However,
in the subadditive formula of χðMÞ listed above, we instead
have an expression for χðAÞ and, in general, it is not the
case that χðAÞ ¼ χðĀÞ.8 However, when we work with the
non-Hausdorff trousers space in Sec. IV we will not need to
worry about this potential issue, so in what follows we will
simply assume the equality χðAÞ ¼ χðĀÞ.
According to the remark we made at the end of Sec. II D,

we may apply the subadditivity principle of Theorem 2.5 to
a 2D curvature form to yield the equality (2). If we apply
the Gauss-Bonnet theorem to each Hausdorff component of
M, we will obtain the equality

1

2

Z
M
RdA ¼ 1

2

Z
M1

RdAþ 1

2

Z
M2

RdA −
1

2

Z
Ā
R dA

¼
�
2πχðM1Þ −

Z
∂M1

kdγ

�
þ
�
2πχðM2Þ −

Z
∂M2

kdγ

�
−
�
2πχðĀÞ −

Z
∂Ā
kdx

�

¼ 2πχðMÞ −
�Z

∂M1

kdγ þ
Z
∂M2

kdγ −
Z
∂Ā
kdγ

�
:

Here we assume that the boundary ofM consists of the images of ∂Mi under the canonical maps ϕi. Note that it is possible
for the two sets ϕið∂MiÞ to intersect, however, this may only occur ifM1 andM2 have a common manifold boundary along
the gluing region A. Thus, the closure Āmay have two different types of boundaries: amanifold boundary that already exists
within A and a topological boundary that forms the Hausdorff-violating points once mapped into M. We thus write
∂Ā ¼ ∂A ⊔ Y, where here we use the special symbol Y to denote the Hausdorff-violating piece of Ā. By the usual
subadditivity of Hausdorff integration, we see that

Z
∂M

kdγ ¼
Z
∂M1

kdγ þ
Z
∂M2

kdγ −
Z
∂A
kdγ and

Z
∂Ā
kdγ ¼

Z
∂A
kdγ þ

Z
Y
kdγ:

By substituting these equalities into the previous equation, we obtain a non-Hausdorff Gauss-Bonnet in Euclidean
signature:

8In the case that theMi are manifolds without boundaries, this tension may be broken by assuming that the open subset A is regular-
open, meaning that the interior of Ā equals A itself. This allows a homotopy equivalence between A and Ā, which induces an
isomorphism of singular homologies and guarantees the equality χðAÞ ¼ χðĀÞ.
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1

2

Z
M
RdA ¼ 2πχðMÞ −

�Z
∂M

kdγ −
Z
Y
kdγ

�
: ð11Þ

We may then apply essentially the same reasoning as the
above, this time using the Lorentzian Gauss-Bonnet theo-
rem of Theorem 3.2, to deduce the following.
Theorem 3.4. Let ðM; gÞ be a non-Hausdorff two-

dimensional spacetime built from Hausdorff spacetimes
M1 and M2 according to Theorem 2.2. Suppose further-
more that the Mi are manifolds with boundary, and A
satisfies χðAÞ ¼ χðĀÞ. Then

∓2πiχðMÞ ¼ 1

2

Z
M
RdAþ

Z
∂M

kdγ −
Z
Y
kdγ:

IV. THE NON-HAUSDORFF TROUSERS SPACE

We will now define and evaluate the gravitational action
for a non-Hausdorff version of the Trousers space. As
outlined in the Introduction, we will consider a compacti-
fied version of Penrose’s spacetime of Fig. 2, taken to be
long enough so that the initial surface Σ1 is homeomorphic
to S1 and the final surface Σ2 is homeomorphic to S1 ⊔ S1.
According to our discussion in Sec. II, we can construct
such a space by gluing two copies of the cylinder together
everywhere outside the causal future of a point. Formally,
we take

(i) M1 ¼ M2 to be cylinders S1 ×D1 endowed with the
same flat Lorentzian metric,

(ii) a preferred point p inM1 whose causal future JþðpÞ
contains the final boundary S1 × f1g of M1 as a
subset,

(iii) A ¼ M1nJþðpÞ endowed with the open submani-
fold atlas and metric induced from M1, and

(iv) f∶ A → M2 to be the identity map.
We denote by T the topological space formed according
to the above. Since the gluing map f is taken to be the
identity map, the data above falls within the scope of
Theorems 2.1–2.3, and thus we may view T as a smooth
non-Hausdorff manifold that contains the two cylindersMi
as maximal Hausdorff open submanifolds. Moreover, the
map f is also a time-orientation preserving isometric
embedding, so we may effectively transfer the Lorentzian
metrics of the cylindersMi into the non-Hausdorff manifold
T according to our discussion in Sec. II D. We denote the
resulting non-Hausdorff spacetime by ðT;gÞ, and we will
hereafter refer to this as the non-Hausdorff trousers space.
By construction, the M1-relative closure Ā of the gluing

region A will include the lightlike future of the point p, as
depicted in Fig. 8. Once the quotient is performed to
construct ðT;gÞ, the Hausdorff-violating submanifold of T
will be the two lightlike futures of the distinct points ϕ1ðpÞ
and ϕ2ðpÞ. The height function f∶ T → R that maps each
point in T to its D1-coordinate in either Mi will be a well-
defined smooth function that allows us to interpret ðT;gÞ as

a non-Hausdorff transition from S1 to S1 ⊔ S1. Indeed—on
the spacelike slice of T that contains the points ϕiðpÞ, the
topology will begin splitting by changing from Σ1 ¼ S1 to a
circle with two Hausdorff-violating points. These points
will then propagate along null rays and finish splitting into
two circles at some later time. At every point in time after
this, the spacelike slices of ðT;gÞ will have the topology
of S1 ⊔ S1.

A. Causal properties

As mentioned in the Introduction, one may justify the
inclusion of the Hausdorff trousers space into a path integral
scheme such as Eq. (1) on causal grounds. Despite being
nonglobally hyperbolic, the Hausdorff trousers space, aside
from the causal irregularity at the crotch, is a well-behaved
spacetime. In particular, it exhibits no closed timelike curves,
admits a global time function, and determines a causal
structure whose relation ≤ is a partial order.
We will now show that the non-Hausdorff trousers space

ðT;gÞ enjoys similar, and even superior, causal features. To
begin, we recall the relation x ≤ y if and only if y lies in the
future light cone of x, which in this context means that
there is a future-directed causal curve connecting x to y.
The following result characterizes the causal relation≤ of T
in terms of the Hausdorff spacetimes Mi.
Lemma 4.1. For any two points x and y in T, we have that

x ≤ y if and only if ϕ−1
1 ðxÞ ≤ ϕ−1

1 ðyÞ or ϕ−1
2 ðxÞ ≤ ϕ−1

2 ðyÞ,
or both.
In this sense, we can see that the non-Hausdorff Trousers

space T naturally inherits the causal structures of M1 and

FIG. 8. The region Ā for the non-Hausdorff trousers space T.
When constructing T we glue two cylinders together everywhere
in A, yet leave the future component of ∂A unidentified. In the
quotient space T, this yields two Hausdorff-inseparable copies of
the lightlike future of the point p.
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M2. In particular, we see that the causal structure ðT;≤Þ
naturally inherits a poset structure from the causality of the
cylinders Mi.

9

Theorem 4.2. The causal relation ≤ on T is a transitive,
reflexive and antisymmetric relation.
As a brief aside, we remark that the above appears to

hold more generally—if we consider some category of
non-necessarily-Hausdorff spacetimes with isometric
embeddings as morphisms, then the mapping of space-
times to causal sets may be considered as a covariant
functor into the category of partially-ordered sets. In this
case, it is likely that the above argument generalizes
directly to conclude that this “causal functor” takes
colimits to colimits, so that we can describe any causal
structure on a non-Hausdorff spacetime as a colimit of
posets.
Aside from the poset structure of ðT;≤Þ, the non-

Hausdorff trousers space satisfies other nice causal
properties, which do not hold in the Hausdorff trousers
case. First, recall from pointset topology that the com-
pactness of a set is preserved under continuous maps.
Applied to our context, we may use the canonical maps
ϕi∶ Mi → T to send causal diamonds JþðxÞ ∩ J−ðyÞ
from either Mi into T. Since the Lorentzian cylinder
is globally hyperbolic, Lemma 4.1 allows us to conclude
that the causal diamonds JþðxÞ ∩ J−ðyÞ are compact in
T. Moreover, one can readily find spacelike slices of T
whose domain of dependence equals the whole space. In
these two senses, the non-Hausdorff trousers space is
causally better-behaved than the Hausdorff trousers. In
fact, these properties are strongly reminiscent of global
hyperbolicity—a connection that should be more fully
explored by studying field equations on the non-
Hausdorff spacetime.

B. The gravitational action

We will continue our discussion in a similar spirit to
Sec. III C, that is, we will first describe a non-Hausdorff
action in Euclidean signature, and then we will move on
to the subtleties of Lorentzian signature. In each case we
will begin with a general treatment of non-Hausdorff
manifolds, before evaluating the derived actions for the
case of the non-Hausdorff manifold T, equipped with the
metric of appropriate signature. As such, throughout this
section we will assume that M is a non-Hausdorff two-
dimensional manifold satisfying the topological assump-
tions of Theorem 3.4 regarding the Euler characteristics
of A and Ā.

1. Euclidean gravity

For a two-dimensional Hausdorff manifold M with
possible boundary ∂M, vacuum Euclidean gravity may
be fully described via the Gauss-Bonnet action:

SðM; hÞ ¼ 1

2κ

Z
M
RdAþ 1

κ

Z
∂M

kdγ;

where here any potential corner contributions have been
absorbed into the Gibbons-Hawking-York boundary term.
According to the Gauss-Bonnet theorem for Riemannian
surfaces, we know that SðM; hÞ ¼ 2π

κ χðMÞ, and it is in this
sense that two-dimensional gravity is a purely topological
theory.
If we were to proceed in a similar manner for a non-

Hausdorff action, then it would seem natural to maintain
the topological nature of the theory and define the action
according to a Euclidean version of the non-Hausdorff
Gauss-Bonnet theorem. For a non-Hausdorff manifold M
constructed via Theorem 2.2 and endowed with a
Riemannian metric h, we write:

SðM;hÞ ≔ 1

2κ

Z
M
RdAþ 1

κ

Z
∂M

kdγ −
1

κ

Z
Y
kdγ: ð12Þ

By construction, the set Y ¼ ĀnA is precisely one-half of
the Hausdorff-violating submanifold sitting inside M. This
can be seen as a sort of “interior surface term” or perhaps an
“internal boundary component,” the dynamics of which are
captured by an extra Gibbons-Hawking-York term of the
appropriate sign.
Aside from recreating a topological theory, the action S

may also be justified according to a variational principle.
Indeed, if we were to vary S with respect to the Riemannian
metric h, then we are left with the following:

δhS ¼ δh

�Z
M
RdAþ

Z
∂M

kdγ −
Z
Y
kdγ

�

¼ δh

�Z
M1

RdAþ
Z
M2

RdA −
Z
Ā
RdAþ

Z
∂M1

kdγ

þ
Z
∂M2

kdγ −
Z
∂A
kdγ −

Z
Y
kdγ

�

¼ δh1

�Z
M1

RdAþ
Z
∂M1

kdγ

�

þ δh2

�Z
M2

RdAþ
Z
∂M2

kdγ

�

− δhĀ

�Z
Ā
RdAþ

Z
∂Ā
kdγ

�

¼ 0þ 0 − 0;

where here we have used the same delineations of the
boundary as in Sec. III C and have suppressed the overall

9In fact, it appears that a more precise categorization of the
features of the causal space ðT;≤Þ is that it manifests as a model
of the logico-mathematical theory BSTNF of [63–65]. This is an
order-theoretic axiomatization of a certain type of indeterminism
and runs somewhat parallel to the considerations of the causal set
theorists.
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factors of κ−1 for readability. Observe that in the above
expression we needed to include the additional geodesic
curvature of the submanifold Y, since otherwise we are left
with incomplete boundary data for the subspace Ā.
Now, consider the non-Hausdorff trousers space T as

defined previously, but equipped with some Riemannian
(rather than Lorentzian) metric h, defined according to
our general discussion in Sec. II D. Topologically, T
consists of a pair of cylinders Mi glued along a semiopen
cylinder A ≅ S1 × ½0; 1Þ. These spaces all retract onto the
circle, so their Euler characteristics vanish. According to
Theorem 3.3, the Euclidean action (12) for ðT;hÞmay then
be evaluated as

SðT;hÞ ¼ 1

2κ

Z
M
RdAþ 1

κ

Z
∂M

kdγ −
1

κ

Z
Y
kdγ

¼ 2π

κ
χðTÞ ¼ð3.3Þ 2π

κ
ðχðM1Þ þ χðM2Þ − χðĀÞÞ

¼ 2π

κ
ð0þ 0 − 0Þ ¼ 0:

In short, this means that the non-Hausdorff trousers space
is flat, which agrees with the fact that ðT;hÞ is locally
isometric to the flat cylinder by construction. We may
conclude from this that in the Euclidean theory, the non-
Hausdorff trousers space will have a larger contribution
to the path integral than the Euclidean version of the
Hausdorff trousers space.
In fact, if we consider a broader path integral that sums

over all topologies interpolating between all types of
boundary components, then we are left with the observation
that the non-Hausdorff trousers space contributes to the
Euclidean path integral as strongly as the cylinder.
Moreover, it appears as though one can make arbitrarily-
complicated configurations of non-Hausdorff cylinders that
remain globally flat, e.g. by adding extra legs to the
trousers, which will similarly contribute with equal strength
to the path integral. It seems that the only way to ensure the
suppression of non-Hausdorff trousers in Euclidean gravity
(relative to the cylinder) would be to artificially introduce
an extra term that tracks Hausdorff-violation:

expf−SðM;gÞg ⟶ expf−SðM;gÞ − αðMÞg;

where here α ought to vanish for Hausdorff manifolds and
be strictly positive otherwise.

2. Lorentzian gravity

InLorentzian gravity,wewould like to define the action as
in (12), where here we compute the curvature and volume
form according to the Lorentzian metric instead. We may
again motivate this choice by the topological nature of the
action, and again the variation of this action will vanish
provided we include the additional Gibbons-Hawking-York
term for the Hausdorff-violating submanifold. However, in

contrast to the Euclidean setting, we now have the
additional subtlety that the corner terms of the Hausdorff-
violating submanifold need to be computed using
Lorentzian turning angles.
We will illustrate this for the non-Hausdorff trousers

space ðT;hÞ. Here there are two special points in Ā that are
used in the construction of T. These are p, the initial
pointlike source of topology change, and q, which is the
final point of topology change. Observe that there are
two future-directed null rays connecting p to q, as pictured
in Fig. 8, which makes the subset Y of Ā a boundary
consisting of piecewise-geodesic null rays. Expanding out
the Lorentzian version of Eq. (12), we have

SðT;gÞ ¼ 1

2κ

Z
M
RdAþ 1

κ

Z
∂M

kdγ −
1

κ

Z
Y
kdγ

¼ 1

2κ

�Z
M1

RdAþ
Z
M2

RdA −
Z
Ā
RdA

�

þ 1

κ

�Z
S1
kdγ þ

Z
S1
kdγ þ

Z
S1
kdγ

�

−
1

κ

�Z
γ1

kdγ þ
Z
γ2

kdγ þ
X

θext

�
;

where here the γi denote the two null rays connecting p to q
in Ā ⊂ M1. The total scalar curvature terms above will all
vanish, since each of the spaces involved is a flat cylinder.
Moreover, all of the geodesic curvature terms will also
vanish, since the copies of S1 on the boundary of T are all
spacelike geodesic, and both the γi are null geodesics from
p to q in Ā. Thus the total action reduces to the term

P
θext,

which here is a sum of the turning angles of Y ¼ ĀnA at p
and q.
Since both curves in Y are null rays, we are left with a

computation of turning angles using the null angular
formulae of (7)–(10). Assuming that we may select the
sign of the iϵ-regularizer for the tangent spaces TpĀ and
TqĀ of the corners p and q independently, we are left with
four possible combinations. These are:

(i) TpĀ and TqĀ both use regularizer þiϵ,
(ii) TpĀ and TqĀ both use regularizer −iϵ,
(iii) TpĀ uses regularizer þiϵ and TqĀ uses regular-

izer −iϵ,
(iv) TpĀ uses regularizer −iϵ and TqĀ uses regular-

izer þiϵ.
For the first two cases, the two corner contributions to

SðT;gÞ have equal strength but opposite sign, so they
cancel and the total action reduces to zero. Put differently,
cases (i) and (ii) will correspond to global Wick rotations
for a triangulation of Ā, and thus fall within the scope of the
Gauss-Bonnet theorems 3.1 and 3.2. The Euler character-
istic of T being zero then ensures that SðT;gÞ vanishes, and
we again encounter the same issue as in the Euclidean case.
Alternatively, we may also consider cases (iii) and (iv): if

we were to pick regularizers with opposite signs, the sum of
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corner terms would not cancel. Thus we may not apply the
Gauss-Bonnet theorem in order to evaluate the action.
Instead, we are left with actions taking the values

SðiiiÞðT;gÞ ¼ þ πi
κ

and SðivÞðT;gÞ ¼ −
πi
κ
: ð13Þ

The former will lead to a suppression of the non-Hausdorff
trousers space in the schematic path integral (1), and the
latter will lead to an enhancement. It seems reasonable,
therefore, to suggest that we select regularizers of opposite
sign, according to case (iii) above. For future reference, we
state this here in more general form:

sgnðiϵðxÞÞ ¼
�þiϵ if x corresponds to an initial point of topology change

−iϵ if x corresponds to a final point of topology change:
ð14Þ

There is an obvious and intentional similarity between
our angular prescription and that of Sorkin/Louko [1].
Perhaps of interest is the difference in overall value of
the resulting action—in [1] the action of the Hausdorff
Trousers space is computed to be 2πi

κ (with appropriate sign
convention), and here, we obtain an overall strength of πi

κ .
Thus, if simultaneously included within the same path
integral, it appears as though the non-Hausdorff Trousers
space will enjoy a weaker suppression factor relative to its
Hausdorff counterpart.

C. More S1 transitions

As mentioned in the Introduction, a generally unsung
feature of Sorkin’s angular convention is that any more
transitions other than the Trousers spaces will yield a further
dampening within the path integral. Indeed, adding an extra
genus (which topologically amounts to taking a connected
sum with the torus) changes the Euler characteristic by

χðM#T2Þ ¼ χðMÞ þ χðT2Þ − χðS2Þ ¼ χðMÞ − 2;

so adding any extra genera to the bulk of a trousers spacewill
continually decrease its total contribution to the path integral.
In this sense, according to the same-sign convention for iϵ,
any more elaborate branching will be further suppressed in
the path integral. Alternatively, if we were to pick the other
sign of the regulator, thenwe are leftwith the observation that
transitions from Σ1 to Σ2 with arbitrarily-many genera will
have thehighest probability of occurring.With this inmind, it
makes sense to pick the sign that entails the suppression of
these higher-genus transitions.
In the non-Hausdorff case, we still have this genus com-

plication, as well as the possibility that the topology of Σ1

may change from multiple spacelike-separated sources. We
will now treat these two possible complications separately.

1. Transitions with extra pointlike sources

For a collection p1;…; pn of spacelike separated points
on the cylinder, we may construct a non-Hausdorff mani-
fold by gluing two cylinders together along the open subset

B ≔ M1n ⋃
n

α¼1

JþðpαÞ

by taking f to be the identity map. The result will be a
manifold that is homeomorphic to the non-Hausdorff
trousers space T, but not isometric to it. The only difference
is with the causal structure of the Hausdorff-violating
submanifold Y—we will obtain a null boundary with a
sort of “zigzag” structure, as depicted in Fig. 9.
When evaluating the action for this spacetime, we are

again forced to consider some sort of angular convention
for the turning angles of the extra null boundary Y. In this
case, consistently applying the angular convention (14) will
force an additional suppression of these spaces relative
to T. Precisely, if Tn is the non-Hausdorff trousers space
arising from n-many pointlike sources, then under our sign
convention SðTnÞ will take value nπi=κ. Thus our more-
elaborately branching models will naturally enjoy a larger
suppression in the path integral (1).

2. Transitions with extra genera

It is also possible that the non-Hausdorff trousers space
may contain extra genera in the bulk, and these ought to be
accounted for within the theory. In this situation we are
combining both Morse-theoretic and Penrosian topology
change, and there are many possible combinations to
consider. Perhaps much more may be said about this
particular regime, and there may well be limiting cases
of interest, for instance, a non-Hausdorff branching point
occurring precisely at the crotch singularity of a Trousers
space. For simplicity’s sake, we will assume that the future
null cones of any pointlike sources of topology change do
not contain any critical points such as the crotch singularity.
Moreover, we will assume that M is a non-Hausdorff
manifold built from Hausdorff manifolds M1 and M2

glued along order-preserving isometries, so that the
Gauss-Bonnet theorem of 3.4 and the causal properties
of Sec. IV A are still maintained.10

10Note that the desired poset structure and global time function
still exist, provided that we glue along isometries that preserve
time orientation. In such a situation, the causal orderings of the
Mi will be preserved under the canonical maps ϕi, and we may
transfer the global time functions of the Mi to M using
Theorem 2.3.
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We will now rewrite the Lorentzian non-Hausdorff
action in such a manner that we obtain a purely topological
piece, as well as a piece that spoils the Gauss-Bonnet
theorem. The former will arise from the action evaluated
with the globalþiϵ angular convention, while the latter will
encode the effect of switching to our chosen angular
convention (14).
Let θ̃ext denote the turning angles of Y that would follow

from the þiϵ convention, and let θext denote the angles that
follow from our convention (14). We can then write the Y
boundary term as follows:Z
Y
kdγ ¼

XZ
γ
kdγþ

X
θext

¼
�XZ

γ
kdγþ

X
θ̃ext

�
þ
�X

θext−
X

θ̃ext

�
:

Now, at each corner, the quantity θext − θ̃ext is either 0 or
−iπ, depending on whether the corner corresponds to an
initial or final point of topology change, respectively. Thus,
we have

Z
Y
kdγ ¼

�XZ
γ
kdγ þ

X
θ̃ext

�
− nπi;

where n is the number of pointlike sources of topology
change. Plugging this into the action and using the Gauss-
Bonnet theorem (which applies for the angles θ̃ext), we get:

SðM;gÞ ¼ 1

2κ

Z
M
RdAþ 1

κ

Z
∂M

kdγ −
1

κ

Z
Y
kdγ

¼ 1

κ

�
1

2

Z
M
RdAþ

Z
∂M

kdγ

−
XZ

γ
kdγ −

X
θ̃ext

�
þ nπi

κ

¼ −
2πi
κ

χðMÞ þ nπi
κ

:

We see that in distinction to our Euclidean discussion
of Sec. IV B, our convention (14) for Lorentzian turning
angles at corners naturally introduces a term that suppresses
non-Hausdorff topology changes, in addition to the usual
suppression of Hausdorff ones (i.e. of higher genera) via the
Euler characteristic.

V. CONCLUSION

In this paper we have provided a basic analysis of
non-Hausdorff transitions between various copies of the
circle, in a manner consistent with the original idea of
Penrose [18]. According to the colimit constructions of
Sec. II, we saw that non-Hausdorff manifolds may be
readily endowed with a smooth structure, as well as all
tensor fields that one may require in differential geometry.
All of these notions were defined without issue according
to local definitions together with consistency conditions on
the map f∶ A → M2 which provided the specifics of the
gluing construction.
A central issue for non-Hausdorff manifolds is the

passing from local to global data. This manifests in the non-
existence of arbitrary partitions of unity (cf. Theorem 2.4)
and in the inability to use the usual notion of integration.
However, we circumvented this issue and saw in the
integral formula of Theorem 2.5 that the global integral
of a compactly-supported top form on a non-Hausdorff
manifold satisfies a particular subadditivity formula. The
formula 2.5 is almost identical to the standard subadditivity
for Hausdorff manifolds, except that it required the crucial
inclusion of the extra boundary term of ∂Ā. According
to the colimit construction of Sec. II, this term integrates
the extra piece of the Hausdorff-violating submanifold sat
inside M.
Although innocuous from a measure-theoretic pers-

pective, the inclusion of this internal boundary term into
the global integral had some important consequences
for the non-Hausdorff Gauss-Bonnet theorem. Our main

FIG. 9. The region Ā (left), together with more elaborate models. Based on Euler characteristic alone, there is no distinction between
these three spaces. However, due to our angular convention (14) the total action will increase in multiples of πi.
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observation of Sec. III was an extension of the usual Gauss-
Bonnet formula into the non-Hausdorff Lorentzian setting.
Theorem 3.4 ultimately showed that the total scalar
curvature alone does not equate to the Euler characteristic,
but instead requires the extra integral counterterm, which in
this context may be interpreted as the geodesic curvature of
the extra Hausdorff-violating submanifold sitting inside
the space.
As we saw in Sec. IV, this Gauss-Bonnet theorem

ultimately suggests that there is no inherent way to
guarantee the suppression of the non-Hausdorff trousers
space within a Euclidean path integral that sums over
topologies. However, in Lorentzian signature we had the
additional subtlety that now, in order to properly evaluate
the action, we needed to compute the particular turning
angles between adjacent null geodesics. Given that each of
these turning angles is subject to its own convention for
Lorentzian angles, we argued that there indeed exists a
method for suppression of non-Hausdorff trousers spaces in
Lorentzian signature: we needed to intentionally spoil the
Gauss-Bonnet theorem by selecting opposite sign conven-
tions depending on the nature of these turning angles. Once
this was done, the gravitational action took the correct sign
in Lorentzian signature, which accounted the desired
suppression.
In distinction to the Hausdorff case, there are two

possible types of further branching: the addition of extra
sources of pointlike change, and the inclusion of Hausdorff
branching as per usual. In either case, we saw that more
elaborate branching caused a further dampening in the path
integral.

A. Future work

Wewill now finish with some discussions of future work.
As we saw in Secs. I D and III A, the non-Hausdorff
Trousers space naturally inherits any Lorentzian metric
placed on the ordinary cylinder. Moreover, we saw in
Sec. IVA that the causal structure arising from the metric g
on T is relatively well behaved, thus on causal grounds
alone one may suggest that the non-Hausdorff trousers
space should be reasonably included in the schematic path
integral of Eq. (1). However, it seems natural to suggest that
a “physically reasonable” spacetime ought to be a suitable
background upon which to define both spinors and quan-
tum fields.
Regarding possible spin structures: it is well known in

the Hausdorff case that questions regarding the existence

and uniqueness of spin structures on a given manifold may
be best articulated within the language of Čech cohomol-
ogy. Specifically, it can be shown that a given (Hausdorff)
manifold admits a spin structure if and only the second
Steifel-Whitney number w2 vanishes. In addition, it can be
shown that the number of inequivalent spin structures on a
given manifold may be classified with the Čech cohomol-
ogy group Ȟ1ðM;Z2Þ. For the non-Hausdorff case, the
Čech cohomology is partially understood [20], though a
full theory of non-Hausdorff spin geometry is yet to exist.
Regarding quantum fields: in the non-Hausdorff case

the causal irregularities of the crotch singularity do not
exist, so the abnormalities present in the Trousers space
(discussed in [12–14]) will probably not exist either.
Moreover, it appears as though the categorical phrasing
of non-Hausdorff manifolds detailed in Sec. II may readily
be applied in conjunction with the locally-covariant alge-
braic quantum field theory introduced in [66] to construct at
least some class of quantum fields. However, it is not clear
what the exact properties of such fields ought to be, and this
should be an interesting avenue of inquiry.
Broadly speaking, our discussion in this paper suggest

that Penrose’s topology changing spacetimes may be
appropriately furnished with the mathematical structures
required for an inquiry into physics. From a causal
perspective, these non-Hausdorff spacetimes appear to
be better behaved than the ordinary Trousers space,
ultimately due to the absence of any metric singularities.
This good behavior suggests that non-Hausdorffness may
be a more appropriate model of topology change in
Lorentzian signature. Once the spin geometry and quan-
tum field theory of non-Hausdorff manifolds is well
understood, it would be very interesting to study the
inclusion of these spacetimes within preexisting theories
that sum over topologies. In particular, our non-Hausdorff
transitions may provide a geometric realization of interact-
ing (i.e. splitting and joining) strings within Lorentzian
signature.
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