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The response of the Moon to gravitational waves (GWs) is used by some of the proposed lunar GW
detectors like the Lunar Gravitational-wave Antenna to turn the Moon into an antenna for GWs. The deep
connection between the lunar internal structure, its geophysical environment, and the study of the Universe
is intriguing, but given our limited understanding of the Moon today, it also makes it very difficult to predict
the science potential of lunar GW detectors accurately. Lunar response models have been developed since
the Apollo program, but there is evidence coming from seismic measurements during the Apollo missions
that the models are not good enough and possibly underestimating the lunar GW response especially in the
decihertz frequency band. In this paper, we will provide an extension of Freeman Dyson’s half-space model
to include horizontally layered geologies, which allows us to carry out computationally efficient
calculations of the lunar GW response above 0.1 Hz compared to the normal-mode simulations used
in the past. We analyze how the results depend on the values of geometric and elastic parameters of the
layered geological model, and we find that modifications of the geological model as required to explain
some of the important features of the Apollo seismic observations can boost the lunar GW response.
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I. INTRODUCTION

The Moon is an ideal platform for gravitational-wave
(GW) detectors to observe signals below the frequency band
accessible to current and future terrestrial detectors [1]. The
Moon is seismically exceptionally quiet and at its perma-
nently shadowed regions, it is exceptionally cold and
thermally stable. Upper limits set to the spectrum of the
lunar seismic background with Apollo seismometers are up
to 4 orders of magnitude weaker in amplitude than seismic
spectra on Earth between 0.1 and 1 Hz [2], and models
predict that the background might be more than 7 orders of
magnitude weaker than on Earth [3,4]. These close to ideal
characteristics of the Moon and today’s revived interest in
lunar science and exploration have led to new proposals for
lunar GW detectors originally presented to space agencies
in 2020 [1,4–6], with additional studies in subsequent
years [7,8]. The aim is to realize GW detections in the band
1 mHz to a few Hz with special focus on the decihertz
band, whichwill remain unobserved by the LISAmission [9]
aswell as current and future terrestrial GWdetectors [10,11].
Previously proposed decihertz concepts include the
long-baseline, space-based laser interferometers [12–14],
terrestrial decihertz detectors [15,16], and increasing

attention received by atom-interferometer concepts on
Earth and in space [17–20].
Among the proposed concepts is the Lunar Gravitational-

wave Antenna (LGWA), which requires high-performance
accelerometers to observe the Moon’s surface vibrations
caused by GWs [4]. The lunar response to GWs is a crucial
quantity to estimate the sensitivity of LGWA to GWs, which
will be limited by instrument-noise of the accelerometer [21]
and by the lunar seismic background [22]. So far, two
approaches were used to model the lunar GW response.
The first is based on a normal-mode analysis, which is most
effective for response calculations from 1 mHz to a few
10mHz [1,4,23,24]. The normal-mode analysis is based on a
model of the internal structure of the Moon as given for
example in Garcia et al. [25]. It is computationally very
challenging to extend such models up to a few Hz, and the
normal-mode analysis would become impracticable if devi-
ations from radial symmetry had to be accounted for such as
topography and heterogeneous geology. These features are
expected to be important for the lunar response modeling in
the decihertz band.
The second approach is a phenomenological model

based on Dyson’s homogeneous half-space response
calculations [26]. The current recipe adopted for the
decihertz lunar GW response and decihertz LGWA sensi-
tivity predictions is to calculate resonant corrections to the*Contact author: bixm20@lzu.edu.cn
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simple homogeneous half-space model [27]. These reso-
nances are assumed to be produced by some geological
features with an effective Q-factor of a few 100, but without
underlying physical model. This approach is unsatisfying,
but it is justified by how site effects are generally modeled
and taking into consideration that effective Q-factors of a
few 1000 were inferred from active studies and moonquake
observations during the Apollo missions [25,28]. It is
crucial to develop a decihertz response model that can
implement arbitrary geological and topographic models. In
this article, we provide an alternative formalism to calculate
the GW response of the Moon in the full decihertz band up
to 1 Hz for a layered geology, which overcomes the
technical challenges of the normal-mode method to identify
and calculate the normal modes in this high-frequency
regime. The results provide a benchmark for future
numerical simulations that take into account other details
like topography and heterogeneous geology.
In Sec. II, we revisit the normal-mode formalism to

facilitate analytical comparisons with the new horizontally
layered model presented in Sec. III. The new model is
analyzed in Sec. IV in terms of parametric variations, and
we briefly discuss the options that would explain the high
Q-values inferred from moonquake observations and pro-
vide a simple representation of the involved physics to be
able to calculate the lunar response consistent with high
Q-values. We then use the new response model to calculate
the corresponding LGWA sensitivity curve in Sec. V. The
results and scope of the study is discussed in Sec. VI before
providing the conclusions in Sec. VII.

II. NORMAL-MODE METHOD TO CALCULATE
THE LUNAR GW RESPONSE

The preferred method so far to calculate the lunar
response to GWs was to use the normal-mode formalism
initially adapted for this purpose by Ben-Menahem [23]. In
this section, we briefly review the normal-mode method so
that it can later be compared with the equations of the
Dyson model.
Any displacement field ξ⃗ðr⃗; tÞ of the Moon can be

written as a sum over normal modes χ⃗Nðr⃗Þ with amplitude
ANðtÞ:

ξ⃗ðr⃗; tÞ ¼
X
N

ANðtÞχ⃗Nðr⃗Þ: ð1Þ

The index N can generally stand for several indices such as
n, l, m in the formalism of spherical harmonics. In this
paper, we choose the following normalization of the normal
modes

Z
V

d3rρðr⃗Þχ⃗N0 ðr⃗Þ� · χ⃗Nðr⃗Þ ¼ MδNN0 ; ð2Þ

where ρðr⃗Þ is the mass density of the Moon at position r⃗,
andM is the mass of the Moon. Note that the normal modes
are without unit in this normalization, while the amplitude
AN has units of displacement.
There are two ways to describe the coupling of a GW

with the Moon. The first is to consider the GW as a tidal
field acting on the mass distribution of the Moon

ρðr⃗Þ ̈ξ⃗ðr⃗; tÞ ¼ ∇ · σðr⃗; tÞ − ρðr⃗Þ∇ϕðr⃗; tÞ

þ 1

2
ρðr⃗Þhðr⃗; tÞ · r⃗; ð3Þ

This approach only works in the long-wavelength approxi-
mation, which means that the diameter of the Moon must be
much smaller than the length of the GW. Applying the
integral

R
d3rχ⃗Nðr⃗Þ� to both sides of the equation, one

obtains

ÄNðtÞ þ
ωN

QN
ȦNðtÞ þ ω2

NANðtÞ

¼ 1

2M

Z
d3rρðr⃗Þχ⃗Nðr⃗Þ� · ḧðr⃗; tÞ · r⃗: ð4Þ

Each normal mode represents a harmonic oscillator at
frequency ωN subject to viscous damping described by the
quality factor QN. The normal mode χ⃗Nðr⃗Þ together with
ωN and QN must be calculated numerically [29]. The
Newtonian gravity potential ϕðr⃗; tÞ is needed to describe
gravity perturbations caused by the deformations of the
Moon, which act back on its deformation altering the
normal modes, which is significant especially at lower
order. The GW is represented by the spatial (3 × 3)
components hðr⃗; tÞ of the metric perturbation. We can
typically neglect the variation of the metric perturbation
over the extent of the Moon since the lengths of the GWs
is much longer than the diameter of the Moon at the
frequencies of interest.
When considering the measurement of the surface

displacement with a seismometer, one needs to keep in
mind that the force field also acts on the suspended proof
mass of the seismometer. This means that once the
displacement ξ⃗ðr⃗0; tÞ of the Moon’s surface is calculated
at the position r⃗0 of the seismometer, the term hðr⃗0; tÞ ·
r⃗0=2 needs to be subtracted.
The second, in many ways more convenient approach is

to describe the action of a GW hðr⃗; tÞ on the Moon in
transverse-traceless gauge, where the coupling happens
with the gradient of the shear modulus, μðr⃗Þ:

ρðr⃗Þ ̈ξ⃗ðr⃗; tÞ ¼ ∇ · σðr⃗; tÞ − ρðr⃗Þ∇ϕðr⃗; tÞ
− ð∇μðr⃗ÞÞ · hðr⃗; tÞ; ð5Þ

where σðr⃗; tÞ is the stress tensor and ξ⃗ðr⃗; tÞ the displace-
ment field in transverse-traceless coordinates. Applying the
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integral
R
d3rχ⃗Nðr⃗Þ� to both sides of the equation, one

obtains

ÄNðtÞ þ
ωN

QN
ȦNðtÞ þ ω2

NANðtÞ

¼ −
1

M

Z
d3rχ⃗Nðr⃗Þ� · hðtÞ ·∇μðr⃗Þ: ð6Þ

This approach was also taken by Ben-Menahem [23]
and Dyson [26], and its equivalence with the first approach
was shown in [30]. In this case, there is no acceleration of
the seismometer proof mass that would have to be
accounted for: the displacement ξ⃗ðr⃗; tÞ calculated in this
way directly describes the displacement signal of the
seismometer.
In order to make the connection with the seminal work of

Ben-Menahem more explicit, we now consider the simple
case of a Moon with spherically symmetric internal
structure, i.e., ρðr⃗Þ ¼ ρðrÞ and μðr⃗Þ ¼ μðrÞ. For example,
the shear modulus of a homogeneous, spherical Moon
would be described by μðrÞ ¼ μΘðR − rÞ, where R is the
radius of the Moon and Θð·Þ is the step function. There are
to types of normal modes of a spherically symmetric
model: spheroidal and toroidal. Toroidal modes have a
vanishing divergence, and they do not contain any radial
displacement. They describe horizontally polarized shear
waves in the high-frequency regime. The spheroidal modes
include radial displacements, and they perturb the density
of the Moon. In the high-frequency limit, they describe
Rayleigh waves as well as compressional and vertically
polarized shear waves. As was shown in [23], the response
of toroidal modes to GWs is strongly suppressed, and we
can focus on the spheroidal normal modes,

χ⃗Snlðr⃗Þ¼ anlðrÞY⃗m
2 ðθ;ϕÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
bnlðrÞΨ⃗m

l ðθ;ϕÞ; ð7Þ

expressed in terms of the vector spherical harmonics

Y⃗m
l ðθ;ϕÞ ¼ Ym

l ðθ;ϕÞe⃗r;

Ψ⃗m
l ðθ;ϕÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp r∇Ym

l ðθ;ϕÞ: ð8Þ

The vector harmonics are normalized such that they form
an orthonormal basis

Z
dΩY⃗m0

l0 ðθ;ϕÞ · Y⃗m
l ðθ;ϕÞ� ¼ δll0δmm0 ;

Z
dΩΨ⃗m0

l0 ðθ;ϕÞ · Ψ⃗m
l ðθ;ϕÞ� ¼ δll0δmm0 ; ð9Þ

with products between different vector spherical harmonics
vanishing. The normalization condition of the normal
modes in Eq. (2) now reads

ZR

0

drr2ρðrÞða2nl þ lðlþ 1Þb2nlÞ ¼ M; ð10Þ

As a simple demonstration, we now use Eq. (6) to
calculate the lunar response explicitly for a homogeneous
Moon. We choose the GW tensor to take the form
hðtÞ ¼ h0ðtÞðe⃗x ⊗ e⃗x − e⃗y ⊗ e⃗yÞ, i.e., the GW is propa-
gating along the z-axis, which aligns with the polar axis of
the spherical coordinate system used in the previous
equations, and we neglect the position dependence of
the GWamplitude assuming that the Moon is much smaller
than the length of the GW. Inserting this expression into the
right-hand-side of equation (6), and substituting the normal
mode by the expression in Eq. (7), we obtain for quadru-
pole modes l ¼ 2:

−
1

M

Z
d3rχ⃗Nðr⃗Þ� · hðtÞ · ∇μðrÞ ¼ R2μ

M

Z
dΩχ⃗NðR;ΩÞ� · hðtÞ · e⃗r

¼ R2μ

M
h0ðtÞan2ðRÞ

Z
dΩYm

2 ðθ;ϕÞ�ððe⃗r · e⃗xÞ2 − ðe⃗r · e⃗yÞ2Þ

þ R2μ

M
h0ðtÞbn2ðRÞ

ffiffiffi
6

p Z
dΩΨ⃗m

2 ðθ;ϕÞ� · ðe⃗xðe⃗r · e⃗xÞ − e⃗yðe⃗r · e⃗yÞÞ

¼ R2μ

M
h0ðtÞ2

ffiffiffiffiffiffi
2π

15

r
ðan2ðRÞ þ 3bn2ðRÞÞ for m ¼ �2 and 0 for m ¼ 0;�1; ð11Þ

where R is the radius of the Moon, dΩ ¼ dϕdθ sinðθÞ,
and we made use of ∇μðrÞ ¼ −μδðr − RÞe⃗r (e⃗r is the unit
radial vector). The frequency-domain response can then be
written

ÃnðωÞ ¼
1

2
h̃0ðωÞLn

ω2
n

ω2
n − ω2 − iωnω=Qn

; ð12Þ

where the effective baseline Ln is given by

RESPONSE OF THE MOON TO GRAVITATIONAL WAVES PHYS. REV. D 110, 064025 (2024)

064025-3



Ln ¼
3β2

πRω2
n
2

ffiffiffiffiffiffi
2π

15

r
ðan2ðRÞ þ 3bn2ðRÞÞ: ð13Þ

We introduced β2 ¼ μ=ρ, where β is the speed of seismic
shear waves. A factor 2 was multiplied to the baseline since
the two modes with m ¼ −2, 2 out of the 5 quadrupole
modes respond equally to the GW, the other three modes do
not respond. Instead, in a rotating or asymmetric lunar
model, the modes can be split and the baseline must adopt
the index m as well. The expressions for the functions
an2; bn2 can for example be found in Eq. (B14) in [31],
which also contains equations how to calculate the normal-
mode frequencies ωn. Equation (12) together with Eq. (7)
can be inserted into Eq. (1) to obtain the full GW response
of the homogeneous Moon.
Technically, the difficult step of the normal-mode model

is to calculate the functions an2ðrÞ, bn2ðrÞ for arbitrary
radially symmetric internal structure models together with
the respective normal-mode frequencies and Q-values [32].
The numerical tool MINOS [33] was used in a past
study [24]. The sum in Eq. (1) is then carried out up to
some order n typically set by the frequency band of interest.
In any case, it is computationally challenging to calculate
the normal modes with high order n, and it is also not
necessarily reasonable to push to higher frequencies with

normal-mode simulations where heterogeneities of the
Moon play a larger role. The results presented in [1]
include normal modes up to order n ¼ 229 with f229 ¼
ω229=ð2πÞ between 0.1 and 0.2 Hz.

III. DYSON MODEL OF THE LUNAR GW
RESPONSE FOR A HORIZONTALLY

LAYERED GEOLOGY

The first model of the response of an elastic body to GWs
was calculated by Dyson for a homogeneous half
space [26]. In this section, we will apply the same approach
to calculate the GW response of a horizontally layered
half space.
The layered geology means that the elastic parameters

only change at a discrete set of depths, i.e., the layer
interfaces. Inside each layer, the medium is assumed to be
homogeneous (and isotropic) and the equation of motion
inside each layer has the simple form given in Eq. (14)
without the GW source term:

ρðr⃗Þ ̈ξ⃗ðr⃗; tÞ ¼ ðλþ μÞ∇
�
∇ · ξ⃗ðr⃗; tÞ

�
þ μ∇2ξ⃗ðr⃗; tÞ; ð14Þ

where λ is Lamé’s first parameter. The GW influences the
boundary condition between layers and at the surface:

τ⃗kþ − τ⃗k− þ ðμk − μkþ1Þn⃗ · hðr⃗k; tÞ ¼ 0;

ξ⃗ðr⃗; tÞjkþ ¼ ξ⃗ðr⃗; tÞjk−;
τ⃗kþ ≡ λkn⃗ð∇ · ξ⃗ðr⃗; tÞÞjkþ þ μk

�
∇�n⃗ · ξ⃗ðr⃗; tÞ���kþ þ ðn⃗ ·∇Þξ⃗ðr⃗; tÞjkþ

�

τ⃗k− ≡ λkþ1n⃗ð∇ · ξ⃗ðr⃗; tÞÞjk− þ μkþ1

�
∇�

n⃗ · ξ⃗ðr⃗; tÞ���k− þ ðn⃗ · ∇Þξ⃗ðr⃗; tÞ��k−
�
; ð15Þ

where the index k counts the layers, jk� means to evaluate a
function at the interface either on its upper (þ) or lower (−)
side, and n⃗ is the unit vector normal to the horizontal
interfaces. The vacuum above surface counts as additional
layer k ¼ 0 with μ0 ¼ 0. The continuity of displacement—
last row in Eq. (15)—only holds for solid-solid interfaces.
At fluid-solid interfaces, only the displacement normal to
the interface is continuous, while at the free surface, the
continuity condition is not applied.
Solving the equations for the displacement field can be

simplified by realizing that Eq. (15) can only be fulfilled if
the seismic waves produced by the interaction of the
ground with GWs propagate vertically across the layered
structure, i.e., in the direction of n⃗. This is because the GW
amplitude is to a very good approximation the same across
the interface (across the entire Moon, since we are
interested in frequencies where the GW length is at least
on the order of hundreds of thousands of kilometers). As a
consequence, the seismic waves produced at the interfaces

also need to have nearly the same amplitude across the
interface, and this can only be achieved if they propagate
(nearly) vertically. Note that this also requires the shear
modulus to be uniform in each layer as is in fact assumed in
our model.
We can therefore express the displacement field in each

layer as a sum of an upward and downward traveling
seismic wave

ξ⃗ðr⃗; tÞ ¼
X
p¼α;β

ξ⃗dpðtÞeikpz þ ξ⃗upðtÞe−ikpz; ð16Þ

where the sum is over the two polarizations with kα ¼ ω=α,
kβ ¼ ω=β being the wave numbers of compressional and
shear waves, α, β being the speed of compressional and shear
waves, ξ⃗αðtÞ ¼ ð0; 0; ξαðtÞÞ and ξ⃗βðtÞ ¼ ðξx;βðtÞ; ξy;βðtÞ; 0Þ,
and z is the coordinate along the vertical direction. We
assume that there is no seismic wave incoming from below
the lowest layer interface. It is also possible to simulate
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damping of the layer material by adding a small imaginary
part to thewave numbers, e.g., k → kð1þ i=ð2QÞÞ, whereQ
is the medium’s quality factor and generally depends on the
wave polarization.
The solution for a homogeneous half space was first

calculated by Dyson and takes the form [26]

ξx ¼ −i
1

kβ
hxz; ξy ¼ −i

1

kβ
hyz;

ξz ¼ i
μ

λþ 2μ

1

kα
hzz ¼ i

β

α

1

kβ
hzz: ð17Þ

This model predicts a simple 1=ω dependence of the lunar
GW response. According to the last equation, we can
formally define the baseline Lx;y ¼ λβ=π for measurements
of the horizontal displacement and Lz ¼ ðβ=αÞλβ=π for
measurements of the vertical displacement, where λ ¼
2π=k is the seismic wavelength. Since the speed α of
compressional waves is always larger than the speed β of
shear waves, the GW response is stronger in the horizontal
than in the vertical.
It is interesting to compare the result of the horizontally

layered model with the normal-mode model. We do not
expect a good match at frequencies where the finite size and
spherical shape of the Moon are important. However, at
frequencies above 0.1 Hz, where the seismic wavelength is
more than an order of magnitude smaller than the radius of
the Moon, the two approaches should give similar results.
In order to compare with the normal-mode result in [1], we
will define a layered geology based on one of the layered
models in Garcia et al. [25]. The models in [25] are not in
perfect agreement, but for GW response calculations, the
relatively small discrepancies do not have an important
impact. In Table I, we summarize the relevant parameters,
which we will use as our reference model throughout this
paper. Layer k ¼ 5 formally represents a fluid core of the
Moon, which is not considered part of our reference model
since the deep structure, albeit important, requires normal-
mode simulations for accurate modeling.
The result is shown in Fig. 1. In addition to the reference

model based on the values in Table I, we show the

prediction of the homogeneous half-space model using
the values of layer 1 for the entire half space. Including only
the first 4 shallow layers of the reference model, the
simulation predicts a lower (by a factor of a few) GW
response around 0.1 Hz compared to the on resonance
normal-mode prediction. This can be attributed to the
presence of additional and sharper peaks in the normal-
mode model in this part, which are produced by the finite
size of the Moon and the liquid core, i.e., seismic waves
propagating toward the center of the Moon and contributing
to an energy loss in the shallow layered geology, can in
reality come back and enhance the lunar GW response. We
therefore conclude that the two models, i.e., the normal-
mode model and the Dyson model based on the shallow
layers, produce consistent predictions of the lunar GW
response.

IV. VARIATIONS OF THE REFERENCE
RESPONSE MODEL TO PRODUCE THE

HIGH-Q FEATURES IN LUNAR
SEISMIC OBSERVATIONS

A gravitational wave produces seismic waves in a very
peculiar way and distinct from any other known seismic
source. The dominant coupling happens at all of the
locations where strong changes of the shear modulus occur.
At these locations, GWs drive emission of seismic waves in
the direction of the shear-modulus gradient as well as along
the opposite direction, and this emission is coherent over the
full extent of the Moon. Among the strongest emitters are
the surface and solid-fluid interfaces characterized by a
maximal change of the shear modulus (one side having
vanishing shear modulus). However, far more important
than the emission mechanism is what happens to seismic
waves in a layered geology. In this paper, we adopt the half-
space model, which means that a seismic wave transmitting
into the deepest layer of the model is lost. Even for a more

TABLE I. Reference geological model used in this paper,
which is a simplification of model M2 in [25]. The depth value
refers to the depth where the layer starts. The last layer formally
represents a fluid core of the Moon. Unless explicitly mentioned
in a figure caption, it is not included in our simulations.

Layer 0 1 2 3 4 5

Depth [km] Above
surface

0.00 1.00 12.00 28.00 1317.1

α ½km=s� 0.00 1.00 3.20 5.50 7.68 4.00
β ½km=s� 0.00 0.50 1.80 3.30 4.41 0.00
ρ ½g=cm3� 0.00 2.60 2.60 2.60 3.34 4.16

10-3 10-2 10-1 100
102

104

106

108

FIG. 1. Lunar GW response model considering only a shallow
horizontally layered geology based on the parameter values in
Table I (“multilayer”) together with the prediction for a homo-
geneous half-space model (“one layer”). The plot includes the
normal-mode result of [1] for comparison.
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realistic spherical model of the Moon, it is reasonable to
assume that at high enough frequencies, scattering and
dissipation make sure that above some frequency, seismic
energy emitted toward deep layers will not return in
significant amounts. However, what if there is something
preventing seismic energy to be transmitted into deep
layers? In the following, we will first show results from
parametric variations of the shallow model. These variations
cannot explain the high-Q effects (e.g., coda decay times) of
moonquakes observed with Apollo seismometers. We then
introduce a simplified mechanism, i.e., an artificial fluid
layer, that enhances the storage time of seismic waves with
greatly enhanced GW response and Q-values consistent
with the Apollo seismic observations.
In the following, the quantity G denotes the response of

the layered system under study divided by the homo-
geneous half-space model (with parameter values of layer
k ¼ 1 in Table I) displayed as green-dashed curve in Fig. 1.
The first study is the variation of the thickness of the first
three layers (k ¼ 1; 2; 3 in Table I). In Fig. 2, we plot the
ratio G for the shallow-layered response model for the
horizontal displacement as the “standard” reference
response. The other curves show how the response changes
if the thickness of the layer indicated in the legend is
increased by a factor 1.33. As one would expect, the
frequencies of some of the peaks shift slightly under
thickness variations. In addition, peak response changes
by more than a factor 2. Changes in peak response through
thickness variations would not be possible in a two-layer
structure. It is a consequence of changing interference
conditions between seismic waves resonating in different
layers and then propagating to the surface. In this simu-
lation, the ground medium is assumed to be dissipation
free, which means that energy loss occurs exclusively by
transmission into the lowest layer. Large reduction of
energy loss, which would show as increased heights of
the response peaks, due to layer thickness variations is not
possible.

A more important parameter is the shear-wave velocity β
since it is connected to three different physical effects as we
will explain in the following. In Fig. 3, we show the change
of response under variations of β1 from 100 m=s to the
nominal shear-wave speed of 500 m=s in layer k ¼ 1. It can
be seen that the slower the speed in the surface layer, the
stronger the GW response. There are three different
contributions changing with β1. The first is the emission
of seismic waves from the surface, which becomes weaker
with decreasing β1 (since the shear modulus step at the
surface becomes smaller). Second, the seismic waves
emitted from the first interface become stronger with
decreasing β1, because the shear-modulus step becomes
larger toward the layer k ¼ 2. These two effects would not
necessarily point toward an overall enhancement of the
response with decreasing speed. The third effect is due to
the increase of the contrast across the first interface
(between layers k ¼ 1 and k ¼ 2), which reduces the
transmission into the lower layers and increases the
resonant amplification within the surface layer k ¼ 1.
This is in fact the explanation of why the GW response
is larger when the shear-wave speed in the surface layer
becomes slower. We now see that the ground response is
resonantly amplified by up to a factor 100. Changes of the
shear-wave speed of the surface layer can have an impor-
tant impact on the lunar GW response and the slower the
speed the stronger is the response. The blue minima in the
response whose frequencies are only weakly influenced by
the changing shear-wave speed in the first layer are
determined by the properties of the second and third layers
of the model as we verified in additional simulations not
reported here.
The next study is of the effect of the Q-value of the layer

material on the lunar GW response. The results are shown

10-3 10-2 10-1 100

100

101

FIG. 2. Response changes when the thickness of one of the first
three layers is increased by 33%. Responses are normalized with
respect to the homogeneous half-space model.

FIG. 3. Dependence of lunar GW response on the shear-wave
speed of the first layer (k ¼ 1). The seismic speed of the reference
model is β1 ¼ 500 m=s.
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in Fig. 4. Accordingly, the Q-value must be very low to
have a significant effect on the response below 1 Hz. Only
for Q ¼ 1, the response changes dramatically and only
above 10 mHz. One can see that the height of peaks close to
1 Hz is decreased significantly for Q ¼ 10, but not for
Q ¼ 100. This indicates that the effective Q-value of the
layered structure limited by energy loss into the lowest
layer is well below Q ¼ 100. This is also clear from
looking at the amplification factor, i.e., the peak height
above the off-resonance response. If the resonances due to
the layered structure were able to sustain Q-values in the
thousands, then the material quality might set important
limits to the GW-response amplifications. Note that the
Q-value would produce stronger limitations if deeper layers
played a role so that the propagation distance became
longer.
The next simulation includes the fluid layer k ¼ 5 from

Table I. We do this exercise to illustrate important aspects
of the lunar GW response, but we cannot expect that a
fluid layer below a depth of 1370 km corresponding to the
depth of the suspected fluid core, leads to accurate results
in a horizontally layered geological model. With such a
fluid layer, downward propagating shear waves are fully
reflected from the solid-to-fluid interface (at normal

incidence). This means that a fluid layer in a horizontally
layered structure at any depth eliminates transmission loss
into deeper layers, which leads to the sharp peaks in
horizontal response in Fig. 5. The height of these peaks
is limited by the Q-value of the layer materials. Instead,
compressional waves can propagate into a fluid layer,
which means that energy loss due to transmission into
the lowest layer is still possible, and the GW response in
vertical displacement does not show the sharp peaks of
the horizontal response. In fact, the deep fluid layer has a
smaller but nevertheless important impact on the GW
response in vertical direction; at least above a few 10 mHz.
Responses in horizontal and vertical direction for the

model with deep fluid layer both show suppression below
1 mHz with respect to the shallow-layer model. This is
because at these low frequencies the long seismic waves
emitted from the solid-to-fluid interface interfere destruc-
tively with the seismic waves propagating downward from
the upper layers. The horizontal response in the limitω → 0
with M layers and layer k ¼ M being a fluid (μM ¼ 0) is
governed by

10-3 10-2 10-1 100
10-1

100

101

Horizontal

10-3 10-2 10-1 100
10-1

100

101

Vertical

FIG. 4. Changes in lunar GW response under variations of the
Q-value of the layer material (same Q-value for all layers). Upper
plot: horizontal response, lower plot: vertical response.
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FIG. 5. The full-layers model includes the deep fluid layer
k ¼ 5. It is plotted together with the GW response of the shallow-
layers model (k ¼ 1;…; 4) and with the homogeneous half-space
model. Upper plot: horizontal response, lower plot: vertical
response.
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ξx ¼ −
1

2

P
M−1
k¼1 ρkðh2kþ1 − h2kÞP
M−1
k¼1 ρkðhkþ1 − hkÞ

hxz ¼ −
1

2
L0hxz; ð18Þ

which yields a baseline L0 ≈ 1323 km with the parameter
values of Table I. Here, hk is the depth of the interface
above layer k. In comparison, the baseline of the normal-
mode response model has a low-frequency limit equal to
the lunar radius of R ¼ 1737 km. In other words, well
below 1 mHz (the approximate frequency of the lowest
order quadrupolar, spheroidal mode of the Moon), the GW
signal of a seismometer is given by ξx ¼ Rhxr=2, where hxr
is the projection of the GW tensor onto the radial and
horizontal measurement directions.
An important conclusion is that a fluid layer can strongly

enhance the lunar GW response. Any deeper layer with low
shear-wave speed would have such an effect, and one might
even speculate if dense fracture networks could lead to a
significant energy return and enhance the GW response.
These results provide another motivation to monitor hori-
zontal surface displacement as proposed for LGWA instead
of vertical displacement.
The final parametric study assumes an additional layer

interface for shear-wave energy return placed at depths
from 50 to 1000 km. Technically, we simulate it as a fluid
layer, but this is only to simplify the simulation. The
resulting response shown in Fig. 6 has again the structure
with the sharp peaks as in Fig. 5. Also here, the height of
the peaks is ultimately limited by the Q-value of the layer
materials. No matter how deep the layer, there is a dense
series of sharp response peaks in the 0.1 to 1 Hz band. The
simulation was made with a Q ¼ 2000 for all layers, but
without significant impact on the results compared to an
infinitely high Q-value. If the Q-value limitations of the

material become important, then they would reduce the
response at 1 Hz more than at 0.1 Hz, and the effect would
depend on how deep the energy-return layer is.

V. LGWA SENSITIVITY IN THE
DECIHERTZ BAND

We can now use the results of the previous section to
calculate the sensitivity of the LGWA. Specifically, we use
the results for the GW response RðfÞ shown in Fig. 5 to
convert the displacement sensitivity of an LGWA accel-
erometer into a GW strain sensitivity. The target displace-
ment sensitivity of the LGWA accelerometers is shown in
Fig. 7 as first reported in [21]. In this model, the noise
below 1 Hz is dominated by suspension thermal noise of a
Watt’s linkage assumed here out of silicon while the noise
above 1 Hz is dominated by readout noise of the super-
conducting coils combined with a superconducting quan-
tum interference device used as low-noise amplifier. The
corresponding LGWA sensitivity model as characteristic
strain is then calculated as

hnðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fSðfÞp

2RðfÞ ; ð19Þ

where the factor 2 in the denominator is a standard recipe
used for LGWA to account for the fact that the acceler-
ometer array is assumed to consist of 4 stations, and each
station measures ground displacement along two orthogo-
nal horizontal directions. This is only an approximate
correction and to be accurate, one must consider both
GW polarizations and data from all 8 accelerometer
channels to calculate the full LGWA sensitivity as for
example implemented in GWFish [34].
The results for the GW strain sensitivities are shown in

Fig. 8 measuring surface displacements along the horizon-
tal and vertical direction. The large difference between the
two plot comes from our (artificial) choice to simulate the
energy return with the help of a fluid layer. As before, this
leads to a near-perfect energy storage for shear waves

FIG. 6. Horizontal lunar GW response relative to the homo-
geneous half-space model with varying depth of an additional
layer interface to simulate a strong shear-wave energy return.

FIG. 7. Targeted sensitivity of an LGWA accelerometer to
ground displacement [21].
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where energy loss is dominated by the damping introduced
by the rock itself (Q ¼ 2000), while the energy loss in the
compressional-wave field is dominated by transmission
into the fluid layer.

VI. DISCUSSION

The reference model presented in Sec. III that includes
only the shallow geological layers of Table I does not
explain important features of moonquake observations and
active studies during the Apollo missions especially
concerning the very high Q-values inferred from moon-
quake coda decay times and envelop fits. A summary of
the Q-measurements can be found in Table 3 of Garcia
et al. [25]. There are two Q-measurements at frequencies
between 0.1 and 1 Hz. One of them reports a shear-wave
Q-value of 5000 [35], the other of 2500 [36]. These
Q-values are similar to what was inferred from measure-
ments above 1 Hz with the lowest reported value of
Q ¼ 1600 for shear waves at 4 Hz within the first 2 km
of the ground. Such high-Q phenomenology is absent in our

shallow-layer model despite the fact that the material itself is
simulated with high Q-value. The reason is energy loss into
deeper layers and ultimately into the infinite half space.
Future improvements of our model need to include the

high-Q phenomenawithout the use of an artificial fluid layer.
It was suggested that seismic scattering plays an important
role in seismic energy transport on theMoon [36,37]. In fact,
seismic scattering itself can also be described using an
effective Q-value to quantify how much energy is scattered
out of the main seismic wave into other polarizations and
directions. This effective Q-value can be less than 100 in the
megaregolith down to about 80kmand then steeply increases
to a few 1000 below 100 km depth [36]. Scattering does not
necessarily mean loss of energy, but rather loss of certain
types of information. For the purpose ofGWdetection, it will
be important to device a method how to integrate the full
information content in the seismic response of a GW if this
signal is subject to scattering. Here, an important difference
to moonquakes is that GWs produce seismic waves coher-
ently over the entire Moon leading to scattered-wave con-
tributions to the observed seismic signal that are incident to
the LGWA array from all directions. It is an open question
how accurately fracture networks that produce the seismic
scattering can be characterized around the LGWA deploy-
ment site to allow for an accurate calibration of LGWA data
and possibly even retrieving phase informationabout theGW
signal from the seismic signal. Hence, the lunar GW-
response estimates for horizontal displacement measure-
ments provided in this paper are consistent with known
properties of the lunarmegaregolith, but it is still necessary to
find a way to include the fracture networks in the layered
model; at least in such a way that their effect on wave
propagation is simulated. Until then, important question
marks remain concerning the lunar GW response.
It is also important to note that the lunar GW response in

the decihertz band is expected to vary significantly across the
lunar surface due to topographic features and geological
heterogeneity. This is why eventually it will be necessary to
switch to full dynamical simulations of the lunar GW
response based on finite-element models. Future proposed
missions (e.g., Lunar Geophysical Network [38]) or mis-
sions already under preparation (Farside Seismic Suite and
Chang’e 7 [39,40]), which include seismometers in their
payloads, might provide important new insight into the
properties of the lunar seismic field and the structure of
the megaregolith to refine our response models. Especially
the proposed LGWA pathfinder mission Soundcheck with
deployment site in one of the Moon’s permanently shad-
owed regions would provide crucial information for LGWA
mission planning [41].

VII. CONCLUSIONS

In this paper, we present a new formalism to simulate the
lunar GW response in a layered geology. The method is an
extension of the Dyson model of the GW response of a
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FIG. 8. GW strain sensitivity using horizontal (upper plot) and
vertical (lower plot) accelerometers (here assumed to have the
same displacement sensitivity). The full-layers model includes
the deep fluid layer k ¼ 5. It is plotted together with the GW
sensitivity of the shallow-layers model (k ¼ 1;…; 4) and with the
homogeneous half-space model.
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homogeneous half space. A coordinate system is used
where the GW couples with the elastic medium through
gradients of the shear modulus. This model should first of
all be understood as a step toward more sophisticated finite-
element simulations, where validation of results requires an
analytical benchmark. This is in the long run the main role
of the method presented in this paper. In addition, it
provides intuitive insight into the lunar GW response that
is not easy to obtain in the normal-mode formalism like for
example the role of near-surface shear-modulus disconti-
nuities. Finally, it is the only exact model of the lunar GW
response up to 1 Hz that we have today.
The first important result of our study is that the

GW response is strongly amplified in multi-layered
geologies compared to the homogeneous half-space model.
Amplifications greater than a factor 10 are foundwith respect
to thehomogeneousmodel.We then probe the dependence of
the results on certain parameter values of the layered model
including layer thickness, material Q-value (absorption), and
shear-wave speed. We find that low shear-wave speed in the
first layer increases the lunar GW response. This is mostly
due to the increased shear-modulus change to the next layer
and corresponding enhancement of seismic reflection from
the first layer interface and corresponding resonant enhance-
ment of seismic waves within the first layer.

The substantial change to the results comes when
introducing features that return shear-wave energy more
effectively. We use a fluid layer as an (artificial) means to
create strong reflection of shear waves. No matter how deep
this layer is located, it strongly enhances the GW response
by orders of magnitude introducing strongly peaked res-
onances. At lower frequencies, a liquid core or even the free
surface at the other side of the Moon can create strong back
reflections.
An important mechanism that influences energy trans-

port in the upper layers of the Moon (the lunar mega-
regolith) is seismic scattering. It requires a separate study to
develop a method to simulate the effect of fracture networks
on the lunar GW response. Simulations showed that
fracture networks can store seismic energy for long times
and release it gradually to produce long moonquake coda
characterized by Q-values of a few 1000. How such high-Q
phenomena, even if through scattering, influence the lunar
GW response will be subject to future studies.
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