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Several theoretical waveform models have been developed over the years to capture the gravitational-
wave emission from the dynamical evolution of compact binary systems of neutron stars and black holes.
As ground-based detectors improve their sensitivity at low frequencies, the real-time computation of
these waveforms can become computationally expensive, exacerbating the steep cost of rapidly
reconstructing source parameters using Bayesian methods. This paper describes an efficient numerical
algorithm for generating high-fidelity interpolated compact binary waveforms at an arbitrary point in the
signal manifold by leveraging computational linear algebra techniques such as singular value
decomposition and the meshfree approximation. The results are presented for the time-domain
NRHybSur3dq8 inspiral-merger-ringdown waveform model that is fine-tuned to numerical relativity
simulations and parametrized by the two component-masses and two aligned spins. For demonstration,
we target a specific region of the intrinsic parameter space inspired by the previously inferred parameters
of the GW200311_115853 event, a binary black hole system whose merger was recorded by the network
of Advanced LIGO and Virgo detectors during the third observation run. We show that the meshfree
interpolated waveforms can be evaluated in ∼2.3 ms, which is about 38 times faster than its brute-force
(frequency-domain tapered) implementation in the PyCBC software package at a median accuracy of
∼Oð10−5Þ. The algorithm is computationally efficient and scales favorably with an increasing number of
dimensions of the parameter space. This technique may find use in rapid parameter estimation and source
reconstruction studies.
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I. INTRODUCTION

Compact binary systems such as binary black holes
(BBHs) or binary neutron stars are one of the most
important sources for ground-based gravitational-wave
(GW) detectors. The GW signal emitted by such sources
can be theoretically modeled in the secular inspiral or
postmerger ringdown phase by solving Einstein’s field
equations. While analytical solutions are not available in
the highly nonlinear, so-called “merger” domain of the
evolution of these sources, the inspiral and ringdown
solutions are often calibrated to a set of numerical relativity
(NR) waveforms to construct complete semianalytical
waveforms covering the inspiral, merger, and ringdown

(IMR) phases of the evolution of such compact binary
sources. Several such waveform models have been devel-
oped in both the frequency and time domains, such as the
family of frequency-domain IMR waveforms [1–5] and the
effective one-body (EOB) family [6,7] of waveforms,
which are routinely used for GW data analysis. More
recently, NR-based surrogate models have also been
developed such as the NRSur7dq2 [8], NRSur7dq4 [9],
and NRHybSur3dq8 [10] models, which are among
the most accurate waveform models available but are
computationally expensive to generate in comparison
to their frequency-domain counterparts, such as the
IMRPhenomXAS and SEOBNRv4_ROM models. For
reference, NRHybSur3dq8 takes ∼75 ms to generate a
waveform with component masses m1;2 ¼ ð50; 20ÞM⊙ and
aligned spin parameters χ1z;2z ¼ ð0.05; 0.05Þ starting at a
seismic cutoff frequency of 15 Hz. For the same set of
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parameters, the time to generate IMRPhenomXAS and
SEOBNRv4_ROM is ∼1.5 ms and ∼2.4 ms, respectively.1

Our research is inspired by a suggestion by Verma et al.
[10], who tabled the idea of speeding up the evaluation of
the NRHybSur3dq8 time-domain surrogate waveforms by
creating a faster frequency-domain variant. In the past, fast
frequency-domain surrogates using the technique of model
order reduction have been applied to the SEOBNRv4 [6]
waveform model, leading to a significant reduction in the
computational complexity of evaluating these waveforms.
Such an approach could potentially accelerate parameter
estimation (PE) for compact binary sources using these
accurate waveform models.
There have been several attempts to construct surrogate

models of other waveform models. Cannon et al. [11]
constructed the approximate nonspinning IMR waveforms
[12] parametrized by only the two-component masses by
first projecting these waveforms over a set of singular-value
decomposition (SVD) basis vectors, followed by a grid-
based two-dimensional Chebyshev interpolation of the
SVD coefficients. Chua et al. [13] used artificial neural
networks (ANNs) to generate a four-dimensional reduced
order model (ROM) of the 2.5 post-Newtonian (PN)
frequency-domain TaylorF2 waveform model [14] para-
metrized by the two component masses and two aligned
spins. In their approach, the waveforms are represented as
the weighted sums over the reduced basis vectors. The
ANNs are then trained to accurately map the GW source
parameters into the basis coefficients. Other studies related
to building NR surrogate models utilized ANNs [15],
Gaussian process regression [16], and deep-learning archi-
tectures [17].
In this work, we aim to significantly reduce the computa-

tional cost of generating frequency-domain NRHybSur3dq8
waveforms by using a combination of SVD and themeshfree
approximation. We focus on illustrating our approach by
concentrating on a region of the four-dimensional (two
component masses and two aligned spins) parameter space
around the inferred source parameters of the GW200311_
115853 [18] event detected during the third observing run of
the LVK Collaboration [19]. We construct meshfree inter-
polants for both the amplitude and phase of thesewaveforms
separately. These interpolants are then used to rapidly
evaluate the amplitude and phase of the waveform at any
arbitrary query points in the chosen parameter space. These
interpolated waveforms can be evaluated in ∼2.3 ms in
comparison to 89 ms (∼38 times faster) with the standard
(frequency-domain tapered) implementation of time-domain
NRHybSur3dq8 in PyCBC [20] with a median error of
∼Oð10−5Þ. Further, we also perform a Bayesian PE study
of a simulated GW200311_115853-like event coherently
injected in Gaussian noise to mimic data from the network

of LIGO and Virgo detectors. The PE runs are carried out
using the meshfree interpolated waveforms and take
∼16.4 minutes to complete on a 64-CPU-core setup and
the posterior distributions over the source parameters are
found to be broadly consistent with their injected values. In
comparison, with a brute-force frequency-domain imple-
mentation of tapered time-domain NRHybSur3dq8, the
posteriors are generated in ∼5 h and 50 min (on 64 CPU
cores), underscoring the gains achieved with the frequency-
domain meshfree waveforms.
The rest of the paper is organized as follows. Section II

introduces the NRHybSur3dq8 waveform model and the
preprocessing required before we build meshfree interpo-
lants. Section III explains an iterative strategy to find a
suitable set of basis vectors using SVD to span the space of
amplitude and phase and construct the meshfree interpo-
lants of the resulting SVD coefficients. In Sec. IV we
describe various radial basis function (RBF) kernels that
can be used to generate meshfree interpolants. Section V
demonstrates the results of a PE performed on a simulated
BBH event using meshfree interpolants. Finally, we sum-
marize the results in Sec. VI and discuss the limitations of
the current implementation, and suggest some ideas for
overcoming this limitation in follow-up studies.

II. NR WAVEFORM MODEL

NRHybSur3dq8 is a time-domain, aligned-spin surro-
gate model for a “hybridized” nonprecessing NR wave-
form, which is valid for stellar compact binaries with total
masses as low as 2.5M⊙. In this context, the term
“hybridized” refers to a combined waveform incorporating
both a PN and EOB waveform during the early times,
attached smoothly to an NR waveform at late times. The
training of this model involves hybridized waveforms
derived from 104 NR waveforms, supporting mass ratios
q ≤ 8 and spin values χ1z; χ2z ≤ 0.8. Here, χ2zðχ2zÞ
represents the spin of the heavier (lighter) black hole in
alignment with the direction of orbital angular momentum.
The waveform model also supports spin-weighted spherical
harmonic modes with l ≤ 4 and the (5, 5) mode but
excludes the (4, 0) or (4, 1) modes. In this work, we
specifically focus on the dominant, commonly referred to
as the “quadrupole” mode (2, 2), present in this waveform
model. The GW polarizations, denoted as “plus” ðhþÞ and
“cross” ðh×Þ, can be concisely represented as a unified
complex time series, denoted as h ¼ hþ − jh×. This com-
plex time series can be expressed as a linear combination of
spin-weighted harmonic modes hlm [21,22]. Consequently,
GWs propagating along any direction ðι;ϕ0Þ in the binary
source’s frame can be expanded in spin-weighted spherical
harmonic functions sYlm with spin weight s ¼ −2 as

hðt; ι;ϕ0Þ ¼
X∞
l¼2

Xl
m¼−l

hlmðtÞ−2Ylmðι;ϕ0Þ; ð1Þ1The timings quoted here are for the Python implementation in
the PyCBC software package.
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where ι represents the inclination angle between the orbital
angular momentum of the binary and the line of sight to the
detector and ϕ0 corresponds to the initial binary phase. The
corresponding frequency-domain waveform for the dom-
inant mode can be written as follows:

h̃þ=× ¼ Aþ=×ðfÞ exp½jψþ=×ðfÞ�; ð2Þ
where Aþ=×ðfÞ and ψþ=×ðfÞ are the amplitude and phase
as functions of frequency, respectively, and j represents the
complex number j ¼ ffiffiffiffiffiffi

−1
p

. Since NRHybSur3dq8 is an
aligned-spin waveform model [23–28], the relation h̃× ∝
−jh̃þ holds and therefore we only consider h̃þ and the
cross polarization (h̃×ðfÞ) can be calculated from the above
relation. From now on, we drop the subscript “þ=×” from
Aþ=× and ψþ=× and simply denote the amplitude and phase
by A and ψ , which correspond to plus polarization.
As a preprocessing step, we first calculate the duration of

the waveform starting at the seismic cutoff frequency
(flow). Subsequently, the starting frequency (fstart) of the
waveform generation is decreased until we reach twice the
duration of the desired waveform. Then, the time-domain
NRHybSur3dq8 waveform is generated starting at fstart,
followed by a time-domain tapering to smoothly decrease
the amplitude to zero (see Fig. 1). The length of the tapering
window is taken as a fraction (0.8 in this case) of the
difference between the new and desired duration of the
waveform. The longer duration of the waveform makes
sure that we do not lose any portion of the waveform in the
frequency band to be used in the PE while tapering. We use
a Kaiser window [29] (as implemented in PyCBC) for time-
domain tapering, which can be expressed as

wðnÞ ¼ I0

 
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4n2

ðM − 1Þ2

s !
=I0ðβÞ; ð3Þ

with n ≤ jM−1
2

j and where I0 is the modified zeroth-order
Bessel function, M is the number of points in the output
window, and β is the shape parameter, which determines
the tradeoff between the main-lobe width and side-lobe
level in the Fourier response of the window. As the
parameter β becomes large, the main-lobe width increases,
while the side-lobe level decreases. For this analysis, we
use a half-Kaiser window for tapering (see Fig. 1). The
tapering helps to reduce the Gibbs phenomenon while
converting the tapered waveform in the frequency domain
[see Fig. 2(a)]. Additionally, we also subtract the phase
accumulated up to flow from the total phase of the
frequency-domain waveform (tapered) to make sure the
phase at flow is zero, which significantly helps in
the interpolation of the SVD coefficients corresponding
to the phase [see Fig. 2(b)].
In the next section, we lay down an iterative strategy to

find suitable basis vectors to span the space of amplitude
and phase using SVD. Subsequently, we fit the resulting
SVD coefficients for amplitude and phase separately using
a linear combination of RBFs and monomials. Since the
amplitude and phase are smoothly varying functions of the
frequency [see Figs. 2(a) and 2(b)], the corresponding SVD
coefficients are expected to exhibit smooth variation over
the intrinsic parameter space as well and therefore are
suitable for interpolation. Combining the interpolated
coefficients at the arbitrary query points within the inter-
polating region with the corresponding basis vectors gives

FIG. 1. NRHybSur3dq8 is generated at a frequency (fstart ¼ 10 Hz) lower than the seismic cutoff frequency (flow ¼ 15 Hz), which
leads to a longer-duration waveform. It is generated for a simulated BBH event whose intrinsic parameters are shown in the title. A time-
domain tapering using a half-Kaiser window is performed on the longer waveform to smoothly attenuate the waveform amplitude to
zero, which helps to alleviate the Gibbs phenomenon arising due to a jump discontinuity while converting the time-domain waveform to
a frequency-domain waveform. The black dashed vertical line represents the epoch at which the amplitudes of the tapered and untapered
waveforms become equal (or, equivalently, the value of the half-Kaiser window becomes 1). The sampling frequency is set at 2048 Hz.
The waveform amplitude (y axis) is normalized by the maximum value of the strain. The Grey color is for the untapered waveform while
red color is for the tapered waveform. The half-Kaiser window is represented by the blue color.
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the interpolated amplitude and phase, and, hence, the
interpolated waveform.

III. GENERATION OF MESHFREE
INTERPOLANTS

To construct the interpolants for evaluating the meshfree
waveforms, the initial step involves choosing a patch of
intrinsic parameter space forwhich interpolants are to bebuilt.
The dimensionality of the patch depends on the dimension-
ality of the intrinsic parameter space over which interpolation
is to be performed. Rather than opting for a single patch with
large boundaries, a more effective approach (as suggested in
[30]) is to create multiple overlapping patches with smaller
boundaries to comprehensively encompass the desired
parameter space. For each patch, meshfree interpolants are
independently constructed, enhancing the accuracy of indi-
vidual interpolants. In this analysis, the selection of patches is
inspired by a simulated BBH event with GW200311_
115853-like parameters. We use NRHybSur3dq8, an
aligned-spin NR surrogate waveform model, which also
includes support for subdominant modes. As a proof-of-
principle study, this analysis focuses only on the leading-
order mode; however, the procedure presented here can be
extended to incorporate higher-order modes. The procedure
to generate interpolants comprises the following steps.

A. Selection of patch(es)

This task involves identifying the patch (or patches)within
the parameter space for the construction of waveform

interpolants. A similar approach was taken by Morisaki
et al. in their work [31] for constructing ROM bases
corresponding to different patches of parameter space.
While it could be any segment of the pertinent parameter
space in general, for this study, we opt for a patch encom-
passing the injected values of parameters associated with a
simulated BBH event, as described earlier. The number of
patches should be selected based on the specific research
problem,whether it involves fast PEorwaveformgeneration.
Our goal is to rapidly obtain posterior distributions, so the
number of patches depends on the injection parameters for a
simulated signal. For a real GW event, the injection param-
eters are replaced by the best-matched template. Fewer
patches are needed for a PE run because the prior range
of parameters is small. The primary criterion is that the
patches must encompass the injection parameters, with their
width chosen based on expected estimation errors. If the
patches do not include the injection parameters, biases in
parameter estimation are likely to occur, as in any Bayesian
PE analysis. Additionally, the patchwidth should be selected
to generate accurate interpolants, which can be achieved by
using multiple patches in the intrinsic parameter space with
smaller widths. For waveform generation, a relatively large
number of patches is necessary to cover a larger param-
eter space.
For this work, we define two four-dimensional hyper-

rectangular patches with the following ranges:M∈ ½25; 40�,
q∈ ½1; 3�, χ1z ∈ ½−0.1; 0.1�, and χ2z ∈ ½−0.05; 0.05�. Both
patches share common ranges for M, q, and χ2z.
However, for the first patch, χ1z ∈ ½−0.1; 0�, and for the

FIG. 2. (a) Amplitude of the untapered waveform (solid grey) is plotted with that of the tapered (solid red) waveform. Note the ringing
artifacts appearing due to the Gibbs phenomenon in the untapered waveform. It is almost negligible in the amplitude of the tapered
waveform. (b) After converting the tapered waveform into the frequency domain, there is some accumulated phase below 15 Hz, which
we subtract from the total phase so that the phase of the frequency-domain waveform is zero at flow ¼ 15 Hz. The black dashed vertical
line represents flow ¼ 15 Hz.
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second patch, χ1z ∈ ½−0.005; 0.1�. Note that these two
patches overlap in the χ1z dimension [see Fig. 3(a)].

B. Placing grid of RBF nodes
using “Iterative SVD” method

This step starts by randomly spraying a minimum
(initial) number of nodes across the four-dimensional
sample space to start the algorithm and generating fre-
quency-domain waveforms (as specified in Sec. II) at these
specified nodes. The minimum number of nodes can be
calculated using N ¼ ðνþD

ν Þ, where ν is the degree of the
monomial [see Eq. (5b)] and D is the dimensionality of the
intrinsic parameter space [32,33]. Subsequently, A and ψ
are extracted from h̃þðfÞ for each of the N waveforms. The
obtained amplitudes (A) and phases (ψ) are then stacked in
a row-wise fashion to construct two matrices, A and Ψ.
These matrices are subjected to SVD, which, in turn,
provides the relevant basis for spanning the space defined
by these amplitudes and phases,

A ¼
XN
μ¼1

CA
μ u⃗Aμ and ψ ¼

XN
μ¼1

Cψ
μ u⃗

ψ
μ : ð4Þ

Since by construction the basis vectors ðu⃗Aμ ; u⃗ψμ Þ are in
decreasing order of importance, it turns out that we need to
retain only the top few basis vectors (say, up to l) to
accurately reconstruct the amplitude and phase, as illustrated
by the singular values spectrum in Fig. 4. Consequently, we
limit the construction of interpolants to the SVD coefficients
CA
μ and Cψ

μ corresponding to top-l basis vectors. Later on,
we can choose to retain an even lesser number of basis
vectors while reconstructing the amplitude and phase at
arbitrary query points. These coefficients, denoted asCA

μ and

Cψ
μ , exhibit smooth variations as functions of λ⃗, where λ⃗≡

fM; q; χ1z; χ2zg represents the interpolating parameter
space. These coefficients can be written as a linear combi-
nation of RBFs (ϕ) andmonomials (p) of specified degree as
follows [32]:

CAðqÞ
μ ¼

XN
n¼1

aAn ϕðkλ⃗q − λ⃗nk2Þ þ
XM
k¼1

bAk pkðλ⃗qÞ; ð5aÞ

CψðqÞ
μ ¼

XN
n¼1

aψnϕðkλ⃗q − λ⃗nk2Þ þ
XM
k¼1

bψk pkðλ⃗qÞ: ð5bÞ

FIG. 3. (a) We choose two overlapping patches over χ1z to cover the desired range in χ1z. A similar procedure can be performed to
extend the range of the other parameters (M, q, etc.). Blue color for the left patch and pink color for the right patch. (b) Final set of nodes
after the iterative SVD process terminates for both patches. The nodes found using the “Iterative SVD” procedure tend to cluster near the
lower-mass boundaries. Blue points represent the nodes found for patch 1 and orange points represent the nodes found for patch 2.

FIG. 4. Spectrum of singular values corresponding to amplitude
A and phase φ [see Eq. (4)], normalized to the maximum value.
Note that singular values (relative to the maximum) drop to
∼Oð10−6Þ within the top 70 basis vectors. Blue and Olive colors
represent the spectrum of amplitude and phase respectively while
the gray dashed line represents the top-70 basis vectors.
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The addition of these monomial terms enhances the
accuracy of RBF interpolation, as shown in [34]. From
the above equations, it is clear that we need (N þM)
equations to uniquely solve for the (N þM) RBF and
monomial coefficients (aA=ψ and bA=ψ ). The SVD coef-

ficients (CAðqÞ
μ andCψðqÞ

μ ) are known at theN RBF nodes.M
additional conditions are imposed by demandingP

M
k¼1 a

A=ψ
k pkðλ⃗qÞ ¼ 0, which leads to a system of

(N þM) linear equations that can be used to uniquely
determine the RBF andmonomial coefficients. Using these
RBF coefficients, we can quickly evaluate the SVD

coefficients CAðqÞ
μ and CψðqÞ

μ (corresponding to the μth
SVD basis vector) at an arbitrary query point within the
interpolating parameter space, and then combine it with
corresponding basis vectors (u⃗A and u⃗ψ ) to get back the
interpolated amplitude A and phase ψ . Then, we combine
both the amplitude and phase in accordance with Eq. (2) to
get the interpolated frequency-domain waveform. Oncewe
have the interpolants ready, a set of 103 query points is
generated within the interpolating patch, and correspond-
ing true frequency-domain waveforms and meshfree inter-
polated waveforms are generated at these query points.
Subsequently, the mismatches between the true and inter-
polated waveforms are calculated. A specified number of
query points (ten for this work) exhibiting the worst
mismatch are added back into the original set of initial
nodes. The process then reverts to Sec. III B and continues
until either a limit of maximum nodes is reached or the
maximum mismatch at the current iteration falls below a
predefined threshold (e.g., ≤ 10−4) on maximum mis-
match. Note that the mismatches are calculated between
meshfree waveforms and waveforms first generated in the
time domain at fstart ¼ 10 Hz, and then tapered and
converted into the frequency domain followed by phase
subtraction, as mentioned in Sec. II. We define the match
between the two waveforms h1 and h2 as

Oðh1; h2Þ ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð6Þ

where

hh1jh2i ¼
Z

fhigh

flow

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df ð7Þ

which defines a noise-weighted inner product, where Sn is
the one-sided noise power spectral density and the asterisk
(�) denotes complex conjugation. Finally, the mismatch is
defined as

Mismatch ¼ 1 −Oðh1; h2Þ; ð8Þ

where the match Oðh1; h2Þ is maximized over time and
phase shift between the two waveforms.

We call this process “Iterative SVD” because it pro-
gressively refines the meshfree waveform approximation
by reinserting the query points with the worst mismatch
back into the initial set of nodes, followed by evaluation of
the true frequency-domain waveforms at the appended set
of nodes.
Currently, with each iteration of the “iterative SVD”

node placement algorithm, as additional RBF nodes are
introduced, the data matrices A and Ψ are expanded by
incorporating more rows (one for each newly added node)
followed by an SVD conducted on these expanded
data matrices. This approach is practical for handling
the decomposition of the small-sized data matrices.
However, one can update the basis vectors and singular
values at each iteration with more sophisticated algo-
rithms [35,36] that update the left and right subspaces and
singular values from the existing SVD decomposition of a
dense matrix as new rows are added to it. For updating the
subspaces and singular values, Brand et al. [35] developed
an algorithm for computing a thin SVD of a data matrix of
size (m × n) in a single pass with linear time complexity
OðmnrÞ, where r ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðm; nÞp

. The authors proposed
fast and memory-efficient sequential algorithms for
tracking the singular values and subspaces, initialized
with a general identity included in the existing decom-
posing of the data matrix. Adding a new column would
modify the identity representation and provide rank-one
updates via the modified Gram-Schmidt algorithm.
Note that if the required number of RBF nodes is small,

changing the strategy for computing the subspace and
coefficients using the “updated SVD” approach would not
significantly reduce the overall computational cost. On the
other hand, for a large number of nodes, the incorporation
of such sophisticated linear algebra algorithms in our
proposed framework would be beneficial. We will explore
this possibility in detail in future work.
Next, the SVD is performed for the new amplitude and

phase matrices. This is a similar approach to that used in
previous studies for building ROMs of a number of
waveform approximants [31,37–40]. In each iteration,
SVD is employed to identify improved basis vectors for
A and ψ . As shown in Fig. 5, the maximum mismatch
calculated between the worst meshfree waveform and the
corresponding true waveform decreases as we add the
query points corresponding to the worst meshfree wave-
forms at each iteration into the set of nodes used to generate
the interpolants. The calculation of mismatches assumes a
aLIGOZeroDetHighPower [41] power spectral density
(PSD) as implemented in PyCBC. We repeat the same
“Iterative SVD” procedure for the other interpolating patches
(if needed). For the analysis in this paper, we choose two
patches (see Sec. V).As is evident fromFig. 3(b), RBF nodes
(for both patches) found by the “Iterative SVD” tend to
cluster more toward the low-mass boundaries, implying that
the points near the lower-mass boundaries contribute the

PATHAK, REZA, and SENGUPTA PHYS. REV. D 110, 064022 (2024)

064022-6



most in terms of the suitable basis vectors for each patch.
Similar patterns are also seen in the work focusing on
building a surrogate of PN waveforms [10] to find the
desired training data set of the parameters and building ROM
using ANNs [42], using a greedy strategy.
Note that, initially, the maximum mismatch at each

iteration is decreasing rapidly. After ∼25 iterations, the rate
of decrease in the mismatch reduces despite adding the ten
worst points at each iteration. This implies that it is close to
having the minimum number of nodes required to satisfy the
maximum mismatch threshold criteria mentioned earlier.
After ∼48 iterations, the maximum mismatch falls below
10−4, and the algorithm stops. However, to confirm whether
it has indeed crossed this criterion (since there are fluctua-
tions), we can test the accuracy of interpolants again by
spraying a different set of random query points within the
interpolating parameter space and confirming that the maxi-
mum mismatch is still less than 10−4. Otherwise, we can
continue the algorithm until this threshold criterion is met by
a few sets of random query points.

IV. CHOICE OF RBF KERNEL

There are different RBF kernels that can be used as a
basis [see Eq. (5b)] for the meshfree approximation. In this
work, we try the following three different RBF kernels (see
Table I): (i) Inverse multiquadric (“imq”), (ii) Inverse
Quadric (“iq”), and (iii) Gaussian (“ga”). As mentioned
in Sec. III, to terminate the iterative SVD, we set a threshold
of either a maximum number of nodes (3000 here) or a
maximummismatch of 10−4 or less at a given iteration. The
interpolant generation is stopped whenever any of the
above-stated conditions is satisfied. In the case of

“ga”(“iq”) kernels, the final number of nodes for patch 1
and patch 2 is 1530(900) and 1620(590), respectively,
when the maximummismatch at an iteration falls below the
threshold of 10−4. However, in the case of the “imq” RBF
kernel, the final number of nodes for patch 1 was 680, while
for patch 2 it was 770 for the same threshold. A natural
question arises: what is so special about the “imq”? A
possible explanation is the spread of these RBF kernels. As
shown in Fig. 6, the “ga,” “imq,” and “iq” kernels have
similar profiles near the center (r ¼ 0). However, as we go
away from the center, the “ga” and “iq” kernels fall very
rapidly in comparison to the “imq” kernel. This implies that
the “imq” kernel has a significant overlap with the “imq”
kernel centered at the other nearby nodes (centers) in
comparison with the other two RBF kernels, and therefore
it explains the lesser number of nodes required to fall below
the maximum mismatch threshold at a given iteration for
“imq” in comparison with a relatively higher number of
nodes for the other RBF kernels. For the next section, we
choose “imq” as the RBF kernel for generating meshfree
interpolants.

TABLE I. Different RBF kernels.

ϵ

RBF kernel type ϕðrÞ Patch 1 Patch 2

inverse multiquadric
(“imq”)

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðϵrÞ2Þ

p
0.4016 0.4010

Gaussian (“ga”) exp½−ðϵrÞ2� 0.3172 0.2909
inverse quadric (“iq”) 1=ð1þ ðϵrÞ2Þ 0.4464 0.4378

FIG. 5. Mismatch between the worst approximated meshfree
waveform and true waveform at each iteration. As is evident from
the figure, with each iteration, the meshfree approximation
becomes better. The mismatch between the worst approximated
meshfree waveform and the true waveform at each iteration is
represented by red color.

FIG. 6. Profiles of different RBF kernels. In the legend,
numbers parentheses are the final number of nodes required
(for patch 1) to fall below the maximum mismatch threshold of
10−4 in the iterative SVD process. For the “imq” kernel, we
require the least number of nodes to achieve the threshold. The
profiles of imq, iq, and ga are represented by blue, olive, and red
colors respectively.

FAST AND FAITHFUL INTERPOLATION OF NUMERICAL … PHYS. REV. D 110, 064022 (2024)

064022-7



V. RESULTS

As previously mentioned, there are two overlapping
patches in χ1z, and we independently construct interpolants
for each of the patches. In the first patch where
χ1z ∈ ½−0.1; 0�, we initiate with N ¼ ðνþd

ν Þ nodes, with ν
representing the degree of the monomial terms in Eq. (5b)
and d denoting the dimensionality of the parameter space
(here, ν ¼ 6 and d ¼ 4 for the four-dimensional parameter
space interpolation). The “imq” RBF kernel is selected,
where ϵ is the shape factor influencing the RBFs’ spread at
the nodes, determined through the leave-one-out cross
validation procedure [43] (see Table I for values of ϵ).
In the second patch covering χ1z ∈ ½−0.005; 0.1�, the RBF
parameters chosen for the first patch are retained, with the
exception of a different ϵ value for this patch. The seismic
cutoff frequency (flow) is set at 15 Hz, while fstart is equal
to 10 Hz.
Once the interpolants for both patches are ready (see

Sec. III), we can use them to generate the interpolated
waveforms at the arbitrary query points within the inter-
polating sample space. Note that the generation of inter-
polants is a one-time offline process and it can be

TABLE II. Injected parameters of the simulated BBH event.
We take q ¼ m1=m2 where m1 ≥ m2. These injection parameters
mimic the inferred source parameters of the GW200311_115853
event detected in the O3 science run of the Advanced LIGO and
Virgo detectors.

Parameters Injected values

M 32.72M⊙
q 1.22
χeff −0.0091
dL 2155 Mpc
tc 1267963151.3
α 0.036 rad
δ −0.134 rad
ι 0.518 rad
ψ 0 rad

TABLE III. Prior parameter space over the ten-dimensional
parameter space Λ⃗.

Parameters Range Prior distribution

M [25, 40] ∝ M
q [1, 3] ∝ ½ð1þ qÞ=q3�2=5
χ1z ½−0.1; 0.1� Uniform
χ2z ½−0.05; 0.05� Uniform
Vcom ½5 × 103; 1 × 1011� Uniform
tc ttrig � 0.12 Uniform
α ½0; 2π� Uniform
δ �π=2 sin−1½Uniform½−1; 1��
ι ½0; π� Uniform in cos ι
ψ ½0; 2π� Uniform angle

FIG. 7. Mismatches calculated between interpolated and true
waveforms at the posterior samples are shown. For comparison,
we also show the mismatches for meshfree waveforms using “ga”
and “iq” RBF kernels. The median mismatch (for all kernels) is
Oð10−5Þ. Note that the accuracy achieved with “ga” is a little
better than with the other kernels due to the high number of nodes
that were used to construct “ga” kernel-based meshfree inter-
polants. However, we do not find any significant difference in the
corresponding posterior distributions. The mismatches between
the interpolated and true waveforms for imq, iq, and ga are
represented by blue, olive, and red colors respectively.

FIG. 8. Absolute relative errors in the likelihood as a function
of true logL. The absolute relative error is defined as
jðlogLmf − logLbruteÞ= logLbrutej. logLmf is calculated using
the interpolated waveforms, while logLbrute is calculated using
the true waveforms. These likelihoods are calculated at the
posterior samples obtained from the PE of the simulated BBH
event. The red star represents the maximum likelihood posterior
sample. Note that the majority of relative errors (especially near
the peak) are well within 1%, demonstrating the accuracy of the
interpolants. The blue points represent the relative error in the
likelihood while the red star represents the likelihood corre-
sponding to the maximum likelihood posterior sample.
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completed well in advance before the parameter estimation
of the GW event is initiated. While multiple patches are
necessary to adequately cover the desired parameter
space ranges, the generation of interpolants is highly
parallelizable and can benefit from a multicore setup to
expedite this stage. In the specific case of this analysis, the
generation of interpolants for each patch is accomplished in
∼20 minutes using a CPU setup with 32 cores each. We use
the publically available RBF Python package [44] to generate
RBF interpolants.

To assess the accuracy of the interpolated waveforms, we
generate 20 sets of 103 query points each, randomly
distributed in the intrinsic parameter space within the
interpolating region (see Table III). We then generate both
the true and interpolated waveforms at these query points
and compute the mismatches between them, assuming a flat
PSD. The median mismatch is found to be Oð10−5Þ, which
shows the high level of accuracy of the meshfree wave-
forms in approximating the true waveforms across the
interpolating sample space.

FIG. 9. Corner plot of the posterior distributions (with 50% and 90% CIs and contours) obtained by the meshfree interpolated
waveforms for a simulated BBH event. The vertical red line represents the injected values. It takes ∼16.4 min to complete on 64 CPU
cores. In comparison, the PE run with the direct evaluation of the frequency-domain version of the tapered time-domain NRHybSur3dq8
waveform model takes ∼5 h and 50 min on the same number of CPU cores and the resulting posterior distributions are broadly
consistent with those obtained using meshfree interpolated waveforms. The posteriors generated using the Bruteforce waveform are
represented by olive color while those generated by the meshfree waveforms are in blue color. The red vertical and horizontal lines
represent the injected value (injection).
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In terms of the computational speedups, the meshfree
waveforms can be evaluated in ∼2.3 ms in comparison
with ∼89 ms (using the frequency-domain tapered version
of the NRHybSur3dq8 time-domain model), implying
a speedup factor of ∼38. Note that these timings
are for the Python implementation of these waveforms.
A “C implementation” of the true waveforms can be
evaluated in ∼10 ms, as shown in [10] (about 4.3 times
slower than the meshfree waveform’s Python implementa-
tion). Since these numbers are also dependent on the
hardware configurations of the machines on which these
speed tests are performed, a fair comparison of meshfree
speedups with their C implementation is not possible until
we make a C version of meshfree waveforms. Finally, to
test the accuracy of the meshfree model in the context of
parameter estimation, we use the SEOBNRv4_ROM [6]
waveform model to inject a 16-second long simulated
BBH event (see Table II) into the Gaussian noise with
PSDs taken from aLIGOZeroDetHighPower [41] for both
the LIGO-Livingston and LIGO-Hanford detectors, and
AdvVirgo [45] for the Virgo detector with a network
matched-filter signal-to-noise ratio ∼18. The seismic
cutoff frequency (flow) is set at 15 Hz and the high cutoff
frequency is equal to the ringdown frequency of the lowest
component masses within the chosen range of chirp
masses and mass ratios. A sampling frequency of
2048 Hz is considered. We employ the Dynesty sampler

]46,47 ], a Python implementation of the nested sampling
algorithm, to sample the posterior distribution. The prior
distributions and the boundaries of the parameters
(to be estimated) are shown in Table III. We choose the
following sampler settings for DYNESTY: nLive ¼ 500,
nWalks ¼ 500, dlogz ¼ 0.1, sample ¼ “rwalk.”
Here the parameter nLive represents the number of live
points, which determines the resolution of the sampled
posterior distribution. Smaller values of nLive might
give rise to a poorly sampled distribution (and hence
evidence) with much faster convergence. Instead, taking a
larger value can give us a finely sampled distribution at the
expense of lower convergence speeds. nWalks specifies
the minimum number of steps required before a new live
point is proposed, which replaces the live point with the
lowest likelihood in the nested sampling. sample indi-
cates the chosen approach for generating samples, and
dlogz characterizes the remaining prior volume’s con-
tribution to the total evidence. In this PE study, the
sampling terminates once dlogz reaches a threshold
of 0.1. For a more comprehensive understanding of
Dynesty’s nested sampling algorithm and its practical
implementation, one can refer to [46,48].
As is evident from Fig. 9, posterior distributions of

various binary parameters of the simulated BBH event
contain the injected values well within the 90% CI. This PE
analysis takes ∼16.4 minutes on a 64-CPU-core setup.
Figure 7 also shows the probability distribution function of

the mismatches of the interpolated waveforms with the true
waveforms generated at the posterior samples obtained
from the PE and the median mismatch is ∼Oð10−5Þ,
demonstrating the good accuracy of the meshfree wave-
forms. To quantify the effect of these approximate wave-
forms on the likelihood calculation, we also evaluate the
relative errors in the likelihood, as shown in Fig. 8, and find
a median absolute relative error of ∼Oð10−3Þ, further
showing the effectiveness of the meshfree waveforms.
All tests were performed on AMD EPYC 7542

CPU@2.90 GHz processors.

VI. CONCLUSION AND FUTURE OUTLOOK

In this work, we constructed a fast, high-fidelity fre-
quency-domain model for the time-domain NRHybSur3dq8
NR waveform model. We showed that such interpolated
waveforms can be evaluated in ∼2.3 ms, ∼38 times faster
than the frequency-domain tapered version of the time-
domain implementation of this waveform model in PyCBC.
We constructed thewaveform interpolants by first selecting a
patch of the parameter space. Then, we sprayed randomly
scattered nodes in the sample space and evaluated A and φ
from the frequency-domain waveform corresponding to
NRHybSur3dq8 at those nodes. Subsequently, we found a
suitable basis spanning the space of both amplitude and
phase by performing the SVD of the amplitude and phase
matrices resulting from stacking the amplitudes andphases at
the nodes. The resulting SVD coefficients corresponding to
the amplitude and phasewere fit with a linear combination of
RBFs and monomials (“interpolants”), followed by the
mismatched calculation of the interpolated waveforms with
the true waveforms at arbitrary query points in the selected
patch of parameter space. The tenworst query points in terms
of mismatch were added back into the set of input nodes, and
the whole process (called “Iterative SVD”) repeats until
either the maximum mismatch at the given iteration falls
below a predecided threshold or the number of nodes crosses
a fixed number of maximum nodes. In each iteration, the
accuracy of the interpolants increases, which in turn enhan-
ces the meshfree approximation of the waveforms. Note that
the choice of the ten worst points, as mentioned earlier, is
completely arbitrary and chosen to accelerate the interpolant-
generation process. To test the validity of the meshfree
interpolated waveforms, we also performed a parameter
estimation of a simulated BBH event using the meshfree
interpolated waveforms and found posterior distributions to
be consistent with the injected values. It is important to
highlight that our method does not require importance
sampling, as is used in deep-learning methods such as
DINGO [49] and NESSAI [50].
A limitation we face involves the multiplication of SVD

coefficients with the basis vectors. As the duration of the
waveform increases, the computational expense of this
multiplication rises, consequently impacting the evaluation
cost of the meshfree interpolated waveform. In this context,
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we can also use the empirical interpolation method (EIM)
[38,51–53] to reduce the number of frequency points
included in the basis vectors. It is not yet known whether
this kind of strategy could be helpful within the meshfree
framework in reducing the dimensionality of the basis
vectors, which is especially needed for longer-duration
waveforms. Further, in this work we used an iterative SVD
scheme that updates the basis vectors with a new set of
points by applying independent SVD of the updated
amplitude and phase matrix. In the follow-up work, we
will replace our iterative SVD scheme with advanced
updated SVD algorithms [35,36] and compare the com-
putation cost of performing independent SVD in each
iteration and updating the initial basis and singular values
from the first iteration using updated SVD algorithms.
Another notable aspect is that a Euclidean distance
measure is employed in Eq. (5b), even though the
parameter space we operate in is inherently non-
Euclidean. Nevertheless, we choose nodes in chirp-time
coordinates (θ0 and θ3) instead of component masses or
chirp mass and mass ratio as the metric varies slowly in
chirp-time coordinates. Additionally, it is worth noting
that this work solely focused on the aligned-spin wave-
form model NRHybSur3dq8. Subsequent extensions of
this work will explore broadening the meshfree frame-
work to incorporate NR surrogate models encompassing
subdominant modes, considering spins, and addressing
the aforementioned limitations. We also performed similar
exercises for other aligned-spin waveform models, such as
IMRPhenomXAS and SEOBNRv4_ROM. Since these
waveform models are already fast to evaluate, we do
not get any significant speedup in their corresponding
meshfree waveform evaluation. However, the speedup can
be further enhanced by employing strategies such as
adaptive frequency resolution [54] and the EIM pro-
cedure, as mentioned earlier. In future follow-ups of this
work, we would also consider extending this meshfree
framework to include NR surrogate models that include
subdominant modes, precessing spins, and possibly
eccentric models.
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