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We present the two exact solutions of the Einstein-nonlinear electrodynamics equations that generalize
the Kerr-Newman solution. We determined the generalized electromagnetic potentials using the alignment
between the tetrad vectors of the metric and the eigenvectors of the electromagnetic field tensor. It turns out
that there are only two possible nonlinear electromagnetic generalizations of the Kerr-Newman geometry,
corresponding to different electromagnetic potentials. The new solutions possess horizons and satisfy
physical energy conditions such that they can represent black holes with nonlinear electromagnetic charges,
characterized by the parameters of mass, angular momentum, charge, and one nonlinear parameter; the
nonlinear parameter resembles the effect of a cosmological constant, negative or positive, such that the
solutions are asymptotically anti–de Sitter or de Sitter. The canonical form of the electromagnetic nonlinear
energy-momentum tensor is analyzed in relation with the energy conditions; it is shown that the conformal
symmetry is broken by the electromagnetic nonlinear matter; the corresponding nonlinear electromagnetic
Lagrangian as a function of the coordinates is presented as well.
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I. INTRODUCTION

There are current observations of gravitational waves
detecting the collision of two massive compact objects in
the LIGO [1] and Virgo [2] interferometric facilities; this
has lead to the assembly of catalogs of colliding compact
objects that result in a unique remnant. The astrophysical
compact objects are rotating and therefore in the context of
the Einstein exact solutions there is a great interest in
stationary solutions since, within some approximation, they
resemble some features of celestial bodies. Therefore the
Kerr and Kerr-Newman stationary solutions of the coupled
Einstein-Maxwell equations are of the utmost relevance
both theoretical and astrophysically.
On the other hand, nonlinear electromagnetic (NLE)

effects occur in the vicinity of strongly magnetized compact
objects, like magnetars or neutron stars; the description of
such effects require some extension of Maxwell electro-
dynamics and one way is with Lagrangians that are non-
linear in the electromagnetic invariants. Therefore exact
solutions of the Einstein-NLE equations can give insight of
interesting properties of strongly magnetized black holes
(BH) as well as can be useful as test beds of numerical
simulations. Moreover, stationary solutions of the Einstein
equations with NLE fields may open a new perspective of
the physics of rotating celestial bodies. From the theoretical

point of view there are several aspects for studying sta-
tionary axisymmetric solutions that belong to the algebraic
type D in the Petrov classification. An interesting possibil-
ity of introducing NLE effects in BH metrics is of avoiding
the singularity, that for the static case there is abundance of
regular BHs sourced by some kind of nonlinear electro-
dynamics [3]. However the challenge of determining a NLE
stationary solution has been elusive until recently that a
Euler-Heisenberg generalization of the Kerr-Newman black
hole was presented in [4].
There are several proposals of NLE Lagrangians, that are

nonlinear functions of the two Lorentz invariantsF andG of
the electromagnetic field, LðF;GÞ. In this paper we empha-
size that even if we do not know exactly the expression of the
Lagrangian in terms of the electromagnetic invariants, new
NLE solutions that generalizeKerr-Newman solution can be
generated, such is the case in [5,6], where a stationary
solution of the coupled Einstein-NLE equations was pre-
sented. This exact solution is a Kerr-like geometry that
describes a rotating BH endowed with mass, angular
momentum, cosmological constant, electric charge and an
electromagnetic nonlinear parameter. The electromagnetic
tensors Fμν and Pμν of the solution fulfill a set of four
generalized “Maxwell equations” and two independent
Einstein–NLE equations related with the two independent
eigenvalues of theNLE energy-momentum tensor. TheNLE
is determined from a Lagrangian that is a function of the
coordinates r and θ, Lðr; θÞ, constructed from the two
electromagnetic invariants F and G.
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There are NLE theories that are Lorentz invariant and
gauge invariant, these theories were studied and classified
by Plebański [7], and important contributions are due to
Boillat [8]. The propagation of light in NLE environments
is also of interest and it is known that for any theory of the
Plebański class the rays are the null geodesics of two
optical metrics; causality and signal propagation has been
addressed in [9]. The optical metric was rederived by
Novello et al. [10]; and, using a different representation, by
Obukhov and Rubilar [11], that also derived the Fresnel
equation for the wave covectors and, for the class of local
nonlinear Lagrangian nondispersive models, it is demon-
strated that the quartic Fresnel equation factorizes, yielding
the generic birefringence effect.
The cosmological constant Λ has acquired relevance

lately related to its interpretation as the dark energy in
cosmological solutions of the Einstein equations. Another
aspect of interest are the anti–de Sitter (AdS) spacetimes
(Λ < 0) related to the holographic correspondence between
gravity systems and the conformal field theory, the AdS/
CFT duality [12]. Moreover, BHs in AdS spacetimes admit
a gauge duality description through a thermal field theory.
For these reasons we include the cosmological constant in
our study of the nonlinear electromagnetic stationary
solutions.
In this paper we present the nonlinear electromagnetic

generalizations of the Kerr-Newman solutions. These
new solutions are derived from aligning two vectors of
the metric tetrad with the two different eigenvectors
of the electromagnetic field tensor. The alignment con-
ditions along with the condition of integrability of the
Lagrangian allows to derive a differential equation for the
electromagnetic potentials. Then we consider an ansatz for
the electromagnetic potentials Aμ and ⋆Pμ that consists of
a quotient of polynomials in the coordinates r and θ,
whose coefficients are constrained by a key equation.
The paper is organized as follows: In Sec. II we review

the Kerr-Newman (KN) metric emphasizing its electro-
magnetic fields. In Sec. III we present the NLE equations
and the alignment between two vectors of the metric tetrad
with the two different eigenvectors of the electromagnetic
field tensor; it is also derived the key equation that links the
two electromagnetic potentials Aμ and ⋆Pμ. In Sec. IV we
derive the two possible NLE generalizations of the KN
spacetime. In Sec. V we present the main features of the
new NLE generalization of the KN solution, like the
horizons, ergosphere, and energy conditions; the static
limit that is a NLE generalization of the Reissner-
Nordstrom solution is presented as well. In Sec. VI we
examine the canonical form of the NLE energy-momentum
tensor Tμν and the energy conditions satisfied by the NLE
matter; it is shown that the trace of the NLE energy-
momentum tensor does not vanish and then the introduc-
tion of the NLE field breaks the conformal symmetry. The
expression of the NLE Lagrangian as a function of the

coordinates is presented. Finally in Sec. VII conclusions
are given.

II. THE KERR-NEWMAN METRIC

It is not exaggerated to say that the Kerr-Newman (KN)
solution of the coupled Einstein-Maxwell equations is of
the utmost importance, both, related to recent black hole
observations as well as a theoretical object which is not
completely understood in all its caveats, from thermody-
namics to singularity theory, while aspects like finding
interior matter that sources the exterior KN geometry are
still challenges.
The Kerr-like metric with cosmological constant in

Boyer-Lindquist coordinates is

ds2 ¼ a2sin2θΔθ

ΣΞ2

�
dt −

a2 þ r2

a
dϕ

�
2

þ Σ
Δr

dr2 þ Σ
Δθ

dθ2 −
Δr

ΣΞ2
ðdt − asin2θdϕÞ2;

Σðθ; rÞ ≔ r2 þ a2cos2θ;

ΔθðθÞ ¼ 1þ Λ
3
a2cos2θ; Ξ ¼ 1þ Λ

3
a2;

ΔrðrÞ≕KðrÞ − 2mrþ r2 þ a2 −
Λ
3
r2ðr2 þ a2Þ; ð1Þ

where the angular momentum a, mass m, cosmological
constant Λ and the structural function KðrÞ is to be
determined from the coupled NLE–Einstein equations;
for the Kerr-Newman solution KðrÞ ¼ Q2

e þQ2
m, with

Qe, Qm being the BH electric and magnetic charges,
respectively; the determinant of the Kerr-like metric is
given by

g ¼ −grrgθθðg2tϕ − gttgϕϕÞ ¼ −
Σ2sin2θ

Ξ4
: ð2Þ

Due to the existence of two Killing vectors ∂t and ∂ϕ, in this
spacetime the energy and angular momentum of a test
particle, E and L, are conserved quantities, besides its mass,
μ. Moreover, the existence of a Killing tensor (additional to
gμν) implies a fourth motion constant, the Carter constant
given by

C ¼ ΔθP2
θ þ cos2θ

�
a2
�
μ2 −

ΞE2

Δθ

�
þ Ξ2L2

Δθsin2θ

�

þ Ξ2ðaE − LÞ2
Δθ

; ð3Þ

where Pθ is the θ- component of the test particle momen-
tum. This property of the Kerr-like spacetimes allows the
separability of the Hamilton-Jacobi and the Klein-Gordon
equations [13], among other remarkable features.
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The alignment can be understood using the null tetrad ea

for the Kerr-like metric given by

e1

e2

�
¼

ffiffiffiffiffiffiffiffi
Σ

2Δθ

s
dθ � i

a sin θ
Ξ

ffiffiffiffiffiffi
Δθ

2Σ

r �
dt −

a2 þ r2

a
dϕ

�
;

and

e3

e4

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
Δr

2ΣΞ2

r
ðdt − asin2θdϕÞþ

ffiffiffiffiffiffiffiffi
Σ
2Δr

s
dr;

the metric in the null tetrad is written as

g¼ 2e1e2þ2e3e4¼ gabeaeb; ea ¼ eaμdxμ: ð4Þ

The null tetrad is associated to the eigenvector basis of
Fμν as

Fμν ¼ 2Fabea½μebν� ¼ 2F12e1½μe2ν� þ 2F34e3½μe4ν�: ð5Þ

In the null tetrad the EM equations can be written in
terms of a closed 2–form ω, as dω ¼ 0, with ω given by

ω ¼ 1

2
ðFμν þ ⋆PμνÞdxμ ∧ dxν

¼ 1

2
ðFab þ ⋆PabÞea ∧ eb

¼ ðF12 þ P34Þe1 ∧ e2 þ ðF34 þ P12Þe3 ∧ e4: ð6Þ

Throughout the paper we shall mainly use the coordinate
components of the electromagnetic quantities,Fμνðr; θÞ, etc.

A. Alignment conditions for the Kerr-like metric

The field tensor Fμν is characterized by four nonvanish-
ing components: Fθϕ, Fθt, Frϕ, Frt. The eigenvectors V

μ
a of

the tensor Fμν are determined by solving the corresponding
eigenvalue problem; the alignment of the eigenvectors Vμ

a,
a ¼ 1…4 along the tetrad basis, or equivalently, aligning
the tetrad along the eigenvectors Vμ

a gives rise to the
alignment conditions

Frϕ ¼ −asin2θFrt;

Fθt ¼ −
a2 þ r2

a
Fθϕ; ð7Þ

thus only two of the field components are independent, say
Frt and Fθt, while the remaining two Frϕ and Fθϕ are
determined through the alignment conditions. Since the
field tensor Fμν is a curl, it can be determined from a vector
potential Aμ, Fμν ¼ Aν;μ − Aμ;ν. The alignment conditions
can be integrated for the electromagnetic vector compo-
nents At and Aϕ: replacing Fθϕ ¼ Aϕ;θ, Frϕ ¼ Aϕ;r,

Frt ¼ At;r, Fθt ¼ At;θ in the alignment conditions Eq. (7)
one arrives at

Aϕ;r þ asin2θAt;r ¼ 0;

Aϕ;θ þ
a2 þ r2

a
At;θ ¼ 0; ð8Þ

while the integrability of Aϕ, Aϕ;rθ ¼ Aϕ;θr leads to a partial
differential equation for At

At;θr þ
2r
Σ
At;θ −

2a2 sin θ cos θ
Σ

At;r ¼ 0; ð9Þ

whose general solution has the form

At ¼
XðrÞ þ YðθÞ

Σ
; ð10Þ

where XðrÞ and YðθÞ are arbitrary functions on their
respective variables. This solution for At guarantees the
integrability of Aϕ, in Eq. (8), that leads to

Aϕ ¼ −asin2θ
XðrÞ
Σ

−
ða2 þ r2Þ

a
YðθÞ
Σ

: ð11Þ

For the KN solution the electromagnetic potentials are
given by the simplest polynomials, XðrÞ ¼ Qer and
YðθÞ ¼ Qma cos θ, where Qe and Qm are constants related
to the electric and magnetic charges respectively. Deriving
Aμ we obtain the electromagnetic field components,

FKN
rt ¼ −

1

Σ2
½2Qmar cos θ þQeðr2 − a2 cos θ2Þ�;

FKN
θt ¼ a sin θ

Σ2
½2Qear cos θ −Qmðr2 − a2 cos θ2Þ�; ð12Þ

Comparing with the Kerr-Newman solution we identify
Qe and Qm with the electric and magnetic BH charges,
respectively.

III. NONLINEAR ELECTROMAGNETIC
EQUATIONS

If we consider a Lagrangian, LðF;GÞ, that depends in
general form on the electromagnetic invariants F and G,
given by

F ¼ 1

4
FμνFμν ¼ 1

2
ðB2 − E2Þ; ð13Þ

G ¼ 1

4
Fμν

⋆Fμν ¼ −E⃗ · B⃗; ð14Þ

where ⋆Fμν ¼ 1
2

ffiffiffiffiffiffi−gp
εμναβFαβ is the dual stress-tensor; the

contravariant dual ⋆Fμν ¼ − 1
2
εμναβffiffiffiffi−gp Fαβ; and εμναβ is the

Levi-Civita symbol.

NONLINEAR ELECTROMAGNETIC GENERALIZATION OF THE … PHYS. REV. D 110, 064021 (2024)

064021-3



The variation of the action with minimal coupling
between LðF;GÞ and Einstein general relativity leads us
to define a new skew symmetric tensor Pμν in terms of Fμν

and the derivatives of the Lagrangian respect to the
invariants, this equation is called the constitutive or
material equation,

Pμν ¼ LFFμν þ LGð⋆FμνÞ; ð15Þ

where LX ¼ ∂L
∂X; in terms of Pμν and Fμν the electromag-

netic field (EM) equations are

Pμν
;ν ¼ 0 → ½ ffiffiffiffiffiffi−g

p ðLFFμν þ LG
⋆FμνÞ�;ν ¼ 0; ð16Þ

⋆Fμν
;ν ¼ 0 → ð ffiffiffiffiffiffi

−g
p ⋆FμνÞ;ν ¼ 0; ð17Þ

where g is the determinant of the metric. Since Fμν and
⋆Pμν are curls, both can be derived from two electromag-
netic potentials, Aμ and ⋆Pμ, namely, Fμν ¼ Aν;μ − Aμ;ν and
⋆Pμν ¼ ⋆Pν;μ − ⋆Pμ;ν. The nonvanishing components of
the dual tensor �Pμν in the Kerr-like geometry (1) are
�Pθt ¼ �Pt;θ and �Prt ¼ �Pt;r. Then the EM field equa-
tions (16) become

ð ffiffiffiffiffiffi
−g

p
PϕθÞ;θ þ ð ffiffiffiffiffiffi

−g
p

PϕrÞ;r ¼ 0: ð18Þ

The material equations (15) and the fact that ⋆Pt;rθ ¼
⋆Pt;θr allows to write them in matrix form as,

� Fθt
a sin θ −Frt

a sin θFrt Fθt

��
LF

LG

�
¼
� ⋆Pt;r

−⋆Pt;θ

�
; ð19Þ

from which we clear out the derivatives of the Lagrangian,

�
LF

LG

�
¼ 1

ð Fθt
asinθÞ2þðFrtÞ2

� Fθt
asinθ

Frt
asinθ

−Frt
Fθt

a2sin2θ

�� ⋆Pt;r

−⋆Pt;θ

�
:

ð20Þ

For μ ¼ t in (16), ð ffiffiffiffiffiffi−gp
PtrÞ;r þ ð ffiffiffiffiffiffi−gp

PtθÞ;θ ¼ 0, we
obtain the relations

ffiffiffiffiffiffi
−g

p
Ptr ¼ ∂

⋆Pϕ

∂θ
¼
�
r2þa2

a

��
LFasinθ

∂At

∂r
þLG

∂At

∂θ

�
;

ð21Þ

ffiffiffiffiffiffi
−g

p
Ptθ ¼−

∂
⋆Pϕ

∂r
¼ asin2 θ

�
LF

asinθ
∂At

∂θ
−LG

∂At

∂r

�
: ð22Þ

Similarly for μ ¼ ϕ in (16), ð ffiffiffiffiffiffi−gp
PϕrÞ;rþð ffiffiffiffiffiffi−gp

PϕθÞ;θ¼0,

ffiffiffiffiffiffi
−g

p
Pϕr ¼ −

∂
⋆Pt

∂θ
¼ LFa sin θ

∂At

∂r
þ LG

∂At

∂θ
; ð23Þ

ffiffiffiffiffiffi
−g

p
Pϕθ ¼ ∂

⋆Pt

∂r
¼ LF

a sin θ
∂At

∂θ
− LG

∂At

∂r
: ð24Þ

Comparing Eqs. (21)–(24) we arrive at the alignment
conditions

⋆Pϕ;r ¼ −asin2θ⋆Pt;r;

⋆Pϕ;θ ¼ −
a2 þ r2

a
⋆Pt;θ; ð25Þ

that are similar to the ones for Fμν in Eqs. (7). Solving the
system we arrive at the following solution for the vector
potential ⋆Pμ,

⋆Pt ¼
AðrÞ þ BðθÞ

Σ
; ð26Þ

⋆Pϕ ¼ −asin2θ
AðrÞ
Σ

−
�
a2 þ r2

a

�
BðθÞ
Σ

; ð27Þ

where AðrÞ and BðθÞ are arbitrary functions on their
respective variables.
Therefore we have derived the alignment conditions for

Pμν in a Kerr-like metric, showing then that the alignment
conditions are independent of the kind of electrodynamics
under study.
For the KN solution the ⋆Pμ potential is given by the

polynomials, AðrÞ ¼ Qmr and BðθÞ ¼ −Qea cos θ.
Deriving ⋆Pμ we obtain the dual field components of ⋆Pμν,

⋆PKN
rt ¼ 1

Σ2
½2Qear cos θ −Qmðr2 − a2 cos θ2Þ�;

⋆PKN
θt ¼ a sin θ

Σ2
½2Qmar cos θ þQeðr2 − a2 cos θ2Þ�: ð28Þ

We can found the next relations between the components
of Fμν and ⋆Pμν

⋆PKN
θt ¼ −a sin θFKN

rt

FKN
θt ¼ a sin θ⋆PKN

rt : ð29Þ

Some expressions that we shall use later are the
invariants in terms of the potential At,

F¼Ξ2

2

��
Fθt

asinθ

�
2

− ðFrtÞ2
�
¼Ξ2

2
½ðAt;xÞ2− ðAt;rÞ2�; ð30Þ

G ¼ −Ξ2

�
Fθt

a sin θ
Frt

�
¼ Ξ2ðAt;xÞðAt;rÞ; ð31Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p
¼ Ξ2

2

��
Fθt

a sin θ

�
2

þ ðFrtÞ2
�

¼ Ξ2

2
½ðAt;xÞ2 þ ðAt;rÞ2�; ð32Þ
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where we have written F and G in terms of the coordinate
x ¼ a cos θ, dx ¼ −a sin θ. And the material or constitutive
Eqs. (15) are equivalent to

�Pt;r ¼ −FrtLG − FxtLF;
�Pt;x ¼ −FrtLF − FxtLG: ð33Þ

A. The key equation for the
NLE potentials Aμ and ⋆Pμ

The electromagnetic potentials Aμ and ⋆Pμ are not
independent of each other but they are constrained by
the constitutive Eq. (15) that links Pμν and Fμν. Moreover
they must be in agreement with the integrability condition
or closure condition of the Lagrangian, d2L ¼ 0, that
amounts to

∂
2L

∂θ∂r
¼ ∂

2L
∂r∂θ

: ð34Þ

To determine the derivatives of the Lagrangian with
respect to the coordinates r and θ we use the chain rule,

∂L
∂xα

¼ LF
∂F
∂xα

þ LG
∂G
∂xα

; ð35Þ

and the relations (20) and (30) to obtain

∂L
∂r

¼ Ξ2

a sin θ

�
∂
⋆Pt

∂r
∂Fθt

∂r
þ ∂

⋆Pt

∂θ

∂Frt

∂r

�
ð36Þ

∂L
∂θ

¼ Ξ2

asinθ

�
−
cosθ
sinθ

Fθt
⋆Pt

∂r
þ∂Fθt

∂θ

∂
⋆Pt

∂r
þ∂Frt

∂θ

∂
⋆Pt

∂θ

�
: ð37Þ

Replacing the fields in terms of their potentials, Frt ¼ At;r,
Fθt ¼ At;θ, ⋆Pθt ¼ ⋆Pt;θ and ⋆Prt ¼ ⋆Pt;r in the closure
condition (34) we arrive at

�
∂
2At

∂r∂r

�
∂

∂θ

�
1

sinθ
∂
⋆Pt

∂θ

�
−
�
∂
2⋆Pt

∂r∂r

�
∂

∂θ

�
1

sinθ
∂At

∂θ

�
¼ 0:

ð38Þ

This equation has been called the key equation in [6]. From
the key equation we obtain constraints for the functions
AðrÞ, BðθÞ, XðrÞ, and YðθÞ in Eqs. (10) and (26).
Therefore, even if we do not know the explicit dependence
of the Lagrangian with respect to the electromagnetic
invariants F and G, we derived a key equation that must
be fulfilled by the electromagnetic potentials of the
electromagnetic fields in a Kerr-like spacetime.

IV. THE NONLINEAR ELECTROMAGNETIC
GENERALIZATIONS OF THE
KERR-NEWMAN METRICS

From the expressions of the electromagnetic potentials
At and ⋆Pt in terms of the arbitrary functions AðrÞ, BðθÞ,
XðrÞ and YðθÞ Eqs. (10) and (26), one could think at
first that we can find an infinite number of NLE solutions
that generalize the Kerr-Newman, just taking more terms
in the polynomials AðrÞ, BðθÞ, XðrÞ, and YðθÞ. With
that in mind, we try with polynomials for the electro-
magnetic potential components At ¼ ½XðrÞ þ YðθÞ�=Σ
and ⋆Pt ¼ ½AðrÞ þ BðθÞ�=Σ, with XðrÞ, AðrÞ, YðθÞ and
BðθÞ according to the ansatz,

XðrÞ ¼ Qerþ
X30
n¼−5

Cnrn;

YðθÞ ¼ Qma cos θ þ
X30
s¼−5

Dscossθ;

AðrÞ ¼ Qmrþ
X30
l¼−5

Hlrl;

BðθÞ ¼ −Qea cos θ þ
X30
k¼−5

Gkcoskθ; ð39Þ

where Cn, Ds, Hl and Gk are constants that are con-
strained by the key equation (38). Substituting At and ⋆Pt
into the key equation and equating powers it turns
out that there are only two nontrivial cases of new
nonlinear electromagnetic generalizations of the Kerr-
Newman metric, that we have called the cubic vector
potential and the quartic vector potential. Numerically
are obtained several cases with At ¼ ðconstÞ⋆Pt that are
actually trivial since they reduce to the Maxwell case.

A. Case 1. The cubic vector potential

The electromagnetic potentials At ¼ ½XðrÞ þ YðθÞ�=Σ
and ⋆Pt ¼ ½AðrÞ þ BðθÞ�=Σ of one NLE generalization
of the KN solution are given by,

XðrÞ ¼ Qerð1 − βr2Þ;
YðθÞ ¼ aQm cos θð1þ βa2cos2θÞ;
AðrÞ ¼ Qmrð1 − βr2Þ;
BðθÞ ¼ −aQe cos θð1þ βa2cos2θÞ; ð40Þ

where β is the nonlinear parameter. By deriving the
electromagnetic potentials, we obtain the electromagnetic
field components, which can be expressed as the KN field
components plus the nonlinear contribution,
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Frt ¼ FKN
rt −

βr
ΞΣ2

½2Qma3cos3θ

þQerðr2 þ 3a2cos2θÞ�;

Fθt ¼ FKN
θt −

β

ΞΣ2
a2 cos θ sin θ½2Qer3

þQma cos θð3r2 þ a2cos2θÞ�;
⋆Prt ¼ ⋆PKN

rt −
βr
ΞΣ2

½−2Qea3cos3θ

þQmrðr2 þ 3a2cos2θÞ�;
⋆Pθt ¼ ⋆PKN

θt −
β

ΞΣ2
a2 cos θ sin θ½2Qmr3

−Qea cos θð3r2 þ a2cos2θÞ�: ð41Þ

where the KN fields FKN
μν and ⋆Pμν are given in Eqs. (12)

and (28). The metric functions Δr and KðrÞ in the Kerr-like
metric, Eq. (1), are given by

Δr ¼ r2 − 2mrþ a2 −
Λ
3
r2ðr2 þ a2Þ þ KðrÞ;

KðrÞ ¼ ðQe
2 þQm

2Þð1 − βr2Þ2; ð42Þ

and β ¼ 0 corresponds to the Kerr-Newman solution. The
cubic vector potential was presented in [6] and represents a
rotating nonlinearly charged BH characterized by its mass
m, angular momentum a, cosmological constant Λ, electric
and magnetic charges Qe and Qm, and the nonlinear
parameter β. Its asymptotics can be de Sitter or anti–de
Sitter, and even flatness, depending on the value of the
nonlinear parameter and of the cosmological constant. This
BH can present one, two, or three horizons. the third one
being the cosmological horizon in the de Sitter case.
Among the main differences between the NLE solution
and the KN-BH are the equatorial asymmetry that is
enhanced by the NLE field and for charged particles the
access to one of the poles is forbidden; besides, a second
circular orbit in the neighborhood of the external horizon
appears; the presence of the nonlinear electromagnetic field
increases the curvature producing bounded orbits closer to
the horizon more details can be found in [14]. In case the
BH is static (a ¼ 0), the solution corresponds to a NLE
generalization of the Reissner-Nordstrom solution with
cosmological constant.

B. Case 2. The quartic vector potential

The second NLE generalization of the KN solution is
characterized by the electromagnetic potentials,

ΞΣAt ¼ QerþQma cos θ −
ξQe

4
ðr4 þ a4cos4θÞ;

ΞΣAϕ ¼ −asin2θQer

�
1 − ξ

r3

4

�

− ðr2 þ a2Þ cos θ
�
Qm − ξ

Qea3cos3θ
4

�
;

ΞΣ⋆Pt ¼ Qmr −Qea cos θ −
ξQm

4
ðr4 þ a4cos4θÞ;

ΞΣ⋆Pϕ ¼ −asin2θQmr
�
1 − ξ

r3

4

�

þ ðr2 þ a2Þ cos θ
�
Qe þ ξ

Qma3cos3θ
4

�
; ð43Þ

where ξ is the nonlinear electromagnetic parameter. These
potentials generate the fields Fμν ¼ ∂μAν − ∂νAμ and
⋆Pμν ¼ ∂μð⋆PνÞ − ∂νð⋆PμÞ, which are explicitly written
as the KN field components plus the nonlinear contribution,

FNLE
rt ¼ FKN

rt þ ξ
Qer
2Ξ

FNLE
θt ¼ FKN

θt þ ξ
a2Qe sin θ cos θ

2Ξ
;

⋆PNLE
rt ¼ ⋆PKN

rt þ ξ
Qmr
2Ξ

⋆PNLE
θt ¼ ⋆PKN

θt þ ξ
a2Qm sin θ cos θ

2Ξ
; ð44Þ

where the KN fields FKN
μν and ⋆Pμν are given in Eqs. (12)

and (28). Besides, the EM fields satisfy the alignments
conditions Eqs. (7) and (25).
This NLE generalization of the KN solution is new and

we called it the quartic vector potential solution and its
metric is given by Eq. (1) with Δr given by

Δr¼ r2−2mrþa2−
Λr2

3
ðr2þa2ÞþðQ2

eþQ2
mÞð1þξr3Þ;

ð45Þ

and the structural function KðrÞ

KðrÞ ¼ ðQ2
e þQ2

mÞð1þ ξr3Þ; ð46Þ

where ξ is the nonlinear parameter. The other parameters
are the mass m, angular momentum a, electric and
magnetic charges, Qe, Qm and the cosmological constant
Λ. The Kerr-Newman solution is recovered by making
ξ ¼ 0. In the next section some features of this solution are
explored.
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V. THE QUARTIC VECTOR
POTENTIAL NLE-KN

Since the quartic vector potential NLE generalization of
the Kerr-Newman solution has not been reported else-
where, as far as we know, we show that it represents a
rotating black hole with a NLE field characterized by a
NLE parameter ξ whose introduction induces a de Sitter
effect, with a cosmological horizon.
The metric function (45) is a fourth order polynomial

that has at least one real positive root, therefore it represents
a BH. To analyze the horizons determined by ΔrðrÞ ¼ 0
we restrict to the case Λ ¼ 0, that corresponds to a
cubic equation in r; we also restrict to a vanishing magnetic
charge, Qm ¼ 0, but it can be recovered making
Q2

e → Q2
e þQ2

m.

A. Horizons and ergosphere without
cosmological constant

Let us consider the cubic equation (45) with Λ ¼ 0,

Δr ¼ Q2
eξr3 þ r2 − 2mrþQ2

e þ a2 ¼ 0: ð47Þ

First we show that the equation always has at least one
positive real root. Let us notice that at r ¼ 0;Δr ¼
a2 þQ2

e > 0. Furthermore, the dominant term is Q2
eξr3.

In Sec. VI we show that ξ < 0; therefore, when r → ∞ the
function Δr → −∞. Since the function changes sign in the
interval ð0;∞Þ it must cross the r-axis at least once and
since the polynomial is cubic with real coefficients it has at
least one positive real root; then the existence of an event
horizon is guaranteed.
In this case, we will refer to the roots of ΔrðrÞ ¼ 0 as the

event horizon ðrþÞ, inner horizon ðr−Þ and, a third horizon
induced by NLE, cosmological horizon ðrcÞ; besides
r− ≤ rþ ≤ rc. Figure 1 shows the behavior of ΔrðrÞ for
different sets of parameters ðm; a;Qe; ξÞ. The relationships
between the BH parameters and the roots in Eq. (47), by the
Cardano-Vieta formulas, are reduced to

r− ¼ 2mðrþ þ rcÞ − rþrc
rþ þ rc − 2m

; ð48Þ

ξ ¼ 2m − rþ − rc
Q2

eðr2þ þ rþrc þ r2cÞ
; ð49Þ

a2 þQ2
e ¼

rþrc½2mðrþ þ rcÞ − rþrc�
r2þ þ rþrc þ r2c

: ð50Þ

The cubic equation has three cases. The first one is of
roots of multiplicity three, i.e., the three horizons overlap
ðr− ¼ rþ ¼ rcÞ; this corresponds to a2 þQ2

e ¼ 4m2

3
, ξ ¼

− 1
6mQ2

e
and the event horizon is at r ¼ 2m.

The other two cases are roots of multiplicity two. One of
them is the coincidence of the outer and cosmological
horizon, ð0 < r− < rþ ¼ rcÞ, that can be analyzed using

rþ ¼ 2m − ðr−Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr−Þ2 − 2mðr−Þ þ 4m2

q
: ð51Þ

The domain of this function is 0 < r− < 2m and in this
interval the repeated roots are in the interval ð2m; 4mÞ. The
case of coincidence of the inner and outer horizons,
ð0 < r− ¼ rþ < rcÞ, can be analyzed using

rþ ¼ 2m − ðrcÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrcÞ2 − 2mðrcÞ þ 4m2

q
: ð52Þ

The domain of this function is 2m < rc < ∞ and the
repeated roots are in the interval ðm; 2mÞ. For some values
of the NLE parameter, ξ, there is not an event horizon but
an inner horizon.
To classify the type of roots, we analyze the discriminant

of the cubic equation,

ΔD ¼ −27ða2 þQ2
eÞ2Q4

eðξ − ξþÞðξ − ξ−Þ; ð53Þ

where

ξ� ¼ 2½mð8m2−9a2−9Q2
eÞ�ð4m−3a2−3Q2

eÞ32�
27Q2

eða2þQ2
eÞ2

: ð54Þ

According to the sign of the discriminant there are the
following cases: ΔD ¼ 0, repeated roots; ΔD > 0, three
different real roots; and ΔD < 0, one real root, and two
complex conjugated.
The case of repeated roots occurs when ξ ¼ ξ� in (53).

Taking into account that ξ must be real, the electric charge

FIG. 1. Graphics of the behavior of the metric function
ΔrðrÞ for the cases Schwarzschild, RN, Kerr, KN, NLE-RN
and NLE-KN.
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Qe and the angular momentum a are restricted to the
interval 0 < a2 þQ2

e ≤ 4m2

3
. The function ξþ ∈ ð0;∞Þ for

the values 0 < a2 þQ2
e < m2 and ξþ ∈ ð−∞; 0� for the

values m2 ≤ a2 þQ2
e ≤ 4m2

3
. On the other hand, the func-

tion ξ− ∈ ð−∞; 0Þ for all values 0 < a2 þQ2
e ≤ 4m2

3
.

Furthermore, the inequality ξ− ≤ ξþ always holds.
To solve the Eq. (47), the transformation r ¼ z − 1

3Q2
eξ
,

allows to depress the cubic equation to one without
quadratic term,

Q2
eξðz3 þMzþN Þ ¼ 0; ð55Þ

where

M ¼ −
1þ 6mQ2

eξ

3Q4
eξ

2
;

N ¼ 2þ 18mQ2
eξþ 27ða2 þQ2

eÞQ4
eξ

2

27Q6
eξ

3
: ð56Þ

Next, with the change z ¼ 2
ffiffiffiffiffiffiffiffiffi
−M

3

q
cosϕ in (55), it

reduces to

cos 3ϕ −
3N
2M

ffiffiffiffiffiffiffiffiffiffi
−

3

M

r
¼ 0: ð57Þ

Thus, the roots rk of (47) are

rkþ1 ¼ 2

ffiffiffiffiffiffiffiffiffiffi
−
M
3

r
cos

"
1

3
arccos

 
3N
2M

ffiffiffiffiffiffiffiffiffiffi
−

3

M

r !
þ 2πk

3

#

−
1

3Q2
eξ

; ð58Þ

where k ¼ 0, 1, 2. The previous solution demands that

0 < −
3

M
; ð59Þ

−1 ≤
3N
2M

ffiffiffiffiffiffiffiffiffiffi
−

3

M

r
≤ 1: ð60Þ

These restrictions reduce the ranges of the parameters
as follows: a∈ ½0; 2mffiffi

3
p Þ, Qe ∈ ð0; 2mffiffi

3
p �, and ξ∈ ð−∞; 0Þ.

Analyzing the derivatives of the function ΔrðrÞ, we can
find a function for ξ,

Δ0
r ¼ 3Q2

eξr2 þ 2r − 2m ¼ 0;↔ Q2
eξ ¼

2m
3r2

−
2

3r
: ð61Þ

For m ≤ r, we have that − 1
6m ≤ Q2

eξ ≤ 0. By substituting
the term Q2

eξ into Δr we can find that its roots are given by
the equation

Δr ¼
r2

3
−
4mr
3

þ a2 þQ2
e; ð62Þ

whose internal horizons ðhr−Þ and external horizons ðhrþÞ
are

hr� ¼ 2m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − 3ða2 þQ2

eÞ
q

; ð63Þ

This expression for the horizon is only valid when
a2 þQ2

e ≤ ð2mffiffi
3

p Þ2 ≈ ð1.1547mÞ2. Additionally, the ergo-

sphere is obtained from the roots of gtt ¼ 0. In this case,
gtt ¼ ða2 sin2 θ − ΔrÞ; so, using the previously roots with
a2 → a2 cos2 θ, the radius of the ergosphere is given by

rergo ¼ 2m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − 3ða2cos2θ þQ2

eÞ
q

ð64Þ

On the other hand, Δ0
r ¼ 0 (61) has two roots,

r1;2 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6mQ2

eξ
p
−3Q2

eξ
; ð65Þ

considering that ξ is negative, the two roots are positive,
and r1 > r2. Evaluating the second derivative,

Δ00
r ðr1Þ ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6mQ2

eξ
q

< 0;

Δ00
r ðr2Þ ¼ þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6mQ2

eξ
q

> 0; ð66Þ

then the function Δr has a minimum at r2 and a maximum
at r1 with r2 < r1, such that there are three horizons, being
the third horizon an effect of the nonlinear electromagnetic
field. For some particular values of the parameters
ða;Qe;m; ξÞ the plots of ergosphere and event horizon
are shown in Fig. 2.

B. The static limit of the
NLE quartic vector potential solution

In the limit of vanishing rotation we obtain a NLE
generalization of the Reissner-Norsdtrom solution with
cosmological constant, given by the static metric,

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðsin2θdθ þ dϕ2Þ;

fðrÞ ¼ 1 −
2m
r

þQ2
e þQ2

m

r2
ð1þ ξr3Þ þ Λ

3
r2; ð67Þ

characterized by the electromagnetic fields

ΞFrt ¼
Qe

2r2
ðξr3 − 2Þ;

Ξ�Prt ¼
Qm

2r2
ðξr3 − 2Þ; ð68Þ
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This NLE-RN also presents one cosmological horizon and
other interesting features, however, the analysis of this
solution is beyond the scope of this paper.

VI. THE NONLINEAR ELECTROMAGNETIC
ENERGY MOMENTUM TENSOR

To asses if the NLE energy-momentum tensor Tμν is
physically reasonable, by this meaning that the local energy
density measured by any observer appears non-negative as
well as the local energy flow vector be nonspacelike, we
check the energy conditions associated to the NLE gener-
alization of the KN. To this end we project Tμν onto the
orthonormal tetrad, fEa; a ¼ 1;…; 4g associated to the
metric (1), that is given by

E1 ¼
ffiffiffiffiffiffi
Σ
Δθ

s
dθ; E3 ¼

ffiffiffiffiffiffi
Σ
Δr

s
dr;

E2 ¼ sin θ
Ξ

ffiffiffiffiffiffi
Δθ

Σ

r
½adt − ðr2 þ a2Þdϕ�;

E4 ¼ 1

Ξ

ffiffiffiffiffiffi
Δr

Σ

r
ðdt − asin2θdϕÞ: ð69Þ

Then projecting Tμν onto the orthonormal basis its
canonical form is obtained,

OTab¼

0
BBBBBB@

Tθθ
gθθ

0 0 0

0 Tθθ
gθθ

0 0

0 0 Trr
grr

0

0 0 0 −Trr
grr

1
CCCCCCA

¼

0
BBB@
p1 0 0 0

0 p2 0 0

0 0 p3 0

0 0 0 μ

1
CCCA: ð70Þ

Where p1, p2, p3 represent the principal pressures in the
three spacelike directions Eα (α ¼ 1, 2, 3). The eigenvalue

μ represents the energy density as measured by and
observer whose world-line at point p has a unit tangent
vectorE4. Note that theOTab tensor has the canonical form
type I ([15]). In terms of the EM potentials and the metric
function KðrÞ the OTab components are

−μ¼p3¼
Trr

grr
¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þG2

p LF

4π
þK00ðrÞ

32πΣ

¼ Ξ2

8πasinθ

�
∂At

∂r
∂
⋆Pt

∂θ
−
∂At

∂θ

∂
⋆Pt

∂r

�
þK00ðrÞ

32πΣ
ð71Þ

p1 ¼ p2 ¼
Tθθ

gθθ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

p LF

4π
þ K00ðrÞ

32πΣ

¼ −Ξ2

8πa sin θ

�
∂At

∂r
∂
⋆Pt

∂θ
−
∂At

∂θ

∂
⋆Pt

∂r

�
þ K00ðrÞ

32πΣ
; ð72Þ

A. Energy conditions

In what follows we determine the conditions on theOTab

components in order to fulfil the weak, dominant, and
strong energy conditions, that are summarized in Table I.

1. Weak energy condition (WEC)

If the energy momentum tensor is of type I, the weak
energy condition (WEC) [15] holds if μ ≥ 0. Additionally,
the energy density should not be exceeded by any pressure,
such that μþ pα ≥ 0; α ¼ 1, 2, 3. In the case of the quartic
vector potential NLE-KN solution WEC amounts to the
following conditions,

μ¼ Q̃2

8πΣ2
ð1−2ξr3Þ≥ 0; μþp3¼ 0:

μþp1;2¼
Q̃2

8πΣ2
ð2þ3ξra2 cos2 θ−ξr3Þ≥ 0; ð73Þ

where Q̃2 ¼ ðQ2
e þQ2

mÞ The conditions (73) are fulfilled if
the NLE parameter is less than zero, ξ < 0. If ξ ¼ 0 the KN
solution is recovered. If ξ > 0 Eqs. (73) reduce to

FIG. 2. The event horizon for KN (blue) and KN NLE (black),
as well as the ergosphere of KN (orange) and the one of KN NLE
(red) are displayed. The BH parameters are set to Qe ¼ 0.8m,
a ¼ 0.6m, and ξ ¼ −0.14=m3.

TABLE I. Energy conditions. The inequalities that the
stress-energy tensor Tab should satisfy to fulfill the energy
conditions; ua is a timelike vector; μ ¼ −OTrr=grr ¼ −p3 and
p1 ¼ p2 ¼ OTθθ=gθθ.

Energy
conditions OTab components Inequalities

Weak Tabuaub ≥ 0 μ ≥ 0, μþ pα ≥ 0

Dominant Tabuaub ≥ 0, Tabub ≤ 0 μ ≥ 0, μ ≥ jpαj
Strong ðTab − 1

2
TgabÞuaub ≥ 0 μþP3

α¼1 pα ≥ 0,
μþ pα ≥ 0
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0 ≤ ξr3 ≤ 1
2
, such that as r approaches infinity, the only

value that keeps within this range is ξ ¼ 0.

2. Dominant energy condition (DEC)

The dominant energy condition (DEC) [15] holds if
μ ≥ 0, and −μ − pα ≤ 0 ≤ μ − pα. This leads to the fol-
lowing inequalities for the NLE-KN

−ðμþ p1;2Þ ≤ 0 ≤ μ − p1;2 ¼ −
T
2

Q̃2

8πΣ2
½ξr3 − 3ξra2cos2θ − 2� ≤ 0 ≤ −

3Q̃2ξr
8πΣ

: ð74Þ

The case for p3 reduces to 0 ≤ 2μ. If ξ ≤ 0 then (74) are
automatically satisfied.

3. Strong energy condition (SEC)

The SEC guarantees that matter is attractive, causing
geodesics to converge. In terms of the OTab components
SEC amounts to μþ p1 þ p2 þ p3 ≥ 0. For the quartic
vector potential NLE-KN solution this reduces to

0 ≤
Q̃2

4πΣ2
ð1þ 3ξra2 cos2 θ þ ξr3Þ; ð75Þ

the above inequality is satisfied for ξ ¼ 0 (KN case);
however if ξ < 0 the equation is violated when r → ∞ by
a large negative pressure. The case ξ > 0 causes WEC and
DEC to beviolated, therefore themost sensible choice for the
quartic potential generalization of the KN solution is ξ < 0.
Note that evenSEC is violated by the introductionof theNLE
parameter ξ, this does notmake lessmeaningful theNLE-KN
solution since SEC can be violated by certain forms ofmatter
such as a massive scalar field and quantum fields can
generically violate any of the energy conditions [16].

B. Weyl conformal symmetry

From the geometric part of Einstein’s equations, that is,
from the left hand side of Gμν þ Λgμν ¼ 8πTμν, the trace of
the energy-momentum tensor can be determined as

8πTμ
μ ¼

1

Σ

�
Δ00

r − 2þ
�
2

3
a2 þ 4r2

�
Λ
�
¼ K00ðrÞ

Σ
: ð76Þ

Therefore for the quartic vector potential NLE-KN solu-
tion, since K00ðrÞ ≠ 0, then the conformal invaruance is
broken by the NLE field.
The Maxwell stress-tensor is trace-free; in agreement

that for the Kerr-Newman solution

Δr ¼ r2 − 2mrþ a2 þQ2
e −

Λ
3
r2ðr2 þ a2Þ;

Δ00
r ¼ 2 −

�
2

3
a2 þ 4r2

�
Λ; ð77Þ

with KðrÞ ¼ Q2
e then K00ðrÞ ¼ 0 and the trace-free con-

dition is fulfilled. Moreover for any NLE that preserves
conformal invariance in a Kerr-like geometry, the condition
to be trace-free demands KðrÞ00 ¼ 0.
For instance the ModMax generalization consists in

transforming Q2
e ↦ e−γQ2

e, then preserving the Tμν

traceless.

C. Lagrangian for the quartic vector
potential solution

The Lagrangian for the Kerr-Newman metric in terms of
the coordinates is given by

LKN ¼ h1ðr; θÞh2ðr; θÞ
2ðr2 þ a2 cos2 θÞ4 ; ð78Þ

where the functions h1ðr; θÞ and h2ðr; θÞ are

h1ðr; θÞ ¼ r2ðQe −QmÞ þ 2ra cos θðQe þQmÞ
− a2cos2θðQe −QmÞ;

h2ðr; θÞ ¼ r2ðQe þQmÞ − 2ra cos θðQe −QmÞ
− a2cos2θðQe þQmÞ: ð79Þ

While from the matter content of the stress-energy tensor,
4πTμν ¼ Lgμν − Fα

μPνα, the expression for the Lagrangian
L is found as,

L ¼ −
Ξ2

2a sin θ

�
∂At

∂r
∂
⋆Pt

∂θ
þ ∂At

∂θ

∂
⋆Pt

∂r

�
þ K00ðrÞ

8Σ
: ð80Þ

Then for the quartic vector potential NLE-KN, the
Lagrangian LNLEðr; θÞ is given by

LNLEðF;GÞ ¼ LKN þ ξ
½ðQ2

e þ 2Q2
mÞr −QeQma cos θ�

2ðr2 þ a2cos2θÞ
− ξ2

QeQmra cos θ
4

: ð81Þ

And we recover LKN making ξ ¼ 0.

VII. CONCLUSIONS

We present in detail the method to find nonlinear
electromagnetic (NLE) solutions in a Kerr-like metric, that
previously was introduced in [6]. We then examine the
general form of the electromagnetic potentials to determine
exact solutions of the coupled NLE-Einstein equations in a
Kerr-like geometry; and it was found that there are only two
possible NLE generalizations; one of them was already
presented in [6]. The second case, that we called quartic
vector potential solution, is new and corresponds to a NLE
generalization of the Kerr-Newman black hole character-
ized by the introduction of a NLE parameter that induces a
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third horizon, resembling a cosmological horizon. The
electromagnetic fields, horizons and ergosphere of the NLE
quartic vector potential generalization of the Kerr-Newman
(KN) solution are presented. The static limit corresponds to
a NLE generalization of the Reissner-Nordstrom BH with
cosmological constant.
Additionally, we determine the canonical form of the

NLE stress-energy tensor and set up the inequalities to
fulfill the physically reasonable energy conditions.
Imposing the energy conditions to the found solution we
find as a constraint that the nonlinear parameter ξ should be
negative. The trace of the NLE stress-energy tensor does
not vanish, then the NLE field breaks conformal invariance.
Moreover, the expression of the NLE Lagrangian
LNLEðr; θÞ is presented, its form consists of two terms,

the KN Lagrangian plus a term derived from the NLE
contribution.
The nature and precise interpretation of the NLE field

deserves further investigation, for instance if there are
electromagnetic multipoles associated to the NLE fields;
we leave this for a future work.
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