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a cosmological constant

Oscar Galindo-Uriarte® and Nora Breton

Physics Department, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav),
PO. Box 14-740, Mexico City, Mexico

® (Received 26 June 2024; accepted 16 August 2024; published 9 September 2024)

We present the two exact solutions of the Einstein-nonlinear electrodynamics equations that generalize
the Kerr-Newman solution. We determined the generalized electromagnetic potentials using the alignment
between the tetrad vectors of the metric and the eigenvectors of the electromagnetic field tensor. It turns out
that there are only two possible nonlinear electromagnetic generalizations of the Kerr-Newman geometry,
corresponding to different electromagnetic potentials. The new solutions possess horizons and satisfy
physical energy conditions such that they can represent black holes with nonlinear electromagnetic charges,
characterized by the parameters of mass, angular momentum, charge, and one nonlinear parameter; the
nonlinear parameter resembles the effect of a cosmological constant, negative or positive, such that the
solutions are asymptotically anti—de Sitter or de Sitter. The canonical form of the electromagnetic nonlinear
energy-momentum tensor is analyzed in relation with the energy conditions; it is shown that the conformal
symmetry is broken by the electromagnetic nonlinear matter; the corresponding nonlinear electromagnetic
Lagrangian as a function of the coordinates is presented as well.
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I. INTRODUCTION

There are current observations of gravitational waves
detecting the collision of two massive compact objects in
the LIGO [1] and Virgo [2] interferometric facilities; this
has lead to the assembly of catalogs of colliding compact
objects that result in a unique remnant. The astrophysical
compact objects are rotating and therefore in the context of
the Einstein exact solutions there is a great interest in
stationary solutions since, within some approximation, they
resemble some features of celestial bodies. Therefore the
Kerr and Kerr-Newman stationary solutions of the coupled
Einstein-Maxwell equations are of the utmost relevance
both theoretical and astrophysically.

On the other hand, nonlinear electromagnetic (NLE)
effects occur in the vicinity of strongly magnetized compact
objects, like magnetars or neutron stars; the description of
such effects require some extension of Maxwell electro-
dynamics and one way is with Lagrangians that are non-
linear in the electromagnetic invariants. Therefore exact
solutions of the Einstein-NLE equations can give insight of
interesting properties of strongly magnetized black holes
(BH) as well as can be useful as test beds of numerical
simulations. Moreover, stationary solutions of the Einstein
equations with NLE fields may open a new perspective of
the physics of rotating celestial bodies. From the theoretical
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point of view there are several aspects for studying sta-
tionary axisymmetric solutions that belong to the algebraic
type D in the Petrov classification. An interesting possibil-
ity of introducing NLE effects in BH metrics is of avoiding
the singularity, that for the static case there is abundance of
regular BHs sourced by some kind of nonlinear electro-
dynamics [3]. However the challenge of determining a NLE
stationary solution has been elusive until recently that a
Euler-Heisenberg generalization of the Kerr-Newman black
hole was presented in [4].

There are several proposals of NLE Lagrangians, that are
nonlinear functions of the two Lorentz invariants F and G of
the electromagnetic field, £(F, G). In this paper we empha-
size that even if we do not know exactly the expression of the
Lagrangian in terms of the electromagnetic invariants, new
NLE solutions that generalize Kerr-Newman solution can be
generated, such is the case in [5,6], where a stationary
solution of the coupled Einstein-NLE equations was pre-
sented. This exact solution is a Kerr-like geometry that
describes a rotating BH endowed with mass, angular
momentum, cosmological constant, electric charge and an
electromagnetic nonlinear parameter. The electromagnetic
tensors F,, and P, of the solution fulfill a set of four
generalized “Maxwell equations” and two independent
Einstein—NLE equations related with the two independent
eigenvalues of the NLE energy-momentum tensor. The NLE
is determined from a Lagrangian that is a function of the
coordinates r and 0, L(r,0), constructed from the two
electromagnetic invariants F" and G.
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There are NLE theories that are Lorentz invariant and
gauge invariant, these theories were studied and classified
by Plebanski [7], and important contributions are due to
Boillat [8]. The propagation of light in NLE environments
is also of interest and it is known that for any theory of the
Plebanski class the rays are the null geodesics of two
optical metrics; causality and signal propagation has been
addressed in [9]. The optical metric was rederived by
Novello et al. [10]; and, using a different representation, by
Obukhov and Rubilar [11], that also derived the Fresnel
equation for the wave covectors and, for the class of local
nonlinear Lagrangian nondispersive models, it is demon-
strated that the quartic Fresnel equation factorizes, yielding
the generic birefringence effect.

The cosmological constant A has acquired relevance
lately related to its interpretation as the dark energy in
cosmological solutions of the Einstein equations. Another
aspect of interest are the anti—de Sitter (AdS) spacetimes
(A < 0) related to the holographic correspondence between
gravity systems and the conformal field theory, the AdS/
CFT duality [12]. Moreover, BHs in AdS spacetimes admit
a gauge duality description through a thermal field theory.
For these reasons we include the cosmological constant in
our study of the nonlinear electromagnetic stationary
solutions.

In this paper we present the nonlinear electromagnetic
generalizations of the Kerr-Newman solutions. These
new solutions are derived from aligning two vectors of
the metric tetrad with the two different eigenvectors
of the electromagnetic field tensor. The alignment con-
ditions along with the condition of integrability of the
Lagrangian allows to derive a differential equation for the
electromagnetic potentials. Then we consider an ansatz for
the electromagnetic potentials A, and * P, that consists of
a quotient of polynomials in the coordinates r and 6,
whose coefficients are constrained by a key equation.

The paper is organized as follows: In Sec. II we review
the Kerr-Newman (KN) metric emphasizing its electro-
magnetic fields. In Sec. III we present the NLE equations
and the alignment between two vectors of the metric tetrad
with the two different eigenvectors of the electromagnetic
field tensor; it is also derived the key equation that links the
two electromagnetic potentials A, and *P*. In Sec. IV we
derive the two possible NLE generalizations of the KN
spacetime. In Sec. V we present the main features of the
new NLE generalization of the KN solution, like the
horizons, ergosphere, and energy conditions; the static
limit that is a NLE generalization of the Reissner-
Nordstrom solution is presented as well. In Sec. VI we
examine the canonical form of the NLE energy-momentum
tensor 7T, and the energy conditions satisfied by the NLE
matter; it is shown that the trace of the NLE energy-
momentum tensor does not vanish and then the introduc-
tion of the NLE field breaks the conformal symmetry. The
expression of the NLE Lagrangian as a function of the

coordinates is presented. Finally in Sec. VII conclusions
are given.

II. THE KERR-NEWMAN METRIC

It is not exaggerated to say that the Kerr-Newman (KN)
solution of the coupled Einstein-Maxwell equations is of
the utmost importance, both, related to recent black hole
observations as well as a theoretical object which is not
completely understood in all its caveats, from thermody-
namics to singularity theory, while aspects like finding
interior matter that sources the exterior KN geometry are
still challenges.

The Kerr-like metric with cosmological constant in
Boyer-Lindquist coordinates is

b P (o )
= a

z z A
+ A_,dr2 + A—gd&2 - Z—Erz (dt — asin’6dg)?,
(0, r) = r* + a*cos?0,
A A
Ay(0) =1 +§a200329; E=1 +§a2,
o2 Naia
A (r)=:K(r)=2mr+r*+a —37 (r* +a*), (1)

where the angular momentum a, mass m, cosmological
constant A and the structural function K(r) is to be
determined from the coupled NLE-FEinstein equations;
for the Kerr-Newman solution K(r) = Q% + Q2, with
0., 0O,, being the BH electric and magnetic charges,
respectively; the determinant of the Kerr-like metric is
given by

>2sin%0
9= =9r900(9rp = 9u9gp) = ———z— - (2)

Due to the existence of two Killing vectors d; and d,;, in this
spacetime the energy and angular momentum of a test
particle, E and L, are conserved quantities, besides its mass,
u. Moreover, the existence of a Killing tensor (additional to
gu) implies a fourth motion constant, the Carter constant
given by

ZE?
C = AgP} + cos?0 [a2 (;ﬁ - —) +

EZL2
Ay }

Aysin’é
EX(aE - L)?

N 3

Ty G)

where P, is the 8- component of the test particle momen-
tum. This property of the Kerr-like spacetimes allows the
separability of the Hamilton-Jacobi and the Klein-Gordon
equations [13], among other remarkable features.
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The alignment can be understood using the null tetrad e?
for the Kerr-like metric given by

e! ) asin® A, a*+r?
— \[5do+i “fat - g ),
e } 28, T E 22< a ¢>

and
1y A G asinoa ~ 4
o [ = + 2252( t — asin’6d¢)+ 2a, r,

the metric in the null tetrad is written as

g=2e'e’+2e’et =g, e?e?, e?=e? dx*. (4)

The null tetrad is associated to the eigenvector basis of

F,, as

uv
F,, = 2Fe* e’ =2Fye' e’ + 2Fye’ ety (5)

In the null tetrad the EM equations can be written in
terms of a closed 2—form w, as dow = 0, with @ given by

1
W= E(FM +*P,,)dx" A dx*

1
:E(Fab + *Pap)e* A e
= (Fip+ Ps)e' A+ (Fa+ Ppp)e’ net. (6)

Throughout the paper we shall mainly use the coordinate
components of the electromagnetic quantities, F,,, (7, 0), etc.

A. Alignment conditions for the Kerr-like metric

The field tensor F,, is characterized by four nonvanish-
ing components: Fy,, Fg,, Fy, F,,. The eigenvectors Vi of
the tensor F,, are determined by solving the corresponding
eigenvalue problem; the alignment of the eigenvectors V%,
a = 1...4 along the tetrad basis, or equivalently, aligning
the tetrad along the eigenvectors V% gives rise to the
alignment conditions

F,;, = —asin®0F,,,

2,2
a - +r
F@t:_TFBan (7)

thus only two of the field components are independent, say
F,; and Fy,, while the remaining two F,, and Fy, are
determined through the alignment conditions. Since the
field tensor F,, is a curl, it can be determined from a vector
potential A, F,, = A, , — A, ,. The alignment conditions
can be integrated for the electromagnetic vector compo-
nents A, and Ay: replacing Fgy =Ayg, F,p=Ay,

F,,=A,,, Fg = A,y in the alignment conditions Eq. (7)
one arrives at

Ay, + asin?0A,, =0,

a2+r2

A
90+

Atﬂ =0; (8)

while the integrability of A, A, 9 = Ay o, leads to a partial
differential equation for A,

2r 2a? sin 0 cos 6
Aror + fAt,H - fAt,r =0, 9)

whose general solution has the form

X(r)+Y(0)

A, = ,
! )

(10)
where X(r) and Y(0) are arbitrary functions on their
respective variables. This solution for A, guarantees the
integrability of Ay, in Eq. (8), that leads to

r) (a*+r?
A¢:—asin29x(z)—( Z )Y(;). (11)

For the KN solution the electromagnetic potentials are
given by the simplest polynomials, X(r) = Q,r and
Y(0) = Q,,acos 8, where Q, and Q,, are constants related
to the electric and magnetic charges respectively. Deriving
A, we obtain the electromagnetic field components,

1
FEN — ~5 2Q,,arcos 0 + Q,(r* — a* cos 6%)],

asin®

FHKZN: 22

[20,arcos@ — Q,,(r* —a*cos?)],  (12)
Comparing with the Kerr-Newman solution we identify

0, and Q,, with the electric and magnetic BH charges,
respectively.

III. NONLINEAR ELECTROMAGNETIC
EQUATIONS

If we consider a Lagrangian, £(F, G), that depends in
general form on the electromagnetic invariants F and G,
given by

1 1

F=-F, F*—=_(B? - E?), 13
G Fub" =5 (B~ E?) (13)
| " N

G:ZF/“, F* = —_F . B, (14)

where *F,, = 1 \/=0€,,,5F* is the dual stress-tensor; the

7 .
€= Fo5; and ¢ is the

: *puy — _ 1
contravariant dual *F 2

Levi-Civita symbol.
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The variation of the action with minimal coupling
between L£(F,G) and Einstein general relativity leads us
to define a new skew symmetric tensor P, in terms of F,,
and the derivatives of the Lagrangian respect to the
invariants, this equation is called the constitutive or
material equation,

PﬂUZEFFMD+£G(*FMD)’ (15)

where Ly = a§’ in terms of P,
netic field (EM) equations are

and F,, the electromag-

P, =0 = [\/=g(LpF*" 4+ L F™)] , =0, (16)
P, =0 (/=g"F"), =0, (17)

where g is the determinant of the metric. Since F,, and
*P,, are curls, both can be derived from two electromag-
netic potentials, A, and * P, namely, F,, = A, , — A, , and
*P,, =*P,,—*P,,. The nonvanishing components of
the dual tensor *P,, in the Kerr-like geometry (1) are
*Pgy ="P,9 and *P,, ="P,,. Then the EM field equa-
tions (16) become

(v=gP") g+ (v=gP"") , = 0. (18)

The material equations (15) and the fact that *P
*P, o, allows to write them in matrix form as,

( g —Fr,><£F>:<*P,,> (19)
asinfF,, Fy, Ls —*P.g ,

from which we clear out the derivatives of the Lagrangian,

tr —

FHI Frt

<£F> —;<asin6‘ asinf > ( *Pt,, >
Lo (%)2+(Frt)2 —F,, —te_ —*Ptﬂ

T g%sin’@

(20)

For =1 in (16), (/=gP"), + (\/=gP") , =0, we

obtain the relations

o*P 2+ a2 0A,
v _gP”:W[/): < ) <Epas1n9—+£c 09)

a

1)

o*P Lr 0A, 0A
—gpi0 =~ % _ F k]
\/—gP > asin 9( 0000 -Lg ar>' (22)

Similarly for 4 = ¢ in (16), (,/=gP?") .+ (/=gP?) , =0,

0* P, 0A, 0A,
\/—gP?" = — 0 = Lra sm9 —+ Lo— 0

(23)

O*P, _ Ly 0A A
or asin@o0 % or’

V=gP" = (24)

Comparing Eqgs. (21)-(24) we arrive at the alignment
conditions

*P,, = —asin’0*P,

a4+ r?

*qu.a = *Pz.as (25)
that are similar to the ones for F,, in Egs. (7). Solving the
system we arrive at the following solution for the vector
potential *P,,,

Py = —asin29A(2r) - <a : r > B(;), (27)

where A(r) and B(0) are arbitrary functions on their
respective variables.

Therefore we have derived the alignment conditions for
P, in a Kerr-like metric, showing then that the alignment
conditions are independent of the kind of electrodynamics
under study.

For the KN solution the *P, potential is given by the
polynomials, A(r)=Q,r and B(f)=—-0,.,acosb.
Deriving * P, we obtain the dual field components of *P,,,,

1
PN = = [20,arcos0 — Q,,(r* — a* cos 67)],
sin @
s — 2 [20,arcos0+ Q,(r ~a? cos0?)]. (28)
We can found the next relations between the components
of F,, and *P,,
*PXN = —qsin 9FKN
FXN = asin6* PXN. (29)

Some expressions that we shall use later are the
invariants in terms of the potential A,,

P2 () - ] ~S e -l o
G=-m (F—g F) — 22(4,)(A,,). (31)
2 e

= Z A+ (A )
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where we have written ' and G in terms of the coordinate
x = acos O, dx = —asin 6. And the material or constitutive
Egs. (15) are equivalent to

*Pt,r = _FrtﬁG - Fxt‘CFs
*Pl.x = _FrtﬁF - FxtﬁG' (33)

A. The key equation for the
NLE potentials A, and *P,

The electromagnetic potentials A, and *P, are not
independent of each other but they are constrained by
the constitutive Eq. (15) that links P,, and F,,. Moreover
they must be in agreement with the integrability condition
or closure condition of the Lagrangian, d>£ = 0, that
amounts to

PL  PL
000r  0rod’

(34)

To determine the derivatives of the Lagrangian with
respect to the coordinates » and @ we use the chain rule,

aﬁzﬁ 6F+£ oG (35)

~a Fia W
ox“ ox“ ox“

and the relations (20) and (30) to obtain

(36)

or = [a*Pt oF,,

B 0*P,dF,,
or Oor

or  asin® 00 or

oL E cosOF,* P, ngtd*P,_l_aF,,a*P, (37)
00 asin@| sin® or a0 or 00 96 |

Replacing the fields in terms of their potentials, F,, = A, ,,

Fo,=A,9, *Pgy="P,9 and *P,, = *P,, in the closure
condition (34) we arrive at

PAN 0 (1 0*P, **P\ 0 (1 0A, o
oror ) 00 \sinf 90 oror ) 09 \sin6 90 |

(38)

This equation has been called the key equation in [6]. From
the key equation we obtain constraints for the functions
A(r), B(#), X(r), and Y(0) in Egs. (10) and (26).
Therefore, even if we do not know the explicit dependence
of the Lagrangian with respect to the electromagnetic
invariants /' and G, we derived a key equation that must
be fulfilled by the electromagnetic potentials of the
electromagnetic fields in a Kerr-like spacetime.

IV. THE NONLINEAR ELECTROMAGNETIC
GENERALIZATIONS OF THE
KERR-NEWMAN METRICS

From the expressions of the electromagnetic potentials
A, and *P, in terms of the arbitrary functions A(r), B(6),
X(r) and Y(0) Eqgs. (10) and (26), one could think at
first that we can find an infinite number of NLE solutions
that generalize the Kerr-Newman, just taking more terms
in the polynomials A(r), B(0), X(r), and Y(0). With
that in mind, we try with polynomials for the electro-
magnetic potential components A, = [X(r) + Y(0)]/Z
and *P, = [A(r) + B(0)]/Z, with X(r), A(r), Y (@) and
B(6) according to the ansatz,

30
X(r) = Qcr+ Y Cur",
n=-5
30
Y(0) = Q,,acos + Z D;cos*0,

s==5

30
A(r) = er+ Zlelv
p—
30
B(0) = —Q,acos6 + Z Gcos’é, (39)
pa—

where C,, D, H, and G, are constants that are con-
strained by the key equation (38). Substituting A, and * P,
into the key equation and equating powers it turns
out that there are only two nontrivial cases of new
nonlinear electromagnetic generalizations of the Kerr-
Newman metric, that we have called the cubic vector
potential and the quartic vector potential. Numerically
are obtained several cases with A, = (const)*P, that are
actually trivial since they reduce to the Maxwell case.

A. Case 1. The cubic vector potential

The electromagnetic potentials A, = [X(r) + Y(0)]/Z
and *P, = [A(r) + B(0)]/Z of one NLE generalization
of the KN solution are given by,

X(r) = Q,r(1 - pr),

Y(0) = aQ,, cos (1 + pa*cos?0),

A(r) = Q,r(1 = pr),

B(0) = —aQ, cos (1 + pa*cos0), (40)

where f is the nonlinear parameter. By deriving the
electromagnetic potentials, we obtain the electromagnetic
field components, which can be expressed as the KN field
components plus the nonlinear contribution,
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pr
F, = FEN — =7 [2Q,,acos*d
+ Q,r(r* + 3a’cos*0)],
p

Fg, = FEN — :—Zzaz cos Osin 020,13

+ Q,pacos 0(3r2 + a*cos?0)],

pr
*P,, = *PXN — sz[ 20,a°cos’6
+ Q,,7(r* + 3a*cos?0)],
*Py = *PEN — H’gza cos@sin62Q,,r°
— Q.acos0(3r* + a*cos*)). (41)

where the KN fields FKN and *P,, are given in Eqs. (12)
and (28). The metric functions A, and K(r) in the Kerr-like
metric, Eq. (1), are given by

A
A, = r?>=2mr+ a? —EI’Z(F2 + a?) + K(r),

K(r) = (0.2 + 0,)(1 = pr*), (42)

and f = 0 corresponds to the Kerr-Newman solution. The
cubic vector potential was presented in [6] and represents a
rotating nonlinearly charged BH characterized by its mass
m, angular momentum a, cosmological constant A, electric
and magnetic charges Q, and Q,,, and the nonlinear
parameter . Its asymptotics can be de Sitter or anti—de
Sitter, and even flatness, depending on the value of the
nonlinear parameter and of the cosmological constant. This
BH can present one, two, or three horizons. the third one
being the cosmological horizon in the de Sitter case.
Among the main differences between the NLE solution
and the KN-BH are the equatorial asymmetry that is
enhanced by the NLE field and for charged particles the
access to one of the poles is forbidden; besides, a second
circular orbit in the neighborhood of the external horizon
appears; the presence of the nonlinear electromagnetic field
increases the curvature producing bounded orbits closer to
the horizon more details can be found in [14]. In case the
BH is static (a = 0), the solution corresponds to a NLE
generalization of the Reissner-Nordstrom solution with
cosmological constant.

B. Case 2. The quartic vector potential

The second NLE generalization of the KN solution is
characterized by the electromagnetic potentials,

0

EYA, = Q,r + Q,,acos 6 — Te (r* + a*cos*9),

3
EXA, = —asin29Q6r<1 - 5%)

3.3
—(r* +d?) cosG(Qm - ﬁiQea:OS 6>,

éQm

EX*P, = Q,,r — Q.acos 0 — =" (r* 4 a*cos*0),

3
ES*P, — —asin?6 -l
p asin er< 54)

3.3
+(r* + d?) cos¢9<Qe + fiQma:OS 9), (43)

where £ is the nonlinear electromagnetic parameter. These
potentials generate the fields F,, =9,A, —9d,A, and
=0,(*P,) = 9,(*P,), which are explicitly written

as the KN field components plus the nonlinear contribution,

FNLE FKN +§Qe
2= ’
* pNLE __ * pKN Qm
Prt - Pr + 6
a Qm sin @ cos 0
*PE = *pEN 4 TR TRTERE (44)

— ’
2»—4
—

where the KN fields Fj;" and *P,, are given in Egs. (12)
and (28). Besides, the EM fields satisfy the alignments
conditions Egs. (7) and (25).

This NLE generalization of the KN solution is new and
we called it the quartic vector potential solution and its
metric is given by Eq. (1) with A, given by

2
8, =P =2mr @ =0 (P )+ (@4 QR)(1 4 &P)
(45)

and the structural function K(r)
K(r) = (07 + Q5)(1 +¢r), (40)

where ¢ is the nonlinear parameter. The other parameters
are the mass m, angular momentum a, electric and
magnetic charges, Q,, Q,, and the cosmological constant
A. The Kerr-Newman solution is recovered by making
& = 0. In the next section some features of this solution are
explored.
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V. THE QUARTIC VECTOR
POTENTIAL NLE-KN

Since the quartic vector potential NLE generalization of
the Kerr-Newman solution has not been reported else-
where, as far as we know, we show that it represents a
rotating black hole with a NLE field characterized by a
NLE parameter £ whose introduction induces a de Sitter
effect, with a cosmological horizon.

The metric function (45) is a fourth order polynomial
that has at least one real positive root, therefore it represents
a BH. To analyze the horizons determined by A,(r) =0
we restrict to the case A =0, that corresponds to a
cubic equation in r; we also restrict to a vanishing magnetic
charge, Q,, =0, but it can be recovered making

Q0 - 02+ Q5.

A. Horizons and ergosphere without
cosmological constant

Let us consider the cubic equation (45) with A = 0,
A, =QXr +r*=2mr+ Q2+ a*>=0. (47)

First we show that the equation always has at least one
positive real root. Let us notice that at r=0,A, =
a* + Q2 > 0. Furthermore, the dominant term is Q2&r3.
In Sec. VI we show that £ < 0; therefore, when r — oo the
function A, — —oo. Since the function changes sign in the
interval (0, o0) it must cross the r-axis at least once and
since the polynomial is cubic with real coefficients it has at
least one positive real root; then the existence of an event
horizon is guaranteed.

In this case, we will refer to the roots of A,(r) = 0 as the
event horizon (r, ), inner horizon (r_) and, a third horizon
induced by NLE, cosmological horizon (r.); besides
r_ <r, <r.. Figure 1 shows the behavior of A,(r) for
different sets of parameters (m, a, Q,, £). The relationships
between the BH parameters and the roots in Eq. (47), by the
Cardano-Vieta formulas, are reduced to

_2m(ritrd) —ryre

4
ry+r.—2m (48)
2m—r, —r,
= , 49
T ) )
a2 + Q% — r+rc[2m(r+ + rC) - r+rC] . (50)

ri +ror.+ r%

The cubic equation has three cases. The first one is of
roots of multiplicity three, i.e., the three horizons overlap

(r_ =r, =r.); this corresponds to a*+ Q= 47’"2, &=

—@ and the event horizon is at r = 2m.

1.5

(Qc/m ,a/m ,m’¢ ) BH type
0,0, 0) Schwarzschild
0,0.63,0)Kerr
0.45, 0, 0) Reissner—Nordstrom

0.45,0.63,0) Kerr-Ne
0.45,0,-0.63 ) Rei
0.45,0.63, -0.63 ) Kerr-Newman

0.5
/"—- ..
; N
Ar /‘/ \,
) g A\
0.0 -
UITY % NN
Vs \ \
\
\
A
\
-0.5 \\ |
AN
\
\\ \
\
\
-1.0 e
0 4 5 6
r/m
FIG. 1. Graphics of the behavior of the metric function

A, (r) for the cases Schwarzschild, RN, Kerr, KN, NLE-RN
and NLE-KN.

The other two cases are roots of multiplicity two. One of
them is the coincidence of the outer and cosmological
horizon, (0 < r_ < r_ = r.), that can be analyzed using

ro=2m—(r_)+ \/(r_)2 =2m(r_) +4m?>.  (51)

The domain of this function is 0 < r_ < 2m and in this
interval the repeated roots are in the interval (2m, 4m). The
case of coincidence of the inner and outer horizons,
(0 <r_=ry <r.), can be analyzed using

re=2m = (r) + [ (r)? = 2m(r,) + 4m. (52)

The domain of this function is 2m < r, < co and the
repeated roots are in the interval (m, 2m). For some values
of the NLE parameter, &, there is not an event horizon but
an inner horizon.

To classify the type of roots, we analyze the discriminant
of the cubic equation,

Ap=-27(a* + Q2)* Qs —£,)(E— &), (53)
where

2(m(8m? —9a> —902) £ (4m —3a* — 302)}]

b= 270%(a® + Q2)?

(54)

According to the sign of the discriminant there are the
following cases: Ap = 0, repeated roots; Ap > 0, three
different real roots; and A < 0, one real root, and two
complex conjugated.

The case of repeated roots occurs when & = £, in (53).
Taking into account that £ must be real, the electric charge

064021-7



OSCAR GALINDO-URIARTE and NORA BRETON

PHYS. REV. D 110, 064021 (2024)

Q, and the angular momentum a are restricted to the
interval 0 < a® + Q% < *°. The function &, € (0, co) for
the values 0 < > + Q2 < m? and &, € (—00,0] for the
values m?> < a’® + Q2 < %. On the other hand, the func-
tion £ €(-c0,0) for all values 0<a®+ Q2 <4,
Furthermore, the inequality £_ < &, always holds.

To solve the Eq. (47), the transformation r = 7 — @,
allows to depress the cubic equation to one without
quadratic term,

QU(Z+ Mz+N) =0, (55)
where
N 6mQ3¢
308
24 18mQ2E +27(a* 4 QF)0tE?
N = 27058 ) (56)

Next, with the change z =2 —%cosgb in (55), it

reduces to

3N
cos 3¢ — M /\/l =0. (57)

Thus, the roots r; of (47) are

O O O E N A
Fral = 3 €08 [5arccos M v 3

1

T3 o

where k = 0, 1, 2. The previous solution demands that

0< —— 5

VE (59)
3N

-l _MS 1. (60)

These restrictions reduce the ranges of the parameters
as follows: a€ [O%/—’%) 0.€(0 —’”], and £€(—0,0).
Analyzing the derivatives of the function A,(r), we can
find a function for &,

om 2
AL =302 +2r—2m =0, Q=0
3rc 3r

(61)
For m < r, we have that —Z- < 02¢ < 0. By substituting

the term Q2¢ into A, we can find that its roots are given by
the equation

P Admr

Ar:?_T—'_ 2+ 02 (62)

whose internal horizons (4r_) and external horizons (Ar_.)
are

hre = 2m £ \J4m® = 3(a* + 02). (63)

This expression for the horizon is only valid when
a’+ Q7 < (38)° ~ (1.1547m)*. Additionally, the ergo-
sphere is obtained from the roots of g,, = 0. In this case,
gu = (a*sin® @ — A,); so, using the previously roots with

a* - a* cos? 0, the radius of the ergosphere is given by

Fesgo = 2m £ \J4m® = 3(a*cos?0 + Q2)  (64)
On the other hand, A, = 0 (61) has two roots,

1 £+/1+6mQ%¢
-30:¢ ’ (65)

ra=

considering that £ is negative, the two roots are positive,
and r; > r,. Evaluating the second derivative,

Al(r)) = =24/1 +6mQ%& < 0,
Al(ry) = +24/1 + 6mQ2¢ > 0, (66)

then the function A, has a minimum at 7, and a maximum
at r; with r, < ry, such that there are three horizons, being
the third horizon an effect of the nonlinear electromagnetic
field. For some particular values of the parameters
(a,Q,,m, &) the plots of ergosphere and event horizon
are shown in Fig. 2.

B. The static limit of the
NLE quartic vector potential solution

In the limit of vanishing rotation we obtain a NLE
generalization of the Reissner-Norsdtrom solution with
cosmological constant, given by the static metric,

52 = —f(r)de* + f(r)~'dr* + r*(sin’0d6 + d¢?),

2 2
2m Qe On iy | gy ’3\#, (67)

characterized by the electromagnetic fields

0.
=F, = 25 (60 - 2),
Qm

E*P, =

5,2 (Er' =2), (68)
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z/m ().0:
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-1.5F :

X/m

FIG. 2. The event horizon for KN (blue) and KN NLE (black),
as well as the ergosphere of KN (orange) and the one of KN NLE
(red) are displayed. The BH parameters are set to Q, = 0.8m,
a=0.6m, and & = —-0.14/m>.

This NLE-RN also presents one cosmological horizon and
other interesting features, however, the analysis of this
solution is beyond the scope of this paper.

VI. THE NONLINEAR ELECTROMAGNETIC
ENERGY MOMENTUM TENSOR

To asses if the NLE energy-momentum tensor 7, is
physically reasonable, by this meaning that the local energy
density measured by any observer appears non-negative as
well as the local energy flow vector be nonspacelike, we
check the energy conditions associated to the NLE gener-
alization of the KN. To this end we project T, onto the
orthonormal tetrad, {E® a =1,...,4} associated to the
metric (1), that is given by

E! = A—de, E3 = /—dr,
0 r
0 /A
E2 = s12 —H[adt — (r* + d®)dg),
. 1A -
E* = = E(dt — asin“0dg). (69)

Then projecting 7, onto the orthonormal basis its
canonical form is obtained,

Top
w000 P 0 00
T,
OTab: 0 g?: 0 0 0 P2 00 (70)
00%0 0 0 p;0
T, 0 0 0 u
00 0 —i=

Where p;, p,, ps represent the principal pressures in the
three spacelike directions E* (a = 1, 2, 3). The eigenvalue

TABLE 1. Energy conditions. The inequalities that the
stress-energy tensor 7, should satisfy to fulfill the energy
conditions; u“ is a timelike vector; y = —OT,,/g,, = —p3 and
p1 = p2 = OTg/gop-

Energy

conditions OT,;, components Inequalities
Weak T puu” >0 20, u+p, 20
Dominant Tpuul >0, Ty, <0 pu2>0,u>|pyl
StI'OIlg (Tab - %Tgab)uaub > 0 H + 22:1 Pa > 0,

KW+ pa 20

u represents the energy density as measured by and
observer whose world-line at point p has a unit tangent
vector E4. Note that the OT“ tensor has the canonical form
type I ([15]). In terms of the EM potentials and the metric
function K(r) the OT* components are

~VF+G EF K

—H=P3= G 32 Z
_ =2 (aAta*P, _aA,a* ,) K"(r) (71)
8rasinf \ or 060 a0 or 32n%
l/
p=p= = VPG
_ = (@ O*P, 0A, a*P,> K"(r) 72)
8rasin@ \ or 90 00 or 327’

A. Energy conditions

In what follows we determine the conditions on the OT4?
components in order to fulfil the weak, dominant, and
strong energy conditions, that are summarized in Table L.

1. Weak energy condition (WEC)

If the energy momentum tensor is of type I, the weak
energy condition (WEC) [15] holds if > 0. Additionally,
the energy density should not be exceeded by any pressure,
such that y + p, > 0,a = 1, 2, 3. In the case of the quartic
vector potential NLE-KN solution WEC amounts to the
following conditions,

0>
M:8ﬂ22(1—2§”3)207 p+ps=0.
2
U+pio= o 22(2—|—3§m cos?0—Er3) >0,  (73)

where 0% = (Q? + Q2) The conditions (73) are fulfilled if
the NLE parameter is less than zero, £ < 0. If £ = 0 the KN
solution is recovered. If &> 0 Egs. (73) reduce to
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0 < &r <1, such that as r approaches infinity, the only

value that keeps within this range is £ = 0.

2. Dominant energy condition (DEC)

The dominant energy condition (DEC) [15] holds if
u>0,and —y— p, <0< pu— p, This leads to the fol-
lowing inequalities for the NLE-KN

T
(U4 p12) L0 pu—pi, = 3
2 3 2
8522 [Er — 3¢ra’cos?0 —2] <0 < — 8%5’ (74)

The case for p; reduces to 0 < 2u. If £ <0 then (74) are
automatically satisfied.

3. Strong energy condition (SEC)

The SEC guarantees that matter is attractive, causing
geodesics to converge. In terms of the OT,;, components
SEC amounts to p + py + p, + p3 > 0. For the quartic
vector potential NLE-KN solution this reduces to

0?
4732

0< (1 + 3&ra®cos? O + &r), (75)

the above inequality is satisfied for £ =0 (KN case);
however if £ < 0 the equation is violated when » — oo by
a large negative pressure. The case £ > 0 causes WEC and
DEC to be violated, therefore the most sensible choice for the
quartic potential generalization of the KN solution is & < 0.
Note that even SEC is violated by the introduction of the NLE
parameter &, this does not make less meaningful the NLE-KN
solution since SEC can be violated by certain forms of matter
such as a massive scalar field and quantum fields can
generically violate any of the energy conditions [16].

B. Weyl conformal symmetry

From the geometric part of Einstein’s equations, that is,

from the left hand side of G, + Ag,, = 8T, the trace of

the energy-momentum tensor can be determined as

_K'()

2. (6)

8xT+, = % [A’,’ -2+ <§a2 + 4r2> A}
Therefore for the quartic vector potential NLE-KN solu-
tion, since K”(r) # 0, then the conformal invaruance is
broken by the NLE field.

The Maxwell stress-tensor is trace-free; in agreement
that for the Kerr-Newman solution

A
A, =r*=2mr+a’®+ Q32 —51’2(r2 +a?),

2
Al =2 — <§ a* + 4r2> A, (77)

with K(r) = Q2 then K”(r) =0 and the trace-free con-
dition is fulfilled. Moreover for any NLE that preserves
conformal invariance in a Kerr-like geometry, the condition
to be trace-free demands K(r)"” = 0.

For instance the ModMax generalization consists in
transforming Q2 > e7Q2, then preserving the T,
traceless.

C. Lagrangian for the quartic vector
potential solution

The Lagrangian for the Kerr-Newman metric in terms of
the coordinates is given by

hl(r, H)hz(r, 9)
Lxn = , 78
N2 + a2 cos? ) (78)

where the functions i, (r,6) and h,(r,0) are

hi(r,0) = r*(Q, — Q,,) + 2racos0(Q, + Q,,)

- azcosze(Qe - Qm)’
hy(r.0) = r*(Q. + Q) — 2racos 0(Q, — Q)

- a*cos’0(Q, + Q) (79)
While from the matter content of the stress-energy tensor,

4nT,, = Lg,, — F*,P,,, the expression for the Lagrangian
L is found as,

K'(r)

8% (80)

" 2asinf\ or 00

B’ (oA, 0*P,
00 or

04, 0*P,>

Then for the quartic vector potential NLE-KN, the
Lagrangian Ly g(r, 0) is given by

[(Q%2+20%)r—Q,0,acos 0]
2(r* + a*cos’0)

_e 0.0, racos @
4

Lyie(F,G) = Lgn +¢

(81)
And we recover Lgyn making & = 0.

VII. CONCLUSIONS

We present in detail the method to find nonlinear
electromagnetic (NLE) solutions in a Kerr-like metric, that
previously was introduced in [6]. We then examine the
general form of the electromagnetic potentials to determine
exact solutions of the coupled NLE-Einstein equations in a
Kerr-like geometry; and it was found that there are only two
possible NLE generalizations; one of them was already
presented in [6]. The second case, that we called quartic
vector potential solution, is new and corresponds to a NLE
generalization of the Kerr-Newman black hole character-
ized by the introduction of a NLE parameter that induces a
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third horizon, resembling a cosmological horizon. The
electromagnetic fields, horizons and ergosphere of the NLE
quartic vector potential generalization of the Kerr-Newman
(KN) solution are presented. The static limit corresponds to
a NLE generalization of the Reissner-Nordstrom BH with
cosmological constant.

Additionally, we determine the canonical form of the
NLE stress-energy tensor and set up the inequalities to
fulfill the physically reasonable energy conditions.
Imposing the energy conditions to the found solution we
find as a constraint that the nonlinear parameter £ should be
negative. The trace of the NLE stress-energy tensor does
not vanish, then the NLE field breaks conformal invariance.
Moreover, the expression of the NLE Lagrangian
Lnig(r,0) is presented, its form consists of two terms,

the KN Lagrangian plus a term derived from the NLE
contribution.

The nature and precise interpretation of the NLE field
deserves further investigation, for instance if there are
electromagnetic multipoles associated to the NLE fields;
we leave this for a future work.
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