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The gravitational waves emitted in the ringdown phase of binary black hole coalescence are a unique
probe of strong gravity. At late times in the ringdown, these waves can be described by quasinormal modes,
whose frequencies encode the mass and spin of the remnant, as well as the theory of gravity in play.
Understanding precisely how deviations from general relativity affect the quasinormal mode frequencies of
ringing black holes, however, is extremely challenging, as it requires solving highly coupled and sometimes
higher-order partial differential equations. We here extend a novel approach, metric perturbations with
spectral methods (METRICS), to study the gravitational metric perturbations and the quasinormal mode
frequencies of ringing black holes in modified gravity. We first derive the asymptotic behavior of
gravitational perturbations at the event horizon and spatial infinity for rotating black holes beyond general
relativity. We then extend the eigenvalue-perturbation theory approach of METRICS to allow us to
compute the leading-order beyond general relativity corrections to the quasinormal-mode frequencies and
metric perturbations. As an example, we apply METRICS to black holes with moderate spins in scalar-
Gauss-Bonnet gravity. Without decoupling or simplifying the linearized field equations in this theory, we
compute the leading-order corrections to the quasinormal frequencies of the axial and polar perturbations of
the nlm ¼ 022, 021, and 033 modes of black holes with dimensionless spin a ≤ 0.85. The numerical
accuracy of the METRICS frequencies is ≤10−5 when a ≤ 0.6, ≲10−4 when 0.6 < a ≤ 0.7, and ≲10−2

when 0.7 < a ≤ 0.85 for all modes studied. We fit the frequencies with a polynomial in spin, whose
coefficients (up to second order in spin) are consistent with those obtained in previous slow-rotating
approximations. These results are the first accurate computations of the gravitational quasinormal-mode
frequencies of rapidly rotating black holes (of a ∼ 0.85) in scalar-Gauss-Bonnet gravity.
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I. INTRODUCTION

The detection of gravitational waves (GWs) allows us
to probe the rich physics of the Universe, such as that in
play during binary black hole (BBH) coalescence [1–13].
Broadly speaking, a BBH coalescence consists of three
phases. The first phase is the inspiral, during which the BHs
orbit around each other with decreasing orbital radius, as a
result of GW emission. The second phase is the merger,
during which the BHs merge to form a single remnant BH.
The third phase is the ringdown, during which the newly
formed, dynamical, and distorted remnant BH relaxes into a
stationary configuration by emitting GWs that are charac-
terized by a discrete set of complex quasinormal-mode
(QNM) frequencies.
The validity of general relativity (GR) in the strong-

field regime is one aspect about our Universe that GWs
can probe. GR has passed numerous experimental

tests [7,11,14–23] and, thus far, represents our best under-
standing of spacetime and gravity. Nonetheless, GR exhib-
its theoretical and observational anomalies. Theoretically,
GR predicts that gravitational collapse inevitably leads to
the formation of a spacetime singularity, where GR cannot
further describe nature. Observationally, GR may require
additional parity-violating physics in the early Universe to
explain the matter-antimatter asymmetry [24–27], a cos-
mological constant that is finely tuned [28,29] to explain
the acceleration of the Universe at late times [30,31],
and cold dark matter to describe the rotation curves of
galaxies [32,33]. These anomalies have led to the proposal
and development of modified gravity theories, each of
which amends different aspects of GR in an attempt to
remedy these (and other) anomalies. To avoid repetition,
we refer the reader to [34,35] for a survey of the motivation
of modified gravity theories and relevant GW tests.
The coalescence of BBHs is a powerful laboratory in

which to test these modified theories. In many such
theories, BHs (or compact objects, more generally) still*Contact author: akwchung@illinois.edu
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exist, but their spacetime geometry may be different from
that of their GR counterpart. Moreover, the field equations
that describe the dynamics of these compact objects and the
behavior of metric perturbations are generically also differ-
ent from that which arise from the Einstein equations.
These differences force the GWs emitted during BBH
coalescence in these theories to also be different from those
in GR. By comparing GW observations against GW
predictions in GR, we can then test the validity of the
latter and probe for GR deviations in the data directly.
The ringdown phase of BBH coalescence has unique

features that make it ideal for testing GR. First, the GWs
emitted in the ringdown phase usually have the highest
frequencies among all three phases. Loosely speaking, the
GW frequency gives a measure of the relative rate of
change in perturbations of spacetime. By this standard,
the spacetime changes most rapidly during the ringdown
phase and might activate effects that could not otherwise be
observed in other phases. Second, the QNM frequencies
depend only on the properties of the remnant BH and are
progenitor-independent, which makes them easy to char-
acterize. Third, the QNM response of a BH involves
perturbations of the BH geometry near the BH’s horizon,
the edge of the observable spacetime, where the field
strength is the strongest, and where nature is perhaps most
likely to be different from GR predictions. All these unique
features make the ringdown phase a unique probe of the
validity of GR in the strong-field regime.
However, many ringdown tests of gravity have mostly

been model agnostic [22,36–42]. This is understandable
because computing the QNM frequencies of a BH in a
particular gravity theory has been extremely challenging;
this is because of the computational complexity required to
solve the dynamical evolution equation of metric pertur-
bations in these theories, which is typically a set of highly
coupled partial differential equations. These computations
are even more challenging when one takes into account BH
backgrounds that do not spin slowly, as is the case for BH
remnants of BBH coalescence.
Two approaches have been recently developed to

deal with these difficulties. The first approach works with
curvature perturbations, expressing first the field equations
and the Bianchi identities in terms of spinor coefficients,
Weyl scalars, and differential operators. Then, the field
equations in terms of these variables are linearized and, if
the background spacetime is of Petrov-type D, then the
linearized field equations can be simplified into a single
master equation, known as the Teukolsky equation, for a
certain Teukolsky master function [43–46]. Very recently,
this formalism has been extended to modified gravity
theories with leading-order deviations from GR [47–53],
whose spacetime is not Petrov-type D. In this modified
Teukolsky formalism, one then solves the modified
Teukolsky equation, subject to appropriate boundary con-
ditions, to compute the QNM frequencies of the modified

Teukolsky function, which can be related to the frequencies
of the emitted GWs at future null infinity. If one wants to
reconstruct the metric perturbations from the Teukolsky
master function everywhere outside the perturbed BH, one
has to use a Hertz potential in the so-called Chrzanowski-
Kogen-Kegeles (CKK) approach [54–59], which amounts
to solving ∼10 partial differential equations.
The second approach is the metric perturbations with

spectral methods (METRICS) that we developed in [34,35].
This approach works directly with metric perturbations and
perturbations of any other fields that may be present in the
theory. This approach begins by calculating the asymptotic
behavior of the field perturbations at the event horizon
and at spatial infinity. Using this asymptotic behavior, one
can then construct an asymptotic factor that regulates the
divergent behavior of the field perturbations at the event
horizon and spatial infinity. The metric perturbations can be
power decomposed through the product of the asymptotic
factor and a finite but unknown correction function.
Substituting this decomposition of the field perturbations
into the field equations, one can then obtain a set of
linearized field equations for the unknown functions, which
are highly coupled and complicated partial differential
equations. By performing a spectral expansion of the finite
correction functions and evoking the orthogonality of
spectral functions, we transform the linearized field equa-
tions into a set of linear, homogeneous, algebraic equations
of the spectral coefficients of the finite correction functions.
The algebraic equations can then be solved as an eigenvalue
problem, whose eigenvalues are the QNM frequencies.
METRICS can accurately compute the QNM frequencies
without decoupling and simplifying the linearized field
equations into several master equations. Since METRICS
works directly with metric perturbations, one can swiftly
reconstruct the metric perturbations by simply reading the
eigenvector corresponding to the QNM frequencies, with-
out undergoing the CKK approach.
In this paper, we extend METRICS to a wide class of

modified gravity theories. We begin by reviewing the field
equations of this class of theories (Sec. II A), background
metrics that represent BHs in these theories, and the back-
ground scalar-field profile (Sec. II B). Then, we specify the
perturbation ansatz of the metric tensor and the scalar field in
the Regge-Wheeler gauge (Sec. II C), a gauge that is known
to exist in many modified gravity theories. We then derive
the asymptotic behavior of the field perturbations at the event
horizon and spatial infinity for BHs in modified gravity
(Sec. III). The asymptotic behavior at the horizon, derived
using the properties of the Killing vector and the horizon, is
the first important result of our paper, as it is valid for
perturbations that fall through the horizon of a general BH
following a null geodesic, regardless of the details of the
gravity theory. The asymptotic behavior at the horizon and at
spatial infinity allows us to construct the asymptotic factor
needed to apply METRICS.
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We then continue to apply METRICS to this class of
modified gravity theories by product decomposing the field
perturbations as a product of the asymptotic factor and a
finite correction function. We substitute this form of
perturbations into the field equations to derive the linear-
ized field equations for the finite correction functions
(Sec. IVA). By expanding the finite correction functions
into a product of Chebyshev polynomials along a com-
pactified spatial coordinate and the associated Legendre
polynomial along the azimuthal angle, we obtain a set of
linear homogeneous algebraic equations of the spectral
coefficients (Sec. IV B). Since existing tests of GR indicate
that deviations from GR must be small, and since
the background metric of BHs in this class of modified
gravity theories is constructed only up to leading order
in deformations from GR, we develop an eigenvalue-
perturbation theory for METRICS (Sec. V). This eigen-
value-perturbation scheme is the second key result of this
paper, as it allows us to accurately and consistently
compute the leading-order modifications to the QNM
frequencies and the metric and scalar-field perturbations.
To exemplify the applications of METRICS to a modi-

fied gravity theory, we use METRICS to compute the QNM
frequencies of rotating BHs in scalar-Gauss-Bonnet (sGB)
gravity with zero potential and a shift-symmetric coupling
(Sec. VI). We focus on sGB gravity for the following
reasons. First, it is well motivated as the low-energy limit
of certain string theories [60,61]. Moreover, it has recently
been shown that sGB gravity is well posed [62,63] for
small GR deformations, laying the foundation for the
first numerical simulations of BBH coalescence in this
theory [64–66]. Computing the QNM frequencies of BHs
in sGB gravity is critical to establish a waveform model in
this theory, which ultimately leads to an accurate model-
specific test with GW observations. Second, sGB gravity
belongs to a wide class of modified gravity theories, known
as quadratic gravity theories. The Lagrangian density of

quadratic gravity theories consists of quadratic products of
the curvature tensor, which can be viewed as the next
leading-order correction to the Lagrangian density if one
generalizes it into an infinite power series of the curvature
tensor [67]. By focusing on sGB gravity, we can learn
lessons that will be needed before we apply METRICS to
more complicated theories.
Specifically, we apply METRICS to compute the

leading-order modifications to the complex frequency of
the nlm ¼ 022, 033, and 021 modes of rotating BHs of
dimensionless spin a ≲ 0.85 in sGB gravity (Sec. VI C).
Figure 1 presents a summary of our results through the
trajectories of the frequencies in the complex plane for a
sequence of black holes with different dimensionless
spins. We immediately observe the breaking of isospec-
trality, i.e., the QNM frequencies of the axial and polar
perturbations are different in this theory, as expected
[68–76]. We observe also that the sGB frequencies become
more and more different from the GR frequencies as the
spin increases, specially for the axial modes. For all the
QNMs we study, the numerical uncertainty of the leading-
order correction to the QNM frequencies is smaller than
10−5 for a ≤ 0.6, smaller than 10−4 for 0.6 < a ≤ 0.7,
and smaller than 10−2 for 0.7 < a ≤ 0.85 (see both Figs. 1
and 4). We construct a polynomial fitting function to the
QNM frequencies we calculate numerically (also shown in
Fig. 1), which allows for rapid and accurate evaluation.
The numerical values and the fitting functions are the third
key results of this paper. These fitting functions can now be
used to analyze the detected ringdown signals and test sGB
gravity. Apart from the QNM frequencies, we also exam-
ine the properties of the leading-order modifications to the
metric and scalar-field perturbations in sGB gravity,
leading to deeper insight into metric perturbations in
sGB gravity (Secs. VI E and VI F).
This work is the first to compute the QNM frequencies of

BHs that are not slowly rotating and possess scalar hair to

FIG. 1. Trajectory in the complex plane of the quasinormal frequencies of the nlm ¼ 022, 033, and 021 polar (blue) and axial (red)
modes in sGB gravity with a dimensionless coupling of ζ ¼ 0.1 for a sequence of black holes with various spins. The symbols
correspond to the frequencies computed with METRICS, while the lines correspond to polynomial fits to these frequencies. For
comparison, the frequencies in GR are also presented (black symbols and gray lines). Observe how the sGB and GR frequency
trajectories are close to each other at small spins, but they separate as the spin increases, specially for the axial modes, which couple
more strongly with sGB corrections.
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the accuracy described above. We note that the QNM
frequencies of a rotating BH of a ¼ 0.7 in sGB gravity
were estimated in [76] using a slow-spin expansion valid
only up to second order in dimensionless spin. In what
follows, we include sGB corrections to the metric up to 40
orders in dimensionless spin, depending on the dimension-
less spin of the BH, to ensure that the effects of the higher
spin-order terms in the metric corrections are accurately
accounted for when computing the QNM frequencies.
Also, in [76], Padé resummation is used to help improve
the accuracy of the QNM frequencies for a ≥ 0.7, whereas
here we compute the QNM frequencies at a ¼ 0.7
without using any resummation or extrapolation technique.
Moreover, QNM frequencies of the axial perturbations are
not explicitly computed in [76], whereas, in this work,
we also compute the axial-mode frequencies for dimen-
sionless spin a ≤ 0.7. Apart from the semianalytical studies
described above, the QNM response of a remnant BH
formed by binary BH coalescence in sGB gravity was also
simulated in [77–79] and beyond an order-reduction
scheme [62,65]. In principle, one could also extract the
QNM frequencies of BHs in sGB gravity from these
simulations, but the accuracy of this extraction would be
limited by numerical errors in the simulations. Hence, our
work greatly extends the important work of [62,65,76–79],
allowing us to obtain the first accurate computation of the
QNM frequencies of rapidly spinning BHs in sGB gravity.
Our work also extends other important work that focused
on QNM frequencies of rapidly rotating BHs using the
modified Teukolsky formalism [50–53] in modified gravity
theories without BH scalar hair.
The remainder of this paper describes the computational

details of the work summarized above. In Sec. II, we review
the field equations (Sec. II A) and the BH background
metric (Sec. II B) of the wide class of modified gravity
theories we consider. We also describe the ansatz of the
gravitational and scalar perturbations to BHs in these
gravity theories in Sec. II C. In Sec. III, we derive the
asymptotic behavior of the gravitational and scalar pertur-
bations of modified BHs at spatial infinity and the event
horizon. The highlight of this section is the derivation of
the asymptotic behavior of the perturbations at the event
horizon through two separate arguments. The asymptotic
behavior at the horizon is the first key result of our paper
because it is valid for a general BH regardless of the nature
of gravity, provided that the BH admits a stationary Killing
horizon, and the perturbations follow null geodesics.
In Sec. IV, we review the METRICS approach, which
we developed in [34,35], and apply it to transform the
linearized field equations in sGB gravity into a set of linear
homogeneous algebraic equations. In Sec. V, we develop an
eigenvalue-perturbation theory to solve the algebraic equa-
tions for the leading-order modification to the QNM
frequencies due to the activation of modifications to
gravity. The eigenvalue-perturbation theory is the second

important result of this paper in its own right. In Sec. VI,
using METRICS and the eigenvalue-perturbation theory,
we compute the QNM frequencies of rotating BHs in sGB
gravity for dimensionless spin up to 0.85. The QNM
frequencies of these modes are presented in Tables I–III
of Appendix B. The coefficients (and their uncertainty) of
the fitting polynomials of the frequencies are presented in
Table V (and Table VI) of Appendix B.
Henceforth, following [34,35], we assume the following

conventions: xμ ¼ ðx0; x1; x2; x3Þ ¼ ðt; r; χ;ϕÞ, where
χ ¼ cos θ and θ is the polar angle; the signature of the
metric tensor is ð−;þ;þ;þÞ; gravitational QNMs are
labeled by nlm or ðn; l; mÞ, where n is the principal-
mode number, l is the azimuthal-mode number,1 andm is the
magnetic-mode number of the QNM; Greek letters in index
lists stand for spacetime coordinates; unless otherwise
specified, we used geometric units in which c ¼ G ¼ 1;
for the convenience of the reader, we have presented a list of
all definitions and symbols in Appendix A.

II. MODIFIED GRAVITY THEORIES

In this section, we define the class of modified gravity
theories we will consider. We begin by describing the field
equations and their solution for stationary and axisymmet-
ric black hole spacetimes. We then discuss how we perturb
these backgrounds.

A. The field equations

The Lagrangian density of a wide class of modified
gravity theories can be written as [20,80,81]

16πL ¼ R −
1

2
∇μΦ∇μΦ − VðΦÞ þ αfðΦÞQ; ð1Þ

where Φ is a scalar field to which the BH in the modified
gravity couples, VðΦÞ is the potential of Φ, α is a coupling
constant, which characterizes the strength of the modifi-
cations to gravity and has dimensions of length squared in
geometric units, and fðΦÞ is a function of Φ only. In the
Lagrangian, Q is a scalar constructed from the curvature
tensor. For example, in sGB gravity [67,82], Q is given by

QsGB ¼ G ¼ R2 − 4RαβRαβ þ RαβγδRαβγδ; ð2Þ

and in dynamical Chern-Simons (dCS) gravity [83–85],

QdCS ¼ P ¼ 1

4
Rνμρσ

�Rμνρσ; ð3Þ

1Note that l is, in general, different from l, the degree of the
associated Legendre polynomials in the product decomposition
of the metric perturbation functions. Although these numbers are
the same for a Schwarzschild BH background, this is not so for a
Kerr BH background.
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where �Rμνρσ is the dual Riemann tensor

�Rμνρσ ¼ 1

2
ϵρσαβRμν

αβ; ð4Þ

and ϵρσαβ is the Levi-Civita tensor, defined as

ϵρσαβ ¼ 1ffiffiffiffiffiffi−gp ϵ̃ρσαβ; ð5Þ

g is the determinant of gμν, and ϵ̃ρσαβ is the totally
asymmetric Levi-Civita symbol.
Through this work, to exemplify the application of

METRICS to study spinning BHs in modified gravity,
we focus on the cases of zero potential and a shift-
symmetric coupling function,

VðΦÞ ¼ 0; fðΦÞ ¼ Φ: ð6Þ

We consider a shift-symmetric coupling function because
this is the small-coupling approximation (or limit, i.e.,
when α ≪ 1 such that the background Φ is only slightly
displaced from its ground-state value Φ0) of a general
coupling function when Q is a topological invariant, as in
the sGB and dCS cases. To see the correspondence, we can
Taylor expand a general fðΦÞ around its ground-state
potential Φ0,

fðΦÞ ¼ fðΦ0Þ þ f0ðΦ0ÞðΦ −Φ0Þ þ � � � : ð7Þ

The constant term fðΦ0Þ − f0ðΦ0ÞΦ0 has no physical
effects when Q is a topological invariant; this is because
fðΦ0Þ − f0ðΦ0ÞΦ0 pulls out of the integral and Q has zero
variation, so the field equations are not modified. The
coefficient f0ðΦ0Þ can just be absorbed into the definition
of the coupling constant, and one obtains identical field
equations as if one had chosen a shift-symmetric coupling
function.
Using the Lagrangian and the least action principle, one

can derive the field equations of the modified gravity theory
in vacuum, which can be schematically expressed as

Rμ
ν þ ζðAμ

ν − Tμ
νÞ ¼ 0; ð8Þ

□ϑþAϑ ¼ 0; ð9Þ

where ζ is a dimensionless coupling parameter,

ζ ¼ α2

M4
; ð10Þ

where M is the mass of the background BH we consider in
this paper. In the small-coupling approximation, ζ ≪ 1
because of existing tests of GR. The quantities Aμ

ν and Aϑ

are a tensor and a scalar, respectively, which represent

modifications to GR, while ϑ is a rescaled scalar field, such
that Φ ¼ αϑ, and

Tμ
ν ≡ 1

2
ð∇μϑÞð∇νϑÞ þ 1

2ζ
δμ

νVðΦÞ ð11Þ

is the trace-reversed energy-momentum tensor of the
rescaled scalar field. In general,Aμ

ν satisfies the contracted
Bianchi identity ∇νAμ

ν ¼ 0 and may involve higher-than-
second-order derivatives of the metric tensor and deriva-
tives of ϑ. For example, in sGB gravity [67,82],

Aμ
ν ≡ δνσαβμλγδR

γδ
αβ∇λ∇σϑ −

1

2
δμ

νδησαβηλγδ R
γδ
αβ∇λ∇σϑ; ð12Þ

where δνσαβμλγδ is the generalized Kronecker δ, defined as

δν1ν2ν3ν4μ1μ2μ3μ4 ¼ det

0
BBBB@

δν1μ1 δν1μ2 δν1μ3 δν1μ4
δν2μ1 δν2μ2 δν2μ3 δν2μ4
δν3μ1 δν3μ2 δν3μ3 δν3μ4
δν4μ1 δν4μ2 δν4μ3 δν4μ4

1
CCCCA; ð13Þ

while for dCS gravity [70–73,83–85],

Aμν ≡ ð∇σϑÞϵσδαðμj∇αRjνÞ
δ þ ð∇σ∇δϑÞ�RδðμνÞσ: ð14Þ

Aϑ usually involves the product of the curvature tensor.
For example, in sGB gravity, Aϑ ¼ G, whereas in dCS
gravity, Aϑ ¼ P.

B. Background spacetime and scalar field

Equation (8) allows us to construct a rotating BH
spacetime (i.e., a stationary, axisymmetric, and vacuum
spacetime) as an expansion in powers of the dimensionless
spin a in a given modified gravity theory. Since existing
constraints indicate that ζ ≪ 1 [20,81], we here focus
on solutions within the small-coupling approximation.
We observe that, whereas Eq. (8) explicitly depends on ζ,
Eq. (9) does not. Thus, we can solve Eq. (8) in the
following iterative manner [67,86–91]. We first use the
GR Kerr metric to compute Aϑ, with which we solve
the second equation of Eq. (8) for ϑ. Since it is very difficult
to solve the scalar-field equation exactly, one can instead
solve for ϑ as a power series of a. Doing so, one finds that
the solution takes the form [67,86,87]

ϑðr; χÞ ¼
X
k¼0

XNrðKÞ

p¼0

XNχðKÞ

q¼0

ϑi;k;p;q
akχq

rp
; ð15Þ

where we recall that χ ¼ cos θ and where ϑi;k;p;q are
constant, while NrðKÞ and NχðKÞ are also constants that
depend on the order in a to which one expands.
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Then, we use ϑ in the form of Eq. (15) to solve the first
equation of Eq. (8) for the background metric. Specifically,
we solve the metric in the Boyer-Lindquist coordinates of
the following form [50,67]:

ds2 ¼ gð0Þμν dxμdxν

¼ −
�
1 −

2Mr
Σ

− ζH1ðr; χÞ
�
dt2

− ½1þ ζH2ðr; χÞ�
4M2ar

Σ
ð1 − χ2Þdϕdt

þ ½1þ ζH3ðr; χÞ�
�
Σ
Δ
dr2 þ Σ

1 − χ2
dχ2

�
þ ½1þ ζH4ðr; χÞ�ð1 − χ2Þ

×

�
r2 þM2a2 þ 2M3a2r

Σ
ð1 − χ2Þ

�
dϕ2; ð16Þ

where

Σ ¼ r2 þM2a2χ2;

Δ ¼ ðr − rþÞðr − r−Þ;
r� ¼ Mð1� bÞ;
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
; ð17Þ

and where r� are the GR radial location of the inner and
outer event horizons, respectively. The parameters M and
0 ≤ a < 1

2 are the observable BH mass, which will be set
to unity when we numerically compute the QNM frequen-
cies (see Sec. VI) and the observable dimensionless spin
parameter, related to the observable spin angular momen-
tum through J ¼ M2a. We denote the Kerr-BH metric

in GR by gðGRÞμν ¼ gð0Þμν ðζ ¼ 0Þ, and thus, Hi¼1;…;4ðr; χÞ are
the corrections to the Kerr background due to modified
gravity, which can similarly be solved iteratively as series

in a [50,67], with the boundary condition that gð0Þμν is
asymptotically flat at spatial infinity (i.e., r → þ∞). Doing
so, one finds that the solution takes the form

Hiðr; χÞ ¼
XK
k¼0

XN0
rðKÞ

p¼0

XN0
χðKÞ

q¼0

hi;k;p;q
akχq

rp
; ð18Þ

where hi;k;p;q are again all numbers, while N0
rðkÞ and N0

χðkÞ
are also numbers that depend on the truncation order of
the series in a (that is, on K). Note that, within this
parametrization, Hi¼1;…;4ðr; χÞ do not explicitly depend on

ζ or α. One crucial advantage of this form of metric is that
the radial coordinate of the outer and inner event horizons,
corresponding to the radial roots of

grr ¼ 1

1þ ζH3ðr; χÞ
Δ
Σ
¼ 0; ð19Þ

are not changed by the modifications to gravity,

r� ¼ Mð1� bÞ: ð20Þ

Two quantities related to the BH background that we will
often use in our work are the horizon angular velocity ΩH,
which can be computed using the tϕ and ϕϕ components of
the metric via

ΩH ¼ −
gtϕ
gϕϕ

����
r¼rþ

; ð21Þ

and the surface gravity of the horizon κ, which can be
computed via

κ ¼ lim
r→rþ

∂rξ
2ffiffiffiffiffiffiffiffiffiffiffiffi

ξ2=grr
p ; ð22Þ

where ξ2 is the modulus square of the Killing vector of the
BH horizon [67], which will be defined in more detail in
Sec. III B 1, but for now we define via

lim
r→rþ

ξ2 ¼ ½gtt þ 2ΩHgtϕ þ Ω2
Hgϕϕ�r¼rþ

¼
�
gtt −

g2tϕ
gϕϕ

�
r¼rþ

: ð23Þ

Both can be written as

ΩH ¼ Ωð0Þ
H þ ζΩð1Þ

H ;

κ ¼ κð0Þ þ ζκð1Þ; ð24Þ

where Ωð0Þ
H and κð0Þ are, respectively, the GR horizon

angular velocity and surface gravity

Ωð0Þ
H ¼ a

2Mb
; κð0Þ ¼ b

2Mð1þ bÞ ; ð25Þ

and Ωð1Þ
H and κð1Þ are the leading order in ζ correction to the

horizon angular velocity and surface gravity, respectively,
each of which is a series in a [67]. For the reference of

the reader, the explicit power series of Ωð1Þ
H , κð1Þ, ϑ, and

Hi¼1;…;4 as a power series up to the 40th order of a are
given in a Mathematica notebook as Supplemental
Material [92].

2Note that the extremal limit for rotating BHs in this theory
will be corrected from that in GR, as pointed out by [50].
However, since ζ ≪ 1, we expect these corrections to be OðζÞ.
Therefore, the modified extremal limit is not strictly relevant for
parameter estimation of astrophysical ringdown signals.
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C. Perturbations of fields

We now consider both metric and scalar perturbations of a BH in modified gravity theory. The linear metric perturbations
can be written as

gμν ¼ gð0Þμν þ ϵhμν; ð26Þ

where gð0Þμν is the background metric of Eq. (16), hμν is the metric perturbations, and ϵ is a bookkeeping parameter for the
perturbations. The metric perturbations hμν can be written as

hμνðt; r; χ;ϕÞ ¼ eimϕ−iωt

0
BBBB@

h1ðr; χÞ h2ðr; χÞ −imð1 − χ2Þ−1h5ðr; χÞ ð1 − χ2Þ∂χh5ðr; χÞ
� h3ðr; χÞ −imð1 − χ2Þ−1h6ðr; χÞ ð1 − χ2Þ∂χh6ðr; χÞ
� � ð1 − χ2Þ−1h4ðr; χÞ 0

� � � ð1 − χ2Þh4ðr; χÞ

1
CCCCA: ð27Þ

Here we have made use of the Regge-Wheeler gauge
[93,94], a gauge that many modified gravity theories have
sufficient residual degrees of freedom to enforce [70–76].
Apart from the metric perturbations, we also need to
consider perturbations of the scalar field to which the
BH couples,

ϑðr; χÞ ¼ ϑð0Þðr; χÞ þ ϵeimϕ−iωth7ðr; χÞ; ð28Þ

where ϑð0Þðr; χÞ is the unperturbed rescaled scalar field
[which is just Eq. (15)].
Let us briefly discuss some of the variables introduced in

this decomposition of the metric and scalar perturbations.
The ω in e−iωt that multiplies hi¼1;…;7 in Eqs. (27) and (28)
is the same quantity, but this does not mean that we are
imposing isospectrality, i.e., that axial, polar, and scalar
perturbations have the same frequency. As we shall see in
the later sections, we will develop an algorithm to isolate
axial modes, the polar modes, and the scalar modes. That is,
we will develop a method (essentially by picking the right
“parity-isolating” initial guesses) that will ensure that only
the hi of a given parity or scalar/metric type are turned on,
while the others are suppressed. Doing so ensures that ωwe
solve for corresponds to the parity or type we have intended
to isolate. Thus, Eqs. (27) and (15) are still general enough
for the computation of the QNM frequencies when iso-
spectrality is not preserved, even though the frequency of
all types of perturbations is labeled by the same ω.
Before proceeding, let us discuss the parity content of

Eq. (27). The axial (also known as “odd” or “magnetic”)
metric perturbations are defined to satisfy [95,96]

P̂½hðAÞμν � ¼ −ð−1ÞlhðAÞμν : ð29Þ

Here P̂ is the parity reversal operator [P̂fðχ;ϕÞ ¼
fð−χ; π þ ϕÞ] and l is the azimuthal-mode number of

the QNM. The polar (also known as “even” and “electric”)
metric perturbations are defined to satisfy

P̂½hðPÞμν � ¼ ð−1ÞlhðPÞμν : ð30Þ

These two conditions do not, in general, imply that hi¼1;…;4

are polar and hi¼5;6 are axial. This statement is only true
when a ¼ 0. To illustrate this important observation, let us
use the associated Legendre polynomials as an example
angular spectral basis for the angular representation of the
metric perturbations. These polynomials obey

P̂½Pm
l ðχÞ� ¼ ð−1ÞlþmPm

l ðχÞ; ð31Þ

where l and m are the degree and order of the associated
Legendre polynomial (and note that the degree of the
Legendre polynomial l is not to be confused with the QNM
number l). When a ¼ 0, the perturbations of different l
decouple (so that l and l are the same), but when a > 0, the
perturbations of different l are coupled. For spinning BHs
then, the metric perturbations hi¼1;…;4 and hi¼5;6 will “take
turns” being of polar and axial type. For example, for the
l ¼ 2 modes, the metric perturbations hi¼1;…;4 are polar
and hi¼5;6 are axial when l ¼ 2; 4; 6;…; however, when
l ¼ 3; 5; 7;…, because of Eq. (31), the metric perturba-
tions hi¼1;…;4 are axial and hi¼5;6 are polar. Therefore, one
cannot simply set hi¼5;6 ¼ 0 to study polar metric pertur-
bations or hi¼1;…;4 ¼ 0 to study axial metric perturbations
for BH backgrounds that are spinning.

III. ASYMPTOTIC BEHAVIOR OF THE
PERTURBATIONS OF THE FIELDS

Having specified our ansatz of field perturbations around
a BH in modified gravity, in this section, we determine
the asymptotic behavior of the field perturbations near
spatial infinity and the event horizon. In particular, using

QUASINORMAL MODE FREQUENCIES AND GRAVITATIONAL … PHYS. REV. D 110, 064019 (2024)

064019-7



Boyer-Lindquist coordinates, we derive the asymptotic
behavior of a massless field (i.e., the wavefront of the
field travels along a null geodesic) near the Killing horizon
of a stationary and axisymmetric BH (in or outside GR).

A. Behavior near spatial infinity

The asymptotic behavior of hiðr; χÞ can be determined
by studying the asymptotic form of the background
spacetime near spatial infinity. Near spatial infinity, the
background spacetime [Eq. (16)] is asymptotic to

ds2 ∼ −
�
1 −

2M
r

�
1 −

1

2
ζHð0Þ

3

��
dt2

−
4Ma
r

�
1 −

1

2
ζHð0Þ

3

�
ð1 − χ2Þdtdϕ

þ
�
1þ ζHð0Þ

3

�
1 −

M
r

��
dr2

1 − 2M
r

þ ð1þ ζHð0Þ
3 Þ

�
r2

dχ2

1 − χ2
þ r2ð1 − χ2Þdϕ2

�
; ð32Þ

where

Hð0Þ
3 ¼ lim

r→þ∞
H3ðrÞ: ð33Þ

This asymptotic form of the background metric allows us
to derive the asymptotic limit of the Eddington-Finkelstien
coordinate r�. Setting dχ ¼ dϕ ¼ 0, we can write the
asymptotic form of the line element near spatial infinity as

ds2 ∼
�
1 −

2M
r

�
1 −

1

2
ζHð0Þ

3

��
ðdt2 − dr2�Þ; ð34Þ

where r� has been defined by

dr� ¼
"

1þ ζHð0Þ
3 ð1 − M

r Þ
½1 − 2M

r ð1 − 1
2
ζHð0Þ

3 Þ�ð1 − 2M
r Þ

#1
2

dr: ð35Þ

This choice of r� is such that the null cone has slope of
unity near spatial infinity, i.e., dt=dr� ¼ 1 when ds ¼ 0.
Expanding the defining equation for r� to first order in ζ
and integrating it, we obtain the asymptotic form of r� near
spatial infinity as a function of r, namely,

r� ∼
�
1þ 1

2
ζHð0Þ

3

�
rþ 2M log ðr − 2MÞ: ð36Þ

With this in hand, outgoing null waves near spatial
infinity must travel along null cones in ðt; r�Þ coordinates,
which means that null waves must be proportional to

eiωr� ∼ eiMð1þ1
2
ζHð0Þ

3
Þωrr2iMω: ð37Þ

Observe that metric perturbations do not need to propagate
at the speed of light near spatial infinity. This is because the
radial Boyer-Lindquist coordinate in modified gravity does
not coincide with the usual radial coordinate R, which
measures the surface area of the two-sphere of a constant
radius [67]. Instead, the modified gravity Boyer-Lindquist
coordinate r and the GR Boyer-Lindquist coordinate R near
spatial infinity are related by

r ∼ R

�
1 −

1

2
ζHð0Þ

3

�
−
1

2
ζHð1Þ

3 ; ð38Þ

whereHð0Þ
3 andHð1Þ

3 are defined by the asymptotic behavior
of H3 near spatial infinity,

H3 ¼ Hð0Þ
3 þHð1Þ

3

r
þO

�
1

r2

�
: ð39Þ

Thus, the asymptotic behavior of both the metric
and scalar-field perturbations near spatial infinity can be
written as

hkðr; χÞ ¼ eið1þ
1
2
ζHð0Þ

3
Þωrr2iMωþρðkÞ∞

X∞
p¼0

ap
rp

; ð40Þ

where ap are constants, and ρðkÞ∞ is another k-dependent
parameter controlling the divergent behavior of hk near
spatial infinity [which will be specified later, in Eq. (87)].

B. Behavior near the event horizon

The asymptotic behavior of hkðr; χÞ near the event
horizon can be determined using the properties of the
horizon. Since the derivation of the asymptotic behavior
near the horizon is more involved than that near spatial
infinity, we will derive it through two different sets of
arguments and then cross-check the conclusions to make
sure the final result is correct. Anticipating the final result,
we will find that the asymptotic behavior of hk near the
event horizon, for a fixed χ, must be

lim
r→rþ

hkðr; χÞ ∝ lim
r→rþ

e−iωvþimφ

∼ ðr − rþÞ−i
ω−mΩH

2κ −ρðkÞH

X∞
p¼0

bpðr − rþÞp; ð41Þ

where bp are constants and ρðkÞH is a k-dependent parameter
controlling the divergent behavior of hk at r ¼ rþ [35].
Before presenting the details of the derivation of the

above result, let us make two remarks. First, having the
same asymptotic boundary condition for all metric pertur-
bations seems to contradict the Petrov type of sGB BHs.
An sGB BH is of Petrov-type I, meaning that there are four
distinct principal null directions, two of which are ingoing
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and the remaining two are outgoing [87,97]. However, we
notice that the sGB corrections to the Kerr principal null
directions found in [97] are finite, and thus, they are
suppressed relative to the Kerr principal null directions,
which diverge at the event horizon. In other words, the
divergent part of the Kerr principal null directions still
dominates the asymptotic behavior of massless field
perturbations. Second, the asymptotic form of dv and
dφ that we will derive below may be useful to perform
field quantization near the event horizon, thereby facilitat-
ing the study of the Hawking radiation of rotating BHs in
modified gravity in the future.

1. Null geodesic approach

Near the event horizon, massless perturbations propagate
along null geodesics that are ingoing at the event horizon.3

These geodesics are more suitably described by ingoing
Kerr null coordinates ðv; r; θ;φÞ, where

v ¼ tþ r�;

φ ¼ ϕþ r̃: ð42Þ

Here v is the advanced time, and r� and r̃ are two
coordinates. At the event horizon, these coordinates are
the coordinates traced by a congruence generated by a
Killing vector at the event horizon (see below). For GR
BHs, r� and r̃ can be determined as a function of r, valid for
r∈ ½rþ;þ∞Þ, by studying principal null geodesics of the
spacetime. But for BHs in modified gravity, r� and r̃ cannot
be determined in this way because some constants of the
equations of motions, such as the Carter constant, may not
exist, and the (natively second-order) geodesic equations
cannot be decoupled into a set of first-order differential
equations. Nonetheless, if the asymptotic dependence of v
and φ on r as r → rþ is known, we can still determine the
asymptotic behavior of hkðr; χÞ as r → rþ.
One way to determine the asymptotic form of v as a

function of r is using an argument that relies on Killing
vectors. First, we note that ξ̃μ ¼ tμ þΩHϕ

μ is a Killing
vector in stationary and axisymmetric spacetimes,
where tμ and ϕμ are the Killing vectors associated with
stationarity and axisymmetry. Naturally, then, ξμ ¼ −ξ̃μ ¼
−ðtμ þ ΩHϕ

μÞ is also a Killing vector, and geometrically,
since ξμ is null, tangent, and normal to the event horizon,

so is −ξμ. Analytically, the defining equations of a
Killing vector, Lξμgαβ ¼ 0 (where Lξμ is the Lie derivative
along ξμ) or ∇ðαξβÞ ¼ 0, are invariant under sign reversal.
With this at hand, we then consider the infinitesimal

displacement of a congruence whose four-velocity (defined
with respect to advance time v) is the Killing vector ξμ (see,
e.g., page 204 of [99]),

dxμ ¼ ξμdv: ð43Þ

To obtain a differential equation that defines v, we perform
the inner product of dxμ with ξμ,

ξμdxμ ¼ ξμξ
μdv ¼ ξ2dv; ð44Þ

where ξ2 ¼ ξμξ
μ is the modulus square of the Killing vector

at the event horizon, which is [see, e.g., Eq. (4.7) of [67] ]

ξ2 ¼ gttgϕϕ − g2tϕ
gϕϕ

¼ Oðr − rþÞ; ð45Þ

where the second equality holds near the event horizon.
Next, let us consider the defining equation for the BH

surface gravity,

ξμ∇μξ
ν ¼ −κξν; ð46Þ

where κ > 0 is the surface gravity of the BH. Using this
equation together with the Killing equation ∇ðμξνÞ ¼ 0,
we then have that [see, e.g., Eq. (5.78) of [99] and
Eq. (4.13) of [67] ]

ξμ ¼
1

2κ
∂μξ

2: ð47Þ

Note that this equation, strictly speaking, is valid only on
the event horizon because Eq. (46) is only valid at the event
horizon [see Sec. 4 of [67] ]. Note also that Eqs. (46)
and (47) differ from those in the literature [e.g., Eq. (5.78)
of [99] and Eq. (4.13) of [67] ] only by a minus sign,
because we have chosen to work with ξμ instead of ξ̃μ and
because κ > 0.
With all of this background, we can now proceed to

evaluate the asymptotic form of the Killing vector ξμ. First,
we note that since the background metric is a function of χ
and r only, so is ξ2. Thus, at the horizon, ξt ¼ ξϕ ¼ 0, and
explicit calculations show that ξχ ¼ 0. Hence, near the
event horizon, we must have that

ξt; ξχ ; ξϕ at most ∼Oðr − rþÞ: ð48Þ

Technically, the falloff away from the horizon need not be
an integer, but the metric of the background spacetime
contains only rational functions of r and χ, so noninteger

3In many of the theories we consider here, like in sGB gravity
and dCS gravity [98], there are only two propagating degrees of
freedom for metric perturbations. In the Regge-Wheeler gauge,
metric perturbations are characterized by six functions. Thus,
there are 4 degrees of freedom in the Regge-Wheeler gauge that
are just gauge waves that follow null geodesics. The asymptotic
behavior of these 4 degrees of freedom is fixed by the (perturbed)
Hamiltonian and momentum constraints and, in turn, partially
determined by the asymptotic behavior of the propagating
degrees of freedom.
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values will not arise. As for ξr, we use Eq. (47) to find that
near the event horizon

ξr ¼
1

2κ
∂rξ

2 þOðr − rþÞ: ð49Þ

Note that the argument that ξr ¼ 0 implies ξr ¼ grαξα ¼ 0
does not apply at the event horizon because grr is
singular there.
With all of this preliminary work behind us, we can now

finally derive an expression for advanced time as a function
of the modified Boyer-Lindquist coordinate r. We begin by
substituting the above equation into Eq. (44) and using
Eq. (43) to find

ξ2dv ¼ ξrðξrdvÞ ¼ ξrdr ¼
1

2κ
∂rξ

2drþOðr − rþÞ: ð50Þ

Rearranging, we have

dv ¼ 1

2κ

1

ξ2
∂rξ

2drþOððr − rþÞ0Þ

¼ 1

2κ
∂r log ξ2drþOððr − rþÞ0Þ: ð51Þ

From Eq. (45), we note that ξ2 has a nonrepeated zero
at r ¼ rþ, which means we can write ξ2 ¼ ðr − rþÞ × δ,
where δ ≠ 0 at r ¼ rþ. Hence, asymptotically, at a con-
stant-t hypersurface (i.e., dt ¼ 0) and as r → rþ, we have

v − v0 ∼
1

2κ
logðr − rþÞ þOðr − rþÞ; ð52Þ

Note that the coordinate time t has thus far not appeared
in our calculations because we are working on a constant-
time hypersurface, so that dt ¼ 0. But even if t were
not a constant, its contribution to the asymptotic behavior
will be suppressed relative to the logarithm divergence of
logðr − rþÞ. where we have absorbed the δ-dependent term
from expanding the logarithm into v0, which will then
contribute a constant phase factor to hk. Note that, while rþ
has not modified gravity correction (per the choice of
coordinate system adopted to find the modified BHmetric),
the surface gravity κ does admit a ζ-dependent correction,
which should be taken into account as we compute the
QNM frequencies. Equation (52) indeed gives the correct
asymptotic form of the advanced time of the GR
Schwarzschild, Reissner-Nordström, Kerr, and Kerr-
Newman BHs [100] when ζ ¼ 0, and it is consistent with
the discussion in [101] (see page 28 in that reference).
To find the relation between φ and the modified Boyer-

Lindquist coordinate r, we first recall that, in the GR Kerr
background, φ is defined as

dφ ¼ dϕþ a
Δ
dr: ð53Þ

Near the event horizon, dφ is then asymptotic to

dφ ∼ dϕþΩH

2κ

dr
r − rþ

; ð54Þ

which is a differential equation relating ϕ and r. We seek a
similar equation for a rotating BH in modified gravity, so
we go back to Eq. (44), take μ ¼ ϕ, and recall that we are
choosing ξμ ¼ −ðtμ þ ΩHϕ

μÞ to obtain

dϕ ¼ ξϕdv ¼ −ΩHdv ∼ −
ΩH

2κ

dr
r − rþ

; ð55Þ

where we have made use of the asymptotic behavior
of dv in Eq. (52). The asymptotic behavior of dϕ
suggests that

dϕþΩH

2κ

dr
r − rþ

∼O½ðr − rþÞp�; ð56Þ

where p > −1. In principle, p can assume a noninteger
value between −1 and 0. However, as the BH background
metric [Eq. (16)] contains only a rational function of r, p
can only be a non-negative integer. This implies that
dϕþ ½ΩH=ð2κÞ�½dr=ðr − rþÞ� is finite (and thus regular)
as r → rþ, and one may define a φ coordinate in exactly the
same way as done in Eq. (54). When ζ ¼ 0, Eq. (56)
reduces to the dφ of the GR Kerr BH [Eq. (54)].
Using the asymptotic form of v and φ, we can determine

the asymptotic behavior of hk near the horizon to be

hkðr → rþÞ ∝ e−iωvþimφ ∝ ðr − rþÞ−i
ω−mΩH

2κ eimϕ−iωt; ð57Þ

which is exactly what we anticipated in Eq. (41).

2. d’Alembertian operator approach

Another way to determine the asymptotic behavior of
hkðr; χÞ at the event horizon is to carry out an asymptotic
analysis of the wave equation of a massless scalar field near
the event horizon. Analytically, metric perturbations obey
massless wave equations, which are similar to the wave
equation governing a massless scalar field. Physically, both
the metric and scalar perturbations of a BH follow null
geodesics into the BH. Thus, deriving the asymptotic
behavior of scalar-field perturbations near the horizon
allows us to learn about the leading-order divergent
behavior of the perturbations along the radial coordinate,
offering us insight to fully determine the asymptotic
behavior of metric perturbations.
The wave equation governing massless scalar-field

perturbations is simply

□Φ ¼ 0; ð58Þ
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where □ is the d’Alembertian operator in curved
spacetime,

□Φ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð59Þ

and Φ is a scalar field. Let us rewrite this equation as

□Φ ¼ ∂μðgμν∂νΦÞ þ ð∂μ log
ffiffiffiffiffiffi
−g

p Þgμν∂νΦ ð60Þ

and consider the first and second contractions separately.
In Boyer-Lindquist coordinates, the first contraction can

be written as

∂μðgμν∂νΦÞ ¼ gtt
∂
2Φ
∂t2

þ 2gtϕ
∂
2Φ

∂t∂ϕ
þ gϕϕ

∂
2Φ
∂ϕ2

þ ∂

∂r

�
grr

∂Φ
∂r

�
þ ∂

∂χ

�
gχχ

∂Φ
∂χ

�
; ð61Þ

where we recall that the explicit expressions for the
components of the inverse of the metric gμν are

gtt ¼ gϕϕ
gttgϕϕ − g2tϕ

; gtϕ ¼ −
gtϕ

gttgϕϕ − g2tϕ
; ð62Þ

gϕϕ ¼ gtt
gttgϕϕ − g2tϕ

; grr ¼ 1

grr
; gχχ ¼ 1

gχχ
: ð63Þ

Using Eq. (45) evaluated at the event horizon,

½gttgϕϕ − g2tϕ�r¼rþ
¼ gϕϕðr ¼ rþÞξ2; ð64Þ

and since ξ2 ∼Oðr − rþÞ near the event horizon, we then
have that

gttðr ¼ rþÞ ¼
�
g2tϕ
gϕϕ

�
r¼rþ

: ð65Þ

We can now use this expression on the components of the
inverse metric to find that

gttðr¼ rþÞ¼
1

ξ2
;

gtϕðr¼ rþÞ¼−
�
gtϕ
gϕϕ

�
r¼rþ

1

ξ2
¼ΩH

ξ2
;

gϕϕðr¼ rþÞ¼
�
gtt
gϕϕ

�
r¼rþ

1

ξ2
¼
�
g2tϕ
g2ϕϕ

�
r¼rþ

1

ξ2
¼Ω2

H

ξ2
; ð66Þ

where we have assumed that ΩH ≥ 0, since ΩH ¼
−gtϕðr ¼ rþÞ=gϕϕðr ¼ rþÞ. Using what we have learned
about the behavior of the components of the inverse
metric near the event horizon and multiplying both sides

of □Φ ¼ 0 by ξ2, we can transform this equation into the
following form:

∂
2Φ
∂t2

þ 2ΩH
∂
2Φ

∂t∂ϕ
þ Ω2

H
∂
2Φ
∂ϕ2

þ ξ2
∂

∂r

�
grr

∂Φ
∂r

�

þ ξ2
∂

∂χ

�
gχχ

∂Φ
∂χ

�
þ ξ2ð∂μ log

ffiffiffiffiffiffi
−g

p Þgμν∂νΦ ¼ 0: ð67Þ

Let us now focus on the second contraction of Eq. (60),
namely, ð∂μ log ffiffiffiffiffiffi−gp Þgμν∂νΦ. Expanding this contraction,
we have that

ð∂μ log
ffiffiffiffiffiffi
−g

p Þgμν∂νΦ
¼ ð∂r log

ffiffiffiffiffiffi
−g

p Þgrr∂rΦþ ð∂χ log
ffiffiffiffiffiffi
−g

p Þgχχ∂χΦ: ð68Þ

Now, note that gχχ and ∂μ log
ffiffiffiffiffiffi−gp

are at most ∼Oð1Þ near
the event horizon. Thus, ð∂χ log ffiffiffiffiffiffi−gp Þgχχ∂χΦ is also at
most ∼OðΦÞ. As for ð∂r log ffiffiffiffiffiffi−gp Þgrr∂rΦ, near the event
horizon we have that

grr ∼Oðr − rþÞ;
∂Φ
∂r

at most ∼O½ðr − rþÞ−1Φ�: ð69Þ

Hence, ð∂r log ffiffiffiffiffiffi−gp Þgrr∂rΦ is also at most ∼OðΦÞ.
With this in hand, we can now combine what we have

learned about the two contractions that define Eq. (60).
From the above arguments, we have that

ξ2
∂

∂χ

�
gχχ

∂Φ
∂χ

�
þ ξ2ð∂μ log

ffiffiffiffiffiffi
−g

p Þgμν∂νΦ

∼O½ðr − rþÞΦ�: ð70Þ

Hence, as r → rþ, the equation □Φ ¼ 0 is asymptotic to

∂
2Φ
∂t2

þ 2ΩH
∂
2Φ

∂t∂ϕ
þ Ω2

H
∂
2Φ
∂ϕ2

þ ξ2
∂

∂r

�
grr

∂Φ
∂r

�
¼ 0: ð71Þ

This equation can be further simplified using the asymp-
totic limit of grr at the horizon, which can be computed
using Eq. (47) and taking μ ¼ r [67],

ξr ¼
1

2κ
∂rξ

2: ð72Þ

Since ξt ¼ ξχ ¼ ξϕ ¼ 0 at r ¼ rþ, ξ2 can be computed
using just ξr and grr at the event horizon,

ξ2jrþ ¼ −grrðξrÞ2 ¼ −grr
�
∂rξ

2

2κ

�
2

: ð73Þ
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We include the negative sign here because, by Eq. (45),

lim
r−rþ→0þ

ξ2 ¼ 0−; ð74Þ

whereas grr > 0 for r > rþ. Rearranging, we have the
asymptotic value of grr at the event horizon,

grrjrþ ¼ −ξ2
�

2κ

∂rξ
2

�
2

: ð75Þ

Using this asymptotic limit of grr at the event horizon, we
then have that

ξ2
∂

∂r

�
grr

∂Φ
∂r

�
¼ −ξ2

∂

∂r

�
ξ2
�

2κ

∂rξ
2

�
2 ∂Φ
∂r

�
ð76Þ

¼ −
2κξ2

∂rξ
2

∂

∂r

�
2κξ2

∂rξ
2

∂Φ
∂r

�

− ξ2
�
∂

∂r
2κ

∂rξ
2

�
2κξ2

∂rξ
2

∂Φ
∂r

; ð77Þ

where in the second line we used the product rule. As
r → rþ, ξ2 ∼Oðr − rþÞ, ∂rΦ is at most O½ðr − rþÞ−1Φ�,
and

ξ2

∂rξ
2
¼ 1

∂r log ξ2
¼ 1

∂r logðr − rþÞ
∼Oðr − rþÞ;

∂

∂r
1

∂rξ
2
at most ∼Oð1Þ;

⇒ ξ2
�
∂

∂r
2κ

∂rξ
2

�
2κξ2

∂rξ
2

∂Φ
∂r

∼O½ðr − rþÞΦ�: ð78Þ

Hence, asymptotically, the last term can be discarded, so
that □Φ ¼ 0 is asymptotic to

∂
2Φ
∂t2

þ2ΩH
∂
2Φ

∂t∂ϕ
þΩ2

H
∂
2Φ
∂ϕ2

−
2κξ2

∂rξ
2

∂

∂r

�
2κξ2

∂rξ
2

∂Φ
∂r

�
¼0: ð79Þ

Equation (79) motivates us to define a new radial
coordinate r�, whose asymptotic form as r → rþ is

∂

∂r�
¼ 2κξ2

∂rξ
2

∂

∂r
¼ 2κ

∂r log ξ2
∂

∂r
: ð80Þ

Since ξ2 ∼Oðr − rþÞ, integrating this differential equation
yields

r� ∼
1

2κ
logðr − rþÞ; ð81Þ

as r → rþ. Note that this is exactly the same expression we
found in Eq. (52) when we considered the derivation in
terms of coordinates adapted to ingoing null geodesics.

In terms of r�, Eq. (79) becomes

∂
2Φ
∂t2

þ 2ΩH
∂
2Φ

∂t∂ϕ
þ Ω2

H
∂
2Φ
∂ϕ2

−
∂
2Φ
∂r2�

¼ 0: ð82Þ

If Φ ∝ eimϕ−iωt, Eq. (82) becomes

∂
2Φ
∂r2�

þ ðω −mΩHÞ2Φ ¼ 0; ð83Þ

which implies that the Φ that is ingoing at the horizon is
asymptotic to

Φ ∝ e−iðω−mΩHÞr�þimϕ−iωt

∼ ðr − rþÞ−i
ω−mΩH

2κ eimϕ−iωt; ð84Þ

which is the asymptotic behavior we anticipated
in Eq. (41).

C. Ansatz for the metric and scalar perturbations

The results above motivate us to “resum and peel off” the
asymptotic behaviors of all of the hkðr; χÞ perturbations
through the following product decomposition:

hkðr; χÞ ¼ AkðrÞukðr; χÞ; ð85Þ

where ukðr; χÞ is a finite and bounded “correction factor,”
while AkðrÞ is an “asymptotic factor.” The latter is chosen
to be

AkðrÞ ¼ eið1þ
1
2
ζHð0Þ

3
Þωrr2iMωþρðkÞ∞

�
r − rþ

r

�
−iω−mΩH

2κ −ρðkÞH

; ð86Þ

so that the correction factor goes to unity both at the event

horizon and at spatial infinity. The parameters ρðkÞH and ρðkÞ∞
in Eq. (86) control the divergence of the metric function at
the event horizon and spatial infinity. In principle, these
parameters could depend on the index k, the dimensionless
spin a, and the coupling constant ζ. For the time being, we

shall assume that ρðkÞH and ρðkÞ∞ are not modified by a and ζ,
so that they assume the values for a GR Kerr BH,

ρðkÞH ¼

8><
>:

2; for k ¼ 3;

1; for k ¼ 2 or 6;

0; otherwise;

ρðkÞ∞ ¼

8><
>:

2; for k ≠ 4 nor 7;

1; for k ¼ 4;

−1; for k ¼ 7:

ð87Þ

We determined ρð7ÞH and ρð7Þ∞ by inspecting the asymptotic
behavior of the solutions to the scalar d’Alembertian
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equation in a Kerr background [43,44]. In Sec. VI B, we

shall justify the correctness of these ρðkÞH and ρðkÞ∞ choices
through the exponential convergence of the QNM frequen-
cies we calculate.
Let us now use that the correction function ukðr; χÞ is

bounded and finite to represent it as a spectral expansion. In
order to achieve this, we must change coordinates so that
they all have a finite domain. The radial coordinate, in
particular, is semi-infinite, as its domain is r∈ ½rþ;∞�.
Following [35,102,103], let us then define the compactified
spatial coordinate

zðrÞ ¼ 2rþ
r

− 1; ð88Þ

which maps the semi-infinite domain of r to the finite
domain z∈ ½−1; 1�. As in [34,35], let us then expand
ukðr; χÞ as a linear combination of the product of
Chebyshev and associated Legendre polynomials,

ukðz; χÞ ¼
X∞
n¼0

X∞
l¼jmj

vnlk TnðzÞPjmj
l ðχÞ; ð89Þ

where vnlk are constant coefficients. As pointed out
in [34,35], we could have chosen a different basis for
the spectral expansion, as long as the basis is complete and
orthogonal. As we will show below, the product of
Chebyshev and associated Legendre polynomials suffices
for our purposes.
Let us then compose the ansatz for the metric and field

perturbations to obtain

hkðz; χÞ ¼ AkðzÞ
X∞
n¼0

X∞
l¼jmj

vnlk TnðzÞPjmj
l ðχÞ: ð90Þ

This equation provides a formal expression for the full
spectral expansion of all field perturbations in the angular
coordinate χ and the compactified spatial coordinate z as a
double infinite series over the chosen basis functions.
In practice, infinite series cannot be used in numerical
computations, so we truncate them at some N z for the
Chebyshev sum and some N χ for the associated Legendre
sum, leading to

hkðr; χÞ ¼ AkðrÞ
XN z

n¼0

XN χþjmj

l¼jmj
vnlk Tn½zðrÞ�Pjmj

l ðχÞ; ð91Þ

Moreover, we can also, in principle, choose N z and N χ to
be different from each other, but we shall further choose to
set N z ¼ N χ ¼ N, so that

hkðr; χÞ ¼ AkðrÞ
XN
n¼0

XNþjmj

l¼jmj
vnlk Tn½zðrÞ�Pjmj

l ðχÞ: ð92Þ

When numerically calculating the QNM frequencies of
BHs in modified gravity, we will use this last truncated
spectral expansion.

IV. LINEARIZED FIELD EQUATIONS ABOUT THE
BACKGROUND SPACETIME AS AN ALGEBRAIC

PROBLEM IN THE METRICS APPROACH

In this section, we will derive the linearized field
equations with the field perturbation ansatz described in
the previous section. We will then convert these equations
into an algebraic problem.

A. The linearized field equations

We begin by substituting the perturbed metric and scalar
field of Eq. (90) into the field equations (8). Linearizing the
latter, one finds a system of 11 coupled, partial differential
equations for the seven unknown functions hkðr; χÞ.
The process of linearization, however, can be simplified
slightly as follows. When substituting the asymptotic
factor into the field equations for the metric, i.e.,
Rμ

ν þ ζðAμ
ν − Tμ

νÞ ¼ 0, we need to include the explicit
ζ modifications to ΩH and κ in the asymptotic factor,
because the equation is satisfied up to first order in ζ.
However, when considering the scalar-field equation, i.e.,
□ϑþAϑ ¼ 0, we can set ζ to zero when computing ΩH
and κ, becauseAϑ is computed in the GR Kerr background.
Nonetheless, this is not to say that the scalar-field equation
is not modified by ζ, because the d’Alembertian equation
depends on hkðr; χÞ, and thus, the equation is coupled to the
equations for the metric perturbations.
We can now cast the linearized field equations into a

form that can also be spectrally expanded. We note that,
even with the corrections due to modified gravity, the

components of the background metric tensor gð0Þμν in Boyer-
Lindquist coordinates are still rational functions of r and χ
[cf. Eq. (16)]. Therefore, the coefficient functions multi-
plying the field perturbations hk in the linearized field
equations must also be rational functions of r and χ,
since they can only depend on background quantities
and their derivatives [34,35]. Thus, we can always cast
the kth linearized field equation, after factorization
and multiplication through common denominators, in the
following form:

X7
j¼1

X1
η¼0

X
α;β¼0

X
γ¼0

Xdr
δ¼0

Xdχ
σ¼0

Gk;η;γ;δ;σ;α;β;jζ
ηωγrδχσ∂αr∂

β
χhj ¼ 0;

ð93Þ

where Gk;η;γ;δ;σ;α;β;j is a complex function of M, m, and a
only. The upper limit of the sums over αþ β and over γ
depends on the nature of the modified gravity theory
considered. For sGB gravity, αþ β ≤ 3 and γ ≤ 2 because
Aμ

ν involves at most second-order derivatives of the metric
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and the scalar field [cf. Eq. (12)]. On the other hand, for
dCS gravity, αþ β ≤ 4 and γ ≤ 3 because derivatives of
the Ricci tensor are involved [cf. Eq. (14)]. Note that the
upper limit of the sum over j has been increased to 7 to
accommodate the scalar-field perturbation. The constants
dr and dχ are the degree in r and χ of the coefficient of a
given term in the linearized field equations, respectively,
which depend on the component of the linearized field
equation we are focusing on and, thus, on the summation
indices ðα; β; k; jÞ. We sum only from η ¼ 0 to 1, because
the metric modifications and the field equations and thus all
calculations that follow, are valid up to first order in ζ only.
After factorizing each of the linearized field equations to
obtain common denominators, we find that there are also
prefactors, such as powers of 1 − χ2, Δ, and Σ, multiplying
the equations. These prefactors contain no metric pertur-
bation functions and are nonzero except at r ¼ rþ,
and χ ¼ �1. As these common factors are nonzero in
the computational domain (except at the boundaries), we
divide the equations by them to simplify them and improve
their numerical stability. When ζ ¼ 0, Eq. (93) reduces to
the equations that correspond to the metric and scalar
perturbations of a Kerr BH in GR.
Equation (93) represents a system of coupled and (two-

dimensional) partial differential equations. As observed
in [34,35], the modulus of Gk;η;γ;δ;σ;α;β;j can change by ∼10
orders of magnitude across different γ, δ, σ, α, β, and j in
one equation, and the largest modulus of Gk;η;γ;δ;σ;α;β;j of
different equations can also change by ∼20 orders of
magnitude. As in [34,35], we prevent overflow by normal-
izing every partial differential equation, such that the
largest modulus of the coefficient of each equation is
one. This is allowed by the homogeneity of the linearized
field equations.
We can now substitute the truncated spectral expansion

of the field perturbation functions [Eq. (90)] into Eq. (93)
to transform the latter into a system of linear algebraic
equations. Since r is a rational function of z [see Eq. (88)],
the coefficient functions of the linearized equations of uk
can only be rational functions of z [34]. Therefore, when
we substitute Eq. (85) into Eq. (93), we can factorize the
kth partial differential equation as

X7
j¼1

X1
η¼0

X
α;β¼0

X
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η;γ;δ;σ;α;β;jζ
ηωγzδχσ∂αz∂

β
χuj ¼ 0;

ð94Þ

where dz and dχ are the degree of z and χ of the coefficient

of the partial derivative ∂αz∂
β
χf…g in the equations, respec-

tively, whileKk;η;γ;δ;σ;α;β;j are complex functions ofM,m, a,

ζ, ρðkÞH , and ρðkÞ∞ only (for every value of the summation
indices α, β, γ, δ, σ, and j).

B. Converting the linearized field equations
into algebraic equations

Let us now convert the linearized field equations into an
algebraic system of equations using our spectral expansion.
We first substitute the truncated spectral expansion of the
uk functions into Eq. (94),

X7
j¼1

X1
η¼0

X
α;β¼0

X
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η;γ;δ;σ;α;β;jζ
ηωγzδχσ

× ∂
α
z∂

β
χ

(XN z

n¼0

XN χþjmj

l¼jmj
vnlj TnðzÞPjmj

l ðχÞ
)

¼ 0: ð95Þ

These equations can be further simplified by using the
defining equations for the Chebyshev polynomials and
associated Legendre polynomials, namely,

d2Tn

dz2
¼ 1

1 − z2

�
z
dTn

dz
− n2Tn

�
;

d2Pjmj
l

dχ2
¼ 1

1 − χ2

�
2χ

dPjmj
l

dχ
− lðlþ 1ÞPjmj

l −
m2

1 − χ2
Pjmj
l

�
:

ð96Þ

The above allows us to obtain more factors of 1 − χ2; 1 − z,
or 1þ z when factorizing the linearized field equations,
further simplifying Eq. (94).
We then express the left-hand side of Eq. (94) as a linear

combination of the Chebyshev and associated Legendre
polynomials,

XN z

n¼0

XN χþjmj

l¼jmj
wnl
k TnðzÞPjmj

l ðχÞ ¼ 0; ð97Þ

where wnl
k are independent of z and χ, but depend onM, a,

n, l, m, and4 ω, and k∈ ½1; 11�. By the orthogonality of

TnðzÞ and of Pjmj
l ðχÞ, the linearized field equations are

satisfied when wnl
k ¼ 0 for every k, n, and l because

they are homogenous. Comparing Eq. (94) to Eq. (95),
we notice that wnl

k depends on vnlk linearly because

wnl
k ¼

X7
j¼1

XN z

n0¼0

XN χþjmj

l0¼jmj
½Dnl;n0l0 ðωÞ�kjvn

0l0
j ; ð98Þ

where Dnl;n0l0 ðωÞ are 11 × 7 matrices, whose elements are
polynomials in ω and can be obtained by evaluating the
inner product given by Eq. (41) of [35].

4Recall that n and l here do not denote the overtone and
azimuthal-mode number of the QNM frequency. Rather, n and l
are the order of the Chebyshev and the degree of the associated
Legendre polynomials.
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Let us now introduce some notation to simplify the
resulting expressions. As in [35], we introduce the follow-
ing (Euclidean) vectors [35]:

vnl ¼ �
vnl1 ; vnl2 ; vnl3 ; vnl4 ; vnl5 ; vnl6 ; vnl7

	
T;

wnl ¼ �
wnl
1 ; wnl

2 ;…; wnl
11

	
T; ð99Þ

so that Eq. (98) can be written as

wnl ¼
XN z

n0¼0

XN χþjmj

l0¼jmj
Dnl;n0l0 ðωÞvn0l0 ¼ 0; ð100Þ

where the Dnl;n0l0 matrix is now “dotted” into vn0l0 (with a
flat, Euclidean metric). Let us further define the vectors v
and w as

v ¼
n
vT00; v

T
01;…; vT

0N χ
;…; vT

1N χ
;…; vTðN zþ1ÞðN χþ1Þ

o
T
;

w ¼
n
wT

00;w
T
01;…;wT

0N χ
;…;wT

1N χ
;…;wT

ðN zþ1ÞðN χþ1Þ
o
T
;

ð101Þ

which store all vnl and wnl, respectively. Note that v is a
7ðN z þ 1ÞðN χ þ 1Þ-dimensional vector, whereas w is a
11ðN z þ 1ÞðN χ þ 1Þ-dimensional vector. Then, Eq. (98)
can be more compactly written as

w ¼ D̃ðωÞv ¼
�X
γ¼0

D̃γω
γ

�
v ¼ 0; ð102Þ

where the D̃γ¼0;1;2;…: matrices are constant, 11ðN z þ 1Þ
ðN χ þ 1Þ × 7ðN z þ 1ÞðN χ þ 1Þ rectangular matrices,
which are all linear in ζ. The QNM frequencies of the
modified BH in modified gravity correspond to the ω such
that Eq. (102) admits a nontrivial solution v.

V. FIRST ζ-ORDER EIGENVALUE
PERTURBATION IN THE METRICS APPROACH

The modified gravity theories we are considering are
effective, and thus, their defining actions ought to be
understood as curvature (or derivative) expansions. The
field equations that result from varying such an approxi-
mate action are therefore also approximate. Any solutions
of these approximate field equations are, of course, also
approximate by construction. More concretely for the
problem at hand, the background metric [Eq. (16)] satisfies
the field equations only up to the first order in ζ, because
the field equations are only valid to this order. For
consistency, then, we now compute the first-order-in-ζ
modification to the QNM frequencies. To this end, we
develop an eigenvalue-perturbation scheme, which allows
us to estimate the first ζ-order modifications to the QNM
frequencies.

We begin by expanding Dk;ω, and v as a power series
in ζ,

Dk¼
X
j¼0

ζjDðjÞ
k ; ω¼

X
j¼0

ζjωðjÞ; v¼
X
j¼0

ζjvðjÞ; ð103Þ

and then truncate the series at j ¼ 1,

Dk ¼ Dð0Þ
k þ ζDð1Þ

k ;

ω ¼ ωð0Þ þ ζωð1Þ;

v ¼ vð0Þ þ ζvð1Þ: ð104Þ

Substituting these perturbed quantities into Eq. (102), we
have the zeroth-order-in-ζ equation,

D̃ð0Þðωð0ÞÞvð0Þ ¼ 0; ð105Þ

which is the same as the METRICS equation for the QNM
frequencies for Kerr black holes in GR [34]. The first-order
parts in ζ of Eq. (102) is

ωð1Þ ∂D̃
ð0ÞðωÞ
∂ω

����
ω¼ωð0Þ

· vð0Þ þ D̃ð0Þðωð0ÞÞ · vð1Þ

þ D̃ð1Þðωð0ÞÞ · vð0Þ ¼ 0; ð106Þ

where we have defined

D̃ðpÞðωðqÞÞ ¼
X
k¼0

D̃ðpÞ
k ½ωðqÞ�k: ð107Þ

Recall that these matrices are power series in ω, and
the explicit upper limit of summation depends on the
modified theory.
To explain the further steps for solving these equations,

let us focus on the polar perturbations as an example.
For the polar perturbations, we impose the following
conditions to break the homogeneity or linear-scaling
invariance of Eq. (106):

½vð0Þ�n¼0;l¼jmj
k¼1 ¼ 1;

½vð1Þ�n¼0;l¼jmj
k¼1 ¼ 0: ð108Þ

These conditions are allowed by the homogeneity of

Eq. (106). If ½vð1Þ�n¼0;l¼jmj
k¼1 ≠ 0, we can always divide

the whole v by ½vð0Þ þ ζvð1Þ�n¼0;l¼jmj
k¼1 to meet the above

conditions.
The zeroth-order-in-ζ equation (105) can be solved

using the Newton-Raphson algorithms discussed in [34].
After numerically obtaining vð0Þ and ωð0Þ, we can use
them to solve for vð1Þ and ωð1Þ. Since we have set
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½vð1Þ�n¼0;l¼jmj
k¼1 ¼ 0, we are left with the following

unknowns:

xð1Þ ¼
n
½vð1Þ�n≠0;l≠jmj

k≠1 ;ωð1Þ
o
: ð109Þ

We can solve Eq. (106) for xð1Þ by computing the Moore-
Penrose inverse of the following Jacobian matrix:

½J�ij ¼
∂½Dð0ÞðωÞ · vð1Þ�

∂½xð1Þ�j

����
x¼xðnÞ

; ð110Þ

such that

xð1Þ ¼ −½J�−1 · ½D̃ð1Þðωð0ÞÞ · vð0Þ�: ð111Þ

This Jacobian matrix is exactly the same as that defined by
Eq. (41) of [34], which was evaluated at the GR x (thus,
we here denote them by the same symbol J). In actual
numerical computations, we only need to save the inverse
of the Jacobian matrix and x at the last Newton-Raphson
step when solving the linearized Einstein equations in GR,
and then use them to compute xð1Þ by Eq. (111).
Equation (111) is a key result of this work.
The above procedure can also be similarly performed for

the axial perturbations using the following initial guess:

½vð0Þ�n¼0;l¼jmj
k¼5 ¼ 1;

½vð1Þ�n¼0;l¼jmj
k¼5 ¼ 0; ð112Þ

and for scalar-led perturbations using the following
initial guess:

½vð0Þ�n¼0;l¼jmj
k¼7 ¼ 1;

½vð1Þ�n¼0;l¼jmj
k¼7 ¼ 0: ð113Þ

Since the steps are identical to the polar case, we will not
present them here.
From Eq. (111), we can immediately conclude that

isospectrality may not persevere in modified gravity. The
vð0Þ of the axial, polar, and scalar-led perturbations is
different. Given a gravity theory, even though D̃ð1ÞðωÞ is the
same, D̃ð1Þðωð0ÞÞ · vð0Þ can be different because vð0Þ of the
axial, polar, and scalar perturbations is different. Thus, in
general, ωð1Þ of perturbations led by different sectors is
different, which implies the departure from the isospec-
trality in GR.
The above is not the only way to perturbatively solve

for the QNM frequencies through a spectral-expansion
method. Recall that the metric perturbation was earlier
decomposed into the product of an asymptotic factor AkðrÞ
and a correction factor ukðr; χÞ [see Eq. (85)]. We could

have therefore worked directly with the correction factor; in
fact, the above procedure is equivalent to writing

uj ¼ uð0Þj þ ζuð1Þj ; ð114Þ

then first solving

X7
j¼1

Xαþβ≤3

α;β¼0

X2
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η¼0;γ;δ;σ;α;β;jω
γzδχσ∂αz∂

β
χu

ð0Þ
j ¼ 0;

ð115Þ

for uð0Þj , and then using them to solve

X7
j¼1

Xαþβ≤3

α;β¼0

X2
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η¼0;γ;δ;σ;α;β;jω
γzδχσ∂αz∂

β
χu

ð1Þ
j

¼ −
X7
j¼1

X
α;β¼0

X
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η¼1;γ;δ;σ;α;β;jζω
γzδχσ∂αz∂

β
χu

ð0Þ
j

ð116Þ

for uð1Þj . This, of course, is more complicated than the
method we introduced above because we would then have
to solve a system of coupled partial differential equations
for the correction factor. Having said that, the above
procedure is not the same as writing

hj ¼ hð0Þj þ ζhð1Þj ; ð117Þ

and then first solving

X7
j¼1

Xαþβ≤3

α;β¼0

X2
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Gk;η¼0;γ;δ;σ;α;β;jω
γzδχσ∂αz∂

β
χh

ð0Þ
j ¼ 0;

ð118Þ

and then solving

X7
j¼1

Xαþβ≤3

α;β¼0

X2
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η¼0;γ;δ;σ;α;β;jω
γzδχσ∂αz∂

β
χh

ð1Þ
j

¼ −
X7
j¼1

X
α;β¼0

X
γ¼0

Xdz
δ¼0

Xdχ
σ¼0

Kk;η¼1;γ;δ;σ;α;β;jζω
γzδχσ∂αz∂

β
χh

ð0Þ
j

ð119Þ

for hð1Þj . In the latter approach, since the asymptotic factor

of hð0Þj is a GR one, so is that of hð1Þj , which means that the
effects of modified gravity on the asymptotic factor (or
behavior) of hj are ignored. On the other hand, by solving
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uj perturbatively, the effects of modified gravity on the
asymptotic factor are also included.
We conclude this section by drawing a parallel between

the eigenvalue-perturbation theory of METRICS and the
time-independent perturbation theory of quantum mechan-
ics. Equation (111) is the black hole perturbation theory
equivalent to the equations of the first-order eigenenergy
shift of a quantum mechanical system with a slight time-
independent modification to its potential. In particular, ωð0Þ

plays the role of the unperturbed eigenfrequency, vð0Þ the
role of the wave function of an unperturbed eigenstate,
Dð1Þ the role of the time-independent modifications to
the potential of the quantum mechanical system, ½J�−1
the role of normalization in quantum mechanics, and the
dot products between ½J�−1, Dð1Þ, and vð0Þ the volume
integral of the modulus square of the unperturbed wave
function. In this work, we focus only on the leading-ζ
order because we work on effective field theories that
are only valid to this order. But also as in quantum
mechanics, one can, in principle, further develop the
eigenvalue-perturbation theory in METRICS to an arbi-
trary order in ζ, provided that the background BH
spacetime in the gravity theory is also available up to
the corresponding order in ζ.

VI. APPLICATION TO ROTATING BHS IN
SCALAR-GAUSS-BONNET GRAVITY

To illustrate the application of METRICS to BHs in
modified gravity, in this section, we apply the eigenvalue-
perturbation scheme developed above to BHs in sGB gravity,
which belongs to a popular class of effective theory that
has recently been studied extensively [74–76,104–107].
Specifically, we will apply METRICS to compute the
QNM frequencies of the axial and polar perturbations of
the 022, 033, and 021 modes. We focus on these l and m
modes because there have been claims that suggest the
presence of these QNMs in detected ringdown signals5

[111,112]. We focus on the fundamental modes (n ¼ 0)
because they have the longest lifetimes. Finally, we focus
more extensively on the axial and polar QNMs of the metric
perturbation because these are the ones that can be detected
with GW interferometers; sGB gravity only possesses the
same two tensor polarizations as GR [98]. Nonetheless, for
completeness, we do present the scalar-mode frequencies of
the 022 mode.

A. Numerical implementation

We first numerically solve Eq. (105) according to the
procedure detailed in Sec. IV of [34]. Throughout our
numerical computations,M is set to one (i.e.,M ¼ 1), thus

defining a system of units. To speed up the convergence of
our numerical results, we initialize the Newton-Raphson
iterations with the known values of the Kerr QNM
frequencies. This is a justified procedure, given that we
have already showed that METRICS can accurately com-
pute the (known) values of the QNM frequencies of Kerr
BHs in GR [34]. The inverse of the Jacobian matrix is
computed using the built-in PseudoInverse function of
Mathematica to double precision.
Formally, Hiðr; χÞ, ϑðr; χÞ, Ωð1Þ, and κð1Þ are an infinite

series in a. In practice, it is neither possible nor necessary to
include Hiðr; χÞ and ϑðr; χÞ to infinite order for actual
computations that are sought to a desired precision. Instead,
one only needs to truncate these quantities at a given order
in a, such that the inclusion of higher-order terms do
not affect the calculation of our frequencies beyond a
desired precision. Through this work, we will truncate
Hiðr; χÞ, ϑðr; χÞ, their derivatives,Ωð1Þ, and κð1Þ at the same
order in a,

Hiðr; χÞ ≈
XNa

k¼0

XNrðkÞ

p¼0

XNχðkÞ

q¼0

hi;k;p;q
akχq

rp
;

ϑðr; χÞ ≈
XNa

k¼0

XNrðkÞ

p¼0

XNχðkÞ

q¼0

ϑi;k;p;q
akχq

rp
; ð120Þ

where Na is the truncation order in a (yet to be specified).
We have checked that the Hiðr; χÞ and ϑðr; χÞ used here
indeed satisfy the field equations (8) up to the Nath order
of a by substituting directly the corrected metric into the
field equations.

B. Validation example: The 022 mode at a= 0.1

We start by studying the 022 mode of sGB BHs
with a ¼ 0.1, whose results already reflect the general
QNM features that we will observe for higher a BHs.
The blue, red, and green symbols in Fig. 2 represent
the base-10 logarithm of the backward modulus difference
of ωð1Þ of the axial (left panel) and polar perturbations
(right panel),

BðNÞ ¼ jωð1ÞðNÞ − ωð1ÞðN − 1Þj; ð121Þ

as a function of the spectral order N, for Na ¼ 2, 4, and 6,
respectively. Observe that, for both parities, BðNÞ first
decreases approximately exponentially, until reaching a
certain spectral order, at which point BðNÞ fluctuates
around an approximate constant.
The saturation of the backward modulus difference is

related to the fact that the background metric satisfies the
field equations only up to a chosen Nath order in a. At
small N spectral order, the error in the corrected metric is
not well resolved, since the error induced by the truncation
of the spectral expansion dominates. But as the spectral

5We remind the reader that there is debate over whether multiple
QNMs have been actually detected (see, e.g., [108–110]).
Although interesting, these debates do not concern us here.
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order is gradually increased, the error due to the Na
truncation becomes more important and begins to affect
the computation. From Fig. 2, observe that BðNÞ decreases
exponentially to a significantly smaller value and begins to
fluctuate around a constant value at a larger spectral order
as Na is increased.
Observe that, at relatively small spectral order (e.g., for

N ≤ 8 for the axial perturbations and N ≤ 11 for the
polar perturbations), the backward modulus difference is
approximately independent of Na. This is because, at these
small spectral orders, the ωð1Þ computed with any Na is the
same. This feature indicates that increasing Na can help
improve the “convergence” of ωð1Þ with respect to the spin
expansion.
The results shown in Fig. 2 also offer a guideline to

choose Na such that the resulting ωð1Þ is of the desired
accuracy. As estimated in [113], the relative measurement
uncertainty of the real and imaginary parts of the QNM
frequencies combined across Oð103Þ ringdown signals
detected by the next-generation detectors is Oð10−4Þ.
Since ζ must be small [i.e., smaller than Oð0.1Þ],
we should ensure the uncertainty in ωð1Þ is smaller than
Oð10−3Þ. Figure 2 suggests that, to achieve such an
accuracy, we need to select Na such that aNa ≤ 10−2 at
least. This implies that if a ¼ 0.1 then Na > 2, but if
a ¼ 0.3 then Na > 4, and if a ¼ 0.7 then Na > 13. Finally,
the exponential convergence of ωð1Þ also justifies the
validity of the asymptotic behavior derived in Sec. III C

and our choice of ρðkÞH and ρðkÞ∞ . If any of these details were
not correct, ωð1Þ would not converge exponentially.

C. More rapidly rotating BHs

We apply METRICS to compute the QNM frequencies
of more rapidly rotating BHs in sGB gravity. For the
purpose of the computations, we have recalculated the sGB
metric corrections to 40th order in a, and this is the BH
background we employ in our calculations. For a ≤ 0.7, we
include metric modifications up to Nath order in a, such
that Na is the least even integer that satisfies aNa < 10−4

[we chose an even Na order because the Hiðr; χÞ functions
are a power series in a2]. We will terminate our compu-
tations at a ¼ 0.85 because ð0.85Þ40 ∼ 1.5 × 10−3, smaller
than 10−2, a necessary criterion that we noted in Sec. VI B.
If one wishes to consider BHs that are more rapidly
spinning, one would need to use a background metric to
higher than 40th order in a small-spin expansion (or an
appropriate resummation or numerical background), which
is not impossible but is computationally expensive. The
QNM frequency for a > 0.85 will be extrapolated by
constructing a fitting expression for the QNM frequency
of a ≤ 0.85 [see Eq. (124)]. Nevertheless, we expect our
QNM frequencies are still useful for the analyses of the
detected ringdown signals because the spin of many
remnant BHs is < 0.85 [7,11,114].
At a given a and Na, we compute ωð1Þ from N ¼ 1 to 25.

We stop at 25 because we find that the backward modulus
difference is usually saturated or minimized from around
N ¼ 20 to N ¼ 25. Then, we select the optimal spectral
order, defined as

Nopt ¼ argmin
N

BðNÞ; ð122Þ

FIG. 2. The backward modulus difference BðNÞ ¼ jωð1ÞðNÞ − ωð1ÞðN − 1Þj, where ωð1Þ is the leading-order modifications to the
nlm ¼ 022-mode frequency [defined by Eq. (104)] of the axial (left) and polar (right) perturbations of a BH of a ¼ 0.1 in shift-
symmetric Einstein dilaton Gauss-Bonnet (sGB) gravity as a function of the spectral order (N). The background metric of the rotating
BH includes modifications due to shift symmetric sGB gravity up to Na ¼ 2, 4, and 6 orders in a. We observe that, for all Na, BðNÞ first
decreases exponentially and then fluctuates around a constant after reaching a specific spectral order. Nonetheless, the constant about
which BðNÞ fluctuates can be significantly reduced if we include the metric corrections of sGB of a larger order in a. This is reasonable
because a background metric with sGB corrections of a higher order of a satisfies the field equations better. The ωð1Þ of the scalar-led
perturbations shows a similar tendency, but in the interest of space, we omit the scalar-led ωð1Þ from the figure.
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which allows us to define ωð1ÞðNoptÞ as the QNM frequency
perturbation and

δ ¼ BðNoptÞ ð123Þ

as the numerical uncertainty in ωð1Þ.
Figure 3 shows the real and imaginary parts of ωð1Þ of the

022-, 033-, and 021-mode frequency of the axial and polar
perturbations, together with their uncertainties (which, for
the most part, cannot be seen in the figure). Tables I–III
of Appendix B in show the numerical value of real and
imaginary parts of ωð1Þ of the 022-, 033-, and 021-mode
frequency of both parities. From the figure, we immediately
observe that isospectrality is broken, which is expected
in modified gravity theories in general [70–76,115].
Explicitly, we observe that the frequencies of the polar
perturbations change more significantly compared to that
of the axial perturbations. This is reasonable because the
axial perturbations couple more weakly to sGB terms
[75,76,116] (also see Sec. VI F). We also observe that,
for slowly rotating BHs (e.g., a≲ 0.3), the real and
imaginary parts of the polar 022-mode frequency both
decrease as sGB gravity comes into effect, i.e., Reðωð1ÞÞ <
0 > Imðωð1ÞÞwhen a≲ 0.3 for the polar 022 mode. Both of
these features are consistent with previous studies of the
QNM frequencies of slowly rotating BHs in sGB gravity
[75,76,116].6 Apart from the broken isospectrality, observe
that the numerical uncertainty (defined by the minimal
backward modulus difference across a range of spectral

orders) is included in Fig. 3 as error bars. Nonetheless, for
a ≤ 0.8, the error bars are too small to be visualized while
keeping the symbols a reasonable size. This indicates that
the numerical uncertainty of ωð1Þ is tiny.
Figure 4 plots the numerical uncertainty as a function of

a, which clearly shows that the uncertainty, in general,
increases with a. Observe also that the uncertainty of the
axial and polar frequencies is different, which is because
the ωð1Þ of the axial and polar modes spans different
numerical ranges. The growth of the uncertainty with a

FIG. 3. The real (left) and imaginary (right) parts of ωð1Þ of the axial (blue dots) and polar (red triangles) metric perturbations of the
nlm ¼ 022, 033, and 021 modes as a function of dimensionless spin. We observe that ωð1Þ of the axial and polar perturbations does not
coincide, which indicates that the isospectrality is broken in sGB gravity. Moreover, we observe that jωð1Þj is smaller for the axial
perturbations compared to that of the polar perturbations, and for a≲ 0.3, Reωð1Þ and Imωð1Þ for the polar perturbations. These two
features are consistent with the previous studies regarding slowly rotating BHs in sGB gravity. Finally, we observe that, although we
have included the numerical uncertainty [defined by Eq. (122)] of our frequency computations as error bars, the error bars for a ≤ 0.8 are
too small to be seen in the figure and are visualized in Fig. 4. The small uncertainties indicate that the ωð1Þ we computed is accurate.

FIG. 4. The base-10 logarithms of the numerical uncertainty,
the minimum backward modulus difference of ωð1Þ for N ≤ 25.
We observe that the uncertainty increases with a, in general. This
is reasonable because the background metric that we constructed
only satisfies the field equations to a finite order of dimensionless
spin. The error of the background increases with the dimension-
less spin even we have adjusted the spin-truncation order of the
background metric which we keep for QNM frequency compu-
tations. Nonetheless, for a ≤ 0.7, we can keep the numerical
uncertainty of all modes below ∼10−4. Thus, the ωð1Þ that we
computed using METRICS is accurate enough (see Sec. VI B for
the definition of “desired” accuracy) to be applied to analyze
astrophysical ringdown signals.

6We will quantitatively show that our frequencies are
consistent with those computed in [75,76,116] in Sec. VI D,
after constructing a fitting polynomial of our frequencies [see
Eq. (124)].
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is reasonable because the background metric that we
constructed satisfies the field equations only to an Nath
order in a, which means that the error of our background
metric will at least be of ðNa þ 1Þth order. However, aNaþ1

still grows with a even with Na adjusted such that
aNa < 10−4. For example, at a ¼ 0.005, Na ¼ 4 and an
order-of-magnitude estimate of the error is aNaþ1 ∼ 10−10,
whereas at a ¼ 0.85, Na ¼ 40, and aNaþ1 ∼ 10−3. These
levels of uncertainty in ωð1Þ are well within the desired
accuracy defined in Sec. VI B for the analysis of astro-
physical ringdown signals. Moreover, the numerical uncer-
tainty for the relatively large a cases can always be reduced
if the metric corrections are kept to a higher order in a.
Using the METRICS frequencies we computed at

different spins, we now fit their real and imaginary parts
of all modes except the 021 axial mode with a degree-8
polynomial,

ωð1Þ ¼
X8
j¼0

wjaj; ð124Þ

where in this fit we have setM ¼ 1 and the wj are complex
constants. We fit these modes as a degree-8 polynomial
because we find this degree minimizes the fitting loss
functions. As for the frequency of the 021 axial mode, we
fit its real and imaginary parts as a degree-14 polynomial
because we observed unphysical oscillations for small a if
we fit the frequency with a polynomial of a smaller degree.
The numerical value of wj is obtained using the built-in
NonLinearModelFit function in Mathematica, with
numerical uncertainty included as the error of the real and
imaginary parts of ωð1Þ. The explicit numerical value and
uncertainty of wj are given in Tables Vand VI, respectively.
For the convenience of the reader, below we provide the
fitting polynomials truncated at a4,

ω022;A ¼ ð0.055241þ 0.00684399iÞ þ ð0.985294þ 0.0688128iÞaþ ð−18.4902þ 0.207235iÞa2
þ ð157.802 − 3.3872iÞa3 þ ð−682.224þ 14.8323iÞa4 þ…; ð125Þ

ω022;P ¼ ð−0.215202 − 0.0734094iÞ þ ð−2.51816 − 0.411031iÞaþ ð48.4659þ 9.59898iÞa2
þ ð−431.428 − 82.4765iÞa3 þ ð1935.01þ 378.832iÞa4 þ…; ð126Þ

ω033;A ¼ ð0.109706þ 0.0061152iÞ þ ð0.685561þ 0.231546iÞaþ ð−11.6733 − 4.20702iÞa2
þ ð108.698þ 37.6761iÞa3 þ ð−510.61 − 178.723iÞa4 þ…; ð127Þ

ω033;P ¼ ð−0.872789 − 0.113506iÞ þ ð−1.20198 − 0.339974iÞaþ ð2.82484þ 9.09087iÞa2
þ ð−35.6024 − 75.7708iÞa3 þ ð165.435þ 341.913iÞa4 þ…; ð128Þ

ω021;A ¼ ð0.0665864þ 0.00342921iÞ þ ð−1.59526þ 0.789588iÞaþ ð38.1384 − 16.7089iÞa2
þ ð−347.625þ 147.414iÞa3 þ ð1622.8 − 663.824iÞa4 þ…; ð129Þ

ω021;P ¼ ð−0.22612 − 0.0754879iÞ þ ð0.0933968þ 0.0504285iÞaþ ð−5.91521 − 0.968127iÞa2
þ ð54.1801þ 10.6838iÞa3 þ ð−252.83 − 51.1785iÞa4 þ…: ð130Þ

To check that the fitting polynomials obtained can
accurately estimate the ωð1Þ computed using METRICS,
we compute ωð1Þ using the fitting polynomials and compare
it with the ωð1Þ using METRICS. The top panels of Fig. 5
show the real (left) and imaginary (right) parts of ωð1Þ for
the 022, 033, and 021 modes of both parities, computed
using the degree-8 fitting polynomials and as a function of
a∈ ½0; 0.85�. By visual inspection, the fitting polynomials
pass through the ωð1Þ data computed with METRICS
perfectly, indicating that these polynomials can indeed
accurately compute ωð1Þ. To further qualitatively gauge the
accuracy of the fitting polynomials, the bottom panels of
Fig. 5 show the relative fractional errors of the real (bottom,

left) and imaginary (bottom, right) parts of ωð1Þ, computed
using the fitting polynomials and the METRICS data.
Observe that the relative fractional error is at most
∼10%, consistent with our observation that the fitting
polynomials accurately estimate the METRICS ωð1Þ. The
QNM frequencies could also be fitted using other func-
tional forms, such as a rational function in a through a Padé
function. However, we experimented with this idea and
found that fitting the frequencies with a polynomial gives
the most accurate estimate of the QNM frequencies at the
computed a. This result makes sense since the ωð1Þ we
presented in Fig. 3 clearly show no poles, and thus, a Padé
resummation is not guaranteed to increase accuracy.
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D. Comparisons with the previous results
in slow-rotation expansions

Fitting the QNM frequencies as a polynomial in a also
allows us to compare our results to those in [76]. In [76],
fðΦÞ ¼ expðΦÞ, but in the small-coupling limit, Φ ≪ 1,
we can approximate the coupling function well as
fðΦÞ ≈ 1þΦ, which reduces to the coupling function
that we considered in this work, as we have explained in the
Introduction. Hence, we can compare the wj of our fitting
polynomials with the fitting coefficients of the leading-
coupling terms in [76]. By reading Eqs. (40) and (47) and
Tables I–III of [76], we find that the leading ζ-order
modifications to the polar-mode frequencies in [76] are
given by7

ωð1Þ;PG
022P ¼ð−0.22496−0.0752iÞþð−0.33536þ0.00064iÞa

þð−0.32þ0.30432iÞa2;
ωð1Þ;PG
033P ¼ð−0.87248−0.11504iÞþð−1.03488−0.05664iÞa

þð−0.96224þ0.39792iÞa2;
ωð1Þ;PG
021P ¼ð−0.22496−0.0752iÞþð−0.16768þ0.00032iÞa

þð0.08176þ0.15408iÞa2: ð131Þ

By comparing the above expressions and Eq. (127), we find
that the wj¼0;1;2 of our fitting polynomials are close to the
coefficient shown above. We identify several possible
causes for the small differences, including but not limited
to the following. First, the order in dimensionless spin and ζ

that is used in the two studies is different. In this work, at
a ¼ 0.1, we use Na ≥ 4, whereas in [76] Na ¼ 2 through-
out their computations. Moreover, in this work we
compute only the leading ζ modifications to the frequen-
cies, whereas terms of higher degree in ζ are also
included in the fitting expression of [76]. Second, the
two studies used different numerical methods to com-
pute the QNM frequencies. We compute the QNM
frequencies using METRICS, whereas in [76] the shoot-
ing method is used, which can be sensitive to the
accuracy of the boundary conditions and the shooting
point. Third, in this work fðΦÞ ¼ Φ, whereas in [76]
fðΦÞ ¼ expðΦÞ. When applying the shooting method,
there might be regions where Φ is beyond the small-
coupling limit, rendering the comparison not entirely
fair. All these discrepancies can lead to differences
between the QNM frequencies in the two studies.
In spite of all these possible discrepancies, our fitting

polynomials are actually consistent with the results of [76],
allowing us therefore to estimate the spin at which
the second-order-in-spin approximation becomes highly
inaccurate. Let us then compare the frequencies computed
using Eq. (131) and that computed using our fitting poly-
nomials by computing the relative fractional differences
between them,

relative frac: diff: ¼ ωð1Þ
Re=ImðaÞ − ωð1Þ;RG

Re=Im ðaÞ
ωð1Þ
Re=ImðaÞ

: ð132Þ

Figure 6 shows the base-10 logarithms of the absolute value
of the relative fractional differences of the real and imaginary
parts of the polar frequency of the polar 022 (solid lines),
021 (dashed lines), and 033 (dash-dotted lines) modes.

FIG. 5. Real (top left) and imaginary (top right) parts of ωð1Þ for the 022, 033, and 021 modes of both parities, computed using
METRICS (symbols) and using the optimal degree-8 fitting polynomials (curves), as a function of a∈ ½0; 0.85�. The relative fractional
errors of the real (bottom left) and imaginary (bottom left) parts of ωð1Þ, computed using the fitting polynomials and the METRICS data,
show the accuracy of the fit. Observe that the optimal fitting polynomials are excellent approximations to the METRICS ωð1Þ, with an
error of at most ∼10%.

7Note that our α is α=4 in [76]. Hence, the ζ of our paper is
16ζ2 in [76].
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This comparison indicates that our polar frequencies agree
well with those computed in [76] using the small-spin
expansions for small spins. However, the imaginary part
of the dominant mode (022) computed in [76] presents an
error larger than 30% relative to the METRICS frequencies
above a ¼ 0.3; for other modes [like the (021) mode], the
small-spin expansion becomes inaccurate for much small
spins. As a increases, the frequencies computed using the
small-spin expansions become increasingly inaccurate, and
the METRICS frequencies should be used instead.

E. Parity content of metric perturbations

One great advantage of METRICS is its convenience in
reconstructing metric perturbations, which requires only
the reading and rearrangement of the elements of the
eigenvector. This advantage allows us to examine the parity
content of the metric perturbations, which can be put to
good use to check the sanity of our calculations. Since we
compute the modification to the QNM frequency of the
axial and polar perturbations separately, we expect that the
corresponding vð1Þ should also be solely axial and polar for
consistency.
To quantify the parity content of the metric perturba-

tions, we define the parity dominance (PD) in the
following way:

PD ¼ AmpðPÞ
AmpðAÞ ; ð133Þ

where

½AmpðPÞ�2¼
X4
k¼1

XN
n¼0

X
l¼even

ðlþmÞ!
ð2lþ1Þðl−mÞ! jv

ð1Þ;nl
k ðNÞj2

þ
X
k¼5;6

XN
n¼0

X
l¼odd

ðlþmÞ!
ð2lþ1Þðl−mÞ! jv

ð1Þ;nl
k ðNÞj2;

ð134Þ

½AmpðAÞ�2¼
X
k¼5;6

XN
n¼0

X
l¼even

ðlþmÞ!
ð2lþ1Þðl−mÞ! jv

ð1Þ;nl
k ðNÞj2

þ
X4
k¼1

XN
n¼0

X
l¼even

ðlþmÞ!
ð2lþ1Þðl−mÞ! jv

ð1Þ;nl
k ðNÞj2:

ð135Þ

Here
P

l¼even and
P

l¼odd, respectively, stand for the sum
of over all l even and odd integers between jmj and
N þ jmj. Heuristically, the PD gives a rough estimate of
the ratio between the amplitude of the polar perturbations
to that of the axial ones. Note that, unlike the PD which
we defined in [34], when estimating the amplitude of the
polar perturbations (i.e., the numerator), we do not only
take ui¼1;…;4, but also the ui¼5;6, in accordance with the
definition of the axial and polar parity that we developed
in this paper. Recall from Sec. II C that the polar

perturbations satisfy P̂hðPÞμν ¼ ð−1ÞlhðPÞμν , where P̂ is the
parity operator. Since we are using associated Legendre
polynomials as our angular spectral basis, which obey
Eq. (31) upon parity transformation, hi¼1;…;4 and hi¼5;6

will take turns being of polar and axial type. For example,
for the l ¼ 2 modes, when l ¼ 2, hi¼1;…;4 are polar and
hi¼5;6 are axial; however, when l ¼ 3, because of the
parity of the associated Legendre polynomials [see
Eq. (31)], hi¼1;…;4 are axial and hi¼5;6 are polar.
With this definition of PD, the PD of purely polar

perturbations is ∞, and that of axial perturbations is 0.
However, due to numerical error, the PD of vð1Þ which we
obtain will never be ∞ or 0. Thus, a PD ≫ 1 indicates that
the perturbations are dominantly polar, while PD ≪ 1
indicates that the perturbations are dominantly axial.
Figure 7 shows the PD of the axial and polar perturbations
as a function of a. We see that for all a and the QNMs for
which we compute the QNM frequencies, PD⪆ 102 for the
polar perturbations and PD≲ 10−3 otherwise, despite
fluctuations. This indicates that vð1Þ of the polar perturba-
tions remains mostly polar and that of the axial perturba-
tions remains mostly axial for all a explored.
The astute observer will notice that the parity dominance

for some modes does not separate as cleanly as for other
modes. For example, at a spin of a ¼ 0.2, the 021 mode has
a parity dominance of ∼104 for the polar mode and ∼10−3
for the axial mode; however, the 033 mode has a dominance
of ∼10 for the polar mode and ∼10−4 for the axial mode.
The reason that the polar mode has such a low parity
dominance is a technical one. As explained in Sec. V,
when solving the linearized field equations for the modified
gravity corrections, one must first solve the linearized
Einstein equations. In this paper, when doing so, we did not
optimize the solution to the linearized Einstein equations to
maximize its accuracy; instead, we were content with GR
frequencies that are accurate to better than 105 relative to

FIG. 6. The relative fractional difference [defined by Eq. (132)]
between fitting polynomials of the real and imaginary parts of the
polar frequency of the 022 (solid), 033 (dashed), and 021 (dash-
dotted) modes obtained using METRICS and that in [76] through
the small-spin expansions.
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continuous fraction solutions to the Teukolsky equation.
Skipping this optimization step (which can be remedied in
the future, if desired) means that certain GR modes will be
computed more accurately than others, with the 033 one
being only accurate to 10−5, while others are accurate to
10−8. This difference in accuracy in the calculation of the
GR modes contaminates the accuracy of the sGB correc-
tions, leading to a lower parity dominance for some modes.
Having said that, we have ensured that the inaccuracies
in the GR modes are not contaminating the sGB corrections
to the complex frequencies beyond what was quoted in
this paper.

F. Understanding the role of the scalar field ϑ

In Sec. VI C, we observed that jωð1Þj is larger for the
polar perturbations, and we attributed this feature to the fact
that axial perturbations couple more weakly to the sGB
terms. One way to justify this claim is to examine the
amplitude of ϑ, which can be directly read from the
elements of vð1Þ. Inspecting Eqs. (8) and (12), we realize
that the linearized field equations contain no terms that
involve the product of G and hμν (and their derivatives) in
the small and shift-symmetric coupling. Thus, hμν and their
derivatives can only interact with G through ϑ, which can be
obtained by solving □ϑþAϑ ¼ 0, which nothing but
□ϑþ G ¼ 0 for the shift-symmetric case. Moreover, Gð1Þ
is dominated by the polar parity terms.8 Hence, the

amplitude of ϑ indicates the strength of the interplay
between the metric perturbations and the sGB terms in
the field equations.
Let us quantify the strength of ϑ explicitly by defining

the scalar-field abundance (i.e., the ϑ abundance) as the
ratio between the L2 norm of ϑ and the amplitude of the
axial or polar perturbations. For the modes of even lþ jmj,
the ϑ abundance for the axial/polar perturbations is then
defined as

ϑ abundanceðA=PÞ ¼ AmpðϑÞ
AmpðA=PÞ ; ð136Þ

where

AmpðϑÞ¼
XN
n¼0

XNþjmj

l¼jmj

ðlþmÞ!
ð2lþ1Þðl−mÞ! jv

ð1Þ;nl
7 ðNÞj2: ð137Þ

We divide AmpðϑÞ by Amp(A) or Amp(P) before com-
parison because the amplitude of the axial and polar
perturbations may at first be different. Such a division
can make the comparison more fair and informative.
Figure 8 shows the ϑ abundance of the axial and polar

perturbations of different QNMs as a function of a.
Observe that the abundance of the polar perturbations
is at least about 2 orders of magnitude larger than that of
the axial perturbations, which indicates that the polar
perturbations are accompanied by a larger ϑ. In other
words, the polar perturbations couple to the terms that
stem from G more strongly than the axial perturba-
tions do.

FIG. 7. The base-10 logarithm of the parity dominance [see
Eq. (134)] of the modification to the axial and polar perturbations
as a function of dimensionless spin (a). PD gives a rough estimate
of the ratio between the amplitude of the polar perturbations to
that of the axial ones. PD ≫ 1 indicates that the perturbations are
dominantly polar, and PD ≪ 1 indicates that the perturbations are
dominantly axial. We observe that the PD is much larger than 1
(marked by the solid horizontal line in black) for the polar
perturbations and much smaller than 1 for the axial perturbations.
This feature indicates that the vð1Þ [defined by Eq. (104)] of the
polar perturbations remain dominantly polar, and that of the axial
perturbations remain mostly axial.

FIG. 8. The ϑ abundance [defined by Eq. (136)] of the axial
and polar perturbations of different QNMs as a function of a.
Heuristically, the ϑ abundance is the ratio between the ampli-
tude of the scalar-field perturbations (ϑð1Þ) and that of the axial
or polar metric perturbations. We observed that the ϑ abun-
dance for the polar perturbations is about 2 orders of magnitude
stronger than that for the axial perturbations, indicating that the
polar perturbations of different QNMs are always accompanied
by a larger scalar field. In other words, the sGB terms exert
stronger effects on the polar perturbations than on the axial
perturbations, explaining why jωð1Þj of the polar perturbations
is larger (see Fig. 3).

8Since the explicit expression of Gð1Þ is lengthy and not
insightful, we include it in a Mathematica notebook that is
available upon reasonable request.
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VII. CONCLUDING REMARKS

In this work, we extended METRICS to the study of
gravitational perturbations of rotating BHs in modified
gravity, where we have focused on sGB gravity as an
example. Our work yielded three important results. The
first is the asymptotic behavior of gravitational perturba-
tions at the event horizon of a general and axially
symmetric BH in modified gravity. The second is the
eigenvalue-perturbation theory of METRICS, which allows
us to compute the modifications to the gravitational QNM
frequencies of BHs in modified gravity. The third is the
leading-order modifications to the gravitational QNM
frequency of the nlm ¼ 022, 033, and 021 modes as a
function of dimensionless spins in sGB gravity. The
numerical uncertainty of the frequency of these modes is
≲10−5 for a ≤ 0.6, ≲10−4 for 0.6 < a ≤ 0.7, and ≲10−3
for 0.7 < a ≤ 0.85.
Our work demonstrates that METRICS is an effective

tool to study the perturbations of BHs in modified gravity.
Even without decoupling and simplifying the linearized
field equations, METRICS enables us to accurately com-
pute the QNM frequencies in sGB gravity. To the best of
our knowledge, our work is the first accurate computation
of gravitational QNM frequencies of a rapidly rotating BH
(of a ∼ 0.85) coupled to a scalar field in modified gravity
theories. By simply reading off the eigenvectors of the
METRICS solution, we can swiftly reconstruct the metric
and scalar perturbations, which could be highly involved
in other formalisms [58,115]. These results offer insight
into how different types of perturbations affect the QNM
frequencies of BHs in modified gravity theories. The
successful application of METRICS to sGB gravity shows
that METRICS has the high potential to unlock the QNM
spectra and metric perturbations of BHs in other modified
gravity theories.
METRICS also fundamentally alters the nature of black

hole perturbation studies. As mentioned before, the conven-
tional approach when computing QNM frequencies has
traditionally focused on simplifying the linearized field
equations into several master equations, which often
requires special analytical transformations that have to
be devised on a case-by-case basis. METRICS provides
a unified framework to compute the QNM frequencies of
BHs without these transformations in different modified
gravity theories (provided that these theories reduce to
GR continuously when the coupling constant vanishes).
Our results show that, as long as sufficient computational
resources are available, we can always compute the QNM
spectra in a modified gravity theory to high accuracy.
Although in this work, as a proof of principle, we have
computed the QNM frequencies up to a ¼ 0.85 in sGB
gravity, METRICS can, in principle, be applied to larger a

BHs with similar accuracy as long as a sufficiently accurate
background metric is available.
Future work could focus on refining the METRICS

approach even further. Thus far, METRICS has only been
applied within the Regge-Wheeler gauge. Although the
Regge-Wheeler gauge is adequate for many modified
gravity theories, it will also be beneficial to extend
METRICS to other gauges, because other formalisms
and theories may need them. For example, the modified
Teukolsky formalism of [47,50,53,117] uses the ingoing
and outgoing radiation gauges. Being able to compute the
QNM frequencies and reconstruct the perturbations in other
gauges would facilitate cross-checks and comparisons
between different formalisms. Also, in this work, we have
developed an eigenvalue-perturbation theory approach only
to leading order in the coupling parameter of the modified
theory. In principle, one can further develop this approach
to arbitrary order in the coupling parameter. Although for
tests of GR, knowing the leading-order modifications to
the QNM frequencies should be sufficient, knowing the
next-to-leading-order modifications can consolidate our
understanding of the effects of modified gravity theories
on the QNM response and also further inform us about the
stability of BHs in modified gravity.
Apart from the refinements of METRICS, this frame-

work also opens up several other lines of research. First, the
fitting functions for ωð1Þ [Eq. (124)] that we obtained could
be used to analyze detected astrophysical ringdown signals
and place the first (sGB) theory-specific constraints with
ringdown data; the analyses are ongoing and results will be
presented in a future paper. We also plan to extend the
studies in this paper to other modified gravity theories,
including sGB gravity with different potentials and cou-
pling functions [e.g., VðΦÞ ¼ 1

2
μ2Φ2 or fðΦÞ ¼ expðβΦÞ,

for some real μ and β], and dynamical Chern-Simons
gravity; this is also in progress and results will be reported
elsewhere. Once we obtain the modifications to the QNM
frequencies in these theories, we can construct fitting
expressions and place these theories to the test with
astrophysical ringdown data.
Second, we can apply METRICS to model the wave-

forms of extreme-mass-ratio inspirals (EMRIs) around a
Kerr BH. Modeling EMRI waveforms usually involves
self-force calculations, which require solving the inho-
mogenous linearized Einstein equations with source
terms [118]. In this paper, we have demonstrated that
METRICS is efficient in solving inhomogenous linear-
ized field equations. Hence, METRICS could also, in
principle, be useful when solving the inhomogenous
linearized Einstein equations required in self-force cal-
culations. Moreover, reconstructing the waveform of an
EMRI through METRICS only requires reading the
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eigenvector at the end of the calculation, which spares us
from the effort of reconstructing the metric perturbations
from the Weyl scalars, the current standard approach in
EMRI waveform modeling.
Finally, the QNM frequencies presented in this paper

can help establish an accurate waveform model for GWs
emitted by binary BHs in sGB gravity, which can ulti-
mately lead to even more tests of sGB gravity that include
all coalescence (inspiral, merger, and ringdown) stages.
Recent breakthroughs in numerical relativity make simu-
lating binary black hole coalescence in sGB gravity
possible [62,66]. However, accurately extracting the
QNM frequencies from numerical simulations in sGB
gravity requires high resolutions and can be computation-
ally challenging. Our QNM frequencies can spare the need
for these high-resolution simulations for accurate QNM
frequency extraction.
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APPENDIX A: SYMBOLS

The calculations presented in this paper involved numer-
ous symbols. For the convenience of the reader, we provide
a list of the symbols and their definitions in this appendix.

(i) α, when not sub- nor superscripted, is the dimen-
sional coupling constant of modify, first defined
in Eq. (1).

(ii) a is the dimensionless spin of the BH, first defined
in Eq. (16).

(iii) AkðrÞ is the asymptotic prefactor of the kth
perturbation variable, first defined in Eq. (86).

(iv) (A) is the superscript or subscript that denotes the
quantity concerning the axial perturbations, first
defined in Table. I.

(v) b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, first defined in Eq. (17).

(vi) BðNÞ is the backward modulus difference of the
QNM frequency, first defined in Eq. (121).

(vii) dr is the degree of r of the coefficient of the partial
derivative of the linearized field equations, first
defined in Eq. (93).

(viii) dχ is the degree of χ of the coefficient of the partial
derivative of the linearized field equations, first
defined in Eq. (93).

(ix) dz is the degree of z of the coefficient of the partial
derivative of the compactified linearized field
equations, first defined in Eq. (94).

(x) DðωÞ is the coefficient matrix of spectral expan-
sion, from one particular basis to another, first
defined in Eq. (98).

(xi) δ is the numerical uncertainty of the METRICS
frequencies, first defined in Eq. (123).

(xii) Δ ¼ ðr − rþÞðr − r−Þ, first defined in Eq. (17).
(xiii) Gk;η;γ;δ;σ;α;β;j is the coefficient of ωγrδχσ∂αr∂

β
χhj of

the linearized field equations of hj, first defined
in Eqs. (93).

(xiv) hkðr; χÞ is the functions of metric perturbations,
first defined in Eqs. (27) and (28).

(xv) Hkðr; χÞ is corrections to the Kerr metric due to
modified gravity, first defined in Eqs. (16).

(xvi) i ¼ ffiffiffiffiffiffi
−1

p
is the imaginary unit.

(xvii) k in the subscript is the component of the metric
perturbation functions and k ¼ 1;…; 7, first de-
fined in Eqs. (27) and (28).

(xviii) κ is the surface gravity on the BH horizon, first
defined in Eqs. (24).
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(xix) Kk;α;β;γ;δ;σ;j is the coefficient of ωγzδχσ∂αz∂
β
χð…Þ of

the linearized field equations in z and χ, first
defined in Eq. (94).

(xx) l is the azimuthal-mode number of the gravita-
tional QNMs, first defined in Sec. I.

(xxi) l is the degree of associate Legendre polynomial
used in spectral expansion, first defined in
Eq. (89).

(xxii) M is the BH mass, which is taken to be M ¼ 1
throughout this work, first defined in Eq. (16).

(xxiii) m is the azimuthal number of the metric pertur-
bations, first defined in Eqs. (27) and (28).

(xxiv) N is the number of the Chebyshev and associated
Legendre polynomials used in the full spectral
expansion, first defined below Eq. (92).

(xxv) N χ is the number of the associated Legendre
polynomials included in the spectral expansion,
first defined in Eq. (92).

(xxvi) N z is the number of the Chebyshev polynomials
included in the spectral expansion, first defined
in Eq. (92).

(xxvii) (P) is the superscript which denotes the quantity
concerning the parity-led perturbations, first de-
fined in Table. I.

(xxviii) PD is the parity dominance, which characterizes
the parity content of metric perturbations, first
defined in Eq. (133).

(xxix) r� ¼ Mð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ is the radial coordinate of

the position of the event horizon of the Kerr BH,
first defined below Eq. (17).

(xxx) r� is the tortoise coordinate, first defined
in Eq. (34).

(xxxi) ρðkÞ∞ and ρðkÞH are the parameters that characterize
the boundary conditions of hk in future null
infinity and at the horizon, first defined in Eqs. (41)
and (40).

(xxxii) ΩH is the angular velocity of the BH horizon, first
defined in Eq. (24).

(xxxiii) ϑ is the scaled scalar field in modified gravity
theories, first defined above Eq. (11).

(xxxiv) z ¼ 2rþ
r − 1 is the variable that maps r into a finite

domain, first defined in Eq. (88).
(xxxv) ζ ¼ α2=M4 is the dimensionless coupling param-

eter of modified gravity, first defined in Eq. (10).

APPENDIX B: ADDITIONAL TABLES

The following tables present additional details related to
the results described in the main body of this paper. In
particular, Tables I–III present the sGB corrections to the
quasinormal frequencies for the 022, 033, and 021 modes,
respectively, for various choices of BH spin. Meanwhile,
Table IV presents the sGB quasinormal frequencies of
the scalar mode. Tables V and VI show the coefficients
of the fitting polynomials, as well as their uncertainties,
respectively. TA
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TABLE IV. Identical to Table I, except that the mode is the scalar mode.

a Na NðSÞ
opt ωð1Þ

ðSÞ δðSÞ

0.005 4 19 0.6045798545323886þ 0.0581423873432243i ð1.26 − 0.614iÞ × 10−5

0.1 4 17 0.6520081777182252þ 0.049164102037905326i ð0.269þ 2.80iÞ × 10−5

0.2 8 18 0.7046912702423356þ 0.03603026646139007i ð0.908þ 3.96iÞ × 10−6

0.3 10 17 0.7589595233768467þ 0.01842926109601173i ð0.346þ 7.60iÞ × 10−6

0.4 14 16 0.8120444787616149 − 0.00414803677523237i ð1.93þ 0.173iÞ × 10−5

0.5 16 17 0.8582013985710617 − 0.03173757333700589i ð4.60þ 1.28iÞ × 10−6

0.6 22 19 0.8852904646574657 − 0.06275621308225965i ð5.83þ 1.08iÞ × 10−6

0.7 30 16 0.8657377111656217 − 0.09150362347338614i ð0.747þ 1.06iÞ × 10−5

0.8 40 20 0.7292910025639827 − 0.09881446399022309i ð1.88þ 0.497iÞ × 10−5

0.849 40 20 0.566457285841918 − 0.07810396025985997i ð0.518þ 3.23iÞ × 10−5
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