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In this paper, we carry out the entanglement calculations on the coherent intertwiners. We first consider
the entanglement introduced by the group averaging of the tensor-product-type intertwiner on a 4-valents
vertex. Then, we calculate explicitly the entanglement carried by the gauge-invariant coherent intertwiner

with four legs. Our numerical results show that the entanglement can be controlled by the local
semiclassical geometry described by the coherent intertwiner. We also extend our analytical calculation to
the coherent intertwiners with an arbitrary number of legs. Especially, we apply the previous results to the

entanglement of the spin-network state labeled by coherent intertwiners, with the network puncturing a
boundary by its vertices. We show that the entanglement of such spin-network state is not only determined
by the area of the boundary but also carries a quantum correction controlled by the semiclassical geometry

associated to the vertices puncturing the boundary.
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I. INTRODUCTION

Loop quantum gravity (LQG) provides a background-
independent and nonperturbative quantum theory of
General Relativity (GR) [1-6]. Specifically, LQG defines
the quantum states of spatial intrinsic and extrinsic geom-
etry as spin networks. The quantum geometry carried by
spin networks can be understood as the quantization of
discrete twisted geometries [7—12], while the information
of quantum geometry encoded in spin-network states can
be extracted by the geometric operators in LQG [13-17].
The quantum evolution of spin networks is governed by
the Hamiltonian operator in canonical formulation [18-21]
or described by the path-integral formulation [22-26].
Besides, the semiclassical geometries at the discrete stage
can be given by the expectation values of the geometric
operators based on the coherent states, which are con-
structed by specific superposition of intertwiners and spin
networks [27-34].

As a quantum gravity theory, LQG also provides us a
platform to study the black hole thermodynamics in a
fundamental perspective. More explicitly, the Bekenstein-
Hawking entropy, which is supposed to originate from a
quantum theory of gravity, is first derived in classical GR
coupled to quantum matter field. It is natural to expect that
the Bekenstein-Hawking entropy can be derived from an
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ab initio computation of the entropy based on the micro-
states in a specific quantum gravity theory. In fact, in the
LQG framework, the nonperturbative computation of black
hole entropy has been performed based on the quan-
tum isolated horizons described by quantum Chern-
Simons theory coupled to bulk LQG in several works
[35-50], which lead to specific corrections to the
Bekenstein-Hawking entropy. Another strong candidate
of the source of black hole entropy is the entanglement
entropy between the quantum system inside and outside the
black hole horizon [51-55]. This approach is based on the
observation that the entanglement between quantum sys-
tems inside and outside the horizon is caused by the fact
that the globally pure state becomes mixed since the
horizon hide the degrees of freedom of the interior of
the black hole [51,52]. Specifically, the entanglement in
LQG is computed for black hole coherent states in spheri-
cally symmetric spacetime with apparent horizons in
Ref. [53], and it is computed for the spin-network basis
without assumption of symmetry or of specific boundary
conditions at the horizon in Ref. [51]. It has been argued
that the entropy computed in the isolated horizon frame-
work of LQG is closely related to the entanglement entropy
of the gravitational field in several previous works [52,56].

Particularly, it has been shown that the entanglement
carried by the spin-network basis state is the composition of
the entanglement carried by the intertwiners on the boun-
dary [51]. However, the previous computation merely
involves the case that only edges of the network puncture
the boundary, and the computation results show that the
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edge puncturing the boundary with spin j contributes
In(2j + 1) to the total entanglement entropy. Moreover,
it is pointed out that the entanglement carried by the
superposed intertwiners is much more than a term given
by In(2j + 1) [57]. Thus, the computation of the entangle-
ment for spin-network states labeled by superposed inter-
twiners is a valuable topic in LQG. A typical method to
introduce the superposition of intertwiners is imposing the
gauge averaging over the product state, with this super-
position reflecting the requirement of the gauge invariance.
Besides, the gauge averaging over some coherent states
gives the gauge-invariant coherent intertwiner, which
provides a semiclassical description of the discrete spatial
geometry, i.e., minimizes the uncertainty of the expect-
ation values of the area and face-angle operators [58—60].
In this paper, we will focus on the mechanism of group
averaging to the entanglement, specifically, of coherent
intertwiners, and then analyze the entanglement entropy
of spin network labeled by coherent intertwiners. Our
results show that the entanglement of coherent intertwiner
can be controlled by the semiclassical geometry associ-
ated to the vertex, i.e., the expectation values of area and
angle operators; moreover, for the spin network punctur-
ing a boundary by its vertices labeled by coherent
intertwiners, we show that the entanglement entropy of
such a spin network is not only determined by the area of
the boundary but also carries a quantum correction
controlled by the semiclassical geometry associated to
the vertices on the boundary.

This paper is organized as follows. After the basic
structure of spin-network state and intertwiner in LQG is
introduced in Sec. II, the entanglements on the kinds of
spin-network states and intertwiners are calculated. Speci-
fically, in Sec. III A, we generalize the relation between
boundary entanglement and intertwiner entanglement to the
case in which the internal edge carries spin superposition.
Then, we calculate the entanglement introduced by the
group averaging of the tensor-product type intertwiner with
four legs by numerical method in Sec. III B. Further, in
Sec. IIIC 1, this calculation is extended to the gauge-
invariant coherent intertwiner with four legs. Moreover, in
Sec. HIC2, we also carry out some key analytical
calculations for the entanglement on the coherent inter-
twiners with arbitrary number of legs. Besides, we apply
the results in previous sections to discuss the entanglement
of spin-network states in Sec. IV. Finally, in Sec. V, we
finish with conclusion and discussion for our results.

II. SPIN-NETWORK STATE AND INTERTWINER
IN LOOP QUANTUM GRAVITY

The Hilbert space Hy for quantum geometry on a closed
oriented graph I" embedded in a three-dimensional mani-
fold is composed by the square integrable functions on
SU(2) associated to each edge e €T", which are invariant
under the SU(2) action at every vertex v € I. Specifically, a

square integrable function on I" takes the formulation

¥Yr=¥r({he}.er)- (1)

The SU(2) gauge invariance at the vertex of W reads

‘PI‘({he}eeF) = lPT({gs(e)hegf_(é)}eEF)? (2)

where {g,|v €I} are given at each vertex v €' respec-
tively, s(e) represents the source vertex of e, and t#(e)
represents the target vertex of e. The spin-network states
provide a basis of space Hp. Specifically, a (nonsuper-
posed) spin-network basis state on I is given by labeling a
spin j, € % on each edge ¢ €I and an intertwiner Z, on
each vertex v €I, which reads [2]

ryj.z,y = tf<®r m;,(he) ®IU> , (3)
ee

vel

where 7; (h,) is the representation matrix of 1, € SU(2)
in the representation space V/¢ of SU(2) labeled by spin
Jer ad T, €Q,j10)=0 Ve ® @,fs(e)=0 V<. Especially, the
spin-network state W ¢; 7 is gauge invariant if and only if
each v €Tl is labeled by a gauge-invariant intertwiner.
Another basis of space H- is given by the coherent state of
spin networks. The coherent state of spin network is the
superposition of spin networks, which reads [27]

¥io(h) = [] ¥, (k) (4)

eel’

with

W, (he) = ) (2j, + 1)e 0Dy, (h,GZY), (5)

e

. N
Je €=

where G ={G,},er. h={l}.cr» x; is the SU(2)
character with spin j, and r «x kA is a semiclassicality
parameter. As a function of the holonomies #,, the coherent
state is labeled by G, with G,€T*SU(2) = SL(2,C)
being the complex coordinates of the discrete holonomy-
flux phase space of LQG. The gauge-invariant coherent
state of the spin network is labeled by the gauge equivalent
class of G,~G{:= gs‘(le)Geg,(e) for all eel’, where
g ={9,€SU(2)|veTl}. Equivalently, the gauge-invariant
coherent state of the spin network is also labeled by the
gauge-invariant intertwiners at each v €I'. Let us give an
explicit introduction of gauge-invariant intertwiner as
follows.

The gauge-invariant intertwiner 7, at vertex v is a
SU(2)-invariant state in the tensor product space of all
the spins associated to the edges linked to v,
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I1€Hijl} = InVSU(Z) ® VJ‘ ® ® ‘_/j"' s (6)
elt(e)=v els(e)=v

where V/ is the dual space of V/. The space V/ has
dimension d; = (2j+1) and the orthonormal basis
{lj,m)| —j<m<j}, which diagonalize the su(2)

Casimir J* = JoJ+JyJ, + J.J, and the generator J3 as

m), J;

Pljomy = j(j + 1), jom)y =mlj.my.  (7)

An orthonormal basis of the intertwiner space Hij”}
established by the recoupling scheme, which reads

{e} {e}
{Z =7

005} = E 0y, )

eH}, (8)

where N, is the number of the edges which link to », and
{J s Jiys e j,NF}} labeling the internal edges in the recou-
pling scheme, which satisfies

|je1 _je2| szl Sjel +jezv |j1] _je3| Sjlz Sjll +je39
_s _jeN”_3‘ < thI’,_4 < j’Nv—S +jeN1/_3’

|j’Nr4 - jeNv,2| < le 3 < leL_,4 + jeer’
|j€N,,7| - jeNﬂ | < lev,3 < jeNL,] + jeNl’_ . (9)
Another basis of the intertwiner space ’Hij 8 is the so-called

coherent intertwiner basis [58,61], which is established
based on the SU(2) coherent state. A SU(2) coherent state

|7, 1) is defined via rotating the highest weight state |J, j)
by g(it) € SU(2), namely [62],
. ) = g(R)1j. ). (10)

where 71 is a unit vector, and g(1) € SU(2) satisfies it =
g(7)2 with the north pole vector z = (0,0, 1) € S%. The
SU(2) coherent state |j, 1) can be decomposed by the
orthonormal basis {|j, m)} as [62]

J

lj.n) = Zc

m==j

a)lj.m) (11)

where

¢jm() = (%)5 (_ i - 9) j4m

x<cos”;9)‘f exp(—ilj+m)(p+7) (12)

with 7 = (sin @ cos @, sin @ sin ¢, cos §). Moreover, the
SU(2) coherent states |j, 1) provide a overcomplete basis
of the space V/ as

J- )G, al, (13)

Iy = (2) + 1)/ dn
SZ

where T is the identity of V/ and dn is the normalized
measure on the 2-sphere S2. Now, the coherent intertwiner

basis of Hij 3 can be given as

jﬂ
Lo = [ do
v Si]e}

(i} = (o). SV ={(R,,.....0,, )€
N, . o
XI;ISﬂ Ze|t(e):p]ene _Ee\s(e):v]ene :0}/SU(2), dgij }
is an invariant measure on S{U’f}

TN,

(14)

where

, and the coherent inter-
twiner |I;{:’{“J}}) is given by the following SU(2)-group
averaging:

Iz infjf >"/ dg @ Gliesie) @ (Jesticlg™. (15)
SUQR)  elr

(e)=v els(e)=v

To simplify our notations and distinguish the labels of the
ingoing and outgoing edges, we use j, 71 to label the ingoing
edges and J, 7i to the outgoing edges. Then, the coherent
intertwiner can be reformulated as

v.{j.j}

A A P Q
200 = [ do@alin ) @il (16
su@R) 1= J=1
where P is the number of the edges ended at » and Q is the
number of the edges started at v.

The SU(2) coherent states are said to be semiclassical
states due to the property that they minimize the Heisenberg
uncertainty relation [58,59,62]. A coherent spin state |, 1)
picks the unit vector 71 by J as fi = lim oo M In the
framework of LQG, each vertex ve€I’ is dual to a
polyhedron, and the edges attached to the » are dual to
the faces of the polyhedron [60,63]. The area and the
normal vector of the face are characterized by j and 71 from
J» ), respectively. These pair data {(j, )} indeed provide
a semiclassical but gauge-variant picture. The gauge
invariance is fulfilled via SU(2)-group averaging over
the tensoring Spin states ®e\t(e):1}|je’ ﬁe>®e\x(e):v <je’ ﬁ6|
with {7,} e st defining a gauge-invariant coherent
intertwiner. Although the information about the direction
of each unit vector 7, loses due to the SU(2)-group
averaging, the relative angles among these unit vectors
survive. Hence, a polyhedron in discrete geometry can be
built from gauge-invariant coherent intertwiners in a rela-
tional picture [58,60,63]: for a v around by N, faces, the

{J.} determines N, areas, and {7,} €Sy determines
2N, — 6 relative angles.
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III. DENSITY MATRIX AND ENTANGLEMENT
ENTROPY OF COHERENT INTERTWINER

A. Boundary and intertwiner entanglement entropies

Consider a two-vertices graph I" as illustrated in Fig. 1:
one vertex v; is attached by P + 1 edges, and another
vertex v, is attached by Q + 1 edges; meanwhile, v, and v,
are connected by edge e. For the sake of simplifying the
notations, we reorient all of the edges to ensure that e is
outgoing at v; and ingoing at v, with other edges being
ingoing at v; and outgoing at v, without losing generality.
Then, the boundary Hilbert space for this system is
defined as

P o _
HBF = ® VI ® ® VJ. (17)
=1

J=1

That is, excluding the Hilbert space associated with the
internal edge ¢ whose two ends are contained in the graph.
The apparent bipartition on the boundary Hilbert space is
given by

P
Hor Hgl ® szz, where 7—[‘31 =@V and
=1

2 _
HY, =:§1vf. (18)

On the other hand, the intertwiner Hilbert space on graph I
is defined as

P
Hr:=H, ®H,,. where H, =1 (® QV > and

H,, =TIy (V@ ® é V,). (19)

J=1

The gluing map [57] provides a correspondence between
the boundary state |yr), € Hyr and the intertwiner state
lwr) € Hr. Intuitively, the gluing map glues the boundary
edges together along the internal edges. Let us illustrate the
gluing map as follows. Assume that the internal edge e that
links v; and v, carries a fixed j. Then, the spin-network
state is written as

FIG. 1. The 2-vertex graph I'. The holomony #, along the edge
e that connects »; and v, contributes nothing to the entanglement
entropy.

J
|lP Z C{JI}J (/1}1

{redrdidi} Fontinf iy
1Ji

(3 ThH @ Linomi i

m.{m;}

7tk
7|I”lv<j!}>

Q ~
o) @Gy miz 500 ). 20)

=iz

Let us explain the notations in this equation: (i) j,, j, label
the boundary edges of I" in left and right side, respectively,
and j,, j, represent the recoupling spins for the coherent

intertwiner basis 7 ’% J and 7 Ush ,
it AU}

11 Jrd-{ii} Jiijo{ii}
coefficients Z;, nipm'’ as well as Z; sy are respon-

respectively. (ii) The

sible for the gauge invariances of I{”%]’} and If/“{}j’},

respectively, which can be constructed by concatena-
ting Clebsch-Gordan coefficients. (iii) The coefficients

CZ{,-,),,- oy encode the correlation between intertwiners
v]'{jl} l‘z.{i!}

living at »; and »,. On the other hand, the boundary state

associated with the spin network is written as

’ E E : 11 “ipj- i}
|lP \/2-]__——'——'61-(/1}/ I{]/}j : I ~Mmpm
{rdrdidi} U0k gy y

®\11,m1> (21)

Q
(1) goj,m,uﬁ;l ol
where D), (h,) :=
viewed as sending |¥f) to |¥),, via sandwiching hol-
onomy that associates the edge to be glued. This gluing
map can also be established without the holonomy insertion
[i.e., setting h, = identity in Eq. (21)], which leads to

(j.mlh,|j.n). The gluing map is then

¥, Z V2j+1C i L Iy
{Ursdosdidi} Frtin e ti {my.ii}
. & 17 piido i)
@ iz my) @Obmﬂzmm,-.%gl : (22)

Now, we look at the entanglement carried by these
states. The intertwiner entanglement entropy E(v;|v,) with
respect to Hr = H,, ® H,, is given by the von Neumann
entropy from below reduced density matrix

Pl = Tryg | W) (] (23)
- J { i}
- Z Z ¢ Zlirkd glishi C i Tk | jj]l%j{}>< 1)/] {]{}l
Uredydediy g} Lottty Ll Tot
(24)
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On the other hand, the boundary entanglement entropy
E(v{]v9) with respect to Hor = H) & HY, is given by the
von Neumann entropy from the reduced density matrix

P o= Trrgy W)L, = Tryy (9 (W], (25)

= § § C(/l}/ {J/)JC{/}/ painy;

Lndpdvdiy {750} ”{" ) L,U}Lz{/.}

X Z Ifril jﬁzj,jr{‘}zjl oA {11}® s mp) (s mi|

' -ml,m
m,{my.m}

E E C {irti {JJ}/

/1}/ (Jj}j
Lrdpdindi} 770} Fontin P L iyt
xS Gom|Z Uy (U ), (26)

m

where HJ, = ®%_,V, is the boundary-edge state space
attached to the vertex v,, and the following orthogonality is
used:

1 N. { !} 1"7°JN. { r} J—
S T T _m511’5mrn’5{j,}{j[}' (27)
{ml}1:]

Indeed, one can verify the normalization Try. p?;,j =1.
1

Note that the relation between the two density matrices can
be given by

p?/]j = TrVL,p{H (28)

with V, = V/. Thatis to say, the reduced density matrix p‘,?;lj
of the half-cut boundary can be understood as tracing the
reduced density matrix pjv'l of the half-cut graph over the
recoupled Hilbert space (here, it is V/ associative with the
spin j along the internal edge ¢). Then, following Ref. [57],
one can show a simple relation between the entanglement
entropy of Hyr = H) ® H), and of Hr = H,, @ H,,.

Theorem 1. In the cases in which the spin along the
internal edge is fixed at j, the following relation between
entanglement entropies holds [57]:

E;(v]|v3) = E;(v1]vy) +In(2j + 1), (29)

where  E;(v9]v9) =
=Tr(p1, Inpy, ).
Notice that Theorem 1 only involves the case in which
the internal edge has a fixed spin j. Now, we would like to
generalize the relation Eq. (29) to the cases that the internal
edge e carries spin superposition. Let us consider the state

_Tr(p(z’lj lnp(zlj) and Ej(U] |1)2) =

Z Z a; Cz{fm I‘““ |Iv11%1j}>

i)
VRV ININNA: el A

Pr) = %)
J

® T, 60)

the gluing state with holonomy insertion

|‘Pra—zaj Z V2j+ CI{m/ Y

i {1) i
J {jl]l]l]} e )

. P .
> Tt @ jrsmg) Do)
1=

m,n,{my,m;}

Q0
QU it | T e, (31)

and the gluing state without holonomy insertion

|\PF 0 Za Z V 2.] +1 CI(JI}J I{u}f

I {rdrdnd} el

P
X Z IJ] ]fﬂlpyl}®‘jlaml>
=1

m,{my. i, }

j,,mJ\Iﬂl JQ {J,}' (32)

miity -1 g

@m

J=1

Again, the reduced density matrices are obtained via partial
tracing in sz and H,,, respectively, which gives

P, = Ty [Pr)(¥rls = Tryo. |Pr) (¥

(33)
and
Py = Tryg, [¥r) (¥, (34)

Similarly, the generalized relation between /321 and p,,
holds by taking superposition of j into account, which
reads

Pv, = Tr\/gﬁvl’ (35)

where V, = @;V/ and j, = @;p;p, with p; = a;a;.
Then, the relation between intertwiners and boundary
entanglements leads the following theorem.

Theorem 2. In the cases in which the spin along the
internal edge is superposed, say, the intertwiner state is
given by |¥r), then the following relation between entan-
glement entropies holds:

vd|v9) = ijln(2]+ —Zﬁjlnﬁj
J

+ ZﬁjEj v1|v2), (36)
J
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he=identity
—

ANV
AN

FIG. 2. The left graph (two vertices) has the same entanglement entropy between boundary edges with the right graph (one vertex).

where  E(v9]v9) = —Tr(p9 Inp9)

_Tr(p{ﬂl lnp{"l )

Let us have a discussion on the above theorem. First,
referring to Ref. [57], the first term in Eq. (36) should be
interpreted as coming from gauge breaking, and it follows
that the second and the third terms should be interpreted as
the intertwiner entanglement, since the —3_ jpjnp;
comes from the spin superposition along the linking edge
e, and the E;(v;|v,) is the intertwiner entanglement when
the spin is fixed. Second, in the case of single internal edge
graph, it has been shown that the holonomy along the
internal edge e plays no role in the entanglement entropy in
Ref. [57] for fixed j, and Eq. (33) in our calculation extends
this point to the case of superposed j. Indeed, one is able to
gauge fix the h, into identity, and then |Wp), becomes
|¥}-) 5, which can be regarded as an intertwiner on a single
vertex as illustrated in Fig. 2. Notice that Eq. (33) tells us

that |¥r-), and | W), have the same reduced density matrix;
thus, the respected entanglement entropies depicted in
Fig. 2 are indistinguishable. Third, while the above general
formalism is still vague for the sake of establishing a
relation between the entanglement and geometry, the
coherent intertwiners provide a semiclassical picture of
geometry on the polyhedron, which could interlace the
genuine quantum notion—entanglement, with the discrete
geometry. In the following part of this paper, we are going
to explore how the entanglement entropy emerges from this
semiclassical picture and how the entanglement gets
reflected in the discrete geometry, or vice versa.

and Ej(’l]]|1}2) =

B. Entanglement produced from group averaging

As a prelude for the study on the coherent intertwiner, this
part is meant to show how entanglement can be produced
from group averaging. We begin with a gauge-variant
scenario based on the graph with only one vertex », and
the corresponding wave function is below the tensor state,

® |jevme>® ® <je/,me/|€ ® V]<’® ® \_/je'.

elt(e)=v els(e)=v elt(e)=v els(e)=v

(37)

This is not a physical spin network due to the absence of
gauge invariance, and there is also no entanglement. To geta
gauge-invariant state, the group averaging is adopted, which
inevitably introduces superposition and entanglement. It is
possible to grant the physical implication for the group
averaging by considering some SU(2)-invariant measure-
ment: suppose that we are given a set {|¢;) }; whose members
are all SU(2)-invariant pointer states |¢;); i.e., |¢;) = g|¢;)
forany g € SU(2), then this invariance can be conveyed to the
probability distribution |{¢;|y)|> where |y ) is the state to be
observed because

<mmaL M%Mzﬂwwmww

(2)
— . T
<%Léwadmgw) (38)

It is clear that fSU(z) dglg'y) is SU(2) invariant. Note that

this group-averaging process is similar to a particular
“twirling” in the field of quantum information, which
introduces superposition and entanglement to a product state.

The rest of this part will calculate the entanglement
introduced by the group averaging. Let us look at an
example. Consider the graph with only one 4-valents’

vertex v and the intertwiner space Hid — yi @

by the tensor product as

1mi) @ |j2.my) @ (jz.ms| @ (jamal,  (39)

where we take the 4-valents’ bipartition (2, 2), with the two
left-side edges being ingoing and the two right-side edges
being outgoing. Clearly, there is no entanglement between
left and right sides, say, E(A|B) = 0 with H, :== V/' @ V2
and Hy := V> ® V/+. Now, let us implement the SU(2)-
group averaging over the tensor state, which leads to
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glji, m1) /dg (ja,malg™

2 —> i k) > o s das o bl

glja2, ma) (j3,mslg~!

FIG. 3. The SU(2)-group averaging produces entanglement between the legs. This can be viewed as the entanglement between two
coupled states |j;, j»; j, k) and (J3, at v, and v,, respectively.

should be retrieved by rescaling later. In addition, recall that

m = {my, my, my,my} are fixed, the SU(2)-group averag-

ing will eliminate some configurations that do not satisfy

m; + my = m3 + my. This is the closure condition on

i IR T magnetic quantum numbers. The state |Z) survived from

- Z Z Z 2j+1 CiokCmiimm Cilk the group averaging is a gauge-invariant state, and it can be

also viewed as a bipartite system between two sets of

C{nssj%mbl’ ki) @ |ja.ka) ® (js. ks| @ (ja. kal, recoupled spins; see the illustr%tion in Fig. 3. To simplify
(40) the expression, let us rewrite |Z) as

1) = / dgglji.mi) @ glja. my) @ (j3.mslg™
SU(2)

® <J.4,m4|g_l

J km==j

- N 1 ) ) s ak j ) i 5 .7k’
where k= {k;.ky.ky.k,} and Cly2 . = (jy.my, jp my|j.m) ZZ}—I— lf ool gz oK) @ (s i K
stands for the Clebsch-Gordan coefficient. One should note
that the group averaging spoils the normalization, so it (41)

pj pj
0.30
0.3 |
0.25
0.20
0.2
0.15
o1l 0.10
0.05
A 2 4 6 8 10 J 5 10 15 20 !
(a) (b)
Pj Pj
0.30
0.25
0.25

10 20 30 40 50 60

()

FIG. 4. The numerical results of p; for (m,,m,, ms,my) = (0,0,0,0) and j; = j, = j3 = js = 5, 10, 20, 30, where the x axis shows
the recouping spin j and the y axis shows the numerical value of p;. These figures show that p; has an oscillation with respect to
coupling spin j. @) j1 = jp =Jj3=js=5.0) j1=ja=j3=js =10.(¢c) j1 = jo = j3 = ja =20. (d) j1 = jo = j3 = ja = 30.
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Pj

Pj

Pj
0.35

0.30
0.25
0.20
0.15
0.10

0.05F

(¢)
FIG. 5.

The numerical results of p; for (my,my, my, my) = (1,-1,1,

Pj

0.30

0.25

0.20

10 20 30 40 50 60

(d)

—1)and j, = j, = j3 = js = 5, 10, 20, 30, where the x axis

shows the recouping spin j and y axis shows the numerical value of p;. These figures show the difference in the shape of oscillation

compared to the cases of my=my=my=my=0. @) ji=jo=j3=js=5 O) ji=jp=Jjz=js=

J3=1Js=20. () j; = j»=j3=js=30.

where [ji. joi j k) = g a0y CoZALI1 ki) ® Lo ko)

defines a recoupled spin, likewise for (js, js;/, k|, and
we denote
Z Cotliton Chilim (42)
for the fixed 75 {J1+Ja2» j3, J4} and m.
Recall the bipartition H,:=V/' ® V2 and

Hp = V/* @ V/+. Then, the entanglement E(A|B) between
A and B can be given by the von Neumann entropy of the
reduced density matrices p,. For the state |Z), the reduced
density matrix p, is defined by p, :=Trg(p;) with

L _ b
P ="

_ 1F(G i)
‘“_cﬂb§:§:(@+4y

More explicitly, one has

|is g2 o k) (s Jos J k|

(43)
One can introduce the probability distribution p; of the
recoupling spin j, which is given by p; %,

10. (© ji=i=

and the reduced density matrix can be decomposed into
A .
P, Le.,

s jas o k) (vs jos J. k|
pa = Zp,p e Z .
J J = 2.] + )

(44)

It is clear that the 4 and H; are entangled for the state |Z).
The entanglement entropy E(A|B) := —Tr(psInp,) is
determined by the distribution p I which reads

E(A|B)
E,(A|B) :=

— E,(A|B) + Eo(A|B).
_Z(lenpj% Eo(A[B) ‘ZPJSA (45)

J

where §% := =Tr(p} Inp}) = In(2j + 1). Further, the dis-
tribution p; and the entanglement entropy E(A|B) can be
calculated numerically. The numerical results of p; are
illustrated in Figs. 4-6, which show that the distribution p;
is oscillating with respect to j for small {m, my, ms, my}
state, while there is a peak for highest (and lowest) weight
state. The numerical values of entanglement entropy
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Pj

0.35
0.30
0.25}
0.20
015}
0.10f

0.05

Pj
0.25‘:
0.20f
o.15§

0.10

[
0.05

i i
]
10

20

(b)
Pj Pj
015}
0.10
0.05
10 20 30 20 30 40 50 60 '
() (d)
FIG. 6. The numerical results of p; for j; = j, = j3 = js =5, 10, 20, 30 and m; = m3 = —m, = —my = j4, where the x axis shows

the recoupling spin j and the y axis shows the numerical value of p;

. These figures show that the shapes of the distributions p; are peaks

for the highest (and lowest) weight states. (a) j; =j, =j3 =js=5. (b) j1 =j»=j3=Jjs=10. (¢) j; = jo» = j3 = js = 20.

(d) j1 = j2 = Jj3s = Js = 30.

E(A|B) are listed in Tables I and II, which show that the
entanglement entropy can be controlled by the magnetic
configurations.

It is worth it to have a discussion on these results.
First, one should notice that the quantum number
{my, my, m3,m,} are gauge variant, and their geometric

TABLEIL The numerical values of E(A|B) for small spins j,
Jj» =J3 =Js =95 at different configurations with respect to
magnetic numbers.

(J1+J2sJ3sja) (my,my,my,my) E,(A|B) Ey(A|B) E(A|B)
5,5,5,5) 0, 0, 0, 0) 1.58138 1.5931 3.17448
(5,5,5,5) (1,-1,1,-1) 1.64349 1.37831 3.0218

5,5,5,5) (2,-2,2,-2) 1.68047 1.35532 3.03579
5,5,5,5) (3,-3,3, 3) 1.72176  1.33854 3.06029
5,5,5,5) (4,-4,4,-4) 1.6484 1.30671 2.95511
5,5,5,5) (5,-5,5,-5) 1.45701 1.21724 2.67426
5,5,5,5) (2,-1,2,-1) 1.7005 2.05912 3.75962
(5,5,5,5) (3,-1,3,-1) 1.77649 2.32768 4.10417
5,5,5,5) (4,—1,4,—1) 1.59752 2.48947 4.08698
(5,5,5,5) (5,—1,5,—1) 1.31356 2.60331 3.91687

interpretation become fuzzy after group averaging. Second,
note that the distribution p; is a peak for highest (and
lowest) weight state; it ensures that the entanglement
entropy is able to capture the main character of the
distribution p;. By combining these two points, it is

TABLE II. The numerical values of E(A|B) for small spins
Jj1 = J» = J3 = js = 10 at different configurations with respect
to magnetic numbers.

(J1+J25 J3+ Ja) (my,my, m3,my) E,(A|B) Eo(A|B) E(A|B)

(10, 10, 10, 10) 0, 0,0, 0) 2.01747 2.02953 4.047

(10, 10, 10, 10) ~ (1,-1,1,-1)  2.01367 1.80432 3.81799
(10, 10, 10, 10)  (2,-2,2,-2) 2.06684 1.77726 3.8441

(10, 10, 10, 10)  (3,-3,3,-3) 2.10459 1.76694 3.87153
(10, 10, 10, 10)  (4,-4,4,—4)  2.1037 1.76034 3.86404
(10, 10, 10, 10)  (5,-5,5,-5)  2.13296 1.75342 3.88638
(10, 10, 10, 10)  (6,—6,6,—6)  2.16708 1.7438 3.91088
(10, 10, 10, 10y ~ (7,-7,7,-7)  2.1329 1.72895 3.86185
(10, 10, 10, 10)  (8,-8,8,—-8)  2.08743 1.70467 3.7921

(10, 10, 10, 10)  (9,-9,9,-9)  1.99391 1.66086 3.65477
(10, 10, 10, 10) (10,-10,10,—10) 1.77857 1.55688 3.33545
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glg1, n1) /dg (Ja, Nalg™!

—> |j1,72;5,k) (j3, 45 J, K|
U1 (%]

glj2, 72) (js, niglg™*

FIG. 7. The SU(2)-group averaging on spin coherent state produces entanglement between the legs. This can be viewed as the
entanglement between two coupled states |, j»; j, k) and (j3, j4; . k| at v, and v,, respectively.

reasonable to consider the entanglement carried by |Z) :ZChml(ﬁl)cjz,rm(ﬁz)éj;,m<ﬁ3)5j4,m4(ﬁ4)

gauge-invariant coherent intertwiners, since they are 7 i ‘

constructed by the highest (and lowest) weight state |

and they describe semiclassical geometry on polyhedrons. : / dggljr, my) ® gljz, ma) ® (jsz, m3|g~
. . SU(2)

In the next subsection, we will focus on the coherent

intertwiners which provide a semiclassical picture of ® (jarmalg™

olyhedron geometry, and one may expect that the o

POty & Y Y p _chl ,my nl /2m7( 2) j; n13< ’»)Cj4m4(n4)

entanglement, superposition, and the geometric picture
could be drawn by the gauge-invariant knowledge

encoded in the area-weighted normal vectors {j.7,} Cotm Chlidm - C
labeling the coherent intertwiners. x jzm:k 2j+1 o230 k) ® (s s ). Kl
(47)
C. Entanglement entropy between legs
of coherent intertwiner Clid i
D o "'"Zm "3"4'" s dosdo k) @ (Jasjas okl (48)
1. Coherent intertwiner with four legs v

Let us consider the gauge-invariant coherent intertwiner
space H{ 1 = Tnvgy o [V @ Vi @ Vi @ V] ona
4-valents vertex, in which an element is given by

where the ranges of the sums are given by —j <m,k <,
max(|j; = jal. |j3 = jal) < j <min((j; + j2). (j3 +ja)); the
second line uses the recoupled spins |jj,j»;Jj, k) =
Zm,.m2 Ci;;l]:rfzk‘]lvml> ® |j2.my) and  (js.jai ). k| =

7)) = / dgglji. i) ® glja. a) ® (js. fislg™ D msmg C{;ﬁnj4k</3’m3| ® {Ja.my; and in the third line
sU(2) we have denoted

® (g slg™. (46)
J1 AT
Cillljnzz]m = Z Z Cjym nl €. mz( )Cirl”]%”m’ (49)

wherein the spins and vectors satisfy the closure condition ppp— S —)

Jiity + jaiy = jafis + jauiis. Now, let us start to calculate

the entanglement entropy for |Z). By recalling Eq. (11), the Js Ja
state is then rewritten in the manner of repeating Eq. (40) as Cﬁﬁf,,, = Z Z Ciyomy (ﬁ3)5 j4.m4( )C{riaj%m (50)
illustrated in Fig. 7, which reads My==J3 My==]4

TABLE IIl.  The numerical values of E,(A|B) and Ey(A|B) for fixed 71, 71, 715, /1, and growth boundary spins,
where 71; = (sin @) cos ¢y, sin 0, sin ¢, cos 0,) and likewise for 7,, 13, 1. It is shown that E,(A|B) and Ey(A|B)
both grow with the boundary spins j; = j, = j3 = j, getting larger.

(J1»J2s 735 J4) (0,,0,,05,04) (@1, 92, 93, 4) E,(A|B) Ey(A[B) E(A|B)

(5.5.5.5) (z.2,2 3n) (0.5.5 1) 156229 270936 427165

(10, 10, 10, 10) (%éé,%:) ( é,%é) 1.8922 3.37298 5.26517

2000 i 0iED Do dower  eomaon
» 2, 20, 2:2°%% 1207407 ' ' '

(25, 25, 25, 25) (g,%,%,%") (0,%,%,%) 2.34114 4.271 6.61214

(30, 30, 30, 30) (2,21 3n) (0.2.% 1) 243131 445127 6.88258
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TABLEIV. The numerical values of £,(A|B) and Ey(A|B) for fixed boundary spins j, = j, = j; = j; = 20 and
various angle arccos (7 - i) = ¢, — ¢;. Itis shown that E,(A|B) increases while E(A|B) decreases with the angle

arccos (71 - 1,) getting larger.

(J1+J25 J3+ Ja) (61,0,,05,0,) (@1, 92, 03, 94) E,(A|B) Ey(A|B) E(A[B)
(20, 20, 20, 20) (’—2’ , ’—2’ , % , ?—’6[) (0, % R % R %) 0.861644 4.38243 5.24407
(20, 20, 20, 20) (.3 5x) (0.5.%.5) 1.6089 43212 5.9301

(20, 20, 20, 20) (% 5.z, %”) (0, % R % R %) 2.23109 4.05092 6.28201
(20, 20, 20, 20) (%,%,%%”) (0,%’7,%,%) 2.43579 3.69809 6.13388
(20, 20, 20, 20) (’5’ , ’5‘ , ’§’ , %”) (O7 %” , ?” , %") 2.50054 3.42048 5.92102
(20, 20, 20, 20) (%,%,%,115—6”) (0’%’%’%) 2.541 2.65329 5.1943

The density matrix of the coherent intertwiner |Z) is given

b 7)(7]
Yy Pz

zation factor, is given by

where its denominator, namely, the normali-

{ZI7)

1 —
T\T) = - Cl12l dalsl 51
(/1) gjsz\Em: pr o F(s1)

Recall the definitions H 4 := V/' @ V72 and H := V3 @ Vs,
Then, for the state |Z), the entanglement E(A|B) between A
and B can be given by the von Neumann entropy of the
reduced density matrices p,, which are defined by

pa=Trp(pr),  E(A[B)==Tr(psInp,). (52)
More explicitly, p, can be calculated as
pa = Trg(pr)
Jri2d s
_ Z 1 | Zm Cﬁll ftzzm Cﬁ;f;m
— 27+ 1 jiad isisd |
J It Zj’ 2j’1+1 |Emlcéllljh2;m' JrA;JI;4]m’|
j s dnsds )Gt dns o K]
J15J250, K)\J1,J25 ]
53
) ; 2+ 1 (53)
==j
v
Sv
(&)

FIG. 8.

which can be also read in the form of

pa=Y PP,
7

[
2ji+1)X; T-Ll | S C;']ngfm,cggjm,

J1J2J  (J3]4]
Cﬁ]ﬁzmcﬁ3ft4nz

(54)

2

> sk ook

= erEsy . Further, we have

and p}

E(A[B) = E,(A|B) + Eo(A[B),
E,(A[B) = =) (p;Inp;). Eo(AlB):

= piSt. (55)
j j
where S = -Tr(p} Inp}) =In(2j + 1) and E,(A|B) =
—>_i(pjInp;) is just the Shannon entropy of the distri-
bution p;.

One can see that E(A|B) is determined by the distribu-
tion p;. Generally, p; is a rather complicated function
of j for given (j,, i1y, ja, Mo, j3, 13, j4, 14); thus, it is hard to
analyze the property of p; by its analytical expression. We
calculate p; and E(A|B) by the numerical methods as

Geometric interpretation of jy, j;, j2, j3, j4» and arccos(#; - 71,) which are related to the entanglement of coherent intertwiner.

(a) The face S, punctured only by the 4-valents vertex v. (b) The face S, S,, S3, S, and the dihedral angle ®;, between S| and S,.
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FIG. 9. The numerical results of p; for (6,,6,,65,0,) = (’—2’,’2’,Z, ), (@1, 02, 03.04) = (0,5.%.%), and j, = j, = j3 = jy =5, 10,

20, 30, where the x axis shows the recoupling spin j and the y axis shows the numerical value of p;. These figures show that p; has a

peak near j = jy = |j7
@ji=jh=Jjs=Jja=5 b0 ji=h=j3=js=

shown in Tables III, IV, Figs. 9, and 10. Our results show
that p; has a peak near j= j,=|[j7; + joito] =

\VJj3 + j3 +2jijofty -t and thus one has >.iJPi~ Jo
and Ey(A|B) = 3, p;S} ~In(2j, + 1). Specifically, this
peak shrinks relative to the range of j with the boundary
spins Jji, ja, j3, j4 getting larger as shown in Fig. 9, so
Ey(A|B) and E ,(A|B) increases no more than logarithmic
growth with ji, j», j3, j4 going large as shown in Table I11.
Also, this peak shrinks with the angle arccos(i; - ,)
decreasing, Fig. 10, and thus E,(A|B) increases with the
angle arccos (71, - i1,) getting larger, Table IV. Especially,

for fixed j, = \/]1 +12 + 2j1jo71; - 1p, one can increase
Ji» j2, and the angle arccos(i, - 7i,) at the same time to
grow E,(A|B) as shown in Tables III and IV.

It is worth it to explain the geometric interpretation of j,
J1s Jos J3s Ja, and arccos(fiy - f1,) which is related to the
entanglement. As shown in Fig. 8, let us consider the face
S, punctured only by the 4-valents vertex v labeled by |Z),
with two legs of v lying in one side and the other two legs in
another side of S,. Then, the expectation value of the area
of §, is given by

Ja» J3» J4 getting larger.

10. ©) ji = j2=Jj3 = Jjs=20. () j; = jo = j3 = js = 30.

AI(S,) = (T|Ar(S,)IT)
= 8”ﬁf§1<j|\/(jl +f2) ) (71 +72)|j> ~8ﬂﬁf§1jo,
(56)
where |Z) := ‘<IZ>IZ> is the normalized version of |Z), f8 is

the Barbero-Immirzi parameter in LQG, and fpl is the
Plank length. Besides, as shown in Fig. 8, one can also
consider the area of the face S| punctured only by the leg
of the vertex v labeled by j;, which is given by the

eigenvalue Ar(S;) = Sﬂﬂf Vi1 +1) following the
eigenequation

AX(S))|Z) = 8zpe2\ /T, - T, |T) ~

82822/ j1 (i + 1IL).

(57)

Similar results can be given for the faces S,, &3, S,
punctured only by the legs of the vertex v labeled by j;, j,,
J3, respectively. Moreover, one can also define the angle
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FIG. 10. The numerical results of p; for j; = j, = j3 = js = 20 and various 0= (01,0,,05,04), p = (@1, 92, 93, Ps), Where the
x axis shows the recoupling spin j and the y axis shows the numerical value of p;. These figures show that p; has a peak near

j = jo=l|jift + jais|, and this peak shrinks with the angle arccos (7, - fi,) decreasing. (a) 6 = (£,%,72 %) & = 0.2, % &).

®0=(5.5%% 5=

between the faces S| and S,; then, the expectation value of
this angle is given by

Op = <j|®12|j>

= (f| T — arccos

~ m — arccos(fiy - ). (58)

Finally, by following the geometric interpretation of j,
J1s J2» J3» ja» and arccos(f; - ii,) given in Egs. (56)—(58),
one can conclude that the entanglement of coherent
intertwiner E(A|B) ~1In(2j, + 1) + E,(A|B) can be con-
trolled by the local semiclassical geometry associated to
the vertex. Specifically, the term In(2j, + 1) is controlled
by jo while one can increase j;, j,, and the angle

EED. (©0=(5.5.270). 0=

2°2°16°16 16°1

0’2?7[ yq 7[). (d)é:(lt T 157[)’&;:(0 Iz In M)

’3°3 2°2°16° 16 » 816716
arccos (7 - 71,) at the same time to grow E,(A|B) for fixed
Jo- In the next section, we will generalize this result to the

entanglement for spin-network state.

2. Coherent intertwiner with arbitrary number of legs
Let us consider the gauge-invariant coherent inter-

twiner space HY - Invy ) (@7 V' @ Q% Vi) on

a (P + Q)-valent vertex, in which an element is given by

)i 0
5= [ as@alini) @Urivl™ (59
su@) 1=l J=1
Similar to the coherent intertwiner with four legs, the
coherent intertwiner with arbitrary number of legs can be
expanded by the orthogonal recoupling basis of intertwiner
space, which reads
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=30 1)( S [Zpidom kN T g om. k|)

kom=—j
Trlo
—ZZZ DD > @i
Joodny Jp Iy Jog

Z Z z |]Pv.]P 17]1 z,,> ® |jl/,7kz,,;jp;jz,,,]vkt,,,1> ® ...

.....

tl, .....
® |.]zz» zz;]2']1] l|> ® |]l1’ zl;Jl;j k><]~.Q7jQ—1;quvlzlq| ® <.;lq’]€lq;‘7q;jlq,]7]€lq,|| ® ...
® <le’k12’]2’]1] k11| ® <.]11 ll’]l’.] k|) (60)

m'm"k

where [, "5 j k) 1= Y CHL 7m0y @ 17", m"), 1 K5 " o ) = S0 Cl |7, m"), and ¢7"22 i the coefficient
of this expansion; see the details in the Appendix.
= ‘(II>II> Let us define H, —®, | Vir and

Hp :z(X),Q:1 Vs Then, the entanglement E (A|B) between A and B can be given by the von Neumann entropy of the reduced
density matrices p,, which are defined as

pa=Trg(pr),  E(A[B) = =Tra(psInp,). (61)

More explicitly, p, can be calculated as

Now, the density matrix of the coherent intertwiner |Z) can be given by pr

Trp(1Z)(Z1)

pa = Trp(pr) = Iy (62)

where
. IPIQ IPIQ
TTy=>. > > @i+l e (63)
j .]L]’]LZ sssss ]Lp J'l ]‘l ..... j’q
and
IpZo Iplg A
TN =20 > DL @HDT DL el (64)
T dusdigseesdiy Joyoduyseeeodiy Jugsdig sy

with

'D;\J,j, = (2.]+ 1)_1 Z Z Z JP’JP 1,];1,1 lp> ® |]lp lp’Jp’.]lp l’kzp ]> ® ...

.....

® |ji,- ki 2 iy ,l>®|le, zl;Jl;J’k><JPvJP—1;Jszkzp ® (i, ki sipsfi, ki | ® ...
® (Ji,» ki jos Jiy ki, | @ (i, kiys s k). (65)

It is direct to calculate that the von Neumann entropy of p;‘j iz which leads to

St = _TrA(p?.,j,,]‘, lnp?.,j,.]]) =1In(2j + 1). (66)

Further, let us define

. -1 o . IPIQ IPIQ
(2-] + 1) ij]sjz]’ ]lq JoJisdy sz Ji (67)

Pjj.ii *= (Z|T) ’

Bi= . > P (68)

jll ’jl2 """ ]lp j;] 'j:z """ jlp
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and

_Pjj
Pjjij* 5 (69)
j

Then, the entanglement entropy E(A|B) can be given by

E(AB) = =Tra(palnpa) = E,(A[B) + > _p;In(2j + 1),
j

(70)
where
E)AlB) ==Y Z (Pjj.inpjj. i)
j ./11 /12 ----- .11,, j’l ],2 ,,,, jl/’
=~ _pjlnp;+Y pE; (AB) (71)
J J
with
Jo, = lipftp + jpoiftp_y,

P 17—

ey

Ju = lipftp + jpoifip_y + jpity, + -+ fofta,

~ ~ A
.]lq =
.

jl, = |]~'Q;7Q +jQ—1;L~Q—1 +jqﬁq o+ o),

This argument could be checked by evaluating the specific
property of the distribution p; ; . However, one can see
that the general expression of p; ; 5 is too complicated to
proceed with the analytical study. One may also expect a
numerical calculation of the distribution p;; 5, and we

would like to leave this to future research.

IV. ENTANGLEMENT ENTROPY
OF SPIN NETWORKS

As mentioned in the Introduction, the entanglement of a
spin-network basis state (3) is the composition of the
entanglement carried by the intertwiners on the boundary
which cuts the spin network into two parts. However, the
previous computations only involve the case in which
only edges of the network puncture the boundary. In this
section, let us consider the case in which the network
punctures the boundary at the vertices of the network, with
these vertices being labeled by the gauge-invariant coherent
intertwiner, which gives the expectation values of the area
and face-angle operators with minimized uncertainty. Then,

5 (AlB) == ) Z

Jusdiyseessduy Jiy sty

(Pjj.ynpjj ). (72)

It is worth it to have a discussion on this result. First,
one can notice that E(A|B) contains three terms
> DiEs,(AIB), >2;p;In(2j+ 1), -2 pjInp;.
This result takes the same formulation as the result (36)
for the boundary entanglement of two entangled inter-
twiners. In fact, the recoupling edge labeled by spin j
separates the coherent intertwiner as two entangled inter-
twiners, and the corresponding boundary entanglement of
these two entangled intertwiners is given by E(A|B)
exactly, with E,(A|B) being the intertwiner entanglement
and p; being the probability distribution of the spin j on
the recoupling edge. Second, it is easy to see that the
entanglement entropy E(A|B) depends on the distribution
Pjjj = Pj- Pjj ; on the spins of the recoupling edges. In
fact, by considering the peakedness property of coherent
intertwiner, one can argue that p;; - is peaked near the
values

= |jpitp + jpoiitp_y + jpit,l,

J=lipftp + jpoiftp_y + jpity, + -+ jiiy |,

L= |jQﬁQ +jQ—1ﬁQ—l +jq;7q|’

Jj= |jQﬁQ +jQ—1;7Q—1 +]~.q’2iq+"'+jlﬁl|' (73)

|
we will apply the results for coherent intertwiner given in
previous sections to the entanglement entropy for spin
networks.

For a given closed graph I' cut by a boundary B into I,
and I';, consider a normalized and gauge-invariant spin-
network state W with fixed edge spins, which is given by

P
) = D Q(BeITclA) - [¥r,. Ac) @ [¥r,.Be).  (74)

A,B

where I' intersects B at the punctures labeled by ¢ with P
being the numbers of punctures, Z,. is the normalized
and gauge-invariant intertwiner on the puncture c,
A=(Ay....A. ...Ap), B=(B,.,....B,.....Bp), the set
of |B.)(A.| forms an orthonormal basis of the intertwiner
space H. > Z,, and |¥r,,A.) and [¥r,. B,) correspond to
the side spin networks (A [¥r. ) and (¥r, |B,.), respectively.
The entanglement E(T",|I",) of ¥ between the two sides of
the boundary is given by the von Neumann entropy of the
reduce matrix
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pr, = Ty (M) (P ) = 3 @(BLIZ.IAL)

= =1

AA B
' <AIC|IL‘|BC> ' |\PF A ><

(75)

which reads

P

=> E(A/B,). (76)

c=1

E(T,|Ty) = —Tfra (ﬂra In Pra)

where E(A.|B.) :== —=Try (pa, Inpy ) with

Pa, = TrB(;(|Ic'><Ic|) = Z <Bc|Ic|Ac>
A ALB,

(ACIZe|Be) - |Ac) (Ac

(77)

Equation (76) shows that, for the spin-network state W
which allows the decomposition (74), the entanglement
E(T,|T,) between the spin networks inside and outside a
boundary is the sum of the entanglement E (A, | B,.) carried by
the intertwiners Z . on this boundary. By recalling Theorem 2
given in Sec. III. A, the entanglement E(I",|I";,) of the spin
network can be further written as

P

Er,0) =Y <Zﬁ,;. n(2je + 1)~ 35, np,
Je Je

c=1
+Zp,

wherein the intertwiner Z, is cut as two parts v{ and v§
which are linked by a internal edge labeled by j. as shown in
Fig. 1, with p; being the probability distribution of j. and
E; (v§|v5) being the entanglement between v{ and v$.
Especially, for the case in which only 2-valents vertices
appear on the boundary 3, which means that B is only
punctured by edges of I', the entropy given by Eq. (78)
reduces to E(I,|I,) =>F  In(2j.+1) as shown in
Refs. [51,53].

It is also worth it to consider the case in which the vertices
on the boundary are labeled by the coherent intertwiners,
which ensures that the boundary has a fixed expectation value
of area with minimal uncertainty. Let us focus on the case in
which all the punctures on the boundary are given by
4-valents vertices of graph I', with two legs being inside
the boundary and the other two legs outside the boundary for
each 4-valents vertex as shown in Fig. 11. Then, the
entanglement E(T",|T";,) of the spin network is given by

E(T,|[,) Z (Zp] In(2j. +1) =Y p; lnij,)
Je Je

7 (79)

i) (78)

based on Eq. (55), wherein each coherent intertwiner on the
4-valents vertex is cut as two parts linked by an internal edge

FIG. 11. All the punctures on the boundary are given by
4-valents vertices of graph I', with two legs being inside the
boundary and the other two legs outside the boundary for each
4-valents vertex.

labeled by j. as shown in Fig. 7, with p; being the
probability distribution of j..

Now, let us adapt our discussion to the special case
Jji =J5=Jj5=Jj5 which has been considered in our
numerical simulation. Then, one has ) ; p; In(2j. + 1)~
In(2j§ + 1), with j§ += |j6A¢ + jsas| = ji /2T 2y -7y
> ;. Jepj, controlling the contribution of the coherent
intertwiner on puncture ¢ to the area of the boundary 5.
More explicitly, one has the entanglement

P

E(T )~ <1n 2j6 4 1) Zpl Inp; ) (80)

c=1

and the expectation value of the area of boundary 5,

P
Ar(B) = (Pr|Ar(B)|¥r) ~ 8xpehy D jo.  (81)
c=1

by using Eq. (56). Let us fix Ar(8B) and suppose that all
punctures ¢ given by 4-valents vertices are labeled by the
same coherent intertwiner; then, one has E(T',|I",) = P -
(In(2j§ +1) = >, pj, Inp; ) and Ar(B)~8zptyjG - P,
which lead to

(T, ~ Ar(B) (In(2j5 +1) = >, pj Inp;)
altb 472 27
A i
_ArB)p. (82)
A% P
where we defined
In(2js+1) > pj. Inp;,
Be= Qo+ 1) _ 2 PPy (83)

21 27j5
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Let us analyze that the parameter f,. determined by
Eq. (83) can be controlled by j§ = j{1/2 + 2a{ - 1§ and
—2_;. pj. Inp; independently. First, for fixed 7f - 715, one
can notice that . decreases with j{ going large by using
Table III; then, for fixed j§ = j{\/2 + 2af - i§, the term
— ;. pj. Inp; can be controlled by j{ and 7f - 72§ follow-
ing the results in Sec. III C 1. Thus, . can be controlled by
J§ and arccos(a{ - 7§), which describes the semiclassical
geometry of the polyhedra related to the coherent inter-
twiner. One may use some conditions for horizon to
constrain f3., to achieve a specific correction to the
Bekenstein-Hawking formula.

Finally, we can conclude that, for the spin network
puncturing a boundary by its vertices labeled by coherent
intertwiners, the entanglement entropy of such spin-
network state is not only determined by the area of the
boundary but also carries a quantum correction controlled
by the semiclassical geometry associated to the vertices on
the boundary.

V. CONCLUSION

The entanglements carried by the specific intertwiners
and spin networks are studied in previous sections. We first
review the relation between the boundary entanglement and
intertwiner entanglement and extend the result to the case
that the internal edge carries a spin superposition. Then, we
turn to consider the specific intertwiners on a four-valents
vertex, which is decomposed as two parts A and B attached
by the labels (j,my, jom,) and (j3ms, jymy), respectively.
By introducing the group averaging to the tensor-product-
type intertwiner on the four-valents vertex, we calculate
the entanglement entropy E(A|B) encoded in the group-
averaged tensor-product intertwiner with various weights.
The results show that, for the group-averaged tensor-
product intertwiner with highest (and lowest) weight, the
entanglement entropy is able to capture the main character
of the probability distribution p; of the recoupling spin .
This result suggests considering the entanglement entropy
encoded in the gauge-invariant coherent intertwiners.

To compute the entanglement for coherent intertwiner, we
introduce the recoupling edges to decompose the coherent
intertwiner labeled by (j,7;, jo71,) and (j37i3, j4i4). We find
that the entanglement for the coherent intertwiner is deter-
mined by the probability distribution p; of the spins j on the
recoupling edges of the coherent intertwiner, and the result of
entanglement E(A|B) is composed by the sum of two terms
E,(A|B) and E(A|B). The first term E,(A|B) is just the
Shannon entropy of the distribution p;, while the second
term Ey(A|B) is the expectation value of In(2j + 1) with
respect to the distribution p;. Our results show that p; has a
peaknear j = jo = |j,7; + jofi,|, whichleadsto Ey(A|B) =
>, S} = 1n(2jg + 1); especially, this peak shrinks relative
to the range of j with the boundary spins j;, j,, j3, j4 getting

larger, and it also shrink with the angle arccos(#; - 71,)
decreasing. Thus, we find that E,(A|B) increases with the
angle arccos (71, - i1,) getting larger, and the two terms
Ey(A|B) and E ,(A|B) both increase no more than logarith-
mic growth with j,, j,, j3, j4 going large. Besides, we also
explain the geometric interpretation of j, ji, j», j3, j4 and
arccos(#i; - i, ), and then we analyze that the entanglement of
coherent intertwiner E(A|B) = In(2j, + 1) + E,(A|B) can
be controlled by the local semiclassical geometry associated
to the vertex.

We further extend the analytical calculation part of
entanglement to the case of gauge-invariant coherent
intertwiner on a (P + Q)-valents vertex, which is also
separated as two parts A and B attached by (jj, 7,
Jasfig, . jpoiip) and (fy. 7y, Ja. i, jQﬁQ) respec-
tively. By introducing the recoupling edges to decompose
the gauge-invariant coherent intertwiner, we give the
probability distribution p; ; 5 of the spins j, j,.J, on the
recoupling edges analytically and show that the entangle-
ment between A and B is determined by p; ; 5.

Moreover, we apply the previous results for coherent
intertwiner to the entanglement of spin networks.
Specifically, we consider the spin network puncturing a
boundary by its vertices labeled by coherent intertwiners
and fix the expectation value of area of the boundary. Our
results show that the entanglement of such spin-network

state can be evaluated by E(I,|T,)~218% in some

a2 p
pl
specific cases, where Ar(B) is the area of the boundary

4B, o Mt _ D iy
and f == 2

- is controlled by j§ and p; ,

which are related to the local semiclassical geometries
described by the coherent intertwiners. Thus, we can
conclude that the entanglement of spin networks is not
only determined by the area of the boundary but also
carries a quantum correction controlled by the semiclassical
geometry associated to the vertices on the boundary. In
fact, the entanglement for the quantum state of geometry in
the framework of LQG is also involved in the previous
literature [35-50], wherein the research accounts for
entanglement between bulk and boundary (i.e., isolated
horizon) quantum spacetime states. The difference between
the previous and present works can be phrased as the
previous literature being about entanglement between spin-
network states and the present paper being about entangle-
ment between semiclassical (coherent) states.

It is worth it to have some discussion on these results.
First, one should notice that the entanglement entropy
E(A|B) is given based on the gauge-invariant coherent
intertwiners, which belong to the gauge-invariant sub-
space of the total system H, ® Hp. Thus, E(A|B)
describes the entanglement between some gauge-invariant
degrees of freedom, e.g., the face-angle = — arccos 7, - 7,.
Nevertheless, the appearance of the factor In(2j + 1)
comes from breaking the SU(2) gauge invariance, and
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the physical meaning of the factor In(2j + 1) depends on
how to define boundaries at the quantum level for non-
Abelian lattice gauge theories and LQG [57]. Different than
the SU(2) gauge breaking at the quantum level in the
present paper, the classical gauge-fixing scheme is used to
treat the gauge degrees of freedom on the inner boundary in
several previous works [35,45], and it may suggest us a new
treatment of the quantum gauge breaking.

Second, the entanglement between the legs of coherent
intertwiner is related to the face angle of the semiclassical
polyhedron. Recall that p; has a peak near j, = [j;71; +
Jofip| and this peak shrinks with the angle arccos(ii; - 71,)
decreasing. Thus, the Shannon entropy E,(A|B) of
the distribution p; decreases with the face angle = —
arccos(f; - fi,) increasing. Nevertheless, one also notes
that another term Ey(A|B)~In(2j,+ 1) in E(A|B)
increases with the face angle z — arccos(i, - 7i,) increas-
ing. Hence, the entanglement E£(A|B) may not have mono-
tonous dependency on the face angle & — arccos(ii; - 71, );
e.g., as shown in Table IV, E(A|B) increases first and then
decreases with the face angle = — arccos(#; - 71, ) increasing
for ji = jo = j3 = js = 20.

Third, as we shown in Sec. IIl. A, we would like to
emphasize that the entanglement on the 2-vertex graph with
one link is independent on holonomy insertion [57].
In other words, the holonomy living along the edge
connecting these two vertices is irrelevant to the entangle-
ment entropy altogether. This property is attributed to the
observation that the holonomy can be eliminated by a
boundary unitary. This implies that the entanglement does
not distinguish between a 2-vertex graph and its coarse-
grained graph (single vertex) provided that there is only one
link. For the cases of two-vertices graph with multilinks,
the nontrivial loop is introduced, which should be viewed
as excitation of gauge curvature [64,65] or interpreted as
topological defect [66—68]. The related studies of entan-
glement for the cases can be found in Refs. [68,69].

|

P 0 .
|Z) :/ d9®g|jhf11>/ dhé(g~'h) @ (j;. ny|n~"
SUQR) =1 SU(2) J=1

Moreover, these results maybe also generalized to more
complicated coarse-grained models [51,54,55,57,69-72].

Finally, by combining the results in present paper and
that in previous works [40,45], one can conclude that the
black hole entropy is now predicted to be the logarithmic
corrections to the Bekenstein-Hawking area law, plus an
additional correction contribution arising from the semi-
lassical (coherent) states. Notice that the correction arising
from the semiclassical (coherent) states contains the unde-
termined Barbero-Immirzi parameter , which implies that
the LQG has certain inherent incompleteness. Besides, the
correction arising from the semiclassical (coherent) states
also relies on the local semiclassical geometries on the
boundary, which may be fixed (or restricted) by introducing
some boundary conditions or considering (semiclassical)
dynamics of LQG. We would like to leave this to future
research.
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APPENDIX: RECOUPLING EXPANSION
OF COHERENT INTERTWINER
WITH ARBITRARY NUMBER OF LEGS

By introduce a recoupling edge labeled by spin j, the
coherent intertwiner |Z) can be decomposed as

2 - 4
§ 21+1/ dg/ dh®9|11,n1>tr’(g )®1<Jj,njlh‘1
J=

Z 2j+1) <mk__
zjj 2j+1) (m; | Zpsj,m, k) )

where

/ dg®g|h,n,> Gomlg!
SU

o _
JK @ / Klhlj. m) @(jj,ﬁjlh‘l)

1

(A1)
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<.}:17”§Ll|g_1
(U, nqlg

g|j13’ﬁ’1>
g|j2’ﬁ2>

-1

<}2a 7%2|g_
(Ug-1,nq-1lg

gljp—1,1p—1)

glip,np)

—_—
1 . .
%;J,m,lﬁ (Zg: 4,
—1

on

m,k

¥

FIG. 12. The illustration of recoupling spin j for 7.

J1

ZIp;j,m, k)

FIG. 13. The illustration of recoupling spins for |Zp; j, m, k).

P
(Tps jom, k) o= / Ao @ liriu) @ (. mlg™ 1. 8)
su@) =

Q ~
(Tg:jsm. k| = / h( Kkl m) @y Ayl (A2)
sU(2) J=1

P
Zpssim k= [ dg(®gj,,ﬁ,>) ® (j.mlg~1]j.K)
su@)  \i=1

jxl mz] iy :_]!1

=33 (2j, +1)(2j, +1)

in n

/,2

(v %

My ey ==y, iy Ky =—jiy

are projectors that send tensor representations to
recoupling representations; see the illustration in
Fig. 12.

One can further insert recoupling edges adapting to a
recoupling scheme for |Zp, j, m) step by step. Following
the recoupling scheme illustrated in Fig. 13 and using
character formula for delta function

glim)@{j'm'|g™!

 Jos

=2 0"+ / dhte!" (hg™)h|jm)@(j'm' |~
(2)
]

dhd(g~" h)h| jm)Q(j'm/|h~!

one can get

.]Ll P
= (), +1) / do@alir-n)- Uiy m, |97 iy ko) @ Lk iy jmk)
=

/ dg®gljz,n1 (Jigr |G iy Ky

® |j12k12m12vj2ﬁ2’j11m11k11> ® jtlkzlmzlvjlﬁl’jmk>>

=D D 2y Dy )24, 1)

Ju dn iy
® |J1,,kl,,m1,,1]pnp7.]zp_1 ot l],_ > ®...8 |]12 1
in in
=2 22T S S
jll j12 jzp mll ’kL] :_jL] m12 ’kzzz_jtz

: (|jP’jP—1;jl,,’k1,,> ® |jlp’klp;jp;jlp_1’klp_l> ®...

with p := P — 2, where we defined

Jny Jin Jip
E E E |JPnP7]P—lnP—l’J1,,mz kz,,>
Ky ==joy iy k==, g,k ==jy,

12’j2ﬁ2’j11m11k11> ® |jllkl]mll’j]ﬁ]?jmk>>

jl,; L. . L. L. L.
Jpsdp=15diy  JipsJpidi, g Jiysdosdvy  Jysdiad
Z iRy, Ty iy gy
m‘]”kLP:_J'I’
® |ji,skiyidas iy ki) ® iy ks iisi k) (A3)
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.]ll
JuyJ1ed . A .
m]I] :ll m = Z Z .]l] 117]1’] k|]ll l],]]”ll,]mk,>, (A4)
ki ==j, K=-]j
.l12 .]ll
J! 1211 oA .
mz,7 Ay, rln,] = Z Z .]127 lz’.]Z’Jl]7kl1 |J12 ,2,]2n2,]llm,]kil>, (AS)
==ju, ki, ==y
: (A6)
Jpodpiii o
PsJP=1:J1p
Cﬁp,ﬁp,l,nﬁ,p = Z (ipsip- 1301, ki |]Pan]P 17p- 12 Ji,m zk§p>, (A7)
K=,
and
o KLy, iy, jmk) = /SU(Z) dggljy. i) (o ki lgli, mi,) - Gomlg™j k). (A8)
|jzzk;2m127j2ﬁ27jzlmzlk:]> = AU(Z) dgg|j2’ ﬁ2><j127k§2|g|jzzvmlz> : <jl]ml] |g_1|jzl’ k;1>’ (A9)
(A10)

|jPﬁP’jP—lﬁP_l’j’pmlpk;n> = /SU(Z) dgg|jP7 ﬁP> ® gle—lv ﬁP—l><jt,,’ mt,, g_1|j1,,7 k:,,>’ (All)

with |/, "5 7, k) =D CJ{ ,,k|] m Q| m"), |j ks j" k) =D C{{/ ,’,k|]’,m”>. Similarly, as the illustration in
Fig. 14, one can expand

(Y
<IQ;j,m,k| ::/ ] k|h|j m ® I’l1|h_1
SUQ)

J=1

~ JI] Q ~ R
=> (2], +1>( / h(jy- Ky |R1J, . 70 o) @i @ (7, kll,ml,fkml>

Jn 1’ 17_111
jl jl .7’ -~ ~ - ~ ~ . -~ o~ - -
o '] £ B £ o £ 3 ;iQ,;"lQ_IJﬁ,q 1y, g m, o n"z,z.;"zz,rﬁ,l iy, Jiym
J‘l 112 .]lq m,l,k1=—j Iﬁ,z,k2=—j ’ﬁtq kxqz_jtq
'((ijjQ—l;]zqvktq ®<jlq k ’.]q’.]lq17 Iy |® ®<.]zzv 127.]2’.111’ 11’®<]11’ 1]’.]1’]7]{) (A12)
I
n with ¢ = Q — 2, where we defined
]! ’.:l’j
o= D Ko Fufin, jKml iy K s oK),
kK
(A13)
D ——
37 Jiy o2 _ ~ R -
(Zaigsm k C,;:zﬁz.,%” = ~Z <]12mz kh’]ZnZ .]l] lmzl |]127k12’]2’]zlvk11>7
B
1 ki
. . . . (A14)
FIG. 14. The illustration of recoupling spins for (Zy; j, m, k|.
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(A15)
/Q/Q 1/1 Y~ A ~ A YT o~ ~ ~ et ~
C it ,Z = ZQQnQ’JQ—1”Q—1,ququmquQ,]Q—l,],q’qu>7 (Al6)
k,
and

G Gy jkm) = Au(z) dg® (j. ¥ Yo g7 T K @ (ot lg™" (A17)

2 12 J2I2s Juy Ry My | 0= su2) 7[] 1 l] 1 12 o 72’12 _,
(T ki, s, o i, | == dg(J., ki, |9\ oy 170, ) s 10, g7 Ty K1) ® (s ] g7 (A18)
(A19)
(Jofg: Jo-17ig-1.Ji Ky i, | = /S " dg(j, .k, |97, . 1,) Go. fiolg™ ® (Fo-1.figlg™". (A20)

Then, one has

ZEDSORY ( S [Zpsom KT gijom. k|)

mk=—j
—ZZZ SIPIP IS WA
Ju Ip iy Uy Jig
T.7 J ] j’z ] jrl J j,p
P
) //LJLQ ; ; ; ; k; ; = (lips jp- 19.][ k>
2 iq »

>® ®|]127 127.]2 ]ll’ 11>®|]11 tl’jl;j’k><jQ’jQ—l;]~.lqvkzq

® lji, ki3 dps - ki

p]

® (Joy ki3 Jgs oy ko | ® v ® (s ks s oy ko | © (g K 13 J K1), (A21)
q q 4q 1
where
; ]z] ]~,2 qu Jy Jip
D VDD SRS ) 22 Y e
Jiid Cigiig.iim,
m=—j mll _]xl mlzi_flz i, :_th _J‘l my, = ]‘2 M =7 ]"’
leq Jadiyy Cj’2 Jodi cjll Ju o Jedpeidy,  Juyedps I}p | Jiydady  Jydned (A22)
My g, iy, Ty, 7o, My iy Ay Appoy iy, Ty, iy Ty

[1] A. Ashtekar and J. Pulliny, Loop Quantum Gravity: The [3] T. Thiemann, Modern Canonical Quantum General Rela-

First 30 Years (World Scientific, Singapore, 2017). tivity (Cambridge University Press, Cambridge, England,
[2] A. Ashtekar and J. Lewandowski, Background independent 2007).

quantum gravity: A status report, Classical Quantum Grav- [4] C. Rovelli and F. Vidotto, Covariant Loop Quantum

ity 21, R53 (2004). Gravity: An Elementary Introduction to Quantum Gravity

064017-21


https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01

GAOPING LONG, QIAN CHEN, and JINSONG YANG

PHYS. REV. D 110, 064017 (2024)

and Spinfoam Theory (Cambridge University Press,
Cambridge, England, 2014).

[5]1 C. Rovelli, Quantum Gravity (Cambridge University Press,
Cambridge, England, 2007).

[6] M. Han, M. A. Yongge, and W. Huang, Fundamental
structure of loop quantum gravity, Int. J. Mod. Phys. D
16, 1397 (2005).

[7] C.Rovelli and S. Speziale, On the geometry of loop quantum
gravity on a graph, Phys. Rev. D 82, 044018 (2010).

[8] L. Freidel and S. Speziale, From twistors to twisted
geometries, Phys. Rev. D 82, 084041 (2010).

[9] L. Freidel and S. Speziale, Twisted geometries: A geometric
parametrization of SU(2) phase space, Phys. Rev. D 82,
084040 (2010).

[10] G. Long and C.-Y. Lin, Geometric parametrization of
SO(D + 1) phase space of all dimensional loop quantum
gravity, Phys. Rev. D 103, 086016 (2021).

[11] G. Long, Parametrization of holonomy-flux phase space in
the Hamiltonian formulation of SO(N) gauge field theory
with SO(D + 1) loop quantum gravity as an exemplifica-
tion, arXiv:2307.05542.

[12] T. Regge, General relativity without coordinates, Nuovo
Cimento 19, 558 (1961).

[13] A. Ashtekar and J. Lewandowski, Quantum theory of
geometry. 1: Area operators, Classical Quantum Gravity
14, AS5 (1997).

[14] A. Ashtekar and J. Lewandowski, Quantum theory of
geometry. 2. Volume operators, Adv. Theor. Math. Phys.
1, 388 (1998).

[15] Y. Ma, C. Soo, and J. Yang, New length operator for loop
quantum gravity, Phys. Rev. D 81, 124026 (2010).

[16] E. Bianchi, The length operator in loop quantum gravity,
Nucl. Phys. B807, 591 (2009).

[17] G. Long and Y. Ma, General geometric operators in all
dimensional loop quantum gravity, Phys. Rev. D 101,
084032 (2020).

[18] E. Alesci, M. Assanioussi, J. Lewandowski, and I. Makinen,
Hamiltonian operator for loop quantum gravity coupled to a
scalar field, Phys. Rev. D 91, 124067 (2015).

[19] M. Assanioussi, J. Lewandowski, and I. Makinen, New
scalar constraint operator for loop quantum gravity, Phys.
Rev. D 92, 044042 (2015).

[20] C. Zhang, S. Song, and M. Han, First-order quantum
correction in coherent state expectation value of loop-
quantum-gravity Hamiltonian, Phys. Rev. D 105, 064008
(2022).

[21] J. Yang and Y. Ma, New Hamiltonian constraint operator for
loop quantum gravity, Phys. Lett. B 751, 343 (2015).

[22] A. Perez, The spin foam approach to quantum gravity,
Living Rev. Relativity 16, 3 (2013).

[23] M. Han, Z. Huang, H. Liu, and D. Qu, Complex critical
points and curved geometries in four-dimensional Lorent-
zian spinfoam quantum gravity, Phys. Rev. D 106, 044005
(2022).

[24] M. Han and H. Liu, Effective dynamics from coherent state
path integral of full loop quantum gravity, Phys. Rev. D 101,
046003 (2020).

[25] M. Han and H. Liu, Semiclassical limit of new path integral
formulation from reduced phase space loop quantum grav-
ity, Phys. Rev. D 102, 024083 (2020).

[26] G. Long and Y. Ma, Effective dynamics of weak coupling
loop quantum gravity, Phys. Rev. D 105, 044043 (2022).

[27] T. Thiemann, Gauge field theory coherent states (GCS): 1.
General properties, Classical Quantum Gravity 18, 2025
(2001).

[28] T. Thiemann and O. Winkler, Gauge field theory coherent
states (GCS): 1I. Peakedness properties, Classical Quantum
Gravity 18, 2561 (2001).

[29] E. Bianchi, E. Magliaro, and C. Perini, Coherent spin-
networks, Phys. Rev. D 82, 024012 (2010).

[30] A. Calcinari, L. Freidel, E. Livine, and S. Speziale, Twisted
geometries coherent states for loop quantum gravity,
Classical Quantum Gravity 38, 025004 (2020).

[31] G. Long, C. Zhang, and X. Zhang, Superposition type
coherent states in all dimensional loop quantum gravity,
Phys. Rev. D 104, 046014 (2021).

[32] B. Hall, The Segal-Bargmann “coherent state”” transform for
compact lie groups, J. Funct. Anal. 122, 103 (1994).

[33] G. Long, X. Zhang, and C. Zhang, Twisted geometry
coherent states in all dimensional loop quantum gravity:
I. Construction and Peakedness properties, Phys. Rev. D
105, 066021 (2022).

[34] G. Long, Twisted geometry coherent states in all dimen-
sional loop quantum gravity. II. Ehrenfest property, Phys.
Rev. D 106, 066021 (2022).

[35] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Quantum
geometry and black hole entropy, Phys. Rev. Lett. 80, 904
(1998).

[36] A. Ashtekar, J. C. Baez, and K. Krasnov, Quantum geom-
etry of isolated horizons and black hole entropy, Adv. Theor.
Math. Phys. 4, 1 (2000).

[37] J.Engle, A. Perez, and K. Noui, Black hole entropy and SU(2)
Chern-Simons theory, Phys. Rev. Lett. 105, 031302 (2010).

[38] R. K. Kaul and P. Majumdar, Quantum black hole entropy,
Phys. Lett. B 439, 267 (1998).

[39] S. Song, H. Li, Y. Ma, and C. Zhang, Entropy of black holes
with arbitrary shapes in loop quantum gravity, Sci. China
Phys. Mech. Astron. 64, 120411 (2021).

[40] R. K. Kaul and P. Majumdar, Logarithmic correction to the
Bekenstein-Hawking entropy, Phys. Rev. Lett. 84, 5255
(2000).

[41] K. A. Meissner, Black hole entropy in loop quantum gravity,
Classical Quantum Gravity 21, 5245 (2004).

[42] A. Ghosh and A. Perez, Black hole entropy and isolated
horizons thermodynamics, Phys. Rev. Lett. 107, 241301
(2011); 108, 169901(E) (2012).

[43] A. Ghosh and P. Mitra, An improved lower bound on black
hole entropy in the quantum geometry approach, Phys. Lett.
B 616, 114 (2005).

[44] A. Ghosh and P. Mitra, Fine-grained state counting for black
holes in loop quantum gravity, Phys. Rev. Lett. 102, 141302
(2009).

[45] R. Basu, R. K. Kaul, and P. Majumdar, Entropy of isolated
horizons revisited, Phys. Rev. D 82, 024007 (2010).

[46] J. Engle, K. Noui, A. Perez, and D. Pranzetti, Black hole
entropy from an SU(2)-invariant formulation of type I
isolated horizons, Phys. Rev. D 82, 044050 (2010).

[47] A. Majhi, The microcanonical entropy of quantum isolated
horizon, “quantum hair” N and the Barbero—Immirzi param-
eter fixation, Classical Quantum Gravity 31, 095002 (2014).

064017-22


https://doi.org/10.1142/S0218271807010894
https://doi.org/10.1142/S0218271807010894
https://doi.org/10.1103/PhysRevD.82.044018
https://doi.org/10.1103/PhysRevD.82.084041
https://doi.org/10.1103/PhysRevD.82.084040
https://doi.org/10.1103/PhysRevD.82.084040
https://doi.org/10.1103/PhysRevD.103.086016
https://arXiv.org/abs/2307.05542
https://doi.org/10.1007/BF02733251
https://doi.org/10.1007/BF02733251
https://doi.org/10.1088/0264-9381/14/1A/006
https://doi.org/10.1088/0264-9381/14/1A/006
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.1103/PhysRevD.81.124026
https://doi.org/10.1016/j.nuclphysb.2008.08.013
https://doi.org/10.1103/PhysRevD.101.084032
https://doi.org/10.1103/PhysRevD.101.084032
https://doi.org/10.1103/PhysRevD.91.124067
https://doi.org/10.1103/PhysRevD.92.044042
https://doi.org/10.1103/PhysRevD.92.044042
https://doi.org/10.1103/PhysRevD.105.064008
https://doi.org/10.1103/PhysRevD.105.064008
https://doi.org/10.1016/j.physletb.2015.10.062
https://doi.org/10.12942/lrr-2013-3
https://doi.org/10.1103/PhysRevD.106.044005
https://doi.org/10.1103/PhysRevD.106.044005
https://doi.org/10.1103/PhysRevD.101.046003
https://doi.org/10.1103/PhysRevD.101.046003
https://doi.org/10.1103/PhysRevD.102.024083
https://doi.org/10.1103/PhysRevD.105.044043
https://doi.org/10.1088/0264-9381/18/11/304
https://doi.org/10.1088/0264-9381/18/11/304
https://doi.org/10.1088/0264-9381/18/14/301
https://doi.org/10.1088/0264-9381/18/14/301
https://doi.org/10.1103/PhysRevD.82.024012
https://doi.org/10.1088/1361-6382/abc273
https://doi.org/10.1103/PhysRevD.104.046014
https://doi.org/10.1006/jfan.1994.1064
https://doi.org/10.1103/PhysRevD.105.066021
https://doi.org/10.1103/PhysRevD.105.066021
https://doi.org/10.1103/PhysRevD.106.066021
https://doi.org/10.1103/PhysRevD.106.066021
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.4310/ATMP.2000.v4.n1.a1
https://doi.org/10.4310/ATMP.2000.v4.n1.a1
https://doi.org/10.1103/PhysRevLett.105.031302
https://doi.org/10.1016/S0370-2693(98)01030-2
https://doi.org/10.1007/s11433-021-1770-3
https://doi.org/10.1007/s11433-021-1770-3
https://doi.org/10.1103/PhysRevLett.84.5255
https://doi.org/10.1103/PhysRevLett.84.5255
https://doi.org/10.1088/0264-9381/21/22/015
https://doi.org/10.1103/PhysRevLett.107.241301
https://doi.org/10.1103/PhysRevLett.107.241301
https://doi.org/10.1103/PhysRevLett.108.169901
https://doi.org/10.1016/j.physletb.2005.05.003
https://doi.org/10.1016/j.physletb.2005.05.003
https://doi.org/10.1103/PhysRevLett.102.141302
https://doi.org/10.1103/PhysRevLett.102.141302
https://doi.org/10.1103/PhysRevD.82.024007
https://doi.org/10.1103/PhysRevD.82.044050
https://doi.org/10.1088/0264-9381/31/9/095002

ENTANGLEMENT ENTROPY OF COHERENT INTERTWINER IN ...

PHYS. REV. D 110, 064017 (2024)

[48] A. Majhi and P. Majumdar, Quantum hairs and entropy of
the quantum isolated horizon from Chern-Simons theory,
Classical Quantum Gravity 31, 195003 (2014).

[49] S. Song, G. Long, C. Zhang, and X. Zhang, Thermody-
namics of isolated horizons in loop quantum gravity, Phys.
Rev. D 106, 126007 (2022).

[50] P. Majumdar, A possible quantum gravity hint in binary
black hole merger, Phys. Lett. B 849, 138467 (2024).

[51] W. Donnelly, Entanglement entropy in loop quantum
gravity, Phys. Rev. D 77, 104006 (2008).

[52] A. Perez, Statistical and entanglement entropy for black
holes in quantum geometry, Phys. Rev. D 90, 084015
(2014); 90, 089907(E) (2014).

[53] A.Dasgupta, Semi-classical quantisation of space-times with
apparent horizons, Classical Quantum Gravity 23, 635
(2006).

[54] W. Donnelly, Decomposition of entanglement entropy in
lattice gauge theory, Phys. Rev. D 85, 085004 (2012).

[55] W. Donnelly, Entanglement entropy and nonabelian
gauge symmetry, Classical Quantum Gravity 31, 214003
(2014).

[56] N. Bodendorfer, A note on entanglement entropy and
quantum geometry, Classical Quantum Gravity 31, 214004
(2014).

[57] E.R. Livine, Intertwiner entanglement on spin networks,
Phys. Rev. D 97, 026009 (2018).

[58] E.R. Livine and S. Speziale, A new spinfoam vertex for
quantum gravity, Phys. Rev. D 76, 084028 (2007).

[59] G. Long and N. Bodendorfer, Perelomov-type coherent
states of SO(D + 1) in all-dimensional loop quantum
gravity, Phys. Rev. D 102, 126004 (2020).

[60] E. Bianchi, P. Dond, and S. Speziale, Polyhedra in loop
quantum gravity, Phys. Rev. D 83, 044035 (2011).

[61] G. Long, C.-Y. Lin, and Y. Ma, Coherent intertwiner
solution of simplicity constraint in all dimensional loop
quantum gravity, Phys. Rev. D 100, 064065 (2019).

[62] A. M. Perelomov, Generalized Coherent States and Their
Applications, Theoretical and Mathematical Physics
(Springer, Berlin, Heidelberg, 1986).

[63] G. Long and Y. Ma, Polytopes in all dimensional loop
quantum gravity, Eur. Phys. J. C 82, 41 (2022).

[64] L. Freidel and E. R. Livine, Spin networks for noncompact
groups, J. Math. Phys. (N.Y.) 44, 1322 (2003).

[65] C. Charles and E. R. Livine, The Fock space of loopy spin
networks for quantum gravity, Gen. Relativ. Gravit. 48, 113
(2016).

[66] S. Deser, R. Jackiw, and G. 't Hooft, Three-dimensional
Einstein gravity: Dynamics of flat space, Ann. Phys. (N.Y.)
152, 220 (1984).

[67] L. Freidel and E.R. Livine, 3D quantum gravity and
effective noncommutative quantum field theory, Phys.
Rev. Lett. 96, 221301 (2006).

[68] E.R. Livine and D. R. Terno, The entropic boundary law in
BF theory, Nucl. Phys. B806, 715 (2009).

[69] Q. Chen and E.R. Livine, Intertwiner entanglement ex-
citation and holonomy operator, Classical Quantum Gravity
39, 215013 (2022).

[70] E. Bianchi, L. Hackl, and N. Yokomizo, Entanglement
entropy of squeezed vacua on a lattice, Phys. Rev. D 92,
085045 (2015).

[71] C. Delcamp, B. Dittrich, and A. Riello, On entangle-
ment entropy in non-Abelian lattice gauge theory and 3D
quantum gravity, J. High Energy Phys. 11 (2016) 102.

[72] B. Baytas, E. Bianchi, and N. Yokomizo, Gluing polyhedra
with entanglement in loop quantum gravity, Phys. Rev. D
98, 026001 (2018).

064017-23


https://doi.org/10.1088/0264-9381/31/19/195003
https://doi.org/10.1103/PhysRevD.106.126007
https://doi.org/10.1103/PhysRevD.106.126007
https://doi.org/10.1016/j.physletb.2024.138467
https://doi.org/10.1103/PhysRevD.77.104006
https://doi.org/10.1103/PhysRevD.90.084015
https://doi.org/10.1103/PhysRevD.90.084015
https://doi.org/10.1103/PhysRevD.90.089907
https://doi.org/10.1088/0264-9381/23/3/007
https://doi.org/10.1088/0264-9381/23/3/007
https://doi.org/10.1103/PhysRevD.85.085004
https://doi.org/10.1088/0264-9381/31/21/214003
https://doi.org/10.1088/0264-9381/31/21/214003
https://doi.org/10.1088/0264-9381/31/21/214004
https://doi.org/10.1088/0264-9381/31/21/214004
https://doi.org/10.1103/PhysRevD.97.026009
https://doi.org/10.1103/PhysRevD.76.084028
https://doi.org/10.1103/PhysRevD.102.126004
https://doi.org/10.1103/PhysRevD.83.044035
https://doi.org/10.1103/PhysRevD.100.064065
https://doi.org/10.1140/epjc/s10052-022-09988-2
https://doi.org/10.1063/1.1521522
https://doi.org/10.1007/s10714-016-2107-5
https://doi.org/10.1007/s10714-016-2107-5
https://doi.org/10.1016/0003-4916(84)90085-X
https://doi.org/10.1016/0003-4916(84)90085-X
https://doi.org/10.1103/PhysRevLett.96.221301
https://doi.org/10.1103/PhysRevLett.96.221301
https://doi.org/10.1016/j.nuclphysb.2008.08.004
https://doi.org/10.1088/1361-6382/ac90aa
https://doi.org/10.1088/1361-6382/ac90aa
https://doi.org/10.1103/PhysRevD.92.085045
https://doi.org/10.1103/PhysRevD.92.085045
https://doi.org/10.1007/JHEP11(2016)102
https://doi.org/10.1103/PhysRevD.98.026001
https://doi.org/10.1103/PhysRevD.98.026001

