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In this paper, we carry out the entanglement calculations on the coherent intertwiners. We first consider
the entanglement introduced by the group averaging of the tensor-product-type intertwiner on a 4-valents
vertex. Then, we calculate explicitly the entanglement carried by the gauge-invariant coherent intertwiner
with four legs. Our numerical results show that the entanglement can be controlled by the local
semiclassical geometry described by the coherent intertwiner. We also extend our analytical calculation to
the coherent intertwiners with an arbitrary number of legs. Especially, we apply the previous results to the
entanglement of the spin-network state labeled by coherent intertwiners, with the network puncturing a
boundary by its vertices. We show that the entanglement of such spin-network state is not only determined
by the area of the boundary but also carries a quantum correction controlled by the semiclassical geometry
associated to the vertices puncturing the boundary.
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I. INTRODUCTION

Loop quantum gravity (LQG) provides a background-
independent and nonperturbative quantum theory of
General Relativity (GR) [1–6]. Specifically, LQG defines
the quantum states of spatial intrinsic and extrinsic geom-
etry as spin networks. The quantum geometry carried by
spin networks can be understood as the quantization of
discrete twisted geometries [7–12], while the information
of quantum geometry encoded in spin-network states can
be extracted by the geometric operators in LQG [13–17].
The quantum evolution of spin networks is governed by
the Hamiltonian operator in canonical formulation [18–21]
or described by the path-integral formulation [22–26].
Besides, the semiclassical geometries at the discrete stage
can be given by the expectation values of the geometric
operators based on the coherent states, which are con-
structed by specific superposition of intertwiners and spin
networks [27–34].
As a quantum gravity theory, LQG also provides us a

platform to study the black hole thermodynamics in a
fundamental perspective. More explicitly, the Bekenstein-
Hawking entropy, which is supposed to originate from a
quantum theory of gravity, is first derived in classical GR
coupled to quantum matter field. It is natural to expect that
the Bekenstein-Hawking entropy can be derived from an

ab initio computation of the entropy based on the micro-
states in a specific quantum gravity theory. In fact, in the
LQG framework, the nonperturbative computation of black
hole entropy has been performed based on the quan-
tum isolated horizons described by quantum Chern-
Simons theory coupled to bulk LQG in several works
[35–50], which lead to specific corrections to the
Bekenstein-Hawking entropy. Another strong candidate
of the source of black hole entropy is the entanglement
entropy between the quantum system inside and outside the
black hole horizon [51–55]. This approach is based on the
observation that the entanglement between quantum sys-
tems inside and outside the horizon is caused by the fact
that the globally pure state becomes mixed since the
horizon hide the degrees of freedom of the interior of
the black hole [51,52]. Specifically, the entanglement in
LQG is computed for black hole coherent states in spheri-
cally symmetric spacetime with apparent horizons in
Ref. [53], and it is computed for the spin-network basis
without assumption of symmetry or of specific boundary
conditions at the horizon in Ref. [51]. It has been argued
that the entropy computed in the isolated horizon frame-
work of LQG is closely related to the entanglement entropy
of the gravitational field in several previous works [52,56].
Particularly, it has been shown that the entanglement

carried by the spin-network basis state is the composition of
the entanglement carried by the intertwiners on the boun-
dary [51]. However, the previous computation merely
involves the case that only edges of the network puncture
the boundary, and the computation results show that the
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edge puncturing the boundary with spin j contributes
lnð2jþ 1Þ to the total entanglement entropy. Moreover,
it is pointed out that the entanglement carried by the
superposed intertwiners is much more than a term given
by lnð2jþ 1Þ [57]. Thus, the computation of the entangle-
ment for spin-network states labeled by superposed inter-
twiners is a valuable topic in LQG. A typical method to
introduce the superposition of intertwiners is imposing the
gauge averaging over the product state, with this super-
position reflecting the requirement of the gauge invariance.
Besides, the gauge averaging over some coherent states
gives the gauge-invariant coherent intertwiner, which
provides a semiclassical description of the discrete spatial
geometry, i.e., minimizes the uncertainty of the expect-
ation values of the area and face-angle operators [58–60].
In this paper, we will focus on the mechanism of group
averaging to the entanglement, specifically, of coherent
intertwiners, and then analyze the entanglement entropy
of spin network labeled by coherent intertwiners. Our
results show that the entanglement of coherent intertwiner
can be controlled by the semiclassical geometry associ-
ated to the vertex, i.e., the expectation values of area and
angle operators; moreover, for the spin network punctur-
ing a boundary by its vertices labeled by coherent
intertwiners, we show that the entanglement entropy of
such a spin network is not only determined by the area of
the boundary but also carries a quantum correction
controlled by the semiclassical geometry associated to
the vertices on the boundary.
This paper is organized as follows. After the basic

structure of spin-network state and intertwiner in LQG is
introduced in Sec. II, the entanglements on the kinds of
spin-network states and intertwiners are calculated. Speci-
fically, in Sec. III A, we generalize the relation between
boundary entanglement and intertwiner entanglement to the
case in which the internal edge carries spin superposition.
Then, we calculate the entanglement introduced by the
group averaging of the tensor-product type intertwiner with
four legs by numerical method in Sec. III B. Further, in
Sec. III C 1, this calculation is extended to the gauge-
invariant coherent intertwiner with four legs. Moreover, in
Sec. III C 2, we also carry out some key analytical
calculations for the entanglement on the coherent inter-
twiners with arbitrary number of legs. Besides, we apply
the results in previous sections to discuss the entanglement
of spin-network states in Sec. IV. Finally, in Sec. V, we
finish with conclusion and discussion for our results.

II. SPIN-NETWORK STATE AND INTERTWINER
IN LOOP QUANTUM GRAVITY

The Hilbert spaceHΓ for quantum geometry on a closed
oriented graph Γ embedded in a three-dimensional mani-
fold is composed by the square integrable functions on
SUð2Þ associated to each edge e∈Γ, which are invariant
under the SUð2Þ action at every vertex v∈Γ. Specifically, a

square integrable function on Γ takes the formulation

ΨΓ ¼ ΨΓðfhege∈ΓÞ: ð1Þ

The SUð2Þ gauge invariance at the vertex of ΨΓ reads

ΨΓðfhege∈ΓÞ ¼ ΨΓðfgsðeÞheg−1tðeÞge∈ΓÞ; ð2Þ

where fgvjv∈Γg are given at each vertex v∈Γ respec-
tively, sðeÞ represents the source vertex of e, and tðeÞ
represents the target vertex of e. The spin-network states
provide a basis of space HΓ. Specifically, a (nonsuper-
posed) spin-network basis state on Γ is given by labeling a
spin je ∈ N

2
on each edge e∈Γ and an intertwiner Iv on

each vertex v∈Γ, which reads [2]

ΨΓ;fje;Ivg ¼ tr

�
⨂
e∈Γ

πjeðheÞ⨂
v∈Γ

Iv

�
; ð3Þ

where πjeðheÞ is the representation matrix of he ∈ SUð2Þ
in the representation space Vje of SUð2Þ labeled by spin
je, and Iv ∈⨂ejtðeÞ¼vV

je ⊗ ⨂ejsðeÞ¼vV̄
je . Especially, the

spin-network stateΨΓ;fje;Ivg is gauge invariant if and only if
each v∈Γ is labeled by a gauge-invariant intertwiner.
Another basis of spaceHΓ is given by the coherent state of
spin networks. The coherent state of spin network is the
superposition of spin networks, which reads [27]

Ψt
Γ;GðhÞ ¼

Y
e∈Γ

Ψt
Ge
ðheÞ ð4Þ

with

Ψt
Ge
ðheÞ ≔

X
je ∈

Nþ
2

ð2je þ 1Þe−tjeðjeþ1Þ=2χjeðheG−1
e Þ; ð5Þ

where G ¼ fGege∈Γ, h ¼ fhege∈Γ, χj is the SUð2Þ
character with spin j, and t ∝ κℏ is a semiclassicality
parameter. As a function of the holonomies he, the coherent
state is labeled by Ge, with Ge ∈T�SUð2Þ ≅ SLð2;CÞ
being the complex coordinates of the discrete holonomy-
flux phase space of LQG. The gauge-invariant coherent
state of the spin network is labeled by the gauge equivalent
class of Ge ∼ Gg

e ≔ g−1sðeÞGegtðeÞ for all e∈Γ, where

g ¼ fgv ∈ SUð2Þjv∈Γg. Equivalently, the gauge-invariant
coherent state of the spin network is also labeled by the
gauge-invariant intertwiners at each v∈Γ. Let us give an
explicit introduction of gauge-invariant intertwiner as
follows.
The gauge-invariant intertwiner Iv at vertex v is a

SUð2Þ-invariant state in the tensor product space of all
the spins associated to the edges linked to v,
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Iv ∈Hfjeg
v ≔ InvSUð2Þ

�
⨂

ejtðeÞ¼v
Vje ⊗ ⨂

ejsðeÞ¼v
V̄je

�
; ð6Þ

where V̄j is the dual space of Vj. The space Vj has
dimension dj ¼ ð2jþ 1Þ and the orthonormal basis
fjj; mij − j ≤ m ≤ jg, which diagonalize the suð2Þ
Casimir J⃗2 ≔ JxJx þ JyJy þ JzJz and the generator J3 as

J⃗2jj;mi ¼ jðjþ 1Þjj; mi; Jzjj; mi ¼ mjj; mi: ð7Þ

An orthonormal basis of the intertwiner space Hfjeg
v is

established by the recoupling scheme, which reads

fIfjeg
v;fj{g ¼ Ifjeg

v;fj{1 ;j{2 ;…;j{Nv−3
g ∈Hfjeg

v g; ð8Þ

where Nv is the number of the edges which link to v, and
fj{1 ; j{2 ;…; j{Nv−3

g labeling the internal edges in the recou-
pling scheme, which satisfies

jje1 − je2 j ≤ j{1 ≤ je1 þ je2 ; jj{1 − je3 j ≤ j{2 ≤ j{1 þ je3 ;

…; jj{Nv−5
− jeNv−3

j ≤ j{Nv−4
≤ j{Nv−5

þ jeNv−3
;

jj{Nv−4
− jeNv−2

j ≤ j{Nv−3
≤ j{Nv−4

þ jeNv−2
;

jjeNv−1
− jeNv

j ≤ j{Nv−3
≤ jeNv−1

þ jeNv
: ð9Þ

Another basis of the intertwiner spaceHfjeg
v is the so-called

coherent intertwiner basis [58,61], which is established
based on the SUð2Þ coherent state. A SUð2Þ coherent state
jj; n̂i is defined via rotating the highest weight state jj; ji
by gðn̂Þ∈ SUð2Þ, namely [62],

jj; n̂i ¼ gðn̂Þjj; ji; ð10Þ

where n̂ is a unit vector, and gðn̂Þ∈ SUð2Þ satisfies n̂ ¼
gðn̂Þẑ with the north pole vector ẑ ¼ ð0; 0; 1Þ∈S2. The
SUð2Þ coherent state jj; n̂i can be decomposed by the
orthonormal basis fjj; mig as [62]

jj; n̂i ¼
Xj
m¼−j

cj;mðn̂Þjj; mi; ð11Þ

where

cj;mðn̂Þ ¼
� ð2jÞ!
ðjþmÞ!ðj−mÞ!

�1
2

�
− sin

π − θ

2

�
jþm

×

�
cos

π − θ

2

�
j−m

expð−iðjþmÞðφþ πÞÞ ð12Þ

with n̂ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ. Moreover, the
SUð2Þ coherent states jj; n̂i provide a overcomplete basis
of the space Vj as

IVj ¼ ð2jþ 1Þ
Z
S2

dnjj; n̂ihj; n̂j; ð13Þ

where IVj is the identity of Vj and dn is the normalized
measure on the 2-sphere S2. Now, the coherent intertwiner

basis of Hfjeg
v can be given as

IHfjeg
v

¼
Z
Sfjeg
v

dσfjegv jIfn̂eg
v;fjegihI

fn̂eg
v;fjegj; ð14Þ

where fn̂eg≡ ðn̂e1 ;…; n̂eNv
Þ, Sfjeg

v ≔fðn̂e1 ;…; n̂eNv
Þ∈

×Nv
I¼1S

2
I j
P

ejtðeÞ¼v jen̂e−
P

ejsðeÞ¼v jen̂e¼0g=SUð2Þ, dσfjegv

is an invariant measure on Sfjeg
v , and the coherent inter-

twiner jIfn̂eg
v;fjegi is given by the following SUð2Þ-group

averaging:

jIfn̂eg
v;fjegi≔

Z
SUð2Þ

dg ⨂
ejtðeÞ¼v

gjje; n̂ei ⨂
ejsðeÞ¼v

hje; n̂ejg−1: ð15Þ

To simplify our notations and distinguish the labels of the
ingoing and outgoing edges, we use j, n̂ to label the ingoing
edges and j̃, ˆ̃n to the outgoing edges. Then, the coherent
intertwiner can be reformulated as

jIfn̂; ˆ̃ng
v;fj;j̃gi ≔

Z
SUð2Þ

dg⨂
P

I¼1

gjjI; n̂Ii⨂
Q

J¼1

hj̃J; ˆ̃nJjg−1; ð16Þ

where P is the number of the edges ended at v and Q is the
number of the edges started at v.
The SUð2Þ coherent states are said to be semiclassical

states due to the property that they minimize the Heisenberg
uncertainty relation [58,59,62]. A coherent spin state jj; n̂i
picks the unit vector n̂ by J⃗ as n̂ ¼ limj→∞

hj;n̂jJ⃗jj;n̂i
j . In the

framework of LQG, each vertex v∈Γ is dual to a
polyhedron, and the edges attached to the v are dual to
the faces of the polyhedron [60,63]. The area and the
normal vector of the face are characterized by j and n̂ from
jj; n̂i, respectively. These pair data fðj; n̂Þg indeed provide
a semiclassical but gauge-variant picture. The gauge
invariance is fulfilled via SUð2Þ-group averaging over
the tensoring spin states ⨂ejtðeÞ¼vjje; n̂ei⨂ejsðeÞ¼vhje; n̂ej
with fn̂eg∈Sfjeg

v , defining a gauge-invariant coherent
intertwiner. Although the information about the direction
of each unit vector n̂e loses due to the SUð2Þ-group
averaging, the relative angles among these unit vectors
survive. Hence, a polyhedron in discrete geometry can be
built from gauge-invariant coherent intertwiners in a rela-
tional picture [58,60,63]: for a v around by Nv faces, the

fjeg determines Nv areas, and fn̂eg∈Sfjeg
v determines

2Nv − 6 relative angles.
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III. DENSITY MATRIX AND ENTANGLEMENT
ENTROPY OF COHERENT INTERTWINER

A. Boundary and intertwiner entanglement entropies

Consider a two-vertices graph Γ as illustrated in Fig. 1:
one vertex v1 is attached by Pþ 1 edges, and another
vertex v2 is attached byQþ 1 edges; meanwhile, v1 and v2
are connected by edge e. For the sake of simplifying the
notations, we reorient all of the edges to ensure that e is
outgoing at v1 and ingoing at v2 with other edges being
ingoing at v1 and outgoing at v2 without losing generality.
Then, the boundary Hilbert space for this system is
defined as

H∂Γ ≔ ⨂
P

I¼1

VI ⊗ ⨂
Q

J¼1

V̄J: ð17Þ

That is, excluding the Hilbert space associated with the
internal edge e whose two ends are contained in the graph.
The apparent bipartition on the boundary Hilbert space is
given by

H∂Γ ¼ H∂
v1 ⊗ H∂

v2 ; where H∂
v1 ≔ ⨂

P

I¼1

VI; and

H∂
v2 ≔ ⨂

Q

J¼1

V̄J: ð18Þ

On the other hand, the intertwiner Hilbert space on graph Γ
is defined as

HΓ ≔Hv1 ⊗Hv2 ; where Hv1 ≔ Inv

�
⨂
P

I¼1

VI ⊗ V̄e

�
and

Hv2 ≔ Inv

�
Ve ⊗ ⨂

Q

J¼1

V̄J

�
: ð19Þ

The gluing map [57] provides a correspondence between
the boundary state jψΓi∂ ∈H∂Γ and the intertwiner state
jψΓi∈HΓ. Intuitively, the gluing map glues the boundary
edges together along the internal edges. Let us illustrate the
gluing map as follows. Assume that the internal edge e that
links v1 and v2 carries a fixed j. Then, the spin-network
state is written as

jΨj
Γi ¼

X
fjI ;j̃J ;j{;j̃{g

C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

×

� X
m;fmIg

I j1���jPj;fj{g
m1���mPm ⨂

P

I¼1

jjI; mIihj; mj
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼jIfjIg;j

v1 ;fj{g
i

⊗
� X

n;fm̃Jg
jj; ni⨂

Q

J¼1

hj̃J; m̃JjI jj̃1���j̃Q;fj̃{g
nm̃1���m̃Q

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼jIfj̃Jg;j
v2

i

: ð20Þ

Let us explain the notations in this equation: (i) jI , j̃J label
the boundary edges of Γ in left and right side, respectively,
and j{, j̃{ represent the recoupling spins for the coherent

intertwiner basis IfjIg;j
v1;fj{g and Ifj̃Jg;j

v2;fj̃{g, respectively. (ii) The

coefficients I j1���jPj;fj{g
m1���mPm as well as I

jj̃1���j̃Q;fj̃{g
nm̃1���m̃Q

are respon-

sible for the gauge invariances of IfjIg;j
v1;fj{g and Ifj̃Jg;j

v2;fj̃{g,
respectively, which can be constructed by concatena-
ting Clebsch-Gordan coefficients. (iii) The coefficients
C
IfjIg;j
v1 ;fj{g

I
fj̃Jg;j
v2 ;fj̃{g

encode the correlation between intertwiners

living at v1 and v2. On the other hand, the boundary state
associated with the spin network is written as

jΨj
Γi∂¼

X
fjI ;j̃J ;j{;j̃{g

ffiffiffiffiffiffiffiffiffiffiffiffi
2jþ1

p
C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

·
X

m;n;fmI;m̃Jg
I j1���jPj;fj{g
m1���mPm

⨂
P

I¼1

jjI;mIiDj
mnðheÞ⨂

Q

J¼1

hj̃J;m̃JjI jj̃1���j̃Q;fj̃{g
nm̃1���m̃Q

; ð21Þ

where Dj
mnðheÞ ≔ hj; mjhejj; ni. The gluing map is then

viewed as sending jΨj
Γi to jΨj

Γi∂, via sandwiching hol-
onomy that associates the edge to be glued. This gluing
map can also be established without the holonomy insertion
[i.e., setting he ¼ identity in Eq. (21)], which leads to

jΨ̌j
Γi∂ ¼

X
fjI ;j̃J;j{;j̃{g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

X
m;fmI;m̃Jg

I j1���jPj;fj{g
m1���mPm

⨂
P

I¼1

jjI; mIi⨂
Q

J¼1

hj̃J; m̃JjI jj̃1���j̃Q;fj̃{g
mm̃1���m̃Q

: ð22Þ

Now, we look at the entanglement carried by these
states. The intertwiner entanglement entropy Eðv1jv2Þ with
respect to HΓ ¼ Hv1 ⊗ Hv2 is given by the von Neumann
entropy from below reduced density matrix

ρjv1 ≔ TrHv2
jΨj

ΓihΨj
Γj ð23Þ

¼
X

fjI ;j0I ;j{;j0{g

X
fj̃J ;j̃{g

C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

C
I
fj0
I
g;j

v1 ;fj0{g
Ifj̃Jg;j
v2 ;fj̃{g

jIfjIg;j
v1;fj{gihI

fj0Ig;j
v1;fj0{gj:

ð24Þ
FIG. 1. The 2-vertex graph Γ. The holomony he along the edge
e that connects v1 and v2 contributes nothing to the entanglement
entropy.
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On the other hand, the boundary entanglement entropy
Eðv∂1jv∂2Þ with respect to H∂Γ ¼ H∂

v1 ⊗ H∂
v2 is given by the

von Neumann entropy from the reduced density matrix

ρ∂;jv1 ≔ TrH∂
v2
jΨj

ΓihΨj
Γj∂ ¼ TrH∂

v2
jΨ̌j

ΓihΨ̌j
Γj∂ ð25Þ

¼
X

fjI ;j0I ;j{;j0{g

X
fj̃J ;j̃{g

C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

C
I
fj0
I
g;j

v1 ;fj0{g
Ifj̃Jg;j
v2 ;fj̃{g

×
X

m;fmI;m0
Ig
I j1���jPj;fj{g
m1���mPm I

j0
1
���j0Pj;fj0{g

m0
1
���m0

Pm
⨂
P

I¼1

jjI; mIihj0I; m0
Ij

¼
X

fjI ;j0I ;j{;j0{g

X
fj̃J ;j̃{g

C
IfjIg;j
v1 ;fj{g

I
fj̃Jg;j
v2 ;fj̃{g

C
I
fj0
I
g;j

v1 ;fj0{g
I
fj̃Jg;j
v2 ;fj̃{g

×
X
m

hj; mjIfjIg;j
v1;fj{gihI

fj0Ig;j
v1;fj0{gjj;mi; ð26Þ

where H∂
v2 ¼ ⨂Q

J¼1V̄J is the boundary-edge state space
attached to the vertex v2, and the following orthogonality is
used:

X
fmIgNI¼1

I j1���jNj;fj{g
m1���mNm I j1���jNj0;fj0{g

m1���mNm0 ¼ 1

2jþ 1
δjj0δmm0δfj{gfj0{g: ð27Þ

Indeed, one can verify the normalization TrH∂
v1
ρ∂;jv1 ¼ 1.

Note that the relation between the two density matrices can
be given by

ρ∂;jv1 ¼ TrVe
ρjv1 ð28Þ

with Ve ¼ Vj. That is to say, the reduced density matrix ρ∂;jv1
of the half-cut boundary can be understood as tracing the
reduced density matrix ρjv1 of the half-cut graph over the
recoupled Hilbert space (here, it is Vj associative with the
spin j along the internal edge e). Then, following Ref. [57],
one can show a simple relation between the entanglement
entropy of H∂Γ ¼ H∂

v1 ⊗ H∂
v2 and of HΓ ¼ Hv1 ⊗ Hv2 .

Theorem 1. In the cases in which the spin along the
internal edge is fixed at j, the following relation between
entanglement entropies holds [57]:

Ejðv∂1jv∂2Þ ¼ Ejðv1jv2Þ þ lnð2jþ 1Þ; ð29Þ

where Ejðv∂1jv∂2Þ ≔ −Trðρ∂;jv1 ln ρ∂;jv1 Þ and Ejðv1jv2Þ ≔
−Trðρjv1 ln ρjv1Þ.
Notice that Theorem 1 only involves the case in which

the internal edge has a fixed spin j. Now, we would like to
generalize the relation Eq. (29) to the cases that the internal
edge e carries spin superposition. Let us consider the state

jΨΓi ¼
X
j

αjjΨj
Γi ¼

X
j

X
fjI ;j̃J ;j{;j̃{g

αjCIfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

jIfjIg;j
v1;fj{gi

⊗ jIfj̃Jg;j
v2;fj̃{gi; ð30Þ

the gluing state with holonomy insertion

jΨΓi∂ ¼
X
j

αj
X

fjI ;j̃J ;j{;j̃{g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

·
X

m;n;fmI;m̃Jg
I j1���jPj;fj{g
m1���mPm ⨂

P

I¼1

jjI; mIiDj
mnðheÞ

⨂
Q

J¼1

hj̃J; m̃JjI jj̃1���j̃Q;fj̃{g
nm̃1���m̃Q

; ð31Þ

and the gluing state without holonomy insertion

jΨ̌Γi∂ ¼
X
j

αj
X

fjI ;j̃J ;j{;j̃{g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
C
IfjIg;j
v1 ;fj{g

Ifj̃Jg;j
v2 ;fj̃{g

×
X

m;fmI;m̃Jg
I j1���jPj;fj{g
m1���mPm ⨂

P

I¼1

jjI; mIi

⨂
Q

J¼1

hj̃J; m̃JjI jj̃1���j̃Q;fj̃{g
mm̃1���m̃Q

: ð32Þ

Again, the reduced density matrices are obtained via partial
tracing in H∂

v2 and Hv2 , respectively, which gives

ρ̃∂v1 ≔ TrH∂
v2
jΨΓihΨΓj∂ ¼ TrH∂

v2
jΨ̌ΓihΨ̌Γj∂; ð33Þ

and

ρ̃v1 ≔ TrHv2
jΨΓihΨΓj: ð34Þ

Similarly, the generalized relation between ρ̃∂v1 and ρ̃v1
holds by taking superposition of j into account, which
reads

ρ̃∂v1 ¼ TrVe
ρ̃v1 ; ð35Þ

where Ve ¼ ⨁jV
j and ρ̃v1 ¼ ⨁jp̃jρ

j
v1 with p̃j ≡ αjᾱj.

Then, the relation between intertwiners and boundary
entanglements leads the following theorem.
Theorem 2. In the cases in which the spin along the

internal edge is superposed, say, the intertwiner state is
given by jΨΓi, then the following relation between entan-
glement entropies holds:

Eðv∂1jv∂2Þ ¼
X
j

p̃j lnð2jþ 1Þ −
X
j

p̃j ln p̃j

þ
X
j

p̃jEjðv1jv2Þ; ð36Þ
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where Eðv∂1jv∂2Þ ≔ −Trðρ̃∂v1 ln ρ̃∂v1Þ and Ejðv1jv2Þ ¼
−Trðρjv1 ln ρjv1Þ.
Let us have a discussion on the above theorem. First,

referring to Ref. [57], the first term in Eq. (36) should be
interpreted as coming from gauge breaking, and it follows
that the second and the third terms should be interpreted as
the intertwiner entanglement, since the −

P
j p̃j ln p̃j

comes from the spin superposition along the linking edge
e, and the Ejðv1jv2Þ is the intertwiner entanglement when
the spin is fixed. Second, in the case of single internal edge
graph, it has been shown that the holonomy along the
internal edge e plays no role in the entanglement entropy in
Ref. [57] for fixed j, and Eq. (33) in our calculation extends
this point to the case of superposed j. Indeed, one is able to
gauge fix the he into identity, and then jΨΓi∂ becomes
jΨ̌Γi∂, which can be regarded as an intertwiner on a single
vertex as illustrated in Fig. 2. Notice that Eq. (33) tells us
that jΨΓi∂ and jΨ̌Γi∂ have the same reduced density matrix;
thus, the respected entanglement entropies depicted in
Fig. 2 are indistinguishable. Third, while the above general
formalism is still vague for the sake of establishing a
relation between the entanglement and geometry, the
coherent intertwiners provide a semiclassical picture of
geometry on the polyhedron, which could interlace the
genuine quantum notion—entanglement, with the discrete
geometry. In the following part of this paper, we are going
to explore how the entanglement entropy emerges from this
semiclassical picture and how the entanglement gets
reflected in the discrete geometry, or vice versa.

B. Entanglement produced from group averaging

As a prelude for the study on the coherent intertwiner, this
part is meant to show how entanglement can be produced
from group averaging. We begin with a gauge-variant
scenario based on the graph with only one vertex v, and
the corresponding wave function is below the tensor state,

⨂
ejtðeÞ¼v

jje;mei⊗ ⨂
ejsðe0Þ¼v

hje0 ;me0 j∈ ⨂
ejtðeÞ¼v

Vje ⊗ ⨂
ejsðe0Þ¼v

V̄je0 :

ð37Þ

This is not a physical spin network due to the absence of
gauge invariance, and there is also no entanglement. To get a
gauge-invariant state, the group averaging is adopted, which
inevitably introduces superposition and entanglement. It is
possible to grant the physical implication for the group
averaging by considering some SUð2Þ-invariant measure-
ment: suppose thatwe are given a set fjϕiigiwhosemembers
are all SUð2Þ-invariant pointer states jϕii; i.e., jϕii ¼ gjϕii
for any g∈ SUð2Þ, then this invariance can be conveyed to the
probability distribution jhϕijψij2 where jψi is the state to be
observed because

hϕijψi ¼
Z
SUð2Þ

dghgϕijψi ¼
Z
SUð2Þ

dghϕijg†ψi

¼ hϕij
Z
SUð2Þ

dgjg†ψi: ð38Þ

It is clear that
R
SUð2Þ dgjg†ψi is SUð2Þ invariant. Note that

this group-averaging process is similar to a particular
“twirling” in the field of quantum information, which
introduces superposition and entanglement to a product state.
The rest of this part will calculate the entanglement

introduced by the group averaging. Let us look at an
example. Consider the graph with only one 4-valents’

vertex v and the intertwiner space Ȟfj1;j2;j3;j4g
v ¼ Vj1 ⊗

Vj2 ⊗ V̄j3 ⊗ V̄j4 on v. An element in Ȟfj1;j2;j3;j4g
v is given

by the tensor product as

jj1; m1i ⊗ jj2; m2i ⊗ hj3; m3j ⊗ hj4; m4j; ð39Þ

where we take the 4-valents’ bipartition (2, 2), with the two
left-side edges being ingoing and the two right-side edges
being outgoing. Clearly, there is no entanglement between
left and right sides, say, EðAjBÞ ¼ 0 withHA ≔ Vj1 ⊗ Vj2

and HB ≔ V̄j3 ⊗ V̄j4 . Now, let us implement the SUð2Þ-
group averaging over the tensor state, which leads to

FIG. 2. The left graph (two vertices) has the same entanglement entropy between boundary edges with the right graph (one vertex).
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jǏi ¼
Z
SUð2Þ

dggjj1; m1i ⊗ gjj2; m2i ⊗ hj3; m3jg−1

⊗ hj4; m4jg−1

¼
X
j

Xj
k;m¼−j

X
k⃗

1

2jþ 1
Cj1j2j
k1k2k

Cj1j2j
m1m2m Cj3j4j

k3k4k

× Cj3j4j
m3m4mjj1; k1i ⊗ jj2; k2i ⊗ hj3; k3j ⊗ hj4; k4j;

ð40Þ

where k⃗≡fk1;k2;k3;k4g and Cj1j2j
m1m2m≡hj1;m1;j2;m2jj;mi

stands for the Clebsch-Gordan coefficient. One should note
that the group averaging spoils the normalization, so it

should be retrieved by rescaling later. In addition, recall that
m⃗≡ fm1; m2; m3; m4g are fixed, the SUð2Þ-group averag-
ing will eliminate some configurations that do not satisfy
m1 þm2 ¼ m3 þm4. This is the closure condition on
magnetic quantum numbers. The state jǏi survived from
the group averaging is a gauge-invariant state, and it can be
also viewed as a bipartite system between two sets of
recoupled spins; see the illustration in Fig. 3. To simplify
the expression, let us rewrite jǏi as

jǏi ¼
X
j;k

1

2jþ 1
fðj; j⃗; m⃗Þjj1; j2; j; ki ⊗ hj3; j4; j; kj;

ð41Þ

FIG. 3. The SUð2Þ-group averaging produces entanglement between the legs. This can be viewed as the entanglement between two
coupled states jj1; j2; j; ki and hj3; j4; j; kj at v1 and v2, respectively.

FIG. 4. The numerical results of pj for ðm1; m2; m3; m4Þ ¼ ð0; 0; 0; 0Þ and j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5, 10, 20, 30, where the x axis shows
the recouping spin j and the y axis shows the numerical value of pj. These figures show that pj has an oscillation with respect to
coupling spin j. (a) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5. (b) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 10. (c) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 20. (d) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 30.
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where jj1; j2; j; ki ≔
P

fk1;k2g C
j1j2j
k1k2k

jj1; k1i ⊗ jj2; k2i
defines a recoupled spin, likewise for hj3; j4; j; kj, and
we denote

fðj; j⃗; m⃗Þ≡X
m

Cj1j2j
m1m2m Cj3j4j

m3m4m ð42Þ

for the fixed j⃗≡ fj1; j2; j3; j4g and m⃗.
Recall the bipartition HA ≔ Vj1 ⊗ Vj2 and

HB ≔ V̄j3 ⊗ V̄j4 . Then, the entanglement EðAjBÞ between
A and B can be given by the von Neumann entropy of the
reduced density matrices ρA. For the state jǏi, the reduced
density matrix ρA is defined by ρA ≔ TrBðρǏÞ with

ρǏ ≡ jǏihǏ j
hǏ jǏi . More explicitly, one has

ρA ¼ 1

hǏ jǏi
X
j

Xj
k¼−j

jfðj; j⃗; m⃗Þj2
ð2jþ 1Þ2 jj1; j2; j; kihj1; j2; j; kj:

ð43Þ
One can introduce the probability distribution pj of the

recoupling spin j, which is given by pj ¼ jfðj;j⃗;m⃗Þj2
ð2jþ1ÞhǏ jǏi,

and the reduced density matrix can be decomposed into
ρAj , i.e.,

ρA ¼
X
j

pjρ
A
j ; ρAj ¼

Xj
k¼−j

jj1; j2; j; kihj1; j2; j; kj
ð2jþ 1Þ : ð44Þ

It is clear that theHA andHB are entangled for the state jǏi.
The entanglement entropy EðAjBÞ ≔ −TrðρA ln ρAÞ is
determined by the distribution pj, which reads

EðAjBÞ ¼ EpðAjBÞ þ E0ðAjBÞ;
EpðAjBÞ ≔ −

X
j

ðpj lnpjÞ; E0ðAjBÞ ≔
X
j

pjSAj ; ð45Þ

where SAj ≔ −TrðρAj ln ρAj Þ ¼ lnð2jþ 1Þ. Further, the dis-
tribution pj and the entanglement entropy EðAjBÞ can be
calculated numerically. The numerical results of pj are
illustrated in Figs. 4–6, which show that the distribution pj

is oscillating with respect to j for small fm1; m2; m3; m4g
state, while there is a peak for highest (and lowest) weight
state. The numerical values of entanglement entropy

FIG. 5. The numerical results of pj for ðm1; m2; m3; m4Þ ¼ ð1;−1; 1;−1Þ and j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5, 10, 20, 30, where the x axis
shows the recouping spin j and y axis shows the numerical value of pj. These figures show the difference in the shape of oscillation
compared to the cases of m1 ¼ m2 ¼ m3 ¼ m4 ¼ 0. (a) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5. (b) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 10. (c) j1 ¼ j2 ¼
j3 ¼ j4 ¼ 20. (d) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 30.
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EðAjBÞ are listed in Tables I and II, which show that the
entanglement entropy can be controlled by the magnetic
configurations.
It is worth it to have a discussion on these results.

First, one should notice that the quantum number
fm1; m2; m3; m4g are gauge variant, and their geometric

interpretation become fuzzy after group averaging. Second,
note that the distribution pj is a peak for highest (and
lowest) weight state; it ensures that the entanglement
entropy is able to capture the main character of the
distribution pj. By combining these two points, it is

FIG. 6. The numerical results of pj for j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5, 10, 20, 30 and m1 ¼ m3 ¼ −m2 ¼ −m4 ¼ j4, where the x axis shows
the recoupling spin j and the y axis shows the numerical value of pj. These figures show that the shapes of the distributions pj are peaks
for the highest (and lowest) weight states. (a) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5. (b) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 10. (c) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 20.
(d) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 30.

TABLE I. The numerical values of EðAjBÞ for small spins j1 ¼
j2 ¼ j3 ¼ j4 ¼ 5 at different configurations with respect to
magnetic numbers.

ðj1; j2; j3; j4Þ ðm1; m2; m3; m4Þ EpðAjBÞ E0ðAjBÞ EðAjBÞ
(5, 5, 5, 5) (0, 0, 0, 0) 1.58138 1.5931 3.17448
(5, 5, 5, 5) ð1;−1; 1;−1Þ 1.64349 1.37831 3.0218
(5, 5, 5, 5) ð2;−2; 2;−2Þ 1.68047 1.35532 3.03579
(5, 5, 5, 5) ð3;−3; 3;−3Þ 1.72176 1.33854 3.06029
(5, 5, 5, 5) ð4;−4; 4;−4Þ 1.6484 1.30671 2.95511
(5, 5, 5, 5) ð5;−5; 5;−5Þ 1.45701 1.21724 2.67426
(5, 5, 5, 5) ð2;−1; 2;−1Þ 1.7005 2.05912 3.75962
(5, 5, 5, 5) ð3;−1; 3;−1Þ 1.77649 2.32768 4.10417
(5, 5, 5, 5) ð4;−1; 4;−1Þ 1.59752 2.48947 4.08698
(5, 5, 5, 5) ð5;−1; 5;−1Þ 1.31356 2.60331 3.91687

TABLE II. The numerical values of EðAjBÞ for small spins
j1 ¼ j2 ¼ j3 ¼ j4 ¼ 10 at different configurations with respect
to magnetic numbers.

ðj1; j2; j3; j4Þ ðm1; m2; m3; m4Þ EpðAjBÞ E0ðAjBÞ EðAjBÞ
(10, 10, 10, 10) (0, 0, 0, 0) 2.01747 2.02953 4.047
(10, 10, 10, 10) ð1;−1; 1;−1Þ 2.01367 1.80432 3.81799
(10, 10, 10, 10) ð2;−2; 2;−2Þ 2.06684 1.77726 3.8441
(10, 10, 10, 10) ð3;−3; 3;−3Þ 2.10459 1.76694 3.87153
(10, 10, 10, 10) ð4;−4; 4;−4Þ 2.1037 1.76034 3.86404
(10, 10, 10, 10) ð5;−5; 5;−5Þ 2.13296 1.75342 3.88638
(10, 10, 10, 10) ð6;−6; 6;−6Þ 2.16708 1.7438 3.91088
(10, 10, 10, 10) ð7;−7; 7;−7Þ 2.1329 1.72895 3.86185
(10, 10, 10, 10) ð8;−8; 8;−8Þ 2.08743 1.70467 3.7921
(10, 10, 10, 10) ð9;−9; 9;−9Þ 1.99391 1.66086 3.65477
(10, 10, 10, 10) ð10;−10; 10;−10Þ 1.77857 1.55688 3.33545
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reasonable to consider the entanglement carried by
gauge-invariant coherent intertwiners, since they are
constructed by the highest (and lowest) weight state
and they describe semiclassical geometry on polyhedrons.
In the next subsection, we will focus on the coherent
intertwiners which provide a semiclassical picture of
polyhedron geometry, and one may expect that the
entanglement, superposition, and the geometric picture
could be drawn by the gauge-invariant knowledge
encoded in the area-weighted normal vectors fjen̂eg
labeling the coherent intertwiners.

C. Entanglement entropy between legs
of coherent intertwiner

1. Coherent intertwiner with four legs

Let us consider the gauge-invariant coherent intertwiner

spaceHfj1;j2;j3;j4g
v ¼ InvSUð2Þ½Vj1 ⊗ Vj2 ⊗ V̄j3 ⊗ V̄j4 � on a

4-valents vertex, in which an element is given by

jIi ¼
Z
SUð2Þ

dggjj1; n̂1i ⊗ gjj2; n̂2i ⊗ hj3; n̂3jg−1

⊗ hj4; n̂4jg−1; ð46Þ

wherein the spins and vectors satisfy the closure condition
j1n̂1 þ j2n̂2 ¼ j3n̂3 þ j4n̂4. Now, let us start to calculate
the entanglement entropy for jIi. By recalling Eq. (11), the
state is then rewritten in the manner of repeating Eq. (40) as
illustrated in Fig. 7, which reads

jIi ¼
X
m⃗

cj1;m1
ðn̂1Þcj2;m2

ðn̂2Þc̄j3;m3
ðn̂3Þc̄j4;m4

ðn̂4Þ

·
Z
SUð2Þ

dggjj1; m1i ⊗ gjj2; m2i ⊗ hj3; m3jg−1

⊗ hj4; m4jg−1
¼
X
m⃗

cj1;m1
ðn̂1Þcj2;m2

ðn̂2Þc̄j3;m3
ðn̂3Þc̄j4;m4

ðn̂4Þ

×
X
j;m;k

Cj1j2j
m1m2mC

j3j4j
m3m4m

2jþ 1
jj1; j2; j; ki ⊗ hj3; j4; j; kj;

ð47Þ

¼
X
j;m;k

Cj1j2j
n̂1n̂2m

Cj3j4j
n̂3n̂4m

2jþ 1
jj1; j2; j; ki ⊗ hj3; j4; j; kj; ð48Þ

where the ranges of the sums are given by −j≤m;k≤ j,
maxðjj1− j2j; jj3− j4jÞ≤ j≤minððj1þ j2Þ; ðj3þ j4ÞÞ; the
second line uses the recoupled spins jj1; j2; j; ki ≔P

m1;m2
Cj1j2j
m1m2k

jj1; m1i ⊗ jj2; m2i and hj3; j4; j; kj ≔P
m3;m4

Cj3j3j
m3m4k

hj3; m3j ⊗ hj4; m4j; and in the third line
we have denoted

Cj1j2j
n̂1n̂2m

≡ Xj1
m1¼−j1

Xj2
m2¼−j2

cj1;m1
ðn̂1Þcj2;m2

ðn̂2ÞCj1j2j
m1m2m; ð49Þ

Cj3j4j
n̂3n̂4m

≡ Xj3
m3¼−j3

Xj4
m4¼−j4

c̄j3;m3
ðn̂3Þc̄j4;m4

ðn̂4ÞCj3j4j
m3m4m: ð50Þ

TABLE III. The numerical values of EpðAjBÞ and E0ðAjBÞ for fixed n̂1; n̂2; n̂3; n̂4 and growth boundary spins,
where n̂1 ¼ ðsin θ1 cosφ1; sin θ1 sinφ1; cos θ1Þ and likewise for n̂2; n̂3; n̂4. It is shown that EpðAjBÞ and E0ðAjBÞ
both grow with the boundary spins j1 ¼ j2 ¼ j3 ¼ j4 getting larger.

ðj1; j2; j3; j4Þ ðθ1; θ2; θ3; θ4Þ ðφ1;φ2;φ3;φ4Þ EpðAjBÞ E0ðAjBÞ EðAjBÞ
(5, 5, 5, 5) ðπ

2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 1.56229 2.70936 4.27165

(10, 10, 10, 10) ðπ
2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 1.8922 3.37298 5.26517

(15, 15, 15, 15) ðπ
2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 2.08976 3.76835 5.85811

(20, 20, 20, 20) ðπ
2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 2.23109 4.05092 6.28201

(25, 25, 25, 25) ðπ
2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 2.34114 4.271 6.61214

(30, 30, 30, 30) ðπ
2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 2.43131 4.45127 6.88258

FIG. 7. The SUð2Þ-group averaging on spin coherent state produces entanglement between the legs. This can be viewed as the
entanglement between two coupled states jj1; j2; j; ki and hj3; j4; j; kj at v1 and v2, respectively.
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The density matrix of the coherent intertwiner jIi is given
by ρI ≡ jIihI j

hI jIi where its denominator, namely, the normali-

zation factor, is given by

hI jIi ¼
X
j

1

2jþ 1

����X
m

Cj1j2j
n̂1n̂2m

Cj3j4j
n̂3n̂4m

����2: ð51Þ

Recall thedefinitionsHA≔Vj1 ⊗Vj2 andHB≔ V̄j3 ⊗ V̄j4 .
Then, for the state jIi, the entanglement EðAjBÞ between A
and B can be given by the von Neumann entropy of the
reduced density matrices ρA, which are defined by

ρA ≔ TrBðρIÞ; EðAjBÞ ≔ −TrðρA ln ρAÞ: ð52Þ

More explicitly, ρA can be calculated as

ρA ¼ TrBðρIÞ

¼
X
j

1

2jþ 1

jPm Cj1j2j
n̂1n̂2m

Cj3j4j
n̂3n̂4m

j2P
j0

1
2j0þ1

jPm0Cj1j2j0
n̂1n̂2m0C

j3j4j0
n̂3n̂4m0 j2

×
Xj
k¼−j

jj1; j2; j; kihj1; j2; j; kj
2jþ 1

; ð53Þ

which can be also read in the form of

ρA ¼
X
j

pjρ
A
j ;

pj ¼
jPm Cj1j2j

n̂1n̂2m
Cj3j4j
n̂3n̂4m

j2

ð2jþ 1ÞPj0
1

2j0þ1
jPm0 Cj1j2j0

n̂1n̂2m0C
j3j4j0
n̂3n̂4m0 j2

; ð54Þ

and ρAj ¼
P

k
jj1;j2;j;kihj1;j2;j;kj

ð2jþ1Þ . Further, we have

EðAjBÞ ¼ EpðAjBÞ þ E0ðAjBÞ;
EpðAjBÞ ≔ −

X
j

ðpj lnpjÞ; E0ðAjBÞ ≔
X
j

pjSAj ; ð55Þ

where SAj ≡ −TrðρAj ln ρAj Þ ¼ lnð2jþ 1Þ and EpðAjBÞ ¼
−
P

jðpj lnpjÞ is just the Shannon entropy of the distri-
bution pj.
One can see that EðAjBÞ is determined by the distribu-

tion pj. Generally, pj is a rather complicated function
of j for given ðj1; n̂1; j2; n̂2; j3; n̂3; j4; n̂4Þ; thus, it is hard to
analyze the property of pj by its analytical expression. We
calculate pj and EðAjBÞ by the numerical methods as

FIG. 8. Geometric interpretation of j0, j1, j2, j3, j4, and arccosðn̂1 · n̂2Þ which are related to the entanglement of coherent intertwiner.
(a) The face Sv punctured only by the 4-valents vertex v. (b) The face S1; S2; S3; S4 and the dihedral angle Θ12 between S1 and S2.

TABLE IV. The numerical values of EpðAjBÞ and E0ðAjBÞ for fixed boundary spins j1 ¼ j2 ¼ j3 ¼ j4 ¼ 20 and
various angle arccos ðn̂1 · n̂2Þ ¼ φ2 − φ1. It is shown that EpðAjBÞ increases while E0ðAjBÞ decreases with the angle
arccos ðn̂1 · n̂2Þ getting larger.

ðj1; j2; j3; j4Þ ðθ1; θ2; θ3; θ4Þ ðφ1;φ2;φ3;φ4Þ EpðAjBÞ E0ðAjBÞ EðAjBÞ
(20, 20, 20, 20) ðπ

2
; π
2
; 7π
16
; 9π
16
Þ ð0; π

8
; π
16
; π
16
Þ 0.861644 4.38243 5.24407

(20, 20, 20, 20) ðπ
2
; π
2
; 3π
8
; 5π
8
Þ ð0; π

4
; π
8
; π
8
Þ 1.6089 4.3212 5.9301

(20, 20, 20, 20) ðπ
2
; π
2
; π
4
; 3π
4
Þ ð0; π

2
; π
4
; π
4
Þ 2.23109 4.05092 6.28201

(20, 20, 20, 20) ðπ
2
; π
2
; π
6
; 5π
6
Þ ð0; 2π

3
; π
3
; π
3
Þ 2.43579 3.69809 6.13388

(20, 20, 20, 20) ðπ
2
; π
2
; π
8
; 7π
8
Þ ð0; 3π

4
; 3π
8
; 3π
8
Þ 2.50054 3.42048 5.92102

(20, 20, 20, 20) ðπ
2
; π
2
; π
16
; 15π
16
Þ ð0; 7π

8
; 7π
16
; 7π
16
Þ 2.541 2.65329 5.1943
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shown in Tables III, IV, Figs. 9, and 10. Our results show
that pj has a peak near j ¼ j0 ≡ jj1n̂1 þ j2n̂2j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ j22 þ 2j1j2n̂1 · n̂2

p
and thus one has

P
j jpj ≈ j0

and E0ðAjBÞ ¼
P

j pjSAj ≈ lnð2j0 þ 1Þ. Specifically, this
peak shrinks relative to the range of j with the boundary
spins j1, j2, j3, j4 getting larger as shown in Fig. 9, so
E0ðAjBÞ and EpðAjBÞ increases no more than logarithmic
growth with j1, j2, j3, j4 going large as shown in Table III.
Also, this peak shrinks with the angle arccosðn̂1 · n̂2Þ
decreasing, Fig. 10, and thus EpðAjBÞ increases with the
angle arccos ðn̂1 · n̂2Þ getting larger, Table IV. Especially,
for fixed j0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ j22 þ 2j1j2n̂1 · n̂2

p
, one can increase

j1, j2, and the angle arccosðn̂1 · n̂2Þ at the same time to
grow EpðAjBÞ as shown in Tables III and IV.
It is worth it to explain the geometric interpretation of j0,

j1, j2, j3, j4, and arccosðn̂1 · n̂2Þ which is related to the
entanglement. As shown in Fig. 8, let us consider the face
Sv punctured only by the 4-valents vertex v labeled by jIi,
with two legs of v lying in one side and the other two legs in
another side of Sv. Then, the expectation value of the area
of Sv is given by

ArðSvÞ≡ hĬ jcArðSvÞjĬi

≔ 8πβl2
plhĬ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ⃗1 þ J⃗2Þ · ðJ⃗1 þ J⃗2Þ

q
jĬi≈ 8πβl2

plj0;

ð56Þ

where jĬi ≔ jIiffiffiffiffiffiffiffiffi
hI jIi

p is the normalized version of jIi, β is

the Barbero-Immirzi parameter in LQG, and lpl is the
Plank length. Besides, as shown in Fig. 8, one can also
consider the area of the face S1 punctured only by the leg
of the vertex v labeled by j1, which is given by the
eigenvalue ArðS1Þ ¼ 8πβl2

pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ðj1 þ 1Þp

following the
eigenequation

cArðS1ÞjĬi ≔ 8πβl2
pl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J⃗1 · J⃗1

q
jĬi ≈ 8πβl2

pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ðj1 þ 1Þ

p
jĬi:
ð57Þ

Similar results can be given for the faces S2, S3, S4

punctured only by the legs of the vertex v labeled by j1, j2,
j3, respectively. Moreover, one can also define the angle

FIG. 9. The numerical results of pj for ðθ1; θ2; θ3; θ4Þ ¼ ðπ
2
; π
2
; π
4
; 3π
4
Þ, ðφ1;φ2;φ3;φ4Þ ¼ ð0; π

2
; π
4
; π
4
Þ, and j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5, 10,

20, 30, where the x axis shows the recoupling spin j and the y axis shows the numerical value of pj. These figures show that pj has a
peak near j ¼ j0 ≡ jj1n̂1 þ j2n̂2j, and this peak shrinks relative to the range of j with the boundary spins j1, j2, j3, j4 getting larger.
(a) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 5. (b) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 10. (c) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 20. (d) j1 ¼ j2 ¼ j3 ¼ j4 ¼ 30.
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between the faces S1 and S2; then, the expectation value of
this angle is given by

Θ12 ≡ hĬ jΘ̂12jĬi

≔ hĬ j

0B@π − arccos

0B@ J⃗1 · J⃗2ffiffiffiffiffiffiffiffiffiffiffiffiffi
J⃗1 · J⃗1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
J⃗2 · J⃗2

q
1CA
1CAjĬi

≈ π − arccosðn̂1 · n̂2Þ: ð58Þ

Finally, by following the geometric interpretation of j0,
j1, j2, j3, j4, and arccosðn̂1 · n̂2Þ given in Eqs. (56)–(58),
one can conclude that the entanglement of coherent
intertwiner EðAjBÞ ≈ lnð2j0 þ 1Þ þ EpðAjBÞ can be con-
trolled by the local semiclassical geometry associated to
the vertex. Specifically, the term lnð2j0 þ 1Þ is controlled
by j0, while one can increase j1, j2, and the angle

arccosðn̂1 · n̂2Þ at the same time to grow EpðAjBÞ for fixed
j0. In the next section, we will generalize this result to the
entanglement for spin-network state.

2. Coherent intertwiner with arbitrary number of legs

Let us consider the gauge-invariant coherent inter-

twiner space Hfj;j̃g
v ¼ InvSUð2Þ½⨂P

I¼1V
jI ⊗ ⨂Q

J¼1V̄
j̃J � on

a (PþQ)-valent vertex, in which an element is given by

jIi ¼
Z
SUð2Þ

dg⨂
P

I¼1

gjjI; n̂Ii⨂
Q

J¼1

hj̃J; ˆ̃nJjg−1: ð59Þ

Similar to the coherent intertwiner with four legs, the
coherent intertwiner with arbitrary number of legs can be
expanded by the orthogonal recoupling basis of intertwiner
space, which reads

FIG. 10. The numerical results of pj for j1 ¼ j2 ¼ j3 ¼ j4 ¼ 20 and various θ⃗≡ ðθ1; θ2; θ3; θ4Þ, φ⃗≡ ðφ1;φ2;φ3;φ4Þ, where the
x axis shows the recoupling spin j and the y axis shows the numerical value of pj. These figures show that pj has a peak near

j ¼ j0 ≡ jj1n̂1 þ j2n̂2j, and this peak shrinks with the angle arccos ðn̂1 · n̂2Þ decreasing. (a) θ⃗ ¼ ðπ
2
; π
2
; 7π
16
; 9π
16
Þ, φ⃗ ¼ ð0; π

8
; π
16
; π
16
Þ.

(b) θ⃗ ¼ ðπ
2
; π
2
; 3π
8
; 5π
8
Þ, φ⃗ ¼ ð0; π

4
; π
8
; π
8
Þ. (c) θ⃗ ¼ ðπ

2
; π
2
; π
6
; 5π
6
Þ, φ⃗ ¼ ð0; 2π

3
; π
3
; π
3
Þ. (d) θ⃗ ¼ ðπ

2
; π
2
; π
16
; 15π
16
Þ, φ⃗ ¼ ð0; 7π

8
; 7π
16
; 7π
16
Þ.
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jIi ¼
X
j

ð2jþ 1Þ
� Xj

k;m¼−j
jIP; j; m; kihIQ; j; m; kj

�
¼
X
j

X
j{1

X
j{2

…
X
j{p

X
j̃{1

X
j̃{2

…
X
j̃{q

ð2jþ 1Þ−1 · cIP;IQ

j;j{;j̃{

·
X
k

X
k{1 ;…;k{p

X
k̃{1 ;…;k̃{q

ðjjP; jP−1; j{p ; k{pi ⊗ jj{p ; k{p ; jp; j{p−1 ; k{p−1i ⊗ …

⊗ jj{2 ; k{2 ; j2; j{1 ; k{1i ⊗ jj{1 ; k{1 ; j1; j; kihj̃Q; j̃Q−1; j̃{q ; k̃{q j ⊗ hj̃{q ; k̃{q ; j̃q; j̃{q−1 ; k̃{q−1 j ⊗ …

⊗ hj̃{2 ; k̃{2 ; j̃2; j̃{1 ; k̃{1 j ⊗ hj̃{1 ; k̃{1 ; j̃1; j; kjÞ; ð60Þ

where jj0; j00; j; ki ≔Pm0;m00 Cj0j00j
m0m00kjj0; m0i ⊗ jj00; m00i, jj0; k0; j00; j; ki ≔Pm00 Cj0j00j

k0m00kjj00; m00i, and c
IP;IQ

j;j{;j̃{
is the coefficient

of this expansion; see the details in the Appendix.
Now, the density matrix of the coherent intertwiner jIi can be given by ρI ≡ jIihI j

hI jIi. Let us define HA ≔⊗P
I¼1 V

jI and

HB ≔⊗Q
J¼1 V̄

j̃J . Then, the entanglement EðAjBÞ between A and B can be given by the von Neumann entropy of the reduced
density matrices ρA, which are defined as

ρA ≔ TrBðρIÞ; EðAjBÞ ≔ −TrAðρA ln ρAÞ: ð61Þ
More explicitly, ρA can be calculated as

ρA ¼ TrBðρIÞ ¼
TrBðjIihI jÞ

hI jIi ; ð62Þ

where

hI jIi ¼
X
j

X
j{1 ;j{2 ;…;j{p

X
j̃{1 ;j̃{1 ;…;j̃{q

ð2jþ 1Þ−1cIP;IQ

j;j{;j̃{
c
IP;IQ

j;j{;j̃{
: ð63Þ

and

TrBðjIihI jÞ ¼
X
j

X
j{1 ;j{2 ;…;j{p

X
j0{1 ;j

0
{2
;…;j0{p

ð2jþ 1Þ−1
X

j̃{1 ;j̃{1 ;…;j̃{q

c
IP;IQ

j;j{;j̃{
c
IP;IQ

j;j{;j̃{
ρA
j;j{;j̃{

; ð64Þ

with

ρA
j;j{;j̃{

≔ ð2jþ 1Þ−1 ·
X
k

X
k{1 ;…;k{p

X
k0{1 ;…;k0{p

ðjjP; jP−1; j{p ; k{pi ⊗ jj{p ; k{p ; jp; j{p−1 ; k{p−1i ⊗ …

⊗ jj{2 ; k{2 ; j2; j{1 ; k{1i ⊗ jj{1 ; k{1 ; j1; j; kihjP; jP−1; j0{p ; k0{p j ⊗ hj0{p ; k0{p ; jp; j0{p−1 ; k0{p−1 j ⊗ …

⊗ hj0{2 ; k0{2 ; j2; j0{1 ; k0{1 j ⊗ hj0{1 ; k0{1 ; j1; j; kjÞ: ð65Þ
It is direct to calculate that the von Neumann entropy of ρA

j;j{;j̃{
, which leads to

SAj ≔ −TrAðρAj;j{;j̃{ ln ρ
A
j;j{;j̃{

Þ ¼ lnð2jþ 1Þ: ð66Þ

Further, let us define

pj;j{;j0{ ≔
ð2jþ 1Þ−1Pj̃{1 ;j̃{1 ;…;j̃{q

c
IP;IQ

j;j{;j̃{
c
IP;IQ

j;j0{;j̃{

hI jIi ; ð67Þ

p̃j ≔
X

j{1 ;j{2 ;…;j{p

X
j0{1 ;j

0
{2
;…;j0{p

pj;j{;j0{ ; ð68Þ
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and

p̄j;j{;j0{ ≔
pj;j{;j0{
p̃j

: ð69Þ

Then, the entanglement entropy EðAjBÞ can be given by

EðAjBÞ ¼ −TrAðρA ln ρAÞ ¼ EpðAjBÞ þ
X
j

p̃j lnð2jþ 1Þ;

ð70Þ

where

EpðAjBÞ ≔ −
X
j

X
j{1 ;j{2 ;…;j{p

X
j0{1 ;j

0
{2
;…;j0{p

ðpj;j{;j0{ lnpj;j{;j0{Þ

¼ −
X
j

p̃j ln p̃j þ
X
j

p̃jEp̄j
ðAjBÞ ð71Þ

with

Ep̄j
ðAjBÞ ≔ −

X
j{1 ;j{2 ;…;j{p

X
j0{1 ;j

0
{2
;…;j0{p

ðp̄j;j{;j0{ ln p̄j;j{;j0{Þ: ð72Þ

It is worth it to have a discussion on this result. First,
one can notice that EðAjBÞ contains three termsP

j p̃jEp̄j
ðAjBÞ, P

j p̃j lnð2jþ 1Þ, and −
P

j p̃j ln p̃j.
This result takes the same formulation as the result (36)
for the boundary entanglement of two entangled inter-
twiners. In fact, the recoupling edge labeled by spin j
separates the coherent intertwiner as two entangled inter-
twiners, and the corresponding boundary entanglement of
these two entangled intertwiners is given by EðAjBÞ
exactly, with EpðAjBÞ being the intertwiner entanglement
and p̃j being the probability distribution of the spin j on
the recoupling edge. Second, it is easy to see that the
entanglement entropy EðAjBÞ depends on the distribution
pj;j{;j̃{ ¼ p̃j · p̄j;j{;j̃{ on the spins of the recoupling edges. In
fact, by considering the peakedness property of coherent
intertwiner, one can argue that pj;j{;j̃{ is peaked near the
values

j{p ¼ jjPn̂P þ jP−1n̂P−1j; j{p−1 ¼ jjPn̂P þ jP−1n̂P−1 þ jpn̂pj;
…;

j{1 ¼ jjPn̂P þ jP−1n̂P−1 þ jpn̂p þ � � � þ j2n̂2j; j ¼ jjPn̂P þ jP−1n̂P−1 þ jpn̂p þ � � � þ j1n̂1j;
j̃{q ¼ jj̃Q ˆ̃nQ þ j̃Q−1 ˆ̃nQ−1j; j̃{q−1 ¼ jj̃Q ˆ̃nQ þ j̃Q−1 ˆ̃nQ−1 þ j̃q ˆ̃nqj;

…;

j̃{1 ¼ jj̃Q ˆ̃nQ þ j̃Q−1 ˆ̃nQ−1 þ j̃q ˆ̃nq þ � � � þ j̃2 ˆ̃n2j; j ¼ jj̃Q ˆ̃nQ þ j̃Q−1 ˆ̃nQ−1 þ j̃q ˆ̃nq þ � � � þ j̃1 ˆ̃n1j: ð73Þ

This argument could be checked by evaluating the specific
property of the distribution pj;j{;j̃{ . However, one can see
that the general expression of pj;j{;j̃{ is too complicated to
proceed with the analytical study. One may also expect a
numerical calculation of the distribution pj;j{;j̃{ , and we
would like to leave this to future research.

IV. ENTANGLEMENT ENTROPY
OF SPIN NETWORKS

As mentioned in the Introduction, the entanglement of a
spin-network basis state (3) is the composition of the
entanglement carried by the intertwiners on the boundary
which cuts the spin network into two parts. However, the
previous computations only involve the case in which
only edges of the network puncture the boundary. In this
section, let us consider the case in which the network
punctures the boundary at the vertices of the network, with
these vertices being labeled by the gauge-invariant coherent
intertwiner, which gives the expectation values of the area
and face-angle operators with minimized uncertainty. Then,

we will apply the results for coherent intertwiner given in
previous sections to the entanglement entropy for spin
networks.
For a given closed graph Γ cut by a boundary B into Γa

and Γb, consider a normalized and gauge-invariant spin-
network state ΨΓ with fixed edge spins, which is given by

jΨΓi ¼
X
A⃗;B⃗

⨂
P

c¼1

hBcjIcjAci · jΨΓa
; Aci ⊗ jΨΓb

; Bci; ð74Þ

where Γ intersects B at the punctures labeled by c with P
being the numbers of punctures, Ic is the normalized
and gauge-invariant intertwiner on the puncture c,
A⃗ ¼ ðA1;…; Ac;…; APÞ, B⃗ ¼ ðB1;…; Bc;…; BPÞ, the set
of jBcihAcj forms an orthonormal basis of the intertwiner
space Hc ∋ Ic, and jΨΓb

; Aci and jΨΓb
; Bci correspond to

the side spin networks hAcjΨΓa
i and hΨΓb

jBci, respectively.
The entanglement EðΓajΓbÞ ofΨΓ between the two sides of
the boundary is given by the von Neumann entropy of the
reduce matrix
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ρΓa
≔ TrΓb

ðjΨΓihΨΓjÞ ¼
X
A⃗;A⃗0;B⃗

⨂
P

c¼1

hBcjIcjAci

· hA0
cjIcjBci · jΨΓa

; AcihΨΓa
; A0

cj; ð75Þ

which reads

EðΓajΓbÞ ≔ −TrΓa
ðρΓa

ln ρΓa
Þ ¼

XP
c¼1

EðAcjBcÞ; ð76Þ

where EðAcjBcÞ ≔ −TrAc
ðρAc

ln ρAc
Þ with

ρAc
≔ TrBc

ðjIcihIcjÞ ¼
X

Ac;A0
c;Bc

hBcjIcjAci

· hA0
cjIcjBci · jAcihA0

cj: ð77Þ
Equation (76) shows that, for the spin-network state ΨΓ
which allows the decomposition (74), the entanglement
EðΓajΓbÞ between the spin networks inside and outside a
boundary is the sumof the entanglementEðAcjBcÞ carried by
the intertwiners Ic on this boundary. By recalling Theorem 2
given in Sec. III. A, the entanglement EðΓajΓbÞ of the spin
network can be further written as

EðΓajΓbÞ ¼
XP
c¼1

�X
jc

p̃jc lnð2jc þ 1Þ −
X
jc

p̃jc ln p̃jc

þ
X
jc

p̃jcEjcðvc1jvc2Þ
�
; ð78Þ

wherein the intertwiner Ic is cut as two parts vc1 and vc2
which are linked by a internal edge labeled by jc as shown in
Fig. 1, with p̃jc being the probability distribution of jc and
Ejcðvc1jvc2Þ being the entanglement between vc1 and vc2.
Especially, for the case in which only 2-valents vertices
appear on the boundary B, which means that B is only
punctured by edges of Γ, the entropy given by Eq. (78)
reduces to EðΓajΓbÞ ¼

P
P
c¼1 lnð2jc þ 1Þ as shown in

Refs. [51,53].
It is also worth it to consider the case in which the vertices

on the boundary are labeled by the coherent intertwiners,
which ensures that theboundary has a fixed expectationvalue
of area with minimal uncertainty. Let us focus on the case in
which all the punctures on the boundary are given by
4-valents vertices of graph Γ, with two legs being inside
the boundary and the other two legs outside the boundary for
each 4-valents vertex as shown in Fig. 11. Then, the
entanglement EðΓajΓbÞ of the spin network is given by

EðΓajΓbÞ ¼
XP
c¼1

�X
jc

pjc lnð2jc þ 1Þ −
X
jc

pjc lnpjc

�
ð79Þ

based on Eq. (55), wherein each coherent intertwiner on the
4-valents vertex is cut as two parts linked by an internal edge

labeled by jc as shown in Fig. 7, with p̃jc being the
probability distribution of jc.
Now, let us adapt our discussion to the special case

jc1 ¼ jc2 ¼ jc3 ¼ jc4 which has been considered in our
numerical simulation. Then, one has

P
jc pjc lnð2jc þ 1Þ≈

lnð2jc0 þ 1Þ, with jc0 ≔ jjc1n̂c1 þ jc2n̂
c
2j ¼ j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2n̂1 · n̂2

p
≈P

jc jcpjc controlling the contribution of the coherent
intertwiner on puncture c to the area of the boundary B.
More explicitly, one has the entanglement

EðΓajΓbÞ ≈
XP
c¼1

�
lnð2jc0 þ 1Þ −

X
jc

pjc lnpjc

�
ð80Þ

and the expectation value of the area of boundary B,

ArðBÞ ¼ hΨΓjcArðBÞjΨΓi ≈ 8πβl2
pl

XP
c¼1

jc0; ð81Þ

by using Eq. (56). Let us fix ArðBÞ and suppose that all
punctures c given by 4-valents vertices are labeled by the
same coherent intertwiner; then, one has EðΓajΓbÞ ¼ P ·
ðlnð2jc0 þ 1Þ −Pjc pjc lnpjcÞ and ArðBÞ ≈ 8πβl2

plj
c
0 · P,

which lead to

EðΓajΓbÞ ≈
ArðBÞ
4l2

pl

ðlnð2jc0 þ 1Þ −Pjc pjc lnpjcÞ
2πβjc0

¼ ArðBÞ
4l2

pl

βc
β
; ð82Þ

where we defined

βc ≔
lnð2jc0 þ 1Þ

2πjc0
−
P

jc pjc lnpjc

2πjc0
: ð83Þ

FIG. 11. All the punctures on the boundary are given by
4-valents vertices of graph Γ, with two legs being inside the
boundary and the other two legs outside the boundary for each
4-valents vertex.
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Let us analyze that the parameter βc determined by
Eq. (83) can be controlled by jc0 ¼ jc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2n̂c1 · n̂

c
2

p
and

−
P

jc pjc lnpjc independently. First, for fixed n̂c1 · n̂
c
2, one

can notice that βc decreases with jc1 going large by using
Table III; then, for fixed jc0 ¼ jc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2n̂c1 · n̂

c
2

p
, the term

−
P

jc pjc lnpjc can be controlled by jc1 and n̂
c
1 · n̂

c
2 follow-

ing the results in Sec. III C 1. Thus, βc can be controlled by
jc1 and arccosðn̂c1 · n̂c2Þ, which describes the semiclassical
geometry of the polyhedra related to the coherent inter-
twiner. One may use some conditions for horizon to
constrain βc, to achieve a specific correction to the
Bekenstein-Hawking formula.
Finally, we can conclude that, for the spin network

puncturing a boundary by its vertices labeled by coherent
intertwiners, the entanglement entropy of such spin-
network state is not only determined by the area of the
boundary but also carries a quantum correction controlled
by the semiclassical geometry associated to the vertices on
the boundary.

V. CONCLUSION

The entanglements carried by the specific intertwiners
and spin networks are studied in previous sections. We first
review the relation between the boundary entanglement and
intertwiner entanglement and extend the result to the case
that the internal edge carries a spin superposition. Then, we
turn to consider the specific intertwiners on a four-valents
vertex, which is decomposed as two parts A and B attached
by the labels ðj1m1; j2m2Þ and ðj3m3; j4m4Þ, respectively.
By introducing the group averaging to the tensor-product-
type intertwiner on the four-valents vertex, we calculate
the entanglement entropy EðAjBÞ encoded in the group-
averaged tensor-product intertwiner with various weights.
The results show that, for the group-averaged tensor-
product intertwiner with highest (and lowest) weight, the
entanglement entropy is able to capture the main character
of the probability distribution pj of the recoupling spin j.
This result suggests considering the entanglement entropy
encoded in the gauge-invariant coherent intertwiners.
To compute the entanglement for coherent intertwiner, we

introduce the recoupling edges to decompose the coherent
intertwiner labeled by ðj1n̂1; j2n̂2Þ and ðj3n̂3; j4n̂4Þ. We find
that the entanglement for the coherent intertwiner is deter-
mined by the probability distribution pj of the spins j on the
recoupling edges of the coherent intertwiner, and the result of
entanglement EðAjBÞ is composed by the sum of two terms
EpðAjBÞ and E0ðAjBÞ. The first term EpðAjBÞ is just the
Shannon entropy of the distribution pj, while the second
term E0ðAjBÞ is the expectation value of lnð2jþ 1Þ with
respect to the distribution pj. Our results show that pj has a
peaknear j ¼ j0 ≡ jj1n̂1 þ j2n̂2j, which leads toE0ðAjBÞ ¼P

j pjSAj ≈ lnð2j0 þ 1Þ; especially, this peak shrinks relative
to the range of jwith the boundary spins j1, j2, j3, j4 getting

larger, and it also shrink with the angle arccosðn̂1 · n̂2Þ
decreasing. Thus, we find that EpðAjBÞ increases with the
angle arccos ðn̂1 · n̂2Þ getting larger, and the two terms
E0ðAjBÞ and EpðAjBÞ both increase no more than logarith-
mic growth with j1, j2, j3, j4 going large. Besides, we also
explain the geometric interpretation of j0, j1, j2, j3, j4 and
arccosðn̂1 · n̂2Þ, and thenwe analyze that the entanglement of
coherent intertwiner EðAjBÞ ≈ lnð2j0 þ 1Þ þ EpðAjBÞ can
be controlled by the local semiclassical geometry associated
to the vertex.
We further extend the analytical calculation part of

entanglement to the case of gauge-invariant coherent
intertwiner on a (PþQ)-valents vertex, which is also
separated as two parts A and B attached by ðj1; n̂1;
j2; n̂2;…; jP; n̂PÞ and ðj̃1; ˆ̃n1; j̃2; ˆ̃n2;…; j̃Q; ˆ̃nQÞ, respec-
tively. By introducing the recoupling edges to decompose
the gauge-invariant coherent intertwiner, we give the
probability distribution pj;j{;j̃{ of the spins j; j{; j̃{ on the
recoupling edges analytically and show that the entangle-
ment between A and B is determined by pj;j{;j̃{.
Moreover, we apply the previous results for coherent

intertwiner to the entanglement of spin networks.
Specifically, we consider the spin network puncturing a
boundary by its vertices labeled by coherent intertwiners
and fix the expectation value of area of the boundary. Our
results show that the entanglement of such spin-network

state can be evaluated by EðΓajΓbÞ ≈ ArðBÞ
4l2pl

βc
β in some

specific cases, where ArðBÞ is the area of the boundary

and βc ≔
lnð2jc

0
þ1Þ

2πjc
0

−
P

jc
pjc lnpjc

2πjc
0

is controlled by jc0 and pjc ,

which are related to the local semiclassical geometries
described by the coherent intertwiners. Thus, we can
conclude that the entanglement of spin networks is not
only determined by the area of the boundary but also
carries a quantum correction controlled by the semiclassical
geometry associated to the vertices on the boundary. In
fact, the entanglement for the quantum state of geometry in
the framework of LQG is also involved in the previous
literature [35–50], wherein the research accounts for
entanglement between bulk and boundary (i.e., isolated
horizon) quantum spacetime states. The difference between
the previous and present works can be phrased as the
previous literature being about entanglement between spin-
network states and the present paper being about entangle-
ment between semiclassical (coherent) states.
It is worth it to have some discussion on these results.

First, one should notice that the entanglement entropy
EðAjBÞ is given based on the gauge-invariant coherent
intertwiners, which belong to the gauge-invariant sub-
space of the total system HA ⊗ HB. Thus, EðAjBÞ
describes the entanglement between some gauge-invariant
degrees of freedom, e.g., the face-angle π − arccos n̂1 · n̂2.
Nevertheless, the appearance of the factor lnð2jþ 1Þ
comes from breaking the SUð2Þ gauge invariance, and
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the physical meaning of the factor lnð2jþ 1Þ depends on
how to define boundaries at the quantum level for non-
Abelian lattice gauge theories and LQG [57]. Different than
the SUð2Þ gauge breaking at the quantum level in the
present paper, the classical gauge-fixing scheme is used to
treat the gauge degrees of freedom on the inner boundary in
several previous works [35,45], and it may suggest us a new
treatment of the quantum gauge breaking.
Second, the entanglement between the legs of coherent

intertwiner is related to the face angle of the semiclassical
polyhedron. Recall that pj has a peak near j0 ≡ jj1n̂1 þ
j2n̂2j and this peak shrinks with the angle arccosðn̂1 · n̂2Þ
decreasing. Thus, the Shannon entropy EpðAjBÞ of
the distribution pj decreases with the face angle π −
arccosðn̂1 · n̂2Þ increasing. Nevertheless, one also notes
that another term E0ðAjBÞ ≈ lnð2j0 þ 1Þ in EðAjBÞ
increases with the face angle π − arccosðn̂1 · n̂2Þ increas-
ing. Hence, the entanglement EðAjBÞ may not have mono-
tonous dependency on the face angle π − arccosðn̂1 · n̂2Þ;
e.g., as shown in Table IV, EðAjBÞ increases first and then
decreases with the face angle π − arccosðn̂1 · n̂2Þ increasing
for j1 ¼ j2 ¼ j3 ¼ j4 ¼ 20.
Third, as we shown in Sec. III. A, we would like to

emphasize that the entanglement on the 2-vertex graph with
one link is independent on holonomy insertion [57].
In other words, the holonomy living along the edge
connecting these two vertices is irrelevant to the entangle-
ment entropy altogether. This property is attributed to the
observation that the holonomy can be eliminated by a
boundary unitary. This implies that the entanglement does
not distinguish between a 2-vertex graph and its coarse-
grained graph (single vertex) provided that there is only one
link. For the cases of two-vertices graph with multilinks,
the nontrivial loop is introduced, which should be viewed
as excitation of gauge curvature [64,65] or interpreted as
topological defect [66–68]. The related studies of entan-
glement for the cases can be found in Refs. [68,69].

Moreover, these results maybe also generalized to more
complicated coarse-grained models [51,54,55,57,69–72].
Finally, by combining the results in present paper and

that in previous works [40,45], one can conclude that the
black hole entropy is now predicted to be the logarithmic
corrections to the Bekenstein-Hawking area law, plus an
additional correction contribution arising from the semi-
lassical (coherent) states. Notice that the correction arising
from the semiclassical (coherent) states contains the unde-
termined Barbero-Immirzi parameter β, which implies that
the LQG has certain inherent incompleteness. Besides, the
correction arising from the semiclassical (coherent) states
also relies on the local semiclassical geometries on the
boundary, which may be fixed (or restricted) by introducing
some boundary conditions or considering (semiclassical)
dynamics of LQG. We would like to leave this to future
research.
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APPENDIX: RECOUPLING EXPANSION
OF COHERENT INTERTWINER

WITH ARBITRARY NUMBER OF LEGS

By introduce a recoupling edge labeled by spin j, the
coherent intertwiner jIi can be decomposed as

jIi ¼
Z
SUð2Þ

dg⨂
P

I¼1

gjjI; n̂Ii
Z
SUð2Þ

dhδðg−1hÞ⨂
Q

J¼1

hj̃J; ˆ̃nJjh−1

¼
X
j

ð2jþ 1Þ
Z
SUð2Þ

dg
Z
SUð2Þ

dh⨂
P

I¼1

gjjI; n̂Iitrjðg−1hÞ⨂
Q

J¼1

hj̃J; ˆ̃nJjh−1

¼
X
j

ð2jþ 1Þ
� Xj

m;k¼−j

Z
SUð2Þ

dg⨂
P

I¼1

gjjI; n̂Ii ⊗ hj; mjg−1jj; ki ⊗
Z
SUð2Þ

dhhj; kjhjj; mi⨂
Q

J¼1

hj̃J; ˆ̃nJjh−1
�

¼
X
j

ð2jþ 1Þ
� Xj

m;k¼−j
jIP; j; m; kihIQ; j; m; kj

�
; ðA1Þ

where
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jIP; j; m; ki ≔
Z
SUð2Þ

dg⨂
P

I¼1

gjjI; n̂Ii ⊗ hj; mjg−1jj; ki;

hIQ; j; m; kj ≔
Z
SUð2Þ

dhhj; kjhjj;mi⨂
Q

J¼1

hj̃J; ˆ̃nJjh−1 ðA2Þ

are projectors that send tensor representations to
recoupling representations; see the illustration in
Fig. 12.
One can further insert recoupling edges adapting to a

recoupling scheme for jIP; j; mi step by step. Following
the recoupling scheme illustrated in Fig. 13 and using
character formula for delta function

gjjmi⨂hj0m0jg−1

¼
Z
SUð2Þ

dhδðg−1hÞhjjmi⨂hj0m0jh−1

¼
X
j00

ð2j00 þ 1Þ
Z
SUð2Þ

dhtrj
00 ðhg−1Þhjjmi⨂hj0m0jh−1;

one can get

jIP;j;m;ki≔
Z
SUð2Þ

dg

�
⨂
P

I¼1

gjjI; n̂Ii
�
⊗ hj;mjg−1jj;ki

¼
X
j{1

ð2j{1 þ1Þ
Xj{1

m{1 ;k{1
¼−j{1

Z
SUð2Þ

dg⨂
P

I¼2

gjjI; n̂Ii · hj{1 ;m{1 jg−1jj{1 ;k{1i⊗ jj{1k{1m{1 ;j1n̂1;jmki

¼
X
j{1

X
j{2

ð2j{1 þ1Þð2j{2 þ1Þ
 Xj{1

m{1
;k{1¼−j{1

Xj{2
m{2

;k{2¼−j{2

Z
SUð2Þ

dg⨂
P

I¼3

gjjI; n̂Ii · hj{2 ;m{2 jg−1jj{2 ;k{2i

⊗ jj{2k{2m{2 ;j2n̂2;j{1m{1k{1i⊗ jj{1k{1m{1 ;j1n̂1;jmki
!

¼
X
j{1

X
j{2

…
X
j{p

ð2j{1 þ1Þð2j{2 þ1Þ…ð2j{p þ1Þ ·
 Xj{1

m{1
;k{1¼−j{1

Xj{2
m{2

;k{2¼−j{2

…
Xj{p

m{p ;k{p¼−j{p

jjPn̂P;jP−1n̂P−1;j{pm{pk{pi

⊗ jj{pk{pm{p ;jpn̂p;j{p−1m{p−1k{p−1i⊗…⊗ jj{2k{2m{2 ;j2n̂2;j{1m{1k{1i⊗ jj{1k{1m{1 ;j1n̂1;jmki
!

¼
X
j{1

X
j{2

…
X
j{p

ð2jþ1Þ−1 ·
Xj{1

m{1
;k{1¼−j{1

Xj{2
m{2

;k{2¼−j{2

…
Xj{p

m{p ;k{p¼−j{p

c
jP;jP−1;j{p
n̂P;n̂P−1;m{p

c
j{p ;jp;j{p−1
m{p ;n̂p;m{p−1

…c
j{2 ;j2;j{1
m{2

;n̂2;m{1
c
j{1 ;j1;j
m{1

;n̂1;m

· ðjjP;jP−1;j{p ;k{pi⊗ jj{p ;k{p ;jp;j{p−1 ;k{p−1i⊗…⊗ jj{2 ;k{2 ;j2;j{1 ;k{1i⊗ jj{1 ;k{1 ;j1;j;kiÞ ðA3Þ

with p ≔ P − 2, where we defined

FIG. 13. The illustration of recoupling spins for jIP; j; m; ki.

FIG. 12. The illustration of recoupling spin j for I.
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c
j{1 ;j1;j
m{1

;n̂1;m
≔

Xj{1
k0{1¼−j{1

Xj
k0¼−j

hj{1 ; k0{1 ; j1; j; k0jj{1k0{1m{1 ; j1n̂1; jmk0i; ðA4Þ

c
j{2 ;j2;j{1
m{2

;n̂2;m{1
≔

Xj{2
k0{2¼−j{2

Xj{1
k0{1¼−j{1

hj{2 ; k0{2 ; j2; j{1 ; k{1 jj{2k0{2m{2 ; j2n̂2; j{1m{1k
0
{1i; ðA5Þ

…; ðA6Þ

c
jP;jP−1;j{p
n̂P;n̂P−1;m{p

≔
Xj{p

k0{p¼−j{p

hjP; jP−1; j{p ; k0{p jjPn̂P; jP−1n̂P−1; j{pm{pk
0
{pi; ðA7Þ

and

jj{1k0{1m{1 ; j1n̂1; jmk0i ≔
Z
SUð2Þ

dggjj1; n̂1ihj{1k0{1 jgjj{1 ; m{1i · hj; mjg−1jj; k0i; ðA8Þ

jj{2k0{2m{2 ; j2n̂2; j{1m{1k
0
{1i ≔

Z
SUð2Þ

dggjj2; n̂2ihj{2 ; k0{2 jgjj{2 ; m{2i · hj{1m{1 jg−1jj{1 ; k0{1i; ðA9Þ

…; ðA10Þ

jjPn̂P; jP−1n̂P−1; j{pm{pk
0
{pi ≔

Z
SUð2Þ

dggjjP; n̂Pi ⊗ gjjP−1; n̂P−1ihj{p ; m{p jg−1jj{p ; k0{pi; ðA11Þ

with jj0; j00; j; ki ≔Pm0;m00 Cj0j00j
m0m00kjj0; m0i⨂jj00; m00i, jj0; k0; j00; j; ki ≔P

m00 Cj0j00j
k0m00kjj00; m00i. Similarly, as the illustration in

Fig. 14, one can expand

hIQ; j; m; kj ≔
Z
SUð2Þ

dhhj; kjhjj;mi⨂
Q

J¼1

hj̃J; ˆ̃nJjh−1

¼
X
j̃{1

ð2j̃{1 þ 1Þ
 Xj̃{1

m̃{1
;k̃{1¼−j̃{1

Z
SUð2Þ

dhhj̃{1 ; k̃{1 jhjj̃{1 ; m̃{1i⨂
Q

J¼2

hj̃J; ˆ̃nJjh−1 ⊗ hj̃{1m̃{1 k̃{1 ; j̃1 ˆ̃n1; jkmj
!

¼
X
j̃{1

X
j̃{2

…
X
j̃{q

ð2jþ 1Þ−1 ·
Xj̃{1

m̃{1
;k̃{1¼−j̃{1

Xj̃{2
m̃{2

;k̃{2¼−j̃{2

…
Xj̃{q

m̃{q ;k̃{q¼−j̃{q

c
j̃Q;j̃Q−1;j̃{q
ˆ̃nQ; ˆ̃nQ−1;m̃{q

c
j̃{q ;j̃q;j̃{q−1
m̃{q ; ˆ̃nq;m̃{q−1

…c
j̃{2 ;j̃2;j̃{1
m̃{2

; ˆ̃n2;m̃{1

c
j̃{1 ;j̃1;j

m̃{1
; ˆ̃n1;m

· ðhj̃Q; j̃Q−1; j̃{q ; k̃{q j ⊗ hj̃{q ; k̃{q ; j̃q; j̃{q−1 ; k̃{q−1 j ⊗ … ⊗ hj̃{2 ; k̃{2 ; j̃2; j̃{1 ; k̃{1 j ⊗ hj̃{1 ; k̃{1 ; j̃1; j; kjÞ ðA12Þ

with q ¼ Q − 2, where we defined

c
j̃{1 ;j̃1;j

m̃{1
; ˆ̃n1;m

≔
X
k̃0{1 ;k

0
hj̃{1m̃{1 k̃

0
{1 ; j̃1 ˆ̃n1; jk

0mjj̃{1 ; k̃0{1 ; j̃1; j; k0i;

ðA13Þ

c
j̃{2 ;j̃2;j̃{1
m̃{2

; ˆ̃n2;m̃{1

≔
X
k̃0{1 ;k̃

0
{2

hj̃{2m̃{2 k̃
0
{2 ; j̃2 ˆ̃n2; j̃{1 k̃

0
{1m̃{1 jj̃{2 ; k̃0{2 ; j̃2; j̃{1 ; k̃0{1i;

ðA14ÞFIG. 14. The illustration of recoupling spins for hIQ; j; m; kj.
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…; ðA15Þ

c
j̃Q;j̃Q−1;j̃{q
ˆ̃nQ; ˆ̃nQ−1;m̃{q

≔
X
k̃0{q

hj̃Q ˆ̃nQ; j̃Q−1 ˆ̃nQ−1; j̃{q k̃
0
{qm̃{q jj̃Q; j̃Q−1; j̃{q ; k̃

0
{qi; ðA16Þ

and

hj̃{1m̃{1 k̃
0
{1 ; j̃1 ˆ̃n1; jk

0mj ≔
Z
SUð2Þ

dg ⊗ hj; k0jgjj; mihj̃{1 ; m̃{1 jg−1jj̃{1 ; k̃0{1i ⊗ hj̃1; ˆ̃n1jg−1; ðA17Þ

hj̃{2m̃{2 k̃
0
{2 ; j̃2 ˆ̃n2; j̃{1 k̃

0
{1m̃{1 j ≔

Z
SUð2Þ

dghj̃{1 ; k̃0{1 jgjj̃{1 ; m̃{1ihj̃{2 ; m̃{2 jg−1jj̃{2 ; k̃0{2i ⊗ hj̃2; ˆ̃n2jg−1; ðA18Þ

…; ðA19Þ

hj̃Q ˆ̃nQ; j̃Q−1 ˆ̃nQ−1; j̃{q k̃
0
{q m̃{q j ≔

Z
SUð2Þ

dghj̃{q ; k̃0{q jgjj̃{q ; m̃{qihj̃Q; ˆ̃nQjg−1 ⊗ hj̃Q−1; ˆ̃nQ−1jg−1: ðA20Þ

Then, one has

jIi ¼
X
j

ð2jþ 1Þ
� Xj

m;k¼−j
jIP; j; m; kihIQ; j; m; kj

�
¼
X
j

X
j{1

X
j{2

…
X
j{p

X
j̃{1

X
j̃{2

…
X
j̃{q

ð2jþ 1Þ−1

· c
IP;IQ

j;j{;j̃{
·
Xj
k¼−j

Xj̃{1
k̃{1¼−j̃{1
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