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According to the Bañados-Silk-West (BSW) effect, two particles moving toward a black hole can collide
near the horizon with an unbounded energy in the center-of-mass frame. This requires one of the particles to
have fine-tuned parameters in such a way that the time component of generalized momentum is zero X ¼ 0.
Thus the existence of such trajectories is a necessary condition for the BSW effect. However, it is
insufficient since the forward-in-time condition requires X > 0 outside the horizon. We examine this
condition for different types of particles and horizons and find configurations for which the BSW effect is
possible. In doing so, we take into account a finite force of unspecified nature exerted on particles. It
includes relationships between numbers characterizing the rate with which four-velocity, acceleration, and
metric functions change near the horizon. For some aforementioned relations, parameters of a system
control the sign of X; in other cases they are required for X to be a real quantity. In the simplest case of free
particles the BSWeffect for the Kerr or Kerr-Newman black hole is impossible if a fine-tuned particle has a
negative energy, so in this sense a combination of the Penrose process and the BSW effect is forbidden.
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I. INTRODUCTION

If two particles collide in the vicinity of a black hole,
the energy Ecm in the center-of-mass frame can grow
unbounded, provided one of particles has fine-tuned param-
eters [1]. This is the Bañados-Silk-West (BSW) effect.
Originally, this was observed for free particles in the
background of a rotating black hole. However, the counter-
part of it exists also for static charged black holes [2] as well
as for a combination of electric charge and rotation [3].
Instead of considering the electromagnetic force, one can
scrutinize the effect of a force as such, not specifying its
nature. This helps to understand the nature of the BSW
effect, evaluate the role of gravitation radiation in the context
of the BSWeffect [4] (at least qualitatively, to the extent that
it can bemodeled by a force), take into account the influence

of the surrounding medium, etc. For nonextremal and
extremal black holes, this was done in [5] and [6]. A general
approach was developed in [7].
The key ingredient of the BSWeffect is the existence of a

fine-tuned trajectory. It is selected by the condition on the
time component of generalized momentum X ¼ 0 on the
horizon. [It is more direct than using the time component of
the four-velocity ut that would lead to a more complicated
classification; see Eq. (15) in [7].] Meanwhile, there is also
another condition that, to the best of our knowledge, was
overlooked or remained underappreciated. It consists in the
requirement dX=dr > 0 in the immediate vicinity of the
horizon to satisfy the forward-in-time condition for a fine-
tuned particle X > 0 outside the horizon. For a free moving
particle, this is an obvious constraint on its parameters but
even in this case it leads to meaningful consequences
restricting possible scenarios of the BSW effect that were
not noticed before (see below). The situation becomes
nontrivial when a force acts on a particle since in some
situations the sign of X outside the horizon cannot be
chosen arbitrarily and is determined by dynamics, so one is
led to the analysis of equations of motion. But even if this
sign can be imposed by hand, other constraints may exist
(for example, from the requirement that X should be a real
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quantity). In other words, nontrivial interplay between
kinematics and dynamics can occur in the vicinity of the
horizon as a factor selecting scenarios appropriate for the
BSW effect.
For example, for the Reissner-Nordsröm metric

X ¼ E − qQ
r , where E is the Killing energy, q being particle

charge, and Q a black hole mass. If we choose parameters
in such a way that E ¼ qQ=rh on a horizon r ¼ rh, the
fine-tuned (critical) trajectory does exist for qQ > 0. If
qQ < 0, it still exists for E < 0. However, this does not
save the matter since in the immediate vicinity of the
horizon X < 0 outside and thus the BSW effect cannot
occur. In principle, similar restrictions should be valid for
neutral particles in the rotating black hole background that
impose constraints on the behavior of acceleration and
other particle parameters on the horizon.
The main goal of our work is to find conditions which

have to be satisfied by the external force to have dX=dr > 0
in the vicinity of the horizon and analyze for which types of
particles this is in principle possible. To this end, in Sec. II
we develop a general approach and for particles moving in
the equatorial plane we relate the rate of change dX=drwith
the external force. In Sec. III we analyze all possible
distinct cases which give different expressions for dX=dr
and summarize which conditions are required to produce
the desired sign for dX=dr. In Sec. V we apply the
conditions developed in Sec. III to different types of
particles and analyze for which types this sign is controlled
by an external force and how to keep it positive by the
action of an external force.

II. GENERAL SETUP

We investigate the motion of particles in the background
of a rotating black hole which is described in the gener-
alized Boyer-Lindquist coordinates ðt; r; θ;φÞ by the metric

ds2 ¼ −N2dt2 þ gφφðdt − ωdφÞ2 þ dr2

A
þ gθθdθ2; ð1Þ

where all metric coefficients do not depend on t and φ. The
horizon is located at r ¼ rh where AðrhÞ ¼ NðrhÞ ¼ 0.
Near the horizon, we use a general expansion for the
functions N2, A, and ω:

N2¼ κpvpþoðvpÞ; A¼AqvqþoðvqÞ; ð2Þ

ω ¼ ωH þ ωkvk þ oðvkÞ; ð3Þ

where q, p, and k are numbers that characterize the rate of
change of the metric functions near the horizon,
and v ¼ r − rh.
If a particle is freely moving, the space-time symmetries

with respect to ∂t and ∂φ impose conservation of the
corresponding components of the four-momentum:

mut ¼ −E, muφ ¼ L. Here, E is energy, L is angular
momentum, m is particle mass, and uμ is the four-velocity.
We assume the symmetry with respect to the equatorial
plane and restrict ourselves to equatorial motion. Then, it
follows from equations of motion that the four-velocity of a
free-falling particle can be written in the following form:

uμ ¼
�
X
N2

; σ

ffiffiffiffi
A

p

N
P; 0;

L
gφφ

þ ωX
N2

�
; ð4Þ

where σ ¼ �1, X ¼ ϵ − ωL, ϵ ¼ E=m, L ¼ L=m and P is
given by

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφφ

�s
: ð5Þ

The forward-in-time condition states that ut > 0, where

X > 0 ð6Þ

outside the horizon. On the horizon itself X ¼ 0 is
admissible, and the corresponding particle (trajectory) is
fine-tuned. Additionally, we make an assumption that a
force which acts on the particle does not depend on t and φ.
Then, the expression (4) retains its form but with E and L
that can depend on r. In doing so, we take advantage of
some equations already derived in previous works, espe-
cially in [5]. (The case when a force can depend on t and φ
is also of interest since it can be relevant for a description
of dissipation effects or gravitational radiation but this case
is more complicated and is beyond the scope of the
present paper.)
For a description of motion near the horizon, one can

introduce the tetrad attached to an observer. To this end, it is
convenient to use the so-called zero angular momentum
observer (ZAMO) [8]. More precisely, we consider such an
observer for which r ¼ const and call it OZAMO (“orbital”
ZAMO) since both such an observer and fine-tuned particle
do not cross the horizon. As a result, components of
acceleration in this frame remain finite. Then, we rely
on Eq. (114) from [5]:

dX
dτ

¼ NaðtÞo −
dω
dτ

L: ð7Þ

According to Eq. (111) of [5],

aðtÞo ¼ N
X

"
Lffiffiffiffiffigϕp aðφÞo þ urffiffiffiffi

A
p aðrÞ0

#
: ð8Þ

Then, (7) is equivalent to
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dX
dτ

¼ N2

X

"
Lffiffiffiffiffigϕp aðφÞo þ urffiffiffiffi

A
p aðrÞ0

#
−
dω
dτ

L: ð9Þ

Due to the independence of t and φ, we have

dX
dτ

¼ dX
dr

ur;
dω
dτ

¼ dω
dr

ur; ð10Þ

where

dX
dr

¼ N2

X

"
aðrÞ0ffiffiffiffi
A

p þ Lffiffiffiffiffigϕp ur
aðφÞo

#
− Lω0ðrÞ: ð11Þ

Using (4), we can also rewrite it in the form

dX
dr

¼ N2

X
ffiffiffiffi
A

p
�
aðrÞ0 þ σ

LNffiffiffiffiffigϕp P
aðφÞo

�
− Lω0ðrÞ: ð12Þ

Now, we are interested in the question: when does the
fine-tuned particle become bad? By “bad” we imply that
dX
dr ðrhÞ < 0. Then, it is impossible to have XðrhÞ ¼ 0 since
in a small vicinity of the horizon in the outer region we
would have X < 0 in contradiction with the forward-in-
time condition (6).

A. Free particle: No Penrose effect
for a fine-tuned one

Let us consider a particularly important case when a
particle is free. We assume ω0 < 0 that is typical of
asymptotically flat metrics such as the Kerr and Kerr-
Newman ones. We obtain that for a “bad” particleL < 0. In
principle, a particle can have E < 0 due to the ergoregion
and we can achieve X ¼ 0 on the horizon due to L < 0.
However, in a small neighborhood of the horizon, (6) will
be violated. This means that near the horizon L > 0 for any
fine-tuned particle. In turn, this means that a fine-tuned
particle must have E > 0. As a fine-tuned particle is an
essential ingredient of the BSW effect, now this effect is
prohibited for fine-tuned particles with E < 0.
In the Penrose process particle 0 decays to two fragments

1 and 2, where particle 1 has a negative energy while
particle 2 escapes to infinity thus giving the energy gain [9].
It follows from what is said above that for a fine-tuned
particle the Penrose process is impossible.

III. GENERAL CASE

Now, let us consider the most general case when some
force acts on a particle. Our aim is to find such conditions
that near the horizon dX

dr > 0. To this end, we assume that
near the horizon expansions hold

N2 ¼ κpvp þ oðvpÞ; A ¼ Aqvq þ oðvqÞ; ð13Þ

ω ¼ ωH þ ωkvk þ oðvkÞ: ð14Þ

Additionally, we assume that near the horizon parame-
ters of a fine-tuned particle behave in such a way that

X ¼XsvsþoðvsÞ; L¼LHþLbvbþoðvbÞ; ð15Þ

so X obeys the condition XðrhÞ ¼ 0.
Acceleration near the horizon reads

aðrÞo ¼ �aðrÞo
�
n1
vn1 þ oðvn1Þ; ð16Þ

aðφÞo ¼ �aðφÞo
�
n2
vn2 þ oðvn2Þ: ð17Þ

For the four-velocity, using its normalization, one finds

ur ¼ −
ffiffiffiffi
A

p

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφ

�s
; ð18Þ

where the minus sign is chosen because the particle is
considered to be infalling. Near-horizon behavior of this
quantity was analyzed in [7]. Generally, this behavior may
be described by the quantity c, such that ur ≈ ðurÞcvc,
where c depends on quantity s. If 0 ≤ s ≤ p=2, then
c ¼ q−p

2
þ s. The case s > p=2 is impossible, because

the quantity ur would become complex. However, if
coefficients in expansion for X are chosen in such a way
that they satisfy the condition

X2 ¼ N2

�
1þ L2

gφ

�
plus v2cþp−q terms; ð19Þ

then ur ≈ ðurÞcvc where c may be any value, higher
then q=2.
Now let us analyze an expression (12) for dX

dr .
Substituting near-horizon expansions, one obtains

dX
dr

¼ sXsvs−1 ¼
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p vn1þp−q

2
−s

þ κp
Xs

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
vn2þp−c−s − LHkωkvk−1: ð20Þ

Thus we have three terms having the orders n1 þ p−
q
2
− s, n2 þ p − c − s, and k − 1. We have to analyze all the

cases when: only one from these terms is dominant, two
terms are of the same order, and all three terms are of the
same order. To cover all these situations, let us analyze
them case by case.
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A. First term is dominant

For this to be true, one has to have

n2 > n1 þ c −
q
2
; ð21Þ

k > n1 þ p −
q
2
þ 1 − s: ð22Þ

In this case, (20) becomes

sXsvs−1 ¼
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p vn1þp−q

2
−s: ð23Þ

From this equation, it follows that s has to satisfy the
condition

n1 ¼ 2sþ q
2
− p − 1: ð24Þ

Substituting this into (21) and (22), one obtains that these
conditions become

n2 > 2s − p − 1þ c; ð25Þ

k > s: ð26Þ

If it is so, then

sXs ¼
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p ⇒ ðXsÞ2 ¼

κp
s

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p : ð27Þ

One sees that in this case we can define only ðXsÞ2, and
thus a force does not control the sign of the Xs. However,

for Xs to be real, one has to require ðaðrÞ0 Þn1 > 0.

B. Second term is dominant

For this to be true, one has to have

n1 > n2 þ
q
2
− c; ð28Þ

k > n2 þ p − cþ 1 − s: ð29Þ

In this case, (20) becomes

sXsvs−1 ¼
κp
Xs

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
vn2þp−c−s: ð30Þ

From this equation it follows that s has to satisfy the
condition

n2 ¼ 2sþ c − p − 1: ð31Þ

Substituting this into (28) and (29), one gets

n1 > 2sþ q
2
− p − 1; ð32Þ

k > s: ð33Þ

If it is so, then

sXs ¼
κp
Xs

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
⇒ ðXsÞ2 ¼

κp
s

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
: ð34Þ

One sees that in this case we can define only ðXsÞ2, and
thus a force does not control the sign of the Xs. However,

for Xs to be real, one has to require
LHðaðϕÞo Þn2

ðurÞc > 0. As for

infalling particles ðurÞc < 0, signs of angular momentum
and angular components of acceleration have to be
different.

C. Third term is dominant

For this to be true, one has to have

n1 > k − 1þ q
2
− pþ s; ð35Þ

n2 > k − 1þ c − pþ s: ð36Þ

In this case, (20) becomes

sXsvs−1 ¼ −LHkωkvk−1: ð37Þ

From this equation it follows that s has to satisfy the
condition

s ¼ k: ð38Þ

Substituting this into (35) and (36), one gets

n1 > 2sþ q
2
− p − 1; ð39Þ

n2 > 2sþ c − p − 1: ð40Þ

If it is so, then

Xs ¼ −LHωk: ð41Þ

Xs will be positive if LHωk < 0 only. This condition is
the same as for the case of freely moving particles.
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D. First and second terms are dominant

For this to be true, one has to have

n2 ¼ n1 þ c −
q
2
; ð42Þ

k > n1 þ p −
q
2
þ 1 − s: ð43Þ

In this case, (20) becomes

sXsvs−1 ¼
κp
Xs

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5vn1þp−q

2
−s: ð44Þ

From this equation it follows that s has to satisfy the
condition

n1 ¼ 2sþ q
2
− p − 1: ð45Þ

Substituting this into (42) and (43), one gets

n2 ¼ 2sþ c − p − 1; ð46Þ

k > s: ð47Þ

If it is so, then

sXs ¼
κp
Xs

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5⇒ ðXsÞ2

¼ κp
s

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5: ð48Þ

One sees that in this case we can define only ðXsÞ2, and
thus we cannot control the sign of the Xs. However, for Xs

to be real, one has to require
ðaðrÞ

0
Þn1ffiffiffiffi
Aq

p þ LHðaðϕÞo Þn2ffiffiffiffiffiffi
gϕH

p ðurÞc > 0.

E. All three terms are of the same order

Now let us analyze this case. We postpone the analysis
of two additional cases when the first and third terms
and second and third terms are dominant. Motivation for
this is that these cases could be obtained from the case
when all three terms are of the same order after taking
several parameters to zero. For this to be true, one has
to have

n2 ¼ n1 þ c −
q
2
; ð49Þ

n1 ¼ kþ q
2
− pþ s − 1: ð50Þ

In this case, (20) becomes

sXsvs−1 ¼
0
@κp
Xs

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5

− LHkωk

1
Avn1þp−q

2
−s: ð51Þ

From this equation it follows that s has to satisfy the
condition

n1 ¼ 2sþ q
2
− p − 1: ð52Þ

Substituting this into (49) and (50), one gets

n2 ¼ 2sþ c − p − 1; ð53Þ

k ¼ s: ð54Þ

If it is so, then

sXs ¼
κp
Xs

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5 − LHkωk: ð55Þ

Multiplying by Xs, one obtains

sðXsÞ2þkLHωkXs−κp

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5¼ 0:

ð56Þ

Solving this equation, we find

Xs ¼ −
kLHωk

2s
�

ffiffiffiffi
D

p

2s
; ð57Þ

where

D ¼ ðkLHωkÞ2 þ 4sκp

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5: ð58Þ

To analyze what signs these roots can have, let us
introduce

a¼ kLHωk

2s
; b¼ κp

s

2
4�aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc

3
5; ð59Þ

thus the solution under discussion becomes
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Xs ¼ −a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
: ð60Þ

If b > 0, then, independently on the sign of a, one of the
roots is positive. But if b < 0, then one of the roots is
positive only if a < 0. These conditions mean that if�

aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
> 0; ð61Þ

then positive Xs exists independently on LHωk. However, if�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
< 0; ð62Þ

then positive Xs exists only if LHωk < 0. Additionally, we
have to mention that if�

aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p þ

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
¼ 0; ð63Þ

then there is only one root

Xs ¼ −2a: ð64Þ
This root is positive if LHωk < 0 only.

F. First and third terms are dominant

For this to be true, one has to have

n1 ¼ kþ q
2
− pþ s − 1; ð65Þ

n2 > kþ c − 1 − pþ s: ð66Þ
In this case, (20) becomes

sXsvs−1 ¼
 
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p − LHkωk

!
vn1þp−q

2
−s: ð67Þ

From this equation it follows that s has to satisfy
condition

n1 ¼ 2sþ q
2
− p − 1: ð68Þ

Substituting this into (65) and (66), one gets

n2 > 2sþ c − p − 1; ð69Þ
k ¼ s: ð70Þ

If it is so, then

sXs ¼
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p − LHkωk: ð71Þ

Multiplying by Xs (only if Xs ≠ 0), one obtains

sðXsÞ2 þ kLHωkXs − κp

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p ¼ 0: ð72Þ

The solution of this equation is

Xs ¼ −a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
;

where

a ¼ kLHωk

2s
; b ¼ κp

s

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p : ð73Þ

One sees that this solution is similar to the case when all
three roots are of the same order, but with a slight change of
coefficient b. Following the lines, we see that if

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p > 0; ð74Þ

then positive Xs exists independently on LHωk. However, if�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p < 0; ð75Þ

then positive Xs exists only if LHωk < 0. Additionally, we
have to mention that if

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p ¼ 0; ð76Þ

then there is only one root

Xs ¼ −2a: ð77Þ

This root is positive only if LHωk < 0.

G. Second and third terms are dominant

For this to be true, one has to have

n2 ¼ kþ c − 1 − pþ s; ð78Þ

n1 > kþ q
2
− pþ s − 1: ð79Þ

In this case, (20) becomes

sXsvs−1 ¼
 
κp
Xs

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
− LHkωk

!
vn2þp−c−s: ð80Þ
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From this equation it follows that s has to satisfy the
condition

n2 ¼ 2sþ c − p − 1: ð81Þ
Substituting this into (78) and (79), one gets

n1 > 2sþ q
2
− p − 1; ð82Þ

k ¼ s: ð83Þ

If it is so, then

sXs ¼
κp
Xs

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
− LHkωk: ð84Þ

Multiplying by Xs (only if Xs ≠ 0), one obtains

sðXsÞ2 þ kLHωkXs − κp
LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
¼ 0: ð85Þ

The solution of this equation is

Xs ¼ −a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
;

where

a ¼ kLHωk

2s
; b ¼ κp

s

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
: ð86Þ

One sees that this solution is similar to the case when all
three roots are of the same order, but with a slight change of
coefficient b. Following the same analysis as in the
previous case, we see that if

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
> 0; ð87Þ

then positive Xs exists independently on LHωk. However, if

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
< 0; ð88Þ

then positive Xs exists only if LHωk < 0. Additionally, we
have to mention that if

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
¼ 0; ð89Þ

then there is only one root

Xs ¼ −2a: ð90Þ

This root is positive only if LHωk < 0.

We summarize all the possible cases in Table I.

IV. PARTICULAR CASES

A. Radial acceleration

Let us also derive general relations in the case when

acceleration has only the radial component aðrÞo ≠ 0,

whereas aðϕÞo ¼ 0. Behavior of dX
dr in this case can be found

using the results we previously obtained. Indeed, if

aðϕÞo ¼ 0 then (20) becomes

sXsvs−1 ¼
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p vn1þp−q

2
−s − LHkωkvk−1: ð91Þ

Thus, we have only two terms, which we have to
compare. If n1 < n�1 ≡ kþ q

2
þ s − p − 1, then the first

term is dominant. This case was already analyzed and is
presented by the first line in Table I. If n1 ¼ n�1, then both
terms are of the same order and this case corresponds to the
fifth line in Table I. If n1 > n�1 ¼ kþ q

2
þ s − p − 1, then

the second term is dominant and this case corresponds to
the third line in Table I.

B. Angular acceleration

In the opposite case aðrÞo ¼ 0, aðϕÞo ≠ 0. Then, (20)
becomes

sXsvs−1 ¼
κp
Xs

LH

�
aðϕÞo
�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
vn2þp−c−s − LHkωkvk−1:

If n2 < n�2 ≡ kþ c − 1 − pþ s, the first terms is dom-
inant and this corresponds to the second line in Table I. If
n2 ¼ n�2, both terms are of the same order and this
corresponds to the sixth line in Table I. If n2 > n�2, the
second term is dominant and this corresponds to the third
line in Table I.
The case of pure angular acceleration was already

considered in Sec. V C of [5] for a particular case of
extremal black holes. It corresponds to p ¼ q ¼ 2,
b ¼ 1 ¼ k ¼ n2, so n�2 ¼ 0 and n2 > n�2 (where n�2 is the
value of the degree n2 from Ref. [5]).

C. Static space-time

For static space-times there is no ω and (20) becomes

sXsvs−1 ¼
κp
Xs

�
aðrÞ0

�
n1ffiffiffiffiffiffi

Aq
p vn1þp−q

2
−sþ κp

Xs

LH

�
aðϕÞo

�
n2ffiffiffiffiffiffiffiffigϕH

p ðurÞc
vn2þp−c−s:

ð92Þ

As one can see, the terms on the right-hand side are the
same as the first and second terms in (20). Then, the results
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of Sec. III D apply. According to Table I, for all these cases
a force does not control the sign of Xs. In [10] the particular
case of the Schwarzschild black hole with a radial force
acting on a particle was considered. There, the sign of
acceleration was chosen by hand to ensure the existence of
critical trajectories but the question about the sign of dX=dr
was not posed. Now, we are making the second step
describing this issue.

V. DIFFERENT TYPES OF PARTICLES

Now let us consider different types of particles and how
the possibility of having positive dX=dr is related to the
type of a particle. For this we have to review main
properties of different types of particles. As was said in
Sec. III, they differ by the relation between numbers s and
c. Namely, for subcritical particles 0 < s < p

2
, c ¼ sþ q−p

2
,

for critical s ¼ p
2
, c ¼ q

2
, for ultracritical s ¼ p

2
, c > q

2
(see

Table 1 in [7]). Now let us apply this to the analysis of
different cases to elucidate when a force controls the sign of

dX=dr. As follows from Table I, this is possible only in
cases when either only the third term is dominant; or if first
and second, first, and third or second and third terms are
dominant; or if all three terms are of the same order. Thus
we have to consider which conditions we obtain for each of
these cases for different types of particles. Also note that
one can additionally add the requirement of finiteness of
external forces (namely, requiring n1;2 ≥ 0), but extensive
analysis of the conditions required to produce a finite force
was already done in [7] (see Tables IV–VI in there), so we
will not repeat them here. Only in the next section we will
provide this analysis for different types of horizons and
show that it correlates with the results in [7].

A. Third term is dominant

The third term is dominant if n1 > 2sþ q
2
− p − 1,

n1 > 2sþ c − p − 1, and k ¼ s.
For subcritical particles c ¼ sþ q−p

2
, thus conditions for

n1;2 become

TABLE I. Table showing which conditions have to hold for different terms to be dominant in the expression for dXdr
and under which conditions this quantity is positive. Here, the first term means the term with the radial acceleration
in Eq. (12), the second one corresponds to coupling between the angular acceleration and angular momentum there,
and the third term does not contain acceleration and arises entirely due to the angular momentum. We denoted

b ¼ κp
s

�
ðaðrÞ

0
Þn1ffiffiffiffi
Aq

p þ LHðaðϕÞo Þn2ffiffiffiffiffiffi
gϕH

p ðurÞc

�
.

Dominant terms Restrictions on n1, n2, k Conditions for Xs > 0 Conditions for real Xs

First n1 ¼ 2sþ q
2
− p − 1 � � � ðaðrÞ0 Þn1 > 0

n2 > 2sþ c − p − 1
k > s

Second n1 > 2sþ q
2
− p − 1 � � � LHðaðϕÞo Þn2

ðurÞc > 0
n2 ¼ 2sþ c − p − 1

k > s

Third n1 > 2sþ q
2
− p − 1 LHωk < 0 � � �

n2 > 2sþ c − p − 1
k ¼ s

First and second n1 ¼ 2sþ q
2
− p − 1 � � � ðaðrÞ

0
Þn1ffiffiffiffi
Aq

p þ LHðaðϕÞo Þn2ffiffiffiffiffiffi
gϕH

p ðurÞc > 0n2 ¼ 2sþ c − p − 1
k > s

First and third n1 ¼ 2sþ q
2
− p − 1 ðaðrÞ

0
Þn1ffiffiffiffi
Aq

p > 0 or if
� � �

n2 > 2sþ c − p − 1 ðaðrÞ
0
Þn1ffiffiffiffi
Aq

p ≤ 0

k ¼ s and LHωk < 0

Second and third n1 > 2sþ q
2
− p − 1 LHðaðϕÞo Þn2ffiffiffiffiffiffi

gϕH
p ðurÞc > 0 or if

� � �

n2 ¼ 2sþ c − p − 1 LHðaðϕÞo Þn2ffiffiffiffiffiffi
gϕH

p ðurÞc ≤ 0

k ¼ s and LHωk < 0

First, second, and third n1 ¼ 2sþ q
2
− p − 1 b > 0 or if � � �

n2 ¼ 2sþ c − p − 1 b ≤ 0 and LHωk < 0
k ¼ s
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n1 > 2sþ q
2
− p − 1; ð93Þ

n2 > 2sþ q
2
− p − 1þ

�
s −

p
2

�
: ð94Þ

As for subcritical particles s < p
2
, the lower bound for n2

has to be smaller then the lower bound for n1. However, the
conditions themselves do not tell which number is greater,
so there may exist any relation between them. However, it
is obvious that, as for subcritical particles 0 < s, inde-
pendently on the exact value of s holds n1 >

q
2
− p − 1,

n2 >
q
2
− 3p

2
− 1. Condition k ¼ s gives us for subcritical

particles 0 < k ¼ s < p
2
. Thus, summarizing, for subcritical

particles n1 and n2 are unrelated, but n1 >
q
2
− p − 1;

n2 >
q
2
− 3p

2
− 1. Additionally 0 < k ¼ s < p

2
.

For critical particles s ¼ p
2
and c ¼ q

2
. Substituting this

into conditions on n1;2, one gets

n1 >
q
2
− 1; ð95Þ

n2 >
q
2
− 1: ð96Þ

One sees that the lower bounds for both n1;2 are the
same, but conditions do not restrict which number has to be
greater. Summarizing, for critical particles, n1 and n2 are
unrelated but n1;2 >

q
2
− 1. Additionally k ¼ p

2
.

For ultracritical particles s ¼ p
2
, c > q

2
. Conditions for

n1;2 give

n1 >
q
2
− 1; ð97Þ

n2 > c − 1: ð98Þ

In this case, the lower bound for n1 is smaller, but the
relation between these numbers is not restricted, so that for
ultracritical particles n1 and n2 are unrelated, but
n1 >

q
2
− 1, n2 > c − 1. Additionally, k ¼ p

2
.

B. First and third terms are dominant

The first and second terms are dominant if
n1 ¼ 2sþ q

2
− p − 1, n2 > 2sþ c − p − 1, k ¼ s.

For subcritical particles c ¼ sþ q−p
2
, thus conditions for

n1;2 become

n1 ¼ 2sþ q
2
− p − 1; ð99Þ

n2 > 2sþ q
2
− p − 1þ

�
s −

p
2

�
: ð100Þ

From these conditions we see that n2 > n1 þ ðs − p
2
Þ. As

s < p
2
, we see that from this condition does not follow what

is greater: n1 or n2, but for them has to follow
n1 >

q
2
− p − 1, n2 >

q
2
− 3p

2
− 1. Thus for subcritical par-

ticles n1 and n2 are unrelated, but n1 >
q
2
− p − 1,

n2 >
q
2
− 3p

2
− 1. Additionally 0 < k ¼ s < p

2
.

For critical particles s ¼ p
2
and c ¼ q

2
and conditions for

n1;2 become

n1 ¼
q
2
− 1; ð101Þ

n2 >
q
2
− 1: ð102Þ

Thus we see, that for them holds n2 > n1. So, for critical
particles n2 > n1 ¼ q

2
− 1. Additionally, k ¼ p=2.

For ultracritical s ¼ p
2
, c > q

2
. Thus conditions for n1;2

become

n1 ¼
q
2
− 1; ð103Þ

n2 > c − 1: ð104Þ

As c > q
2
, we see that n2 > n1. Thus, for ultracritical

particles n2 > n1 ¼ q
2
− 1. Additionally, k ¼ p=2.

C. Second and third terms are dominant

The second and third terms are dominant if
n1 > 2sþ q

2
− p − 1, n2 ¼ 2sþ c − p − 1, k ¼ s.

For subcritical particles the conditions for n1;2 become

n1 > 2sþ q
2
− p − 1; ð105Þ

n2 ¼ 2sþ q
2
− p − 1þ

�
s −

p
2

�
: ð106Þ

Combining these conditions we have n1 > n2 þ ðp
2
− sÞ.

As s < p
2

we see that n1 > n2. Thus, for subcritical

particles n1 > n2 and n1 >
q
2
− p − 1, n2 >

q
2
− 3p

2
− 1.

Additionally, 0 < k ¼ s < p
2
.

For critical particles conditions for n1;2 become

n1 >
q
2
− 1; ð107Þ

n2 ¼
q
2
− 1: ð108Þ

One can see that n1 > n2. Thus summarizing, for
critical particles n1 > n2 and n1 >

q
2
− 1, n2 ¼ q

2
− 1.

Additionally, k ¼ s ¼ p
2
.

For ultracritical particles s ¼ p
2
and c > q

2
, so the con-

ditions for n1;2 become
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n1 >
q
2
− 1; ð109Þ

n2 ¼ c − 1: ð110Þ

As c > q
2
, n2 >

q
2
− 1 and we see that n1 and n2 are

unrelated. Thus, for ultracritical particles n1 and n2 are
unrelated, but n1;2 >

q
2
− 1. Additionally k ¼ p

2
.

D. All three terms are of the same order

All three terms are of the same order if n1 ¼ 2sþ
q
2
− p − 1, n2 ¼ 2sþ c − p − 1, k ¼ s.
For subcritical particles the conditions for n1;2 become

n1 ¼ 2sþ q
2
− p − 1; ð111Þ

n2¼ 2sþq
2
−p−1þ

�
s−

p
2

�
¼ n1þ

�
s−

p
2

�
: ð112Þ

As s < p
2
, we see that n2 < n1. Thus summarizing, for

subcritical particles n1 > n2 and n1 >
q
2
− p − 1,

n2 >
q
2
− 3p

2
− 1. Additionally, 0 < k ¼ s < p

2
.

For critical particles,

n1 ¼
q
2
− 1 ¼ n2; ð113Þ

so that for critical particles n1 ¼ n2 ¼ q
2
− 1. Additionally,

k ¼ s ¼ p
2
.

For ultracritical particles s ¼ p
2
, c > q

2
. Then, the con-

ditions for n1;2 become

n1 ¼
q
2
− 1; ð114Þ

n2 ¼ c − 1: ð115Þ

As c > q
2
, we have n2 > n1. Thus we have that for

ultracritical particles n2 > n1 ¼ q
2
− 1. Additionally,

k ¼ s ¼ p
2
.

VI. ANALYSIS FOR DIFFERENT TYPES
OF HORIZONS

We summarize all these cases in Table II. Now let us
investigate for what types of horizons and what types of
particles constraints arise that control the sign of Xs.

A. Nonextremal horizon

For nonextremal horizons q ¼ p ¼ 1. We will show that
for all types of particles for such horizons a finite force does
not control the sign of Xs. As we have shown in the
previous section, in all cases when a force controls the sign
of Xs, condition k ¼ s has to hold. As for subcritical
particles 0 < s < p=2, we see that k has to be less than 1,
which is forbidden as we consider only integers in Taylor
expansions of metric functions. For critical and ultracritical
particles the situation is familiar: k ¼ s ¼ p=2 < 1.

B. Extremal horizon

For extremal horizons q ¼ 2, p ≥ 2. In this case it is in
principle possible to have k ¼ s. Note that the third term
may always be dominant if k ¼ s. If the first and third are
dominant, then condition

n1 ¼ 2sþ q
2
− p − 1 ð116Þ

should be fulfilled.
For subcritical particles this quantity is negative (because

q ¼ 2 and s < p=2); that means that the force has to
diverge. But for critical and ultracritical particles n1 ¼ 0
and force is finite.
The second and third terms are dominant if

n2 ¼ 2sþ c − p − 1: ð117Þ

For subcritical particles

c¼ sþq−p
2

; n2¼ 2sþq
2
−p−1þ

�
s−

p
2

�
: ð118Þ

We see, that as q ¼ 2 and s < p=2 for them, then n2 < 0.
However, for critical and subcritical particles c ≥ q

2
and n2

is non-negative.
If all three terms are of the same order, all previous

conditions have to hold. To conclude, we see that in the

TABLE II. Table showing how n1 and n2 are related for different types of particles and different dominant terms.

Subcritical Critical Ultracritical

Third term n1 and n2 are not related n1 and n2 are not related n1 and n2 are not related
First and third term n1 and n2 are not related n2 > n1 n2 > n1
Second and third term n1 > n2 n1 > n2 n1 and n2 are not related
First, second and third term n1 > n2 n1 ¼ n2 n2 > n1
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case when a force is absent (or if it is quite small near the
horizon, so that the third term is dominant) one can control
the sign of Xs for any type of particle. However, if the force
is high enough, then it becomes possible only for critical
and ultracritical particles.

C. Ultra-extremal horizon

For ultra-extremal horizons (p ≥ 2, q ≥ 3) there is no
special restriction and all types of particles may have
controllable Xs. Thus we see that if the force is small
enough (or absent) such that the third term is dominant,
then we can control the sign of dX=dr for all types of
particles if the horizon is extremal or ultra-extremal. If a
force becomes higher in such a way that it starts to change
the dynamics of a system (corresponding conditions for this
to happen are given in the last three lines in Table I), we can
control the sign of dX=dr for subcritical particles only if the
horizon is ultra-extremal, and for critical and ultracritical
only if the horizon is extremal or ultra-extremal. Note that
in our previous work where we analyzed for which fine-
tuned particles and which types of horizons it is possible to
have finite forces, we obtained the same set of combina-
tions of types of particles and types of horizons (see
Table VIII in [7]), except for the case when a force is
absent [as was mentioned after Eq. (60) in [7]; such cases
were not analyzed there].

VII. CONCLUSIONS

In this work we scrutinized self-consistent dynamics of
fine-tuned particles in the vicinity of the horizon. As such a
type of particle is a necessary ingredient of the BSWeffect;
self-consistent solutions of equations of motion give us the
condition when this effect does exist. In doing so, we have

analyzed which constraints the presence of a force imposes
on the sign of X for fine-tuned particles. We have
established general relations between kinematic properties
of a particle (energy, angular momentum) and dynamic
ones (forces in different directions). This has a crucial
consequence for the existence (or nonexistence) of the
BSW effect. As on the horizon itself X ¼ 0 for fine-tuned
particles, near the horizon we examined how the sign of
dX=dr (or the first nonvanishing derivative on the horizon)
is related to the acceleration and properties of the metric.
Term-by-term analysis has shown that the sign of dX=dr is
controlled by force only if several conditions hold: if the
rate of change of the metric coefficient ω is the same as
the rate of change of X near the horizon (k ¼ s) and if the
forces satisfy the conditions listed in Table I. In addition,
there is the case of freely moving particles (or particles, for
which a force near the horizon is negligibly small), for
which the relation LHωk < 0 is required. In some cases,
there are no constraints on sign but there are constraints that
are necessary for X to be a real quantity.
We analyzed which conditions hold for different types of

particles. We have found that for all types of particles one is
led in general to control the sign of dX=dr, but not for all
types of horizons. For example, we have shown that for
nonextremal horizons there are no restrictions that control
the sign of dX=dr; for extremal it happens only for critical
and ultracritical particles (if the force is in some sense high
enough) or for all types of particles (if the force is absent or
small enough), and for ultracritical it is irrelevant.
Our results show that there is a nontrivial interplay

between kinematics and dynamics in determining under
which configurations the BSW effect is possible when
particles experience the action of a force.
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