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We study time symmetric initial data for asymptotically anti–de Sitter spacetimes with conformal
boundary containing a spatial circle. Such d-dimensional initial datasets can contain (d − 2)-dimensional
minimal surfaces if the circle is contractible. We compute the minimum energy of a large class of such
initial data as a function of the area A of this minimal surface. The statement E ≥ EminðAÞ is analogous to
the Penrose inequality which bounds the energy from below by a function of the area of a (d − 1)-
dimensional minimal surface.
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I. INTRODUCTION

One of themajormilestones in the development of general
relativity was the proof of the positive energy theorem. This
was first established for asymptotically flat spacetimes [1,2]
and later generalized to asymptotically anti–de Sitter (AdS)
spacetimes with the standard Sd−1 × R boundary conditions
[3–5]. However, it was noticed that, if the conformal AdS
boundary contains a spatial circle, there are solutions with
energy lower than AdS itself. The (negative energy) AdS
solitonwas conjectured to be the lowest energy solutionwith
S1 × Rd−1 boundary [6], and this has recently been proven
[7] (for time symmetric, topologically Rd, initial data).
An interesting consequence of (spatially compact) con-

formal boundaries with a spatial circle is that the initial data
always contains a codimension two minimal surface when
this circle is contractible. We investigate the minimum
energy of initial data as a function of the area of this
minimal surface. We focus on the vacuum Einstein equa-
tion with a negative cosmological constant Λ < 0. As one
expects that minimal energy solutions are static, or at least
have a time symmetric surface, we will focus on initial
data with time reflection symmetry. The only constraint on
d-dimensional, time symmetric initial data is R ¼ 2Λ,
where R is the scalar curvature of the spatial metric. One
also expects them to have some spatial symmetry.
This bound on the energy is analogous to the well-known

(time symmetric) Penrose inequality [8,9], which states that
the energy is always bounded from below by a function of
the area of a minimal surface. The key difference is that, in
the Penrose inequality, the minimal surface has codimen-
sion one in the initial data.
We start in Sec. II with AdS4 initial data (d ¼ 3) with

boundary S1 × S1. We numerically explore a large class of
solutions to the constraint with a minimal S1 of length L

and compute their energies. From these data, we determine
a minimum energy EminðLÞ for all solutions with a given L.
There is one value of L which corresponds to the AdS
soliton and gives a static solution. We compute EminðLÞ and
find that it starts at zero, decreases to a minimum at the AdS
soliton value, and then increases like L3 for large L. Even
though the relative size of the two boundary circles,
parametrized by s, is a conformal invariant labeling different
boundary conditions, EminðLÞ depends on s only through a
simple rescaling. The statement that E ≥ EminðLÞ for initial
data with a minimal circle of length L can be viewed as a
refined version of the statement that the AdS soliton has
minimum energy.
We next explore asymptotically AdS5 solutions with

spatial boundary S1 × S2. There is again a one-parameter
family of such boundary conditions described by the
relative size s of the S1 and S2. Static solutions with these
boundary conditions were found in [10]. It was shown that
there is always a static solution where the S1 is not
contractible, and if s is small enough, there are two
solutions where it is, and there are minimal S2’s. The
solution with larger minimal sphere always has lower
energy. In Sec. III we consider time symmetric initial data
with these boundary conditions. For any s, we investigate a
large class of initial data with a minimal sphere of any size
A. We compute their energy and derive a curve EminðAÞ for
several values of s. EminðAÞ always grows for large A like
sA2. For s large enough that there are no static solutions
with minimal spheres, EminðAÞ monotonically increases for
all A. For smaller s, the shape of the curve EminðAÞ is
determined by the areas of the two minimal surfaces, A1

and A2 > A1, in the static solutions: EminðAÞ initially
increases and has a local maximum at A1, then decreases
with a (possibly local) minimum at A2, and then increases
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again indefinitely. The minimum at A2 is a global minimum
except for a narrow range of s of order one.
The fact that the extrema of the curve coincide with the

static solutions (in both the AdS4 case and the AdS5 case)
can be understood from the theorem that static solutions
always extremize the energy [11]. This means that we can
obtain some information about the structure of EminðAÞ just
by looking at the known static solutions.
Although our curves EminðLÞ and EminðAÞ are obtained

numerically by sampling a large class of initial data, we
believe they provide a good approximation to the true lower
bound on the energy for a given size minimal surface. If a
metric contains more than one minimal surface, our bound
applies to the one with smallest area—we always refer to
the globally minimal surface. Although we only consider
the vacuum equations, it is plausible that these same bounds
hold for gravity coupled to matter satisfying the dominant
energy condition.
We conclude in Sec. IV with a discussion of some open

problems.

II. ENERGY INEQUALITY IN ADS4

Consider AdS4 with conformal boundary

ds2j
∂M ¼ −dt2 þ dχ2 þ dθ2; ð2:1Þ

where θ has periodicity 2π and χ has periodicity s. Since
this is a conformal boundary, only the relative size matters,
and we have chosen a conformal frame where the θ circle
has unit radius.
When the χ circle is smaller than the θ circle (s < 2π),

the ground state with this conformal boundary is given by
the AdS soliton [6], with the metric given by

ds2 ¼ 1

z2

�
−dt2 þ dz2

fðzÞ þ fðzÞdχ2 þ dθ2
�
; ð2:2Þ

where

fðzÞ ¼ 1 −
z3

z30
; s ¼ 4π

3
z0; ð2:3Þ

and we have set the AdS radius to one. In these coordinates,
z ¼ 0 is the conformal boundary. Relative to the pure AdS
solution, this AdS soliton has negative energy1

E ¼ −
s

16πz30
× 2π ¼ −

8π3

27s2
; ð2:4Þ

where the factor of 2π comes from the periodicity of the θ
circle. For s > 2π, the ground state is given by the same

solution but with χ and θ swapped. In other words, the
ground state for any s is an AdS soliton where the smaller
of the two circles pinches off in the bulk.
The momentum constraint for time symmetric initial data

is automatically satisfied, and the Hamiltonian constraint is
given simply by

R ¼ 2Λ; ð2:5Þ

where R is the Ricci scalar of the d-dimensional metric at
t ¼ 0 and Λ is the cosmological constant, in this case
negative. One expects minimum energy solutions to have
spatial symmetries. Since we want to minimize the energy,
we consider time symmetric initial data with Uð1Þ2
symmetry. The most general such metric takes the form2

ds2 ¼ 1

z2

�
dz2

αðzÞβðzÞ þ αðzÞdχ2 þ dθ2
�
; ð2:6Þ

where αðzÞ has an asymptotic expansion

αðzÞ ¼ 1þOðz3Þ: ð2:7Þ

There are infinitely many corner conditions that the
asymptotic expansion of the initial data must satisfy if
we want the full Lorentzian evolution to be C∞ [12–15].
For example, the static boundary condition (2.1) com-
pletely fixes the metric at orders z, z2, and z4, while the
metric at order z3 is free and determines the total energy.
Imposing (2.7) only ensures that the energy is finite, but
does not ensure the smoothness of the full Lorentzian
metric. This means that our proposed energy inequality is
not restricted to smooth spacetimes.
A nice feature of the choice of the ansatz (2.6) is that the

Hamiltonian constraint takes the form

αð−6β þ 2zβ0Þ − 1

2
zðzα0β0 þ βð−8α0 þ 2zα00ÞÞ ¼ −6:

ð2:8Þ

Note that this is a first-order ordinary differential equation
(ODE) for βðzÞ, so we can easily solve for βðzÞ for any
given αðzÞ. Since there is only one asymptotic region, one
of the circles must be contractible in the interior, and we are
parametrizing that by χ. So we want αðzÞ to vanish at some
z0. The integration constant in the solution for βðzÞ is fixed
by requiring that the geometry be smooth at z0 (no conical
singularity), which is a relation between the periodicity s
and the metric components at z0 and is given by

βðz0Þ ¼
�

4π

sα0ðz0Þ
�

2

: ð2:9Þ

1We will drop factors of Newton’s constant G which should
multiply all our expressions for the energy.

2We also require that the size of the θ circle monotonically
increases. This is also expected for minimum energy solutions.
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Note that at z0, there is a minimal circle of length
L ¼ 2π=z0.
The energy can be computed using the background

subtraction method [16], where the background is chosen
to be the Poincaré patch of AdS, compactified to a torus.
With our ansatz (2.6), it is given by

E ¼ s
8
ðA3 − 2B3Þ; ð2:10Þ

where An and Bn are the Taylor expansion coefficients of α
and β in powers of z. The energy defined this way generally
differs from the counterterm method [17] by a constant, but
this constant is zero in this case.
For numerical implementation, we take the following set

of initial data:

αðzÞ ¼ 1þ
Xn0
n¼3

Anzn: ð2:11Þ

Requiring αðz0Þ ¼ 0 puts a constraint on the An’s so that
we have a ðn0 − 3Þ-parameter family of functions. For a
given z0 > 0, we then use the following simple algorithm to
compute Emin:
(1) choose an initial n0, a desired step size, an initial step

size that is much larger, and an initial αðzÞ by
choosing initial values of An for n ¼ 3;…; n0 − 1
such thatαðzÞ is physical, i.e.α0ðz0Þ < 0 andαðzÞ > 0
for z∈ ð0; z0Þ;

(2) generate a collection of functions αðzÞ by changing
these An’s independently by a certain number or
percentage (step size), throwing away those where
αðzÞ becomes negative in the range z∈ ð0; z0Þ;

(3) use the initial data constraint (2.8) to determine βðzÞ,
throwing away those where βðzÞ becomes zero or
infinity anywhere in the range z∈ ð0; z0�;

(4) for all remaining initial data, compute the energy for
each and check if any of them has lower energy than
the initial guess:
(a) if no: record the energy and An’s; and
(b) if yes: take the one with the lowest energy and

feed back to step 1 with this new αðzÞ;
(5) take the recorded An’s and feed back to step 1 with a

smaller step size if the desired step size is not
reached, outputting the energy otherwise; and

(6) repeat steps 1–5 until with a larger n0 until the
computed curve does not change significantly by
increasing n0.

After doing this for different values of z0, we obtain a
plot of E against L ¼ 2π=z0. This is our approximation of
EminðLÞ. For s ¼ 1, the results are shown in Fig. 1. We can
see that the curve goes to zero as L → 0 since there is no
minimal circle in this limit and the Poincaré patch of AdS
(toroidally compactified) satisfies our conditions. EminðLÞ
decreases from zero and reaches a minimum before
increasing. The global minimum corresponds to the AdS

soliton. At large L, we find that Emin grows like L3,

EminðLÞ ≈ ð2.4 × 10−4ÞL3 for largeL: ð2:12Þ

An obvious guess for the function EminðLÞ is a cubic
polynomial. Using E0

minðL�Þ ¼ 0, EminðL�Þ ¼ E�,
Eminð0Þ ¼ 0, and (2.12), where L� and E� are the values
for the AdS soliton, we can determine this function
completely and plot it. However, we find that there are
data points lying below this naive guess. This means that
the function cannot be a simple cubic polynomial.
Having obtained the curve EminðLÞ for s ¼ 1, the

corresponding functions for other values of s can be
obtained by the following scaling argument. Start with
our minimal energy s ¼ 1 solution for some L, which has a
conformally invariant ratio of the size of the χ to θ circles of
σ ¼ 1=2π. From this one solution, we can obtain solutions
with any σ by simply changing the periodicity of θ to 2π=λ.
This multiplies σ by λ, and changes L by 1=λ. The energy
gets two corrections: since gravitational energy is a surface
integral at infinity, it is multiplied by 1=λ. But to obtain the
energy in the conformal frame of our standard boundary
metric with s ¼ λ, we have to rescale all boundary
distances by a factor of λ to restore the periodicity of θ
to 2π. Since energy is a dimensionful quantity, this multi-
plies the energy by another factor of 1=λ. The net result is
that, if we change the periodicity of θ we get

Es¼λðL=λÞ ¼ Es¼1ðLÞ=λ2: ð2:13Þ
The solutions we obtain this way must be the minimum
energy solutions with that s, since if there was a lower-
energy solution, one could reverse the argument and get a
lower-energy solution with s ¼ 1, contradicting our origi-
nal bound. In particular, since Emin grows like L3 for large
L, (2.13) implies that the scaling with s is linear in this
regime,

EminðLÞ ≈ ð2.4 × 10−4ÞsL3 for largeL: ð2:14Þ

FIG. 1. Minimum energy plot for asymptotically AdS4 solu-
tions with toroidal conformal boundary, containing a minimal
circle of length L. The length of the contractible circle is s ¼ 1,
and the length of the noncontractible circle is 2π.
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III. ENERGY INEQUALITY IN ADS5

Now consider asymptotically AdS5 spacetimes with
conformal boundary

ds2j
∂M ¼ −dt2 þ dχ2 þ dΩ2

2; ð3:1Þ

where dΩ2
2 is the metric of a unit 2-sphere, and χ is

periodically identified with period s. The spatial geometry
is therefore a circle cross a sphere. We have chosen a
conformal frame where the sphere is of unit radius, so s
parametrizes the size of the circle relative to the sphere.
Static solutions with this conformal metric have been

studied numerically in [10]. There are two types of static
solutions: either the sphere or the circle pinches off. There
is a unique S2-contractible static solution regardless of what
value s takes. In fact, this solution is independent of s: it
exists when the χ direction is noncompact, and we can
periodically identify χ everywhere with any periodicity.
The S1-contractible solutions, which have a minimal S2,
form a one-parameter family labeled by the area A∈ ð0;∞Þ
of the minimal sphere. As A increases, s increases from 0 to
some maximal value smax ≈ 3.56 before decreasing and
asymptoting to zero in the large A limit [10]; therefore, at
any given s < smax, there are two static S1-contractible
solutions, and none if s > smax.
From the expectation that the ground state is given by a

static solution with maximal symmetry allowed by the
boundary conditions, for a given s, the minimum energy
solution is either the static S2-contractible solution or
the lower-energy one of the two S1-contractible solutions.
The dividing point is s ¼ scrit ≈ 2.98: below this value the
ground state is a static solution with minimal S2; above scrit,
it is the static S2-contractible solution [10]. From the
standpoint of gravitational holography, there is a zero
temperature quantum phase transition in the dual field
theory as s is varied across scrit.
We are interested in time symmetric initial data, which

are generically nonstatic under time evolution. The most
general time symmetric initial data with maximal symmetry
allowed by the boundary conditions (3.1) takes the form

ds2 ¼ 1

z2

�
dz2

αðzÞβðzÞ þ αðzÞdχ2 þ dΩ2
2

�
; ð3:2Þ

where

αðzÞ ¼ 1þ z2

2
−

1

12
z4 log zþ A4z4 þOðz5; z5 log zÞ;

βðzÞ ¼ 1þ z2

6
−

1

12
z4 log zþ B4z4 þOðz5; z5 log zÞ:

ð3:3Þ

As in the AdS4 case, we have imposed the minimum set of
corner conditions to ensure the finiteness of the energy but

no more. More specifically, we allow the asymptotic
expansion of the function αðzÞ to be unconstrained starting
from the order of the energy, z4.
Using (3.2), the Hamiltonian constraint (2.5) is given by

3αð−4βþzβ0Þ−1

2
zðzð−4þα0β0Þþ2βð−6α0 þzα00ÞÞ¼−12:

ð3:4Þ

As in the AdS4 case, this is a first-order ODE for the
function βðzÞ. We note that the βðzÞ expansion in (3.3) will
be automatically ensured from solving (3.4) as long as the
αðzÞ asymptotic expansion is imposed. We choose αðzÞ to
vanish at z0, so there is a minimal S2 with A ¼ 4π=z20, and
adjust the free constant in β so there is no conical
singularity.
Using the background subtraction method, the energy is

given by

E ¼ s
4
ðA4 − 3B4 þ C0Þ; ð3:5Þ

where C0 is a constant that depends on the choice of the
background. We choose the background to be the static S2-
contractible solution, in which case C0 ¼ −0.0348122.
Incidentally, the counterterm energy of [17] is given by
(3.5) with C0 ¼ −7=24.
We then obtain an approximation for EminðAÞ using the

algorithm outlined in the previous section by studying an
ðn0 − 4Þ-parameter family of initial data,

αðzÞ ¼ 1þ z2

2
−

1

12
z4 log zþ

Xn0
n¼4

Anzn: ð3:6Þ

Figure 2 displays the resulting curves for s ¼ 5, 3, 1.
Since static solutions extremize the energy, we expect
extrema of EminðAÞ at those A’s where there is a static
solution with a minimal sphere with that area. For s ¼ 5,
which is greater than smax, there is no static solution with
minimal S2 and the curve monotonically increases. For
s ¼ 3, which is just above scrit ≈ 2.98 but below smax,
EminðAÞ initially increases and has a local maximum at the
static solution with the smaller minimal sphere, then drops
down to the small positive energy of the static solution with
the larger minimal sphere, before increasing again. As we
decrease s, the energy of both extrema decrease, with the
first approaching zero and the second becoming negative.
For s ¼ 1, the initial local maximum is at A ≈ 0.06, which
is below our resolution, so we only see the curve decrease
to a global minimum at the static solution with larger
minimal S2, before increasing.
It is difficult to obtain reliable values of EminðAÞ close to

A ¼ 0 since the curvature grows as A → 0. However, we
expect the curve to go to zero in the limit A goes to zero.
This is because in this limit there is no minimal S2, so the
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ground state should be the static solution with S2 contract-
ible. This is precisely our reference background.
At large A, we find that the energy scales like A2 for any

value of s. The s dependence can be found by computing
the large A limit of Emin=A2, as shown in Fig. 3. We find
that the large A behavior of Emin is given by

EminðAÞ ≈ ð1.4 × 10−3ÞsA2: ð3:7Þ
The fact that the large A behavior of EminðAÞ is linear in s

can be understood by the following analog of the scaling
argument at the end of Sec. II. For large A, the curvature of
the S2 is negligible, and one should obtain the same
function EminðAÞ for S1 × T2 boundary conditions with
the contractible S1 having period s and the T2 having area
4π. Starting with a minimum energy solution with s ¼ 1,
and minimal T2 with area A, change the periodicity of T2 so

that the boundary torus has area 4π=λ2. This changes the
area of the minimal T2 by 1=λ2. The energy again gets two
corrections. It gets a factor of 1=λ2 since it is a surface
integral, and it gets another factor of 1=λ since we have to
rescale all boundary distances by λ to put the boundary
metric in our standard conformal frame where the area of
T2 is 4π. This constant rescaling changes s ¼ 1 to s ¼ λ.
So the net result is that, if we change the periodicity of T2,
we get

Es¼λðA=λ2Þ ¼ Es¼1ðAÞ=λ3 for S1 × T2 boundary: ð3:8Þ

Since EminðAÞ should satisfy this for large A where it is
proportional to A2, (3.8) implies that EminðAÞ is linear in s
as in (3.7).

IV. DISCUSSION

We have numerically computed a bound on the energy of
time symmetric, asymptotically AdS4 or AdS5 initial data
in terms of the area of a codimension two minimal circle or
sphere.
This work can be extended in several directions. First

there is the obvious extension to higher-dimensional AdS
with spatial boundary S1 × Sn, but we expect the results to
be similar. More interestingly, one could consider bounda-
ries S1 × Σ where Σ is a general Riemannian manifold and
bound the energy in terms of minimal surfaces that are not
topological spheres. Alternatively, one could consider the
case when the boundary is a product of spheres (no spatial
circle). Then one could get bounds on the energy in terms
of higher codimension minimal surfaces.
Perhaps the most important open question is to derive an

analytic form of our bounds EminðLÞ and EminðAÞ (or any of
the above generalizations) and prove that they provide
lower bounds on the energy. In the AdS4 case, we
established that EminðLÞ is not a simple cubic polynomial.
This is not surprising as the Penrose inequality generally
involves noninteger powers [18]. It is likely that noninteger
powers are present in this new inequality, too. Since we
have (numerically) found the coefficient of the cubic term,

FIG. 2. Minimum energy plots for asymptotically AdS5 sol-
utions with boundary S1 (with length s) times a unit S2,
containing a minimal S2 with area A.

FIG. 3. Dependence on s of the quadratic coefficient of EminðAÞ
in the large A limit, for asymptotically AdS5 solutions.
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it is then feasible to subtract the cubic term and make a log-
log plot for large L to determine the next-to-leading order
power. If the actual analytic expression is not too compli-
cated, e.g., if it is just a sum of a small number of fractional
powers, this procedure may be enough to extract the form
of the function. A similar procedure can be done for the
AdS5 case: the curve is more complicated, but we also have
more information given that the static solutions are local
extrema.
Another open question is whether there is a unique

solution at every point on the curves EminðLÞ and EminðAÞ.
The usual positive energy theorem not only says E ≥ 0 but
also specifies that the ground state is unique. In our case,
we do not have evidence for uniqueness. In fact, even
though we have initial data with energy very close to the
lower bound, we have not shown the existence of solutions
that saturate the bound, except at the extrema where they
are given by the static solutions.
The new energy inequality is a refinement of the positive

energy theorem in AdS. In the positive energy theorem,
only the true ground state matters, but here all static
solutions are important as they tell us about turning points
of the curve. When the spatial boundary is a product of
spheres, the number of static solutions with minimal
spheres can be arbitrarily large depending on the relative
size of the spheres [19]. We then expect the curve to have a
correspondingly large number of turning points.
It is natural to ask whether there are analogous bounds in

the asymptotically flat case. Since we require that the
asymptotic boundary contain a circle, the appropriate
context is (five-dimensional) Kaluza-Klein theory. It is
known that there is no positive energy theorem for this

theory [20].3 There are solutions with minimal S2’s and
arbitrarily negative energy [21,22]. These solutions are
often called “bubbles of nothing” since, after dimensional
reduction on the S1, space resembles Euclidean space with
a ball removed. The minimal S2 is the boundary of this ball,
and there is nothing inside. It was shown in [21] that the
energy must always be greater than a certain “radius” of the
bubble, which is not directly related to the proper area A of
the minimal S2. It would be interesting to check whether
there is a lower bound in terms of A.
The existence of our bound Emin is likely to have

physical implications for holography. One expects every
geometric property of the bulk to correspond to some
property of the dual field theory (in the large N limit). Our
result would then bound the energy of holographic field
theories with this property. In particular, there must be new
states corresponding to wrapping branes around the min-
imal surface.
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