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We investigate future singularities originating from the anisotropy in the Universe. We formulate a new
class of singularities in the homogeneous and anisotropic universe, comparing them with the known
singularities in the homogeneous and isotropic universe. We also discuss the physical consequences of the
new singularities. Moreover, we develop a novel reconstruction method for the anisotropic universe by
introducing four scalar fields to reconstruct cosmological models in which future singularities appear.
We present an explicit example where the anisotropy may grow in the future up to singularity.
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I. INTRODUCTION

The concordance Λ cold dark matter (ΛCDM) model,
including the cosmological constant and cold dark matter,
has been in good agreement with observational data.
However, for several problems that are difficult to explain
in the ΛCDM model, cosmological models that go beyond
the standard model have been intensively investigated in
the context of modifying Einstein’s gravity, known as the
modified gravity theory. In the search for the beyond-
ΛCDM model, modifications of the gravitational theory
have provided a variety of cosmological models, and
cosmological observations have indeed constrained the
gravitational theories. However, it is also significant to
examine the cosmological principle on which the ΛCDM
model stands; that is, the universe is homogeneous and
isotropic spacetime on large scales and written as the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric as
the zeroth order approximation.
Cosmic microwave background (CMB) and large-scale

structure data have thoroughly tested the cosmological
principle. Recently, strong evidence of a violation of the
cosmological principle of isotropy has been reported [1–3].
Although there has been much discussion about the origin

of the anisotropy and its time evolution, the cosmological
no-hair conjecture [4] provides a strong prediction, inde-
pendent of the details of the model, that the anisotropy
will exponentially decrease once inflation occurs. However,
it is still possible to evade the cosmic no-hair conjecture,
and the anisotropic inflation models [5–11] suggest that
the spontaneous rotational-symmetry breaking could
occur during the inflation. The generated cosmological
anisotropy could help us understand the CMB anomalies,
and it is being vigorously studied along with other
cosmological anomalies, such as Hubble tension.
In addition to studying the origin of anisotropy and its

effects in the early universe, It is also essential to study how
anisotropy will evolve in the future. It has already been
suggested that the current universe contains a small amount
of anisotropy, and due to new physics or unveiled mecha-
nisms, the future universe may develop a larger amount of
anisotropy. It is feasible to construct cosmological models
with potentially increasing anisotropy and also significant to
investigate what may happen in the future within such
models. For example, we allow finite anisotropy in all
cosmic history. In that case, the anisotropymay growor even
show singular behaviors because three spatial directions can
evolve differently and include singularities. Wewill explore
cosmological models based on finite anisotropy and search
for possible new physics that lies therein.
In this paper, we investigate the general homo-

geneous and anisotropic universe, assuming that anisotropy
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generated by some mechanisms exists in the universe. We
mainly discuss the future singularities generated by the
anisotropy. It has been known that cosmological models
generally encompass five types of finite-time singularities
in the FLRW universe [12–14]. In contrast to these
singularities known in the homogeneous and isotropic
universe, this paper presents new types of finite-time
singularities in the homogeneous and anisotropic universe.
We discuss the classification of the new singularities and
their physical meanings due to the anisotropy by analogy
with the known singularities in the FLRW case. To
demonstrate the growing anisotropy and associated singu-
larities, we construct a cosmological model that realizes the
finite-time singularities, by developing a new cosmological
reconstruction method.
This paper is organized as follows. In Sec. II, we briefly

review the finite-time singularities known in the FLRW
universe. In Sec. III, we formulate the cosmological model
with the broken rotational symmetry and classify the finite-
time singularities due to the finite anisotropy. Moreover, we
show phenomena caused by these singularities using the
geodesic deviation equation. In Sec. IV, we demonstrate the
reconstruction of the cosmological models where the finite-
time singularities appear. As a specific example, we use
Einstein’s gravity as a benchmark gravitational theory.

II. FINITE-TIME SINGULARITIES
IN FLRW UNIVERSE

We briefly review the finite-time singularities in the
FLRW universe, homogeneous and isotropic spacetime,
following from Refs. [12–14]. The line element of the
FLRW universe is given by

ds2¼−dt2þα2ðtÞ
�

dr2

1−Kr2
þ r2ðdϑ2þ sin2ϑdϕ2Þ

�
; ð1Þ

where αðtÞ is a scale factor, and ðt; r; ϑ;ϕÞ are the
comoving coordinates. K describes three different geom-
etries for three distinct values, namely, spatially flat
(K ¼ 0), closed (K > 0), and open (K < 0). We consider
the spatially flat FLRW, K ¼ 0, where Eq. (1) reduces to
the following form,

ds2 ¼ −dt2 þ α2ðtÞ
X

i¼1;2;3

ðdxiÞ2: ð2Þ

In Einstein’s gravity, the expansion of the FLRW
universe with K ¼ 0 in Eq. (2) is described by the
Friedmann equation and the Raychaudhuri equation,

H2 ¼ κ2

3
ρ; Ḣ ¼ −

κ2

2
ðρþ pÞ: ð3Þ

We denote the Hubble parameter by H ≡ α̇
α, where the dot

represents the derivative with respect to t, and κ2 ¼ 8πGN

with Newton’s gravitational constant GN . p and ρ are the
pressure and the energy density of the matter contents in the
universe. We also introduce the equation of state (EOS) as
p ¼ wρ, where w is the EOS parameter.
Based on Eq. (3), the types of future singularities

appearing in various cosmological models are classified
as follows: when t → ts,
(1) Type I (big rip) singularity: α → ∞, ρ → ∞ and

jpj → ∞.
(2) Type II (sudden) singularity: α → const and

ρ → const, but jpj → ∞. α and α̇ are finite, but α̈
diverges.

(3) Type III (big freeze) singularity: α → const, but
ρ → ∞ and jpj → ∞. α is finite, but α̇ diverges.

(4) Type IV (generalized sudden) singularity: α→const,
ρ → const, and jpj → const, but some higher deriv-
atives of H diverge. α, α̇, and α̈ are finite, but higher
derivatives of α diverge.

(5) Type V (w) singularity: w → ∞, but p and ρ are
finite. This type depends on the properties of the
matter, but the behavior of α is identical to that in
type II, that is, α and α̇ are finite, but α̈ diverges.

Type I singularity was first introduced in [15], which
appears in the universe filled by phantom fluid [16].
Type II singularity was proposed in [17]. Type III and
type IV singularities were obtained by complementing
the type I and type II singularities in [12] (for type III,
see also [18,19]). Although type I-IV singularities have
completely classified the singular behaviors of spacetime,
in [20], the singular behavior of the EoS parameter w was
also considered.
To illustrate what could happen near the singularities, we

consider the geodesic deviation equation

D2Sμ

dτ2
¼ Rμ

νρσTνTρSσ: ð4Þ

Here, τ, Sμ, and Tμ present the proper time, deviation
vector, and the tangent vector, respectively. In the FLRW
spacetime (2), we may choose T0 ¼ 1, Ti ¼ 0. Then,
Eq. (4) is reduced into

D2Si

dτ2
¼ Ri

00jSj: ð5Þ

In the FLRW universe, we have

Ri
00j ¼ ðḢ þH2Þδij; ð6Þ

and Eq. (5) gives

D2Si

dτ2
¼ ðḢ þH2ÞSi: ð7Þ

H and Ḣ diverge in type I and III singularities, and Ḣ
diverges in type II singularity. Thus, Eq. (7) tells us that
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spacetime is ripped. There could be the case that H, Ḣ, or
both go to infinity in the infinite future. Even in this
case, everything is ripped finally, which is called a little
rip [21–23]. There could also be the case that H may
become a constant H0 in the infinite future. However,
if H0 is large enough, anything whose binding energy is
smaller than a threshold value is also ripped, called a
pseudorip [24].

III. GENERAL ANISOTROPIC SPACETIME

In this section, we consider a general homogeneous and
anisotropic spacetime and classify the future singularities in
this spacetime. In addition to the known finite-time
singularities in the FLRW universe, we show that new
kinds of singularities may show up in the anisotropic
universe. We conclude that these singularities require the
presence of even slight amount of spacetime anisotropy as a
necessary condition. Regarding the new type of singular-
ities, we investigate the geodesic equation and geodesic
deviation equations in such a spacetime.

A. Rotational symmetry breaking

The general homogeneous and anisotropic spacetime is
given as follows,

ds2 ¼ −dt2 þ
X

i;j¼1;2;3

gijðtÞdxidxj: ð8Þ

The above spacetime is homogeneous because there is a
shift symmetry of the spatial coordinates xi, xi → xi þ ci

by constants ci. Because the spatial part of metric gij is
symmetric under the exchange of the indices gij ¼ gji, we
can diagonalize the spatial metric as

ðgijðtÞÞ≡OTðtÞðg̃ijðtÞÞOðtÞ

¼ OTðtÞ

0
B@

a2ðtÞ 0 0

0 b2ðtÞ 0

0 0 c2ðtÞ

1
CAOðtÞ: ð9Þ

Here OðtÞ is a 3 × 3 orthogonal matrix, and OTðtÞ is the
transpose ofOðtÞwhich satisfiesOTðtÞOðtÞ ¼ I with 3 × 3
unit matrix I. OðtÞ is time-dependent in general, and if it is
a constant matrix, the universe can be regarded as the
Bianchi type-I universe, as we will see later. Note that OðtÞ
does not mean an actual rotation of space but a rotation of

principal axes of the spatial metric represented by a
symmetric matrix.
Considering the known results of singularities in the

FLRW universe, some or all of aðtÞ, bðtÞ, and cðtÞ may
have singularities of Type I–V, which is a straightforward
generalization of the future singularities in the FLRW
universe. However, we note that another singularity could
be from OðtÞ. Such a singularity is expected to appear
under the broken rotational symmetry or the spatial
anisotropy.
We now choose the rotational axis of OðtÞ near the time

t ¼ ts to be the x3-axis, which does not generate any loss of
generality,

OðtÞ ¼

0
B@

cos θðtÞ − sin θðtÞ 0

sin θðtÞ cos θðtÞ 0

0 0 1

1
CA: ð10Þ

As in the cases of type I-IV singularities in the FLRW
universe, θðtÞ might have singularities: at t ¼ ts, (1) θðtÞ
diverges; (2) θ̇ðtÞ diverges; and (3) a higher derivative of
θðtÞ diverges. We note that the singularity associated with
θðtÞ shows up only if aðtsÞ ≠ bðtsÞ because OðtÞ becomes
irrelevant when aðtÞ ¼ bðtÞ,

OTðtÞ

0
B@

a2ðtÞ 0 0

0 a2ðtÞ 0

0 0 c2ðtÞ

1
CAOðtÞ

¼

0
B@

cos θðtÞ sin θðtÞ 0

− sin θðtÞ cos θðtÞ 0

0 0 1

1
CA
0
B@

a2ðtÞ 0 0

0 a2ðtÞ 0

0 0 c2ðtÞ

1
CA

×

0
B@

cos θðtÞ − sin θðtÞ 0

sin θðtÞ cos θðtÞ 0

0 0 1

1
CA

¼

0
B@

a2ðtÞ 0 0

0 a2ðtÞ 0

0 0 c2ðtÞ

1
CA: ð11Þ

Therefore aðtsÞ ≠ bðtsÞ is a necessary condition for the
singularity from the rotation θðtÞ along the x3-axis.
For the rotation matrix (10), the spacetime metric (9)

leads to

ðgijðtÞÞ ¼

0
B@

a2ðtÞcos2θðtÞ þ b2ðtÞsin2θðtÞ ½b2ðtÞ − a2ðtÞ� cos θðtÞ sin θðtÞ 0

½b2ðtÞ − a2ðtÞ� cos θðtÞ sin θðtÞ a2ðtÞsin2θðtÞ þ b2ðtÞcos2θðtÞ 0

0 0 c2ðtÞ

1
CA: ð12Þ
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The above expression tells us that if θðtÞ diverges, the
metric has violent oscillations, although jgijj is finite. We
will show that there is a curvature singularity even if θðtÞ is
finite but θ̇ðtÞ diverges. Such a singularity occurs when θðtÞ
behaves near t ∼ ts as θðtÞ ∼ θ0 þ θ1ðts − tÞβ with con-
stants θ0, θ1, and β where 0 < β < 1. We briefly comment
on the divergence of θ and its derivatives. In the spacetime
of our interest, there can be nonzero off-diagonal elements
of the spatial metric gijðtÞ in Eq. (8). If we assign the scale
factors to the diagonal elements of spatial metric g̃ijðtÞ after
the diagonalization, the off-diagonal elements in the origi-
nal spatial metric gijðtÞ describes the mixture of the scale
factors, as in Eq. (12). In this sense, θðtÞ is the time-
dependent mixing angle. Thus, through the diagonaliza-
tion, θðtÞ corresponds to the off-diagonal elements of gijðtÞ,
ðx; yÞ element in the current setup, and the divergence of θ
and its derivatives reflects those of such off-diagonal
elements in gijðtÞ.
We compute the Ricci tensor and Ricci scalar in the

general homogeneous and anisotropic spacetime (the
detailed calculation is summarized in Appendix). For
the metric in Eq. (9), the Ricci tensor is given as follows:

R00 ¼ −
ða2 − b2Þ2
2a2b2

θ̇2 −
�
ä
a
þ b̈
b
þ c̈
c

�
; ð13Þ

R0i ¼ Ri0 ¼ 0 ð14Þ

ðRijÞ≡OTðR̃ijÞO ¼ OT

0
B@

R̃11 R̃12 0

R̃21 R̃22 0

0 0 R̃33

1
CAO; ð15Þ

where the components in R̃ij are defined as

R̃11 ¼ äaþ ȧa

�
ḃ
b
þ ċ
c

�
þ b4 − a4

2b2
θ̇2

R̃12 ¼ R̃21

¼ −
θ̈

2
ða2 − b2Þ

−
θ̇

2

�
ȧ
a
ðb2 þ 3a2Þ − ḃ

b
ða2 þ 3b2Þ þ ċ

c
ða2 − b2Þ

�

R̃22 ¼ b̈bþ ḃb

�
ȧ
a
þ ċ
c

�
þ a4 − b4

2a2
θ̇2

R̃33 ¼ c̈cþ ċc

�
ȧ
a
þ ḃ
b

�
: ð16Þ

By contracting the Ricci tensor with the metric, the Ricci
scalar is given by

R ¼ ða2 − b2Þ2
4a2b2

θ̇2 þ 2

�
ä
a
þ b̈
b
þ c̈
c

�

þ 2

�
ȧ ḃ
ab

þ ḃ ċ
bc

þ ċ ȧ
ca

�
: ð17Þ

We omitted the variable t in the scale factors and rotation
angle above for simplicity. We note that R̃33 does not have θ
dependence because we choose the rotation axis as x3

direction in our setup. One can restore well-known results
in FLRW spacetime by taking the limit that θ̇ ¼ θ̈ ¼ 0
and a ¼ b ¼ c.
The singularities originated from the rotation angle of

spatial metric θ may show up in the Ricci tensor and Ricci
scalar if θ̇ or θ̈ diverge at t ¼ ts. Notably, these singularities
require aðtsÞ ≠ bðtsÞ. We emphasize that θ dependence in
the curvature tensors always drops if aðtÞ ¼ bðtÞ, and thus,
the anisotropy in the scale factors is a necessary condition
for the singularity associated with θðtÞ. In other words, if
there is even a slight anisotropy in the universe, θ
dependence cannot be ignored and potentially causes a
new type of singularities.
We consider the case that θðtÞ vanishes at t ¼ ts, while

θ̇ðtÞ diverges at t ¼ ts. In this case, the metric gijðtÞ is
automatically diagonalized gijðtÞ ¼ g̃ijðtsÞ as in Eq. (12).
However, several components of Ricci tensor R00, R11,
R12 ¼ R21, R22, and Ricci scalar R diverge in general when
θ̇ diverges. Note that we have chosen the rotational axis as
the x3 axis near t ¼ ts. As we will see in the following
subsection, in Einstein’s gravity, the Einstein equation
suggests that the energy-momentum tensor must diverge
corresponding to divergences of θ̇ in the Einstein tensor.
Moreover, off-diagonal components of the Einstein tensor
are nonvanishing, which generally requires the anisotropic
stress in the energy-momentum tensor.

B. Classification of singularities

We can summarize the classification of singularities in
terms of the metric components. First, we consider the
singularities related to aðtÞ, bðtÞ, and cðtÞ, which are the
eigenvalues of gijðtÞ. When t → ts,

1-1 Type I singularity: Some of aðtÞ, bðtÞ, and cðtÞ
diverge.

1-2 Type II singularity: Some of aðtÞ, bðtÞ, and cðtÞ and
the first derivatives of aðtÞ, bðtÞ, and cðtÞ are finite,
but some of the second derivatives diverge.

1-3 Type III singularity: Some of aðtÞ, bðtÞ, and cðtÞ are
finite, but the first derivatives of aðtÞ, bðtÞ, and cðtÞ
diverge.

1-4 Type IV singularity: Some of aðtÞ, bðtÞ, and cðtÞ and
the first and second derivatives of aðtÞ, bðtÞ, and cðtÞ
are finite, but some higher derivatives diverge.

Note that the same type of singularity does not need to occur
in all directions. For instance, only aðtÞ corresponding to x1
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direction may have one of the above type I–IV singularities,
while the other scale factors do not show singular behaviors.
As another example, the two directions may have singular-
ities, although the remaining direction does not, and these
two singularities may be different types from each other.
As mentioned in the previous subsection, these singu-

larities are generalizations of the future singularities in the
FLRW universe with respect to different scale factors
assigned to the three spatial directions. These are not
related to the rotation θðtÞ, and assuming the rotation
angle is constant θðtÞ ¼ const, the spacetime of our interest
is reduced to Bianchi type-I universe. As an illustration, we
consider the Einstein equation,

Gμν ¼ κ2Tμν; ð18Þ

where Tμν represents the energy-momentum tensor of the
matters. From Eqs. (9) and (15), the Einstein tensor Gμν is
given as

G00 ¼ −
ða2 − b2Þ2
4a2b2

θ̇2 þ
�
ȧ ḃ
ab

þ ḃ ċ
bc

þ ċ ȧ
ca

�
; ð19Þ

G0i ¼ Gi0 ¼ 0; ð20Þ

Gij ¼ OT

�
R̃ij −

1

2
g̃ijR

�
O

≡OTðG̃ijÞO

¼ OT

0
B@

G̃11 R̃12 0

R̃21 G̃22 0

0 0 G̃33

1
CAO; ð21Þ

where the diagonal components in G̃ij are defined as

G̃11 ¼ −
ða2 − b2Þð3a2 þ b2Þ

4b2
θ̇2 − a2

�
b̈
b
þ c̈
c

�
− a2

ḃ ċ
bc

;

G̃22 ¼ −
ðb2 − a2Þða2 þ 3b2Þ

4a2
θ̇2 − b2

�
ä
a
þ c̈
c

�
− b2

ċ ȧ
ca

;

G̃33 ¼ −
ða2 − b2Þ2c2

4a2b2
θ̇2 − c2

�
ä
a
þ b̈
b

�
− c2

ȧ ḃ
ab

: ð22Þ

Moreover, the spatial components of the Einstein equation
can be simplified by introducing a new definition of the
energy-momentum tensor

OTðG̃ijÞO ¼ κ2Tij

G̃ij ≡ κ2T̃ij; ð23Þ

where

ðTijÞ ¼ OTT̃ijO: ð24Þ

Assuming θ is constant in Eqs. (19) and (21), we find
that all the θ-dependent terms vanish, and Eq. (23) leads to
the modified Friedmann equations in the Bianchi type-I
universe [25,26]

κ2T00 ¼ ðHaHb þHbHc þHcHaÞ;

−
κ2

a2
T̃11 ¼ ðḢb þ ḢcÞ þ ðH2

b þH2
c þHbHcÞ;

−
κ2

b2
T̃22 ¼ ðḢc þ ḢaÞ þ ðH2

c þH2
a þHcHaÞ;

−
κ2

c2
T̃33 ¼ ðḢa þ ḢbÞ þ ðH2

a þH2
b þHaHbÞ: ð25Þ

Here, we defined the Hubble parameter for each direction as

Ha ¼
ȧ
a
; Hb ¼

ḃ
b
; Hc ¼

ċ
c
: ð26Þ

Whenwe read the energy-momentum tensor as T00 ¼ ρ and
T̃ij ¼ diag½P1a2; P2b2; P3c2�, where ρ andPi are the energy
density and the pressure in each direction. It is apparent that
the future singularities in the FLRWuniverse are generalized
into those in the Bianchi type-I universe. As in the
classification of the future singularity in the FLRWuniverse,
three different Hubble parameters and their derivatives may
show the different types of singularities, as the correspond-
ing energy density and pressures also diverge.
Second, we focus on the singularities related to the

rotation θðtÞ in the orthogonal matrix, which diagonalizes
the spatial metric gij. For these singularities, the compo-
nents of the metric are always finite, jgijj < ∞. Near the
singularity t ∼ ts, we may choose the matrix as in Eq. (10)
with any loss of generality and assume aðtsÞ ≠ bðtsÞ.
When t → ts,

2-1 Type Iθ singularity: θ diverges, and the metric
oscillates very rapidly.

2-2 Type IIθ singularity: θ and θ̇ are finite, but θ̈
diverges. The energy density and the diagonal
spatial components of the energy-momentum tensor
are finite, but the off-diagonal component diverges.

2-3 Type IIIθ singularity: θ, ȧ is finite, but θ̇ and also θ̈
diverge. The energy density, pressure, and other
spatial components of the energy-momentum tensor
diverge.

2-4 Type IVθ singularity: θ, θ̇, and θ̈ are finite, but
some higher derivatives of θ diverge. The energy
density, pressure, and other spatial components of
the energy-momentum tensor are finite. Their first
derivatives are also finite, but the higher derivatives
diverge.
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We note that θðtÞ corresponds to the off-diagonal elements
in the original spatial metric gijðtÞ. Using a rotation matrix
O, we can separate the additional divergence from diver-
gences in the three scale factors.
As before, we consider the Einstein equation as an

illustration. Taking into account the θ-dependence, we find
that the off-diagonal elements in the Einstein tensor (21)
R̃12 ¼ R̃21 do not vanish, and Eq. (23) leads to the
following equations:

κ2T00 ¼ ðHaHb þHbHc þHcHaÞ −
ða2 − b2Þ2
4a2b2

θ̇2;

−
κ2

a2
T̃11 ¼ ðḢb þ ḢcÞ þ ðH2

b þH2
c þHbHcÞ

þ ða2 − b2Þð3a2 þ b2Þ
4a2b2

θ̇2;

−κ2T̃12 ¼
a2 − b2

2
θ̈ þ 1

2
½Haðb2 þ 3a2Þ −Hbða2 þ 3b2Þ

þHcða2 − b2Þ�θ̇;

−
κ2

b2
T̃22 ¼ ðḢc þ ḢaÞ þ ðH2

c þH2
a þHcHaÞ

þ ðb2 − a2Þða2 þ 3b2Þ
4a2b2

θ̇2;

−
κ2

c2
T̃33 ¼ ðḢa þ ḢbÞ þ ðH2

a þH2
b þHaHbÞ

þ ða2 − b2Þ2
4a2b2

θ̇2: ð27Þ

In addition to the corrections to Eq. (25), we have an
additional equation from the off-diagonal component of the
Einstein tensor, which inevitably introduces the anisotropic
stress T̃12 ¼ T̃21. We can find that in Eq. (27), the new
types of singularities require anisotropy in the scale factors
aðtÞ ≠ bðtÞ as the necessary condition. They also indicate
that the off-diagonal elements of the energy-momentum
tensor, T12 ¼ T21 in our setup, must have a singularity. If θ
behaves as θ ∼ θ0ðts − tÞβ with constants θ0 and β when
t ∼ ts, the type Iθ corresponds to β < 0, the type IIθ to
1 < β < 2, the type IIIθ to 0 < β < 1, and the type IVθ to
the case that β is not an integer and β > 2.

C. Rips and twists

We further investigate the new class of finite-time
singularities related to the rotation angle θ of the spatial
metric. First, we consider what could happen when θ̇
diverges using the geodesic deviation equation as in Eq. (5).
Computing the Riemann tensor Ri

ttj in the general homo-
geneous and anisotropic spacetime, we find

Ri
00j ≡OTðR̃i

00jÞO ¼ OT

0
B@

A Dab 0

Dba B 0

0 0 C

1
CAO; ð28Þ

and the geodesic deviation equation takes the following
form:

O

0
BB@

D2S1

dτ2

D2S2

dτ2

D2S3

dτ2

1
CCA ¼

0
B@

A Dab 0

Dba B 0

0 0 C

1
CAO

0
B@

S1

S2

S3

1
CA; ð29Þ

where

A ¼ ðḢa þH2
aÞ−

θ̇2

4

ða2 − b2Þða2 þ 3b2Þ
a2b2

Dab ¼ −
θ̇

2

�
Ha

�
b2

a2
þ 3

�
−Hb

�
1þ 3

b2

a2

��
−
θ̈

2

�
1−

b2

a2

�

Dba ¼ −
θ̇

2

�
Ha

�
1þ 3

a2

b2

�
−Hb

�
a2

b2
þ 3

��
−
θ̈

2

�
a2

b2
− 1

�

B ¼ ðḢb þH2
bÞ−

θ̇2

4

ðb2 − a2Þðb2 þ 3a2Þ
a2b2

C ¼ ðḢc þH2
cÞ: ð30Þ

The off-diagonal components in Eq. (29) generate new
geodesic deviations proportional to another geodesic
deviation perpendicular to the geodesic deviation.
Especially in the case of type IIθ, the diagonal elements
are finite, although the off-diagonal elements diverge.
Thus, spacetime could be ripped in analogy to the
FLRW case. We also consider the analogy to the little
rip and pseudorip in the FLRW universe. If θ̇, θ̈, or both
diverge in the infinite future, the spacetime could be ripped
finally. If θ̇, θ̈, or both become very large, even constant,
any object whose binding energy is below the threshold
could be ripped.
Second, we consider what could happen when θ̇

becomes large, using the geodesic equation for the non-
relativistic test particle,

0 ¼ d2xμ

ds2
þ Γμ

ρσ
dxρ

ds
dxσ

ds
: ð31Þ

To investigate effects coming from θ̇, we consider the
situation that the divergence from the rotation angle is
dominant compared with that from the scale factors in the
spatial metric; that is, we ignore derivatives of the scale
factors and assume θ ∼ 0 at t ∼ ts as in type IIIθ singularity.
Using the Christoffel symbol in the anisotropic universe
(see Appendix), we find that the spatial components of the
geodesic equations lead to
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d2x1

ds2
∼ θ̇

�
b2

a2
− 1

�
dx2

ds
;

d2x2

ds2
∼ θ̇

�
1 −

a2

b2

�
dx1

ds
;

d2x3

ds2
∼ 0: ð32Þ

Here, we have assumed the nonrelativistic limit
jdxi=dsj ≪ jdx0=dsj ∼ 1.
The terms including θ̇ generate forces perpendicular to

the velocity dxi=ds of the particle as in the magnetic force.
These forces may be regarded as the Coriolis force. When θ̇
diverges, any object may be twisted off. In this sense, we
may call the singularity where θ̇ diverges in the finite future
as the big twist. If θ̇ goes to infinity in the infinite future, we
may call this the little twist. When θ̇ goes to a very large
constant in the infinite future, we may call this phenomenon
the pseudotwist.

IV. RECONSTRUCTION OF MODELS
WITH ANISOTROPIC SINGULARITY

In this section, we consider models that realize curvature
singularity by applying a new systematic formulation, so-
called reconstruction. The reconstruction is the inverse of the
standard process where we solve the equations for given
models. Inversely, we may find a model that realizes the
geometry desired from the theoretical and observational
viewpoints. The reconstruction for cosmology in the FLRW
spacetime, Eqs. (1) and (2), has been actively studied for
several kinds ofmodified gravity theories (see the review [27]
and the references therein for the reconstruction, and for

modified gravity theories general, see Refs. [28–30] for the
review).
Recently, the formulation of the reconstruction for the

spherically symmetric spacetime has been investigated,
using two-scalar fields [31] and in the scalar-Einstein-
Gauss-Bonnet gravity [32]. However, ghosts appear in all
the above models, indicating they are physically incon-
sistent. In the classical theory, the kinetic energy of the
ghosts is unbounded below, and the system becomes
unstable. In the quantum theory, the ghosts typically
generate the negative norm states as in the Fadeev-
Popov ghosts in the gauge theories [33]. The negative
norm states generate negative probabilities, which conflicts
with the Copenhagen interpretation of the quantum theory.
The ghost can be, however, eliminated by using constraints
given by the Lagrange multiplier fields [34,35]. We discuss
a generalization of the two-scalar model to the model with
four scalar fields [36]. This model can reconstruct a model
that realizes any given geometry, even if it is time-
dependent, not spherically symmetric, and anisotropic, as
in Eq. (8).

A. Conventional fluid approach

Before we introduce the reconstruction, we consider the
effective matter contents that directly reflect the singular-
ities in the Einstein tensor in the framework of Einstein’s
gravity, To investigate the new class of singularities
generated by θ̇, we ignore derivatives of the scale factors
and assume θ ∼ 0 as done in the previous subsection. When
θ ∼ 0, we can drop the rotation matrix O in Eq. (23), and
the effective energy-momentum tensor of the fluid given by
the Einstein tensor is reduced to be

T00 ∼ −
ða2 − b2Þ2
4κ2a2b2

θ̇2; ð33Þ

T0i ¼ Ti0 ¼ 0; ð34Þ

ðTijÞ ∼
1

κ2

0
BBB@

− ða2−b2Þð3a2þb2Þ
4b2 θ̇2 − θ̈

2
ða2 − b2Þ 0

− θ̈
2
ða2 − b2Þ − ðb2−a2Þða2þ3b2Þ

4a2 θ̇2 0

0 0 − ða2−b2Þ2c2
4a2b2 θ̇2

1
CCCA ð35Þ

Although spacetime anisotropy does not allow us to utilize the ordinary perfect fluid description, we can define the energy
density and pressures ρ, P1, P2, P3 as

ρ ¼ T00 ∼ −
ða2 − b2Þ2
4κ2a2b2

θ̇2; P1 ¼
T11

a2
∼ −

ða2 − b2Þð3a2 þ b2Þ
4κ2a2b2

θ̇2;

P2 ¼
T22

b2
∼ −

ðb2 − a2Þða2 þ 3b2Þ
4κ2a2b2

θ̇2; P3 ¼
T33

c2
∼ −

ða2 − b2Þ2
4κ2a2b2

θ̇2: ð36Þ
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Equation (36) shows that the energy density and three
pressures diverge when θ̇ does. We note that ρ always takes
a negative value, which manifestly causes difficulty in
introducing the conventional fluid approach at the classical
level. P3 is always negative, while P1 and P2 have opposite
signs depending on the scale factor in each direction.
Regarding anisotropic stress, if we assume θ ∼

θ0ðts − tÞβ so that θ ∼ 0 and θ̇ diverges at t ∼ ts, we find

T12 ¼ T21 ∝ jρj β−2
2ðβ−1Þ: ð37Þ

If we define the power as γ ≡ β−2
2ðβ−1Þ, the type of singularities

can be determined by the power γ: the type Iθ singularity
corresponds to 1

2
< γ < 1; type IIθ to γ < 0; type IIIθ to

γ > 1; and type IVθ to 0 < γ < 1
2
except the points where β

is an integer, that is, γ ≠ n−2
2ðn−1Þ. If the universe includes the

fluid with the off-diagonal element T12 ¼ T21 ∝ jρjγ , there
could occur the finite future singularity of the type Iθ–IVθ.
Although the effective fluid cannot be a perfect fluid due

to the anisotropy, we read off EOS in each direction. Using
Eq. (36), we find

P1 ∼
�
1þ 2

a2 þ b2

a2 − b2

�
ρ;

P2 ∼
�
1 − 2

a2 þ b2

a2 − b2

�
ρ;

P3 ¼ ρ: ð38Þ

Equation (38) shows the exotic EOS along x1 and x2

directions depending on the size of the anisotropy. For
a > b, the effective EOS paramerter w > 1 along x1

direction and w < 1 along x2 direction. However, the
effective fluid shows the stiff EOS w ¼ 1 along x3 direction
regardless of the anisotropy.
Equation (33) suggests that the energy density, pressure,

and anisotropic stress of the fluid become smaller if the

anisotropy is smaller, a ∼ b. Here, we assume a tiny portion
of the anisotropic fluid in the present universe, where the
background spacetime is almost FLRW Universe, and we
ignore the backreaction of the anisotropic fluid. For the
FLRW metric in (2), the Christoffel symbols are given by

Γt
ij ¼ α2Hδij;

Γi
tj ¼ Γi

jt ¼ Hδij; ð39Þ

and the other components vanish. If we impose the
conservation law ∇μTμν ¼ 0 for the anisotropic fluid,

0 ¼ ∇μTμ0

¼ ρ̇þ 3HρþHðP1 þ P2 þ P3Þ
¼ ρ̇þ 6Hρ: ð40Þ

Here we have used (38) although the EOS could not be
valid in the present universe.
On the other hand, the conservation law ∇μTμi ¼ 0 is

trivial even for the anisotropic fluid in the present model.
Equation (40) indicates the solution ρ ∝ α−6, that is, the
density decreases by the expansion. If the conservation law
(40) is valid even in the present universe, the fluid will not
dominate in the future. The anisotropic fluid cannot
describe the future singularity, although it might have been
dominant in the early universe and generated the primordial
anisotropy. In order for the future singularity to show up,
when the energy density ρ is small, the EOS (38) must be
changed so that the density increases by the expansion of
the universe.

B. Four-scalar reconstruction

We consider the following model including four scalar
fields ϕa:

S ¼ Sgravity þ Sϕ þ Sλ; ð41Þ

Sϕ ≡
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2

X
a;b¼0;1;2;3

AabðϕÞgμν∂μϕa
∂νϕ

b − VðϕÞ
�
; ð42Þ

Sλ ≡
Z

d4x
ffiffiffiffiffiffi
−g

p X
a¼0;1;2;3

λa
�

1

gaaðx ¼ ϕÞ g
μνðxÞ∂μϕa

∂νϕ
a − 1

�
: ð43Þ

We use the Roman index (a; b; � � � ¼ 0, 1, 2, 3) for the scalar fields, and as wewill see later, it corresponds to the index in the
internal space. Sgravity represents the action of the arbitrary gravity theory, and the kinetic coefficients AabðϕÞ and the
potential VðϕÞ are functions of the scalar fields ϕa. In Eq. (43), λa are Lagrange multiplier fields that lead to constraints,

0 ¼ 1

gaaðx ¼ ϕÞ g
μνðxÞ∂μϕa

∂νϕ
a − 1; ð44Þ

which eliminates ghosts.
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By the variation of the action (41) with respect to the metric gμν, we obtain

Gμν ¼
1

2
gμν

�
1

2

X
a;b¼0;1;2;3

AabðϕÞgξη∂ξϕa
∂ηϕ

b − VðϕÞ
�
−
1

2

X
a;b¼0;1;2;3

AabðϕÞ∂μϕa
∂νϕ

b

þ 1

2
gμν

X
a¼0;1;2;3

λa
�

1

gaaðx ¼ ϕÞ g
μνðxÞ∂μϕa

∂νϕ
a − 1

�
−

X
a¼0;1;2;3

λa

gaaðx ¼ ϕÞ ∂μϕ
a
∂νϕ

a

¼ 1

2
gμν

�
1

2

X
a;b¼0;1;2;3

AabðϕÞgξη∂ξϕa
∂ηϕ

b − VðϕÞ
�

−
1

2

X
a;b¼0;1;2;3

AabðϕÞ∂μϕa
∂νϕ

b −
X

a¼0;1;2;3

λa

gaaðx ¼ ϕÞ ∂μϕ
a
∂νϕ

a: ð45Þ

Here, we used the constraint equations in Eq. (44), and Gμν

is defined by the variation of the action Sgravity of the gravity
sector

Gμν ≡ 1ffiffiffiffiffiffi−gp δSgravity
δgμν

: ð46Þ

If we employ the Einstein-Hilbert action

Sgravity ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð47Þ

Gμν is, of course, given by the Einstein tensor,

Gμν ¼ −
1

2κ2
Gμν: ð48Þ

We can include the contribution of matter by replacing the
Gμν by

Gμν ≡ 1ffiffiffiffiffiffi−gp δSgravity
δgμν

þ 1ffiffiffiffiffiffi−gp δSmatter

δgμν

¼ 1ffiffiffiffiffiffi−gp δSgravity
δgμν

þ 1

2
Tμν: ð49Þ

Note that the first term is written by the coordinates for a
given spacetime metric. If we find the coordinate depend-
ence of Tμν by solving the conservation law and field
equation of the matter, the second term and thus the whole
Gμν is written by the coordinates. In the case of Einstein’s
gravity, Eq. (48) is rewritten as,

Gμν ¼ −
1

2κ2
Gμν þ

1

2
Tμν: ð50Þ

By multiplying Eq. (45) with gμν, we find

gμνGμν ¼
1

2

X
a;b¼0;1;2;3

AabðϕÞgξη∂ξϕa
∂ηϕ

b − 2VðϕÞ

−
X

a¼0;1;2;3

λa; ð51Þ

where we again used Eq. (44). Moreover, substituting
Eq. (51) into Eq. (45), we find

X
a;b¼0;1;2;3

AabðϕÞ∂μϕa
∂νϕ

b

¼ −2Gμν þ gμν

�
VðϕÞ þ

X
a¼0;1;2;3

λa þ gρσGρσ

�

− 2
X

a¼0;1;2;3

λa

gaaðx ¼ ϕÞ ∂μϕ
a
∂νϕ

a: ð52Þ

We now identify the four scalar fields as the spacetime
coordinates ϕa ¼ xa, which is actually consistent with
the constraints in Eq. (44). And then, Eq. (52) can be
rewritten as

AμνðϕÞ ¼ −2Gμν þ gμν

�
VðϕÞ þ

X
a¼0;1;2;3

λa þ gρσGρσ

�

− 2
X

a¼0;1;2;3

λa

gaaðx ¼ ϕÞ δ
a
μδ

a
ν : ð53Þ

Moreover, we consider the solution for λa ¼ 0. And then,
an arbitrary geometry written by gμν and arbitrary function
Vðϕ ¼ xÞ can be realized by choosing AμνðϕÞ as

AμνðϕÞ¼−2Gμνðx¼ϕÞ
þgμνðx¼ϕÞfVðϕÞþgρσðx¼ϕÞGρσðx¼ϕÞg: ð54Þ

Because the potential VðϕÞ is arbitrary, we hereafter choose
VðϕÞ ¼ 0.
We remark several features of Aab. Sϕ can be regarded as

a nonlinear sigma model whose target-space metric is given
by AabðϕÞ when VðϕÞ ¼ 0. A similar structure related to
the four scalar fields and internal space can also be found in
modified gravity theories [37,38]. If Aab ¼ 0 for a given a
and arbitrary b and the other nonvanishing components do
not depend on ϕa for the given a, we may drop the scalar
field ϕa. For instance, when we consider the spherical
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symmetry, there is no dependence on angular coordinates
ϕ2 ¼ θ and ϕ3 ¼ φ. Thus, we can drop two of four scalar
fields, and the two-scalar field works for the spherically
symmetric spacetime [31].
Without Sλ in Eq. (41), ghosts appear when any

eigenvalue of AabðϕÞ becomes negative. We now check
if the constraints in Eq. (44) derived from Sλ can elimi-
nate the ghosts. For this purpose, we consider the
perturbation,

ϕa ¼ xa þ δϕa: ð55Þ

For the perturbation δϕξ, the constraints in Eq. (44) give

0 ¼ 2gaν∂νδϕa −
X
b

δϕb
∂bgaaðxÞ: ð56Þ

Here, we have not summed the equations with respect to a.
For a spacelike coordinate xa, if we impose δϕa ¼ 0 when
jxaj → ∞, and for a timelike coordinate xa, if we impose
δϕa ¼ 0 as an initial condition, we always find δϕa ¼ 0.
Therefore, δϕa does not propagate, and thus the ghosts do
not appear.
In the case of Einstein’s gravity, Eq. (54) has the

following form,

AμνðϕÞ ¼
1

κ2
Gμνðx ¼ ϕÞ

−
1

2κ2
gμνðx ¼ ϕÞgρσðx ¼ ϕÞGρσðx ¼ ϕÞ

¼ 1

κ2
Rμνðx ¼ ϕÞ: ð57Þ

It is now clear that AμνðϕÞ is given by the Ricci tensor Rμν

where the coordinates are identified with the scalar fields
xμ ¼ ϕμ. Moreover, including matter contents in terms of
the energy-momentum tensor as in Eq. (50), we find

AμνðϕÞ ¼
1

κ2
Rμνðx ¼ ϕÞ − Tμνðx ¼ ϕÞ

þ 1

2
gμνðx ¼ ϕÞTðx ¼ ϕÞ; ð58Þ

where T represents the trace of the energy-momentum
tensor

T ≡ gμνTμν: ð59Þ

Equation (58) can be interpreted as AμνðϕÞ, which is
comprised by the four scalar fields, complementing the
Einstein equation for any metric gμν and matter Tμν.

Therefore, with an appropriate choice of AμνðϕÞ, the model
described by Eq. (41) allows us to reconstruct the gravi-
tational theories that realize the desired geometry. We note
that it is straightforward to extend this reconstruction
method to the case in D dimensional spacetime with D
scalar fields.

C. Toy model 1: Increasing anisotropy

We apply the above four-scalar-field model to recon-
struct the models that encompass the curvature singular-
ities. In the homogeneous and anisotropic spacetime
described by Eq. (8), we substitute Eqs. (13)–(15) and
Eq. (17) into Eq. (58)

A00 ¼ −
1

κ2

�ða2 − b2Þ2
2a2b2

θ̇2 þ
�
ä
a
þ b̈
b
þ c̈
c

��
t¼ϕð0Þ

þ
�
−T00 −

1

2
T

�
t¼ϕð0Þ

;

A0i ¼ Ai0 ¼ −Ti0;

ðAijÞ ¼
1

κ2

2
64OT

0
B@

R̃11 R̃12 0

R̃21 R̃22 0

0 0 R̃33

1
CAO

3
75
t¼ϕð0Þ

þ
�
−ðTijÞ þ

1

2
ðgijÞT

�
t¼ϕð0Þ

: ð60Þ

Here, we have denoted t ¼ x0. We have assumed that the
time-dependence of matter, and thus Tμν is given by solving
the conservation law and field equationof thematter.Wenote
that Aμν only depends on ϕ0, Aμνðϕ0Þ, because the metric
only depends on time coordinate t ¼ x0. Note that the
energy-momentum tensor Tμν represents the ordinary matter
contents. We can utilise the perfect fluid description for Tμν,
where Ti0 ¼ 0, and Aμν compensates the anisotropy.
We reconstruct models realizing the new future singu-

larities discussed in Sec. III, demonstrating the four-scalar
reconstruction for two different classes of future singular-
ities by considering the two different situations: (i) The
divergence from the scale factors is dominant compared
with that from the rotation angle; (ii) The divergence from
the rotation angle is dominant compared with that from the
scale factors.
First, we investigate the case (i) corresponding to Bianchi

type-I, where the scale factors may show type I—IV
singularities. Dropping θ and its derivatives in Eq. (60),
we find that the kinetic coefficient is reduced to
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A00 ¼ −
1

κ2

�
ä
a
þ b̈
b
þ c̈
c

�
t¼ϕ0

þ
�
−T00 −

1

2
T

�
t¼ϕ0

;

A0i ¼ Ai0 ¼ 0;

ðAijÞ ¼
1

κ2

0
BB@

äaþ ȧa
	
ḃ
b þ ċ

c



0 0

0 b̈bþ ḃb
	
ȧ
a þ ċ

c



0

0 0 c̈cþ ċc
	
ȧ
a þ ḃ

b




1
CCA

t¼ϕ0

þ
�
−ðTijÞ þ

1

2
ðgijÞT

�
t¼ϕ0

: ð61Þ

In the above expressions, we can choose three scale factors
aðtÞ, bðtÞ, cðtÞ to reconstruct an arbitrary evolution of the
background spacetime. For example, considering a model
where the anisotropy vanishes at present t ¼ t0 and grows
in the future:

aðtÞ ¼ αðtÞ½1þ ãðt − t0Þ�;
bðtÞ ¼ αðtÞ½1þ b̃ðt − t0Þ�;
cðtÞ ¼ αðtÞ½1þ c̃ðt − t0Þ�: ð62Þ

Here, αðtÞ stands for the scale factor in the flat FLRW
universe as in Eq. (2), and ãðtÞ, b̃ðtÞ, c̃ðtÞ are increasing
functions with respect to ϕ0, which satisfy ã ¼ b̃ ¼ c̃ ¼ 0
at t ¼ t0. A similar ansatz for the scale factors was
discussed in Ref. [25].
Moreover, if we demand this model mimics the ΛCDM

model in the current universe, we include the cosmological

constant and dust in the energy-momentum tensor. Because
we are interested in the future singularity, we can assume
that the cosmological constant dominates, and then, Tμν is
given by

Tμν ¼ −
Λ
κ2

gμν: ð63Þ

We note that the above energy-momentum tensor satisfies
the conservation law in the anisotropic universe, and

−T00 −
1

2
T ¼ Λ

κ2
;

−Tij þ
1

2
gijT ¼ −

Λ
κ2

gij: ð64Þ

Finally, the case (i) can be reconstructed by choosing the
following Aμν:

A00 ¼ −
1

κ2

�
ä
a
þ b̈
b
þ c̈
c
− Λ

�
t¼ϕ0

;

A0i ¼ Ai0 ¼ 0;

ðAijÞ ¼
1

κ2

0
BB@

äaþ ȧa
	
ḃ
b þ ċ

c



− Λa2 0 0

0 b̈bþ ḃb
	
ȧ
a þ ċ

c



− Λb2 0

0 0 c̈cþ ċc
	
ȧ
a þ ḃ

b



− Λc2

1
CCA

t¼ϕ0

: ð65Þ

D. Toy model 2: Rotation singularity

Second, we consider the case (ii) where the rotation angle θ may show type Iθ–IVθ singularities. Using the setup we
used in Sec. IVA, we drop derivatives of the scale factors and assume θ ∼ θ0ðts − tÞβ in Eq. (60). The kinetic coefficient is
given by

A00 ¼ −
1

κ2

�ða2 − b2Þ2
2a2b2

θ̇2
�
t¼ϕ0

þ
�
−T00 −

1

2
T

�
t¼ϕ0

;

A0i ¼ Ai0 ¼ 0;

ðAijÞ ¼
1

κ2

2
64
0
B@

b4−a4
2b2 θ̇2 − θ̈

2
ða2 − b2Þ 0

− θ̈
2
ða2 − b2Þ a4−b4

2a2 θ̇2 0

0 0 0

1
CA
3
75
t¼ϕ0

þ
�
−ðTijÞ þ

1

2
ðgijÞT

�
t¼ϕ0

: ð66Þ
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Regarding the matter energy-momentum tensor, we can again utilize Eq. (63). Moreover, to mimic the ΛCDM model, we
assume the small but nonzero anisotropy, which is necessary to realize the new types of singularities. This situation
corresponds to ã; b̃; c̃ ≪ 1 in Eq. (62). By the Taylor expansion with respect to ã; b̃; c̃, the case (ii) can be reconstructed by
the following Aμν:

A00 ¼ −
1

κ2
½2ðã − b̃Þ2θ̇2 − Λ�t¼ϕ0 ;

A0i ¼ Ai0 ¼ 0;

ðAijÞ ¼
α2ðϕ0Þ
κ2

0
BB@

2ðb̃ − ãÞθ̇2 − Λð1þ 2ãÞ −θ̈ðã − b̃Þ 0

−θ̈ðã − b̃Þ 2ðã − b̃Þθ̇2 − Λð1þ 2b̃Þ 0

0 0 −Λð1þ 2c̃Þ

1
CCA

t¼ϕ0

: ð67Þ

We note that the arbitrary divergence of θðtÞ can be
reconstructed other than θ ∼ θ0ðts − tÞβ. Moreover, it is
optional to include the energy-momentum tensor in this
reconstruction method. When introducing the matter con-
tents, one needs to carefully consider the conservation of
the energy-momentum tensor or field equations of matters.
In the above setup, the cosmological constant automatically
satisfies the conservation law in our current toy models.

V. SUMMARY AND DISCUSSION

In this work, we have investigated finite-time singular-
ities in general homogeneous and anisotropic spacetime.
We have observed two classes of singularities. The first
class is associated with the singularities in the scale factors
and is the generalization of the well-known finite-time
singularities in the FLRW universe. The second one
originates from the spatial anisotropy and rotational sym-
metry breaking, and the time-dependent rotation angle θðtÞ
of the spatial metric may show the new type of singularities.
We have shown that finite anisotropy is the necessary
condition for these new singularities, which also introduces
the anisotropic stress and off-diagonal elements in the Ricci
tensor. While the divergence of θðtÞ shows violent oscil-
lations in metric, the divergence of its derivatives can occur
as θ vanishes in the future. Following the finite-time
singularities in the FLRW universe, we have categorized
the new type of singularities.
We have also considered the physical meanings of

divergences in θðtÞ in terms of the geodesic equation
and geodesic deviation equation. In addition to behaviors
similar to known results in the FLRW universe, big rip, we
have found a novel singularity named the big twist. This
singularity can be generated by the derivative of θðtÞ. The
big twist shows up in the geodesic equation and is driven by
the force perpendicular to the velocity of the test particle,
which is similar to the Coriolis force. Moreover, we have
defined the little twist and pseudotwist based on the
behavior of θ̇ðtÞ, which is also analogous to the rip-type
singularities in the FLRW universe.

We have finally demonstrated the toy models of finite-
time singularities in the homogeneous and anisotropic
universe. The conventional effective matter description in
Einstein’s gravity, where the Einstein tensor directly
gives the effective energy-momentum tensor, predicts the
exotic equation of state, and it does not work to study
the future singularity. We have developed the novel
reconstruction method, the four-scalar reconstruction,
and applied it to our consideration. In the framework of
Einstein’s gravity, we have reconstructed two models
encompassing the two classes of finite-time singularities.
In both models, it is possible to mimic the ΛCDMmodel in
the current universe, and we can realize the finite-time
singularities arising from the scale factor or rotation angle
in the spatial metric.
Although we have relied on the reconstruction method

in the present work, we can apply our analysis of the
finite-time singularities in the homogenous and anisotropic
universe to the modified gravity theories beyond Einstein’s
gravity. It would be intriguing to study if these singularities,
especially newly discovered ones, can be realized in
specific models of modified gravity theories. It would be
a realistic extension of existing studies on big rips or other
singularities in the FLRW universe in the modified gravity
theory.
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APPENDIX: CALCULATION APPENDIX

In this paper, we have defined the Levi-Civita connec-
tion, Riemann tensor, Ricci tensor, and Ricci scalar as
follows:
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Γσ
μν ¼

1

2
gσρð∂μgρν þ ∂νgρμ − ∂ρgμνÞ; ðA1Þ

Rλ
μρν ¼ Γλ

μν;ρ − Γλ
μρ;ν þ Γη

μνΓλ
ρη − Γη

μρΓλ
νη; ðA2Þ

Rμν ¼ Rρ
μρν; ðA3Þ

R ¼ gμνRμν; ðA4Þ

1. Levi-Civita connection

First, for the metric as in Eq. (9), the Levi-Civita
connection (A1) takes the following forms,

Γ0
00 ¼ Γ0

0i ¼ Γ0
i0 ¼ Γi

00 ¼ Γi
jk ¼ 0;

Γ0
ij ¼

1

2
ġij;

Γi
0j ¼ Γi

j0 ¼
1

2
gikġkj: ðA5Þ

Γ0
ij and Γi

0j are written in terms of the rotation matrix O as
follows:

ðΓt
ijÞ ¼

1

2
ð−OTȮOTg̃OþOT ˙̃gOþOTg̃ ȮÞ

¼ OT

0
B@

aȧ 1
2
θ̇ðb2 − a2Þ 0

1
2
θ̇ðb2 − a2Þ bḃ 0

0 0 cċ

1
CAO; ðA6Þ

ðΓi
tjÞ ¼

1

2
OTðg̃Þ−1Oð−OTȮOTg̃OþOT ˙̃gOþOTg̃ ȮÞ

¼ OT

0
B@

ȧ
a

1
2
θ̇
	
b2

a2 − 1



0

1
2
θ̇
	
1 − a2

b2



ḃ
b 0

0 0 ċ
c

1
CAO: ðA7Þ

Here, we used

ȮT ¼ −OTȮOT

ȮOT ¼ −OTȮ ¼

0
B@

0 −θ̇ 0

θ̇ 0 0

0 0 0

1
CA: ðA8Þ

2. Ricci tensor and Ricci scalar

Second, we compute the Ricci tensor and Ricci scalar:

R00 ¼ −
1

2
gijg̈ij þ

1

2
gijgklġikġjl −

1

4
gijgklġikġjl

¼ −
1

2
gijg̈ij þ

1

4
gijgklġikġjl;

R0i ¼ Ri0 ¼ 0;

Rij ¼
1

2
g̈ij þ

1

4
ġijgklġkl −

1

2
ġilglkġkj;

R ¼ gijg̈ij þ
1

4
ðgijġijÞ2 −

3

4
gijgklġikġjl: ðA9Þ

R00, Rij, and R in Eq. (A9) are given as

R00 ¼
1

4
trð−2ȮOTȮOT þ 2ȮOT ˙̃gðg̃Þ−1

þ 2ȮOTg̃ ȮOTðg̃Þ−1 − 2ðg̃Þ−1 ˙̃g ȮOT

þ ðg̃Þ−1 ˙̃gðg̃Þ−1 ˙̃g − 2 ̈g̃ðg̃Þ−1Þ; ðA10Þ

Rij ¼
1

4
ð−OTȮOTg̃OþOT ˙̃gOþOTg̃ ȮÞijtrððg̃Þ−1 ˙̃gÞ

−
1

2
ðOTÖOTg̃O−OTg̃ Ö−OT ̈g̃O−OTȮOTȮOTg̃O

þOTȮOT ˙̃gOþOTȮOTg̃ Ȯ−OT ˙̃gðg̃Þ−1ȮOTg̃O

þOT ˙̃gðg̃Þ−1 ˙̃gO−OT ˙̃g Ȯ−OTg̃ ȮOTðg̃Þ−1ȮOTg̃O

þOTg̃ ȮOTðg̃Þ−1 ˙̃gOþOTg̃ ȮOTȮÞij; ðA11Þ

R ¼ tr

�
1

2
ȮOTȮOT −

1

2
ȮOT ˙̃gðg̃Þ−1 − 1

2
ȮOTg̃ ȮOTðg̃Þ−1

þ ̈g̃ðg̃Þ−1 þ 2ðg̃Þ−1 ˙̃g ȮOT −
3

4
ðg̃Þ−1 ˙̃gðg̃Þ−1 ˙̃g

�

þ 1

4
ðtrððg̃Þ−1 ˙̃gÞÞ2; ðA12Þ

We should note that

ÖOT − ȮOTȮOT ¼

0
B@

0 −θ̈ 0

θ̈ 0 0

0 0 0

1
CA → ÖOT

¼

0
B@

−θ̇2 −θ̈ 0

θ̈ −θ̇2 0

0 0 0

1
CA: ðA13Þ

By using Eq. (A8), R00 and Rij of the Ricci tensor are
written as follows:

R00 ¼ θ̇2
�
1 −

1

2

�
b2

a2
þ a2

b2

��
−
�
ä
a
þ b̈
b
þ c̈
c

�
; ðA14Þ
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ðRijÞ≡OTðR̃ijÞO ¼ OT

0
B@

R̃11 R̃12 0

R̃21 R̃22 0

0 0 R̃33

1
CAO; ðA15Þ

where nonzero components in R̃ij are defined as

R̃11 ¼ äaþ ȧa

�
ḃ
b
þ ċ
c

�
þ b4 − a4

2b2
θ̇2

R̃12 ¼ R̃21

¼ −
θ̈

2
ða2 − b2Þ

−
θ̇

2

�
ȧ
a
ðb2 þ 3a2Þ − ḃ

b
ða2 þ 3b2Þ þ ċ

c
ða2 − b2Þ

�

R̃22 ¼ b̈bþ ḃb

�
ȧ
a
þ ċ
c

�
þ a4 − b4

2a2
θ̇2

R̃33 ¼ c̈cþ ċc

�
ȧ
a
þ ḃ
b

�
: ðA16Þ

And the Ricci scalar R is given as

R ¼ g00R00 þOTðg̃ijRijÞO
¼ g00R00 þ g̃ijR̃ij

¼ ða2 − b2Þ2
2a2b2

θ̇2 þ 2

�
ä
a
þ b̈
b
þ c̈
c

�

þ 2

�
ȧ ḃ
ab

þ ḃ ċ
bc

þ ċ ȧ
ca

�
: ðA17Þ

3. Riemann tensor and geodesic deviation equation

The spatial components of the geodesic deviation equa-
tion as in Eq. (4) take the following form,

D2Sk

dτ2
¼ Rk

00jSj: ðA18Þ

We compute the Riemann tensor,

R0
i0j ¼

1

2
g̈ij þ

1

4
ġijglkġkl −

1

2
ġilglkġkj; ðA19Þ

and thus

Rk
00j ¼ −gkiðg00Þ−1R0

i0j ¼ gkiR0
i0j: ðA20Þ

Rk
00j is written in terms of the rotation matrixO as follows:

ðRi
00jÞ ¼ OTðR̃i

00jÞO; ðA21Þ

and

ðR̃i
00jÞ ¼

0
BB@

ä
a −

θ̇2

4

ða2−b2Þða2þ3b2Þ
a2b2 − θ̇

2

�
ȧ
a

	
b2

a2 þ 3


− ḃ

b

	
1þ 3 b2

a2

�

− θ̈
2

	
1 − b2

a2



0

− θ̇
2

�
ȧ
a

	
1þ 3 a2

b2


− ḃ

b

	
a2

b2 þ 3

�

− θ̈
2

	
a2

b2 − 1



b̈
b −

θ̇2

4

ðb2−a2Þðb2þ3a2Þ
a2b2 0

0 0 c̈
c

1
CCA: ðA22Þ

4. Einstein tensor

Finally, we compute the Einstein tensor defined as

Gμν ¼ Rμν −
1

2
gμνR: ðA23Þ

Using the diagonalized metric and Ricci tensor, we can
express the spatial components of the Einstein tensor as

Gij ¼ OT

�
R̃ij −

1

2
g̃ijR

�
O: ðA24Þ

Thus, G00, G0i, and Gij are written as follows:

G00 ¼ R00 þ
1

2
R

¼ θ̇2
�
1 −

1

2

�
b2

a2
þ a2

b2

��
−
1

2
θ̇2
�
1 −

1

2

�
b2

a2
þ a2

b2

��

þ
�
ȧ ḃ
ab

þ ḃ ċ
bc

þ ċ ȧ
ca

�

¼ −
ða2 − b2Þ2
4a2b2

θ̇2 þ
�
ȧ ḃ
ab

þ ḃ ċ
bc

þ ċ ȧ
ca

�
; ðA25Þ

G0i ¼ Gi0 ¼ 0; ðA26Þ
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ðGijÞ ¼ OT

8>><
>>:

0
B@

R̃11 R̃12 0

R̃21 R̃22 0

0 0 R̃33

1
CA −

1

2
R

0
B@

a2 0 0

0 b2 0

0 0 c2

1
CCA
9>>=
>>;
O ¼ OT

0
B@

G̃11 R̃12 0

R̃21 G̃22 0

0 0 G̃33

1
CAO; ðA27Þ

where the diagonal components in G̃ij are defined as

G̃11 ¼ −
ða2 − b2Þð3a2 þ b2Þ

4b2
θ̇2 − a2

�
b̈
b
þ c̈
c

�
− a2

ḃ ċ
bc

;

G̃22 ¼ −
ðb2 − a2Þða2 þ 3b2Þ

4a2
θ̇2 − b2

�
ä
a
þ c̈
c

�
− b2

ċ ȧ
ca

;

G̃33 ¼ −
ða2 − b2Þ2c2

4a2b2
θ̇2 − c2

�
ä
a
þ b̈
b

�
− c2

ȧ ḃ
ab

: ðA28Þ
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