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We study the structure of static spherical stars composed of nonrelativistic matter in linear massive
gravity with or without the Fierz-Pauli (FP) tuning. Adopting a polytropic equation of state, we construct
master differential equations for the stellar profile function, which is fourth order in the FP theory or sixth
order in generic non-FP theories, where the difference in the differential order reflects the presence of a
ghost spin-0 graviton in the latter. In both cases, even when the spin-0 ghost is present, we find exact
solutions with finite radius for the polytropic indices n ¼ 0 and 1. Analyzing the dependences of the stellar
radius, mass, and Yukawa charge on the graviton masses, we observe that a discontinuous behavior arises in
the massless limit of the FP theory similarly to the van Dam-Veltman-Zakharov discontinuity, while it is
absent in non-FP theories. We discuss rough observational constraints on the graviton masses.
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I. INTRODUCTION

General relativity (GR), a gauge theory of a massless
spin-2 graviton, has long established the status of the
standard, most successful model of gravity to date. There
are a great number of successes from the observation of the
gravitational bending of light in 1919 to the first detection
of gravitational waves in 2015. Nonetheless, there remain
theoretical and observational challenges that forces us not
to reach a consensus that it is a perfect model. One of the
most challenging problems confronting GR concerns the
origin of the late-time acceleration of the Universe, which,
in the framework of GR, is customarily ascribed to some
dark energy, an unknown energy component fulfilling the
Universe with negative pressure. Although there have been
plenty of hypothetical candidates, such as a cosmological
constant, quintessence, and so on, none of them seems
decisive so far.
Instead, in this paper, we take a strategy to explore another

class of possibilities which involves modifications to GR. In
such a cosmological context, massive gravity (MG), the idea
to give a mass to the graviton, has gathered much interests
recently.Massiveness of thegraviton, if any,would introduce
a length scale to gravitational interaction, weakening the
attraction of gravity at large distances so that the Universe
gets able to accelerate. At present, however, the search for a
plausible nonlinear theory of MG is still underway. The
recent remarkable developments are reviewed in [1].
Typically, models of nonlinear MG, when perturbed

around the flat spacetime, settle down to a class of linear

theories specified by an action being second order in the
metric perturbation hμν ≡ gμν − ημν,

Sg ¼
1

32πG

Z
d4x

�
−
1

2
∂ρhμν∂ρhμν þ ∂ρhμν∂μhνρ − ∂μhμν∂νh

þ 1

2
∂μh∂μh−

m2

2
ðhμνhμν − ð1− ϵÞh2Þ

�
; ð1Þ

where G is the (bare) Newton constant and m is a mass
parameter,1 which is missing in GR. In order to enjoy
impeccable successes of GR in weak regimes, the above
linear theory necessarily involves a spin-2 graviton, with an
essential difference being the nonzero mass which breaks
the gauge symmetry of GR. Here, the parameter ϵ is what
we shall call the “non-Fierz-Pauli” parameter. It is known
that a nonzero value of ϵ signals the emergence of another
massive graviton of spin-0, which is a ghost mode with
negative kinetic energy. The theory without the ghost,
ϵ ¼ 0, is actually the one proposed by Fierz and Pauli (FP)
in 1939 [2], which is the most traditional and simplest
model of linear MG.
A crucial observation associated with the FP theory with

a matter field was made by van Dam and Veltman and by
Zakharov in 1970 [3,4]. They added a minimally coupled
matter source

Sint ¼
1

2

Z
d4xhμνTμν ð2Þ

to the gravitational action (1) with ϵ ¼ 0. Their discovery
was that the prediction for the bending angle of light due to
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a massive body in the massless limit of the FP theory differs
from GR by a factor of 3=4, a phenomenon called the van
Dam-Veltman-Zakharov (vDVZ) discontinuity. Rather than
rejecting the FP theory, however, the discovery has stimu-
lated inspections of “screening” mechanisms in MG that
can cancel the discrepancy and make predictions on the
solar-system scale consistent with GR. One of the most
notable proposals was made by Vainshtein [5], who
considered a nonlinear kinetic term and found recovery
of consistency with GR within a certain radius. See Ref. [6]
for historical overviews and recent developments.
The purpose of this study is to perform another test of

linear MG to examine what roles are played by the mass m
as well as the non-FP parameter ϵ in astrophysical bodies.
Specifically, we will develop differential equations deter-
mining the density profile of a nonrelativistic spherically
symmetric star in hydrostatic equilibrium in linear MG
theories with or without the FP “tuning” ϵ ¼ 0. We will
adopt the polytropic relation as the equation of state (EOS)
and try to obtain some analytic solutions for the polytropic
index n ¼ 0 and 1 in all MG theories, which can be
compared with the results in GR. In doing so, we will take
advantage of our recent work [7] in identifying independent
dynamical degrees of freedom (DOFs) in the non-FP
theories. We also note that the present scheme has a great
similarity to the one employed in the study of stellar
structures in higher-curvature gravity in Ref. [8].
The fundamental question is what range of the graviton

massm is allowed from the perspective of stellar structures.
A severe upper bound has been recently placed on the
deviation from GR, i.e., finiteness of the graviton mass,
from the multi-messenger observation of a gravitational-
wave event GW170817 [9]. However, the experience of the
vDVZ discontinuity cautions that something inconsistent
with GR may occur in the massless limit of the FP-tuned
theory with ϵ ¼ 0. In this paper, we shall be greatly
cautious about this limit and explore any different conse-
quences arising when the FP tuning is violated at the risk of
having the spin-0 ghost. Our current standpoint regarding
the ghost is that it is not necessarily forbidden in a classical
linear theory and the non-FP MG may be accepted as a
phenomenological effective theory.
The organization of this paper is as follows. In Sec. II, we

derive a modified Lane-Emden (LE) equation, which is a
master equation for nonrelativistic stellar structures in MG.
We will also treat limiting cases recovering the FP theory
and GR. In Sec. III, we will solve the modified LE equation
with the polytropic indices n ¼ 0 and 1. We try to find its
exact solutions and study the dependence of their stellar
radius, mass, and Yukawa charge on the graviton masses.
Semiobservational constraints on the graviton masses are
also discussed. Finally we conclude in Sec. IV.
Throughout the paper, we will work with the natural

units with c ¼ ℏ ¼ 1. Greek indices of tensors such as
μ; ν; � � � are of space-time while Latin ones such as i; j; � � �

are spatial. The Minkowski metric is ημν. The symbol ∂μ
denotes partial differentiation ∂

∂xμ. □≡ ημν∂μ∂ν is the
d’Alembertian and △≡ δij∂i∂j the Laplacian.

II. HYDROSTATIC EQUILIBRIUM AND THE
MODIFIED LANE-EMDEN EQUATION

In this section, we derive an equation determining the
structure of a newtonian star in hydrostatic equilibrium in
generic linear MG that can be viewed as a modified version
of the Lane-Emden (LE) equation in GR.

A. Scalar-type equations of motion in MG

We begin with summarizing the equations of motion for
the scalar modes in MG, which will be relevant to static
spherical configurations. Scalar-type metric perturbations
are characterized by four variables as

hðSÞ00 ¼−2A; hðSÞ0i ¼−∂iB; hðSÞij ¼ 2δijCþ2∂i∂jE: ð3Þ

It is well known that one can choose two linearly
independent combinations of the above four variables that
are invariant under a small gauge transformation, see
Appendix A for a summary of linear gauge transformations
and invariant variables. In particular,

Ψ≡ A − Ḃ − Ë; Φ≡ C ð4Þ

correspond to the gravitational potentials in the Newtonian
gauge. When the action (1) does not possess the mass term,
the scalar sector can be solely written in terms of the gauge-
invariant variables because the massless theory inherits the
linearized version of the gauge symmetry of GR. In the
massive case, on the other hand, one cannot take such
advantage because the mass term breaks the symmetry.
Indeed, the action (1) is written in terms of the metric
perturbations, A, B, C, and E, as

SðSÞg ¼ 1

16πG

Z
d4x

�
−6C□C− 4C△ðA− Ḃ− Ë−CÞ

−
m2

2
ð2ϵA2 þB△Bþ 6ð3ϵ− 2ÞC2 þ 2ϵE△2E

þ 4ð3ϵ− 2ÞC△Eþ 4ðϵ− 1ÞA△Eþ 12ðϵ− 1ÞACÞ
�
;

ð5Þ

up to surface terms. In a similar fashion, we define the
scalar components of the perturbative energy-momentum
tensor Tμν as

TðSÞ
00 ¼ ρ; TðSÞ

0i ¼ −∂iv;

TðSÞ
ij ¼ Pδij þ

�
∂i∂j −

1

3
δij△

�
σ; ð6Þ
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so the scalar sector of the interaction action (2) is

SðSÞint ¼
Z

d4x

�
−Aρþ B△vþ 3CPþ E△

�
Pþ 2

3
△σ

��
; ð7Þ

where surface terms have been discarded. We assume the conservation law ∂μTðSÞμν ¼ 0 holds, which settles down in the
decomposed form

ρ̇þ△v ¼ 0; v̇þ Pþ 2

3
△σ ¼ 0: ð8Þ

Varying the action SðSÞ ¼ SðSÞg þ SðSÞint with respect to A, B, C, E and using the conservation law, we obtain the four equations
of motion (EOMs)

2△Cþm2½ϵAþ ðϵ − 1Þ△Eþ 3ðϵ − 1ÞC� ¼ −8πGρ;

△ð4Ċþm2BÞ ¼ −16πGρ̇;

6□Cþ 2△ðA − Ḃ − Ë − 2CÞ þm2½3ð3ϵ − 2ÞCþ ð3ϵ − 2Þ△Eþ 3ðϵ − 1ÞA� ¼ 24πGP;

△f−2C̈þm2½ϵ△Eþ ð3ϵ − 2ÞCþ ðϵ − 1ÞA�g ¼ 8πGρ̈: ð9Þ

The derivation of an equivalent set of equations can be
found in Ref. [10].
The authors rigorously proved in Ref. [7] that, in the

vacuum case, the scalar-type dynamical content in this
theory consists of the helicity-0 component of the spin-2
graviton and the spin-0 graviton, which may be defined as

ϕ2 ≡ 1

2
ðA − Ḃ − Ë − CÞ; ϕ0 ≡ −Aþ Ḃ

2
− 2C; ð10Þ

respectively. In fact, even in the presence of the matter
sources, the EOMs (9) are neatly recast into the following
two sourced Klein-Gordon-type equations for ϕ2 and ϕ0,

ð□ −m2
2Þϕ2 ¼ 4πGðρþ v̇ −□σÞ;

ð□ −m2
0Þϕ0 ¼ 4πGðρ − 3PÞ; ð11Þ

where their masses are defined as

m2
2 ≡m2; m2

0 ≡ 3 − 4ϵ

2ϵ
m2; ð12Þ

respectively. By solving ϕ2 and ϕ0, we can reconstruct the
original metric variables, see Appendix B for the formula.
In order to prevent ϕ0 from being tachyonic, the non-FP

parameter ϵ is required to be within the range 0 < ϵ ≤ 3=4
so that 0 ≤ m2

0 < ∞. We will shortly confirm that both ϕ2

and ϕ0 produce a Yukawa-type potential in the static case
and, when nontachyonic, ϕ2 is attractive in the remote
distances whereas ϕ0 is repulsive. On the observational
ground, the attractive force mediated by the spin-2 graviton
must dominate, so we further restrict the range of ϵ within
0 < ϵ ≤ 1=2 so that m2

2 ≤ m2
0. On the other hand, m2

2 must

be so tiny that the speed of gravitational waves is
sufficiently close to the speed of light in light of the
observation of GW170817 [9]. Notice that, as long as
ϵ ≠ 0, vanishing of the spin-2 mass implies simultaneous
vanishing of the spin-0 mass.

B. Massive gravitational potentials: Absence
of the vDVZ discontinuity

From now on, we specialize to static configurations with
nonrelativistic matter satisfying ρ ≫ jPj. Then, our varia-
bles are related to the metric perturbations as

ϕ2 ¼
A − C
2

; ϕ0 ¼ −A − 2C ð13Þ

and they obey the Helmholtz-type equations

ð△ −m2
2Þϕ2 ¼ 4πGρ; ð△ −m2

0Þϕ0 ¼ 4πGρ: ð14Þ
The gauge-invariant variables (4) can now be written in
terms of ϕ2 and ϕ0 as

Ψ ¼ A ¼ 4

3
ϕ2 −

1

3
ϕ0; Φ ¼ C ¼ −

2

3
ϕ2 −

1

3
ϕ0: ð15Þ

For notational convenience, we introduce

α2 ¼
4

3
; α0 ¼ −

1

3
; β2 ¼ −

2

3
; β0 ¼ −

1

3
ð16Þ

and write the gauge-invariant potentials as

Ψ ¼
X
s¼2;0

αsϕs; Φ ¼
X
s¼2;0

βsϕs: ð17Þ

It will be useful to notice that
P

s αs ¼
P

s βs ¼ 1.
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Hereafter we presume that the system is spherically
symmetric. Since asymptotic flatness requires limjx⃗j→∞ Ψ ¼
limjx⃗j→∞ Φ ¼ 0,ϕsmust satisfy limjx⃗j→∞ ϕs ¼ 0. The formal
spherically symmetric solution to the Helmholtz equa-
tion (14) fulfilling the asymptotic boundary condition is
given by

ϕs ¼ −
G
r
ðσsðrÞ cosh msrþ ðIs − χsðrÞÞ sinh msrÞ ð18Þ

with

σsðrÞ≡ 4π

ms

Z
r

0

dr0r0 sinh msr0ρðr0Þ;

χsðrÞ≡ 4π

ms

Z
r

0

dr0r0 coshmsr0ρðr0Þ; ð19Þ

where the integration constant Is must be so tuned to kill the
exponentially growingmode.When thematter distribution is
confined within a finite stellar radiusR, these functions have
a constant value outside the star: σsðr≥RÞ¼σsðr¼RÞ≡Σs,
χsðr ≥ RÞ ¼ χsðr ¼ RÞ≡ Xs. Then the integration constant
is determined as

Is ≡ Xs − Σs ¼
4π

ms

Z
R

0

drrρðrÞe−msr: ð20Þ

Outside the star, ϕs reduces to a Yukawa-type potential

ϕsðr ≥ RÞ ¼ −
GΣse−msr

r
; ð21Þ

because σsðr ≥ RÞ ¼ Σs and Is − χsðr ≥ RÞ ¼ −Σs. We see
that Σs plays a role of a Yukawa charge.
Let us gain some insights into the massless limit. The

limiting value of the enclosed charge σsðrÞ is nothing but
the enclosed mass,

lim
ms→0

σsðrÞ ¼ 4π

Z
r

0

dr0r02ρðr0Þ≡mðrÞ; ð22Þ

which proves that the massive potential (18) reproduces the
Newtonian potential in this limit:

lim
ms→0

ϕsðrÞ ¼
Z

r

∞

Gmðr0Þ
r02

dr0: ð23Þ

A remarkable consequence is that the massless limit of the
gauge-invariant potentials external to an object with mass
M≡mðRÞ recovers the Newtonian potential,

lim
m→0

Ψ ¼ − lim
m→0

Φ ¼ −
GM
r

; ð24Þ

thereby proving the absence of the vDVZ discontinuity in
generic non-FP MG.

Notice that the above mentioned recovery of the
Newtonian potential is a consequence of the compensating
contribution from the spin-0 mode ϕ0. The contribution to
the gravitational potential from the spin-2 mode ϕ2 alone
exceeds the Newtonian potential by a factor of 1=3 as
implied by the coefficient α2 ¼ 4=3 in (15). That excess is
exactly canceled by ϕ0 with the negative coefficient
α0 ¼ −1=3, where ϕ0 is understood to provide a repulsive
potential representing its ghost nature.

C. Master equation from hydrostatic
equilibrium condition

Given the gauge-invariant potential Ψ, the hydrostatic
equilibrium condition in the Newtonian gauge reads

1

ρ

dP
dr

¼ −
dΨ
dr

: ð25Þ

In order to obtain a differential equation for ρ, one supplies
an EOS P ¼ PðρÞ and operates 1

r2
d
dr r

2 on the both sides
to find

1

r2
d
dr

�
r2

ρ

dP
dr

�
¼ −△Ψ: ð26Þ

For now, we assume bothm2
2 andm

2
0 are bounded. Then we

can safely use the Helmholtz equations (14) for ϕs’s to
obtain

1

r2
d
dr

�
r2

ρ

dP
dr

�
¼ −

X
s

αsðm2
sϕs þ 4πGρÞ: ð27Þ

Hereafter we adopt the polytropic relation P ¼ Kρ1þ1
n as

the EOS for the stellar matter, whereK is a constant and n is
another constant called the polytropic index. Quantities at
the stellar center will be denoted by the subscript “c,” such

as ρc ≡ ρðr ¼ 0Þ and Pc ≡ Pðr ¼ 0Þ ¼ Kρ
1þ1

n
c . The stellar

mass density and pressure can be expressed by a single
profile function θ as

ρ ¼ ρcθ
n; P ¼ Pcθ

nþ1; ð28Þ
which is normalized as θc ¼ θðr ¼ 0Þ ¼ 1. Introducing a
length scale2

l≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1ÞPc

4πGρ2c

s
; ð29Þ

the nondimensional radial coordinate ξ and graviton mass
parameters μs are defined as

ξ≡ r
l
; μs ≡msl: ð30Þ

2Note that l depends on the polytropic index n.
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Following the standard derivation of the Lane-Emden
equation in GR, we operate the nondimensionalized
Laplacian operator △ξ ≡ 1

ξ2
d
dξ ðξ2 d

dξÞ ¼ l2
△ on the hydro-

static equilibrium condition (27) to obtain

△ξθ þ
X
s

αs

�
θn þ μ2sϕs

4πGρcl2

�
¼ 0: ð31Þ

Unlike GR, however, this is still an integro-differential
equation for ρ since ϕs involve integrals of ρ in a nontrivial
manner as given by (18). Since ϕs is a formal integral of the
Helmholtz equation (14), it reduces in turn to the source
term 4πGρ by an operation of the Helmholtz operator
△ −m2

s . Thus, operating ð△ξ − μ22Þð△ξ − μ20Þ and using
(14), we obtain a sixth-order differential equation for θ:

△ξ½ð△ξ−μ22Þð△ξ−μ20Þθþα2ð△ξ−μ20Þθnþα0ð△ξ−μ22Þθn�
¼ 0: ð32Þ

This is our master equation for the profile function θ in
generic linear MG, which is an extension of the original
second-order Lane-Emden equation in GR. The stellar
structure can be constructed upon integration of (32) with
suitable boundary conditions. The fact that this is sixth
order in differentiation is a consequence of the fact that
there exist three physical degrees of freedom, one from the
massive spin-2 graviton, one from the massive spin-0 and
one from the matter. A word of caution is that the overall
laplacian operator on the left-hand side of (32) cannot be
dropped as in the case of field equations (9) since θ and its
derivatives must satisfy nontrivial boundary conditions at a
finite radius r ¼ R, as we shall shortly see.
In terms of the nondimensional variables, the stellar mass

M and charge Σs are expressed as

M ¼ 4πl3ρc

Z
ξR

0

dξξ2θðξÞn;

Σs ¼
4πl3ρc
μs

Z
ξR

0

dξξ sinh μsξθðξÞn; ð33Þ

where ξR ≡ R=l and is the first positive zero of θ. Unlike
GR, M cannot be expressed in terms of derivatives at the
stellar surface.

D. Boundary conditions

Now we move on to discuss boundary conditions to be
imposed on the profile function θ. Since the master
equation (32) is sixth order in differentiation, there is need
for six independent conditions, a priori. All such con-
ditions can be derived as the requirements for the compat-
ibility with the hydrostatic equilibrium condition (25).

Let us start by re-expressing (25) in terms of θ as

θ0 ¼ −
l−1

4πGρc

dΨ
dr

; ð34Þ

where and hereafter the prime denotes derivative with

respect to ξ. The derivatives at the stellar center θðnÞc ≡
dnθ
dξn ð0Þ are required to be consistent with the behavior of the
potential Ψ ¼ P

s αsϕs evaluated there. It can be shown
that the radial acceleration at the stellar center vanishes,
limr→0 − dΨ

dr ¼ 0, which implies θ0c ¼ 0 via (34). Hence, the
following two boundary conditions have so far been
obtained:

θc ¼ 1; θ0c ¼ 0: ð35Þ

These two conditions just suffice in the case of the second-
order LE equation in GR. By contrast, four more boundary
conditions are required in order to solve the full sixth-order
differential equation (32). They are found from derivatives
of (34) as

θ00c ¼ −
1

4πGρc
lim
r→0

d2Ψ
dr2

¼
X
s

αs

�
−
1

3
þ 1

3
μ2s ιs

�
;

θ000c ¼ −
l

4πGρc
lim
r→0

d3Ψ
dr3

¼ 0;

θð4Þc ¼ −
l2

4πGρc
lim
r→0

d4Ψ
dr4

¼
X
s

αs

�
−
3

5
nθ00c −

1

5
μ2s þ

1

5
μ4s ιs

�
;

θð5Þc ¼ −
l3

4πGρc
lim
r→0

d5Ψ
dr5

¼ 0; ð36Þ

where we have nondimensionalized the constants Is (20)
appearing in the potentials ϕs such that

ιs ≡ μsIs
4πl3ρc

¼
Z

ξR

0

dξξθðξÞne−μsξ ð37Þ

and iteratively applied the conditions arising from lower
derivatives to those from higher ones. It is observed that θ00c
and θð4Þc are now related to the stellar global quantities ιs,
which was moreover introduced to guarantee flatness at
spatial infinity. The value of ιs is as yet undetermined until
the profile function θ is solved. Therefore, these expres-
sions of the boundary values should be considered merely
formal. Namely, the problem is not formulated as a simple
initial value problem as in GR, but we will have to perform
some matching procedure between the boundary values at
the stellar center and the integrals of the solution over the
whole domain. Note that the stellar radius ξR is simulta-
neously determined by this procedure.
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It might be useful to provide an integro-differential
equation equivalent to the master equation (32).
Integrating (32) twice, we have

ð△ξ − μ22Þð△ξ − μ20Þθ þ α2ð△ξ − μ20Þθn þ α0ð△ξ − μ22Þθn
¼ μ22μ

2
0ð1 − α2ι2 − α0ι0Þ; ð38Þ

wherewe have already utilized the boundary conditions (36).

E. The Fierz-Pauli limit: Discontinuity
and Vainshtein screening

When the mass parameter μ20 goes to infinity, i.e., the
non-FP parameter ϵ goes to zero, the massive gravity theory
reduces to the FP theory. A little care has to be taken when
one wants to consider such a limit because we have
assumed finiteness of the graviton masses in the derivation
of the full equation. Actually, in the massive limit, the
spin-0 Yukawa potential itself must be absent from the
beginning. A secure way to go is to begin by setting α0 ¼ 0
in (31), which has the effect of turning off the spin-0
Yukawa potential ϕ0. Then, operating ð△ξ − μ22Þ only, the
correct master equation for the FP theory is found to be

△ξ

�
ð△ξ − μ22Þθ þ

4

3
θn
�
¼ 0; ð39Þ

where we have restored α2 to 4=3. The reason for this being
fourth order is that the helicity-0 component of the massive
spin-2 graviton, which is absent in GR, is still at work in
addition to the matter DOF. It is interesting to note that this
can also be obtained by taking a formal limit μ20 → ∞ in the
master equation (32) for a generic theory.
We need four boundary conditions in total, two of which

are the same as the Lane-Emden condition (35). The
remaining two are obtained by setting α0 ¼ 0 in (36) as

θ00c ¼ −
1

4πGρc
lim
r→0

d2Ψ
dr2

¼ −
4

9
ð1 − μ22ι2Þ;

θ000c ¼ −
l

4πGρc
lim
r→0

d3Ψ
dr3

¼ 0: ð40Þ

It is useful here to consider an integro-differential
equation equivalent to the fourth-order LE equation (39),

ð△ξ − μ22Þθ þ
4

3
θn ¼ 4

3
μ22ι2 − μ22: ð41Þ

From this, one can deduce that, when the graviton mass
parameter μ2 goes to zero, the master equation reduces to

△ξθ þ
4

3
θn ¼ 0 ð42Þ

with the boundary conditions θc ¼ 1; θ0c ¼ 0. This resem-
bles the ordinary Lane-Emden equation in GR but has a
different numerical coefficient, implying that its solutions
do not recover those of GR although the mass parameter μ2
vanishes. This discontinuous behavior is reminiscent of the
vDVZ discontinuity.
Historically, since Vainshtein [5], this kind of disconti-

nuity in the FP theory has been believed to be cured by a
screening mechanism inherent in the nonlinear completion
of the theory, where gravity within some radius rV is
expected to mimic GR. It would be of interest here to
compare the stellar radius R and the screening radius rV
taking its generic expression rV ≡ ðrS=mpÞ1=ðpþ1Þ, where
rS is the Schwarzschild radius of a stellar object, m is the
graviton mass, and p is a theory-dependent parameter.3

Then, the ratio of the screening radius to the stellar radius
reads rV=R ¼ ðrS=RÞ1=ðpþ1Þ=ðmRÞp=ðpþ1Þ. Although the
ratio rS=R in the numerator should be reasonably small
for any nonrelativistic stars, the product mR in the
denominator is requested to be far more smaller once
one demands the inverse-square force exerted by the object
reaches astronomical distances, which are generically
greater than R by tremendous orders of magnitude.
Hence one can generically expect that rV=R ≫ 1 and,
therefore, some screening effect should work within non-
relativistic stellar objects. We will come back to this issue
and its consequences in Sec. IV.

F. Absence of discontinuity in non-Fierz-Pauli theories

Last but not least, we consider the massless limit with a
nonvanishing non-FP parameter ϵ. When ϵ ≠ 0, the doubly
massless limit can be taken, where both μ2 and μ0 go to
zero. Then, our master equation (32) becomes

△
2
ξð△ξθ þ θnÞ ¼ 0: ð43Þ

This equation can be integrated four times and imposing the
suitable boundary conditions (36) yields

△ξθ þ θn ¼ 0: ð44Þ

This is the same as the standard Lane-Emden equation in
GR. Thus, we can expect that the solutions to the master
equation (32) will recover the corresponding solutions of
the standard LE equation in GR. This proves the absence of
the discontinuity in the generic, non-FP MG.

III. EXACT SOLUTIONS

In this section, we present analytical solutions to the FP
and non-FP master equations for the polytropic indices

3p ¼ 4 for the original Vainshtein model [5] and p ¼ 2 for the
de Rham-Gabadadze-Tolley (dRGT) theory [11]. See, e.g., [12]
for generalizations.
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n ¼ 0 and 1. The stellar radius, mass, and charge are
evaluated in each case. We also discuss constraints on the
graviton mass parameters. In this section, we will keep
ourselves within the regime of the linear theory and leave
discussions concerning the nonlinear screening effect
to Sec. IV.
We first recap the solutions to the LE equation (44) in

GR. The exact solutions for n ¼ 0, 1 are well known4

θLE;0 ¼ 1 −
ξ2

6
; θLE;1 ¼

sin ξ
ξ

: ð45Þ

The stellar radius R and mass M in each case are

n¼ 0∶ RLE;0¼
ffiffiffi
6

p
l0; MLE;0¼

4

3
πR3

LE;0ρc¼ 8
ffiffiffi
6

p
πl3

0ρc;

n¼ 1∶ RLE;1¼ πl1; MLE;1 ¼
4

π
R3
LE;1ρc¼ 4π2l3

1ρc; ð46Þ

where we have stressed here the length scale l depends
on n.

A. General structure

All the differential equations treated in this section
will be a linear homogeneous equation for θ sharing the
common form

fð△ξÞθ ¼ 0; ð47Þ

where the characteristic polynomial fðXÞ is degree 2 inX for
the FP theory or 3 for the non-FP theories. The general
solution is characterized by the set of the roots for the
characteristic equation fðXÞ ¼ 0. It always has X0 ¼ 0 as a
root, as is obvious from Eqs. (32) and (39). For each rootXi,
one finds a fundamental solution by solving △θi ¼ Xiθi,

θi ¼

8>><
>>:

Ai þ Bi
ξ ðXi ¼ 0Þ

Ai
sinh

ffiffiffiffi
Xi

p
ξ

ξ þ Bi
cosh

ffiffiffiffi
Xi

p
ξ

ξ ðXi > 0Þ
Ai

sin
ffiffiffiffiffiffi
−Xi

p
ξ

ξ þ Bi
cos

ffiffiffiffiffiffi
−Xi

p
ξ

ξ ðXi < 0Þ
; ð48Þ

whereAi andBi are arbitrary real constants.When there is no
degeneracy, the general solution is just a sum of the
fundamental solutions θi. If there are degeneracies, on the
other hand, special but straightforward mathematical treat-
ments such as variation of constants will be necessary. Later,
we will take care of an example of a degenerate situation.

B. Fierz-Pauli theory

We first present the exact solutions to the Fierz-Pauli
master equation (39) in the cases of the polytropic indices
n ¼ 0 and 1. In this case, only the spin-2 graviton exists.

1. n = 0

For n ¼ 0, the fourth-order equation (39) reduces to a
homogeneous linear equation

ð△ξ − μ22Þ△ξθ ¼ 0: ð49Þ

The general solution can be found as

θ ¼ A1 þ
A2

ξ
þ A3

sinh μ2ξ
μ2ξ

þ A4

cosh μ2ξ
μ2ξ

; ð50Þ

where A1, A2, A3, and A4 are constants of integration. The
set of the boundary conditions (40) determines the con-
stants as

A1 ¼ 1−A3; A3 ¼−
4

3

ð1þμ2ξRÞe−μ2ξR
μ22

; A2 ¼A4 ¼ 0:

ð51Þ

Therefore, we get the exact solution

θ ¼ 1 −
4

3

ð1þ μ2ξRÞe−μ2ξR
μ22

sinh μ2ξ − μ2ξ

μ2ξ
: ð52Þ

As anticipated, the solution is parameterized by the stellar
radius ξR, the value of which must be determined by
numerically solving θðξRÞ ¼ 0. The analytical expres-
sion for the gravitational potential Ψ can be found in
Appendix C.
Figure 1 shows the profile function θ for several values

of μ2 and compares them with GR. In the massless limit
μ2 → 0, the solution reduces to θ ¼ 1 − 2

9
ξ2, which has a

different coefficient from the Lane-Emden solution in GR.
As a consequence, the stellar radius shrinks from the GR
value of

ffiffiffi
6

p
to 3=

ffiffiffi
2

p
. When μ22 is larger than a critical

value around 0.75472…, no solution exists. The profile
best resembles that of GR when μ2 has some finite
value around 0.4, but such a large value is physically
unreasonable.

FIG. 1. The profile function θ for the polytropic index n ¼ 0 in
the Fierz-Pauli theory and GR.4The exact solution for n ¼ 5 does not have a finite radius.
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The expressions for the stellar mass M and the Yukawa
charge Σ2 can be obtained by substituting the solution
to (33):

M ¼ 4πl3ρcξ
3
R

3
;

Σ2 ¼ 4πl3ρc
μ2ξR cosh μ2ξR − sinh μ2ξR

μ32
: ð53Þ

Figure 2 shows the dependence of the stellar radius R=l
(blue), the mass M=ð4πl3ρcÞ (red) and the charge
Σ2=ð4πl3ρcÞ (yellow), each appropriately normalized, on
the graviton mass parameter μ2. As we explained earlier,
when the graviton mass parameter μ2 goes to zero, the
charge Σ2 and the mass M have the same limiting value.
One also confirms that the massless limit of R and M does
not converge to their corresponding GR values indicated by
the star symbols. This discontinuous behavior is analogous
to what is predicted for the bending of light. Hence, one
could conclude that, in order for the graviton in the FP
theory to acquire a tiny mass, some screening mechanism
that helps the recovery of GR has to be invoked even
inside stars.

2. n = 1

For the polytropic index n ¼ 1, the fourth-order equa-
tion (39) reduces to a linear homogeneous equation

�
△ξ −

�
μ22 −

4

3

��
△ξθ ¼ 0: ð54Þ

We assume μ22 < 4=3 since the graviton mass should be
small enough to be compatible with the gravitational-wave
experiments. The general solution is obtained as

θ ¼ B1 þ
B2

ξ
þ B3

sin λξ
λξ

þ B4

cos λξ
λξ

ð55Þ

with λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4
3
− μ22

q
and B1, B2, B3, and B4 are constants of

integration. The boundary conditions (40) determine the
constants as

B1¼ 1−B3; B3¼
4

3λ2
ð1−μ22ι2Þ; B2¼B4¼ 0: ð56Þ

Therefore, the exact solution is

θ ¼ 1þ B3

sin λξ − λξ

ξ
ð57Þ

with

B3 ¼ −
4ð1þ μ2ξRÞ

3μ22ðλ cos λξR þ μ2 sin λξRÞ − 4λð1þ μ2ξRÞ
: ð58Þ

An expression for the interior gravitational potential can
also be found, but we do not show it in this paper because
the result is too complicated and not illuminating.
Figure 3 shows the profile functions in the Fierz-Pauli

theory and GR for n ¼ 1. Although the functional shapes
are different from those for n ¼ 0, the trends with respect to
the change in the mass parameter are similar. When μ2 → 0,

the solution reduces to θ ¼
ffiffi
3

p
2ξ sin

2ξffiffi
3

p , so the stellar radius ξR

shrinks from the GR value of π to
ffiffiffi
3

p
π=2.

Once ξR is determined, the stellar massM and charge Σ2

can be evaluated via their expressions for n ¼ 1:

M ¼ 4πl3ρc
3

�
ξ3R þ

3B3

λ2

�
sinλξR − λξR cosλξR −

1

3
λ3ξ3R

��
;

Σ2 ¼
4πl3ρc
μ32

�
μ2ξR coshμ2ξR − sinhμ2ξR

þB3λ

�
sinhμ2ξR

�
1−

3

4
μ22 cosλξR

�

− μ2 coshμ2ξR

�
ξR þ

3

4
μ22 cosλξR

���
: ð59Þ

FIG. 2. The dependence of the stellar radius R=l (blue), the
mass M=ð4πl3ρcÞ (red) and the charge Σ2=ð4πl3ρcÞ (yellow),
each appropriately normalized, on the graviton mass μ22 for the
polytropic index n ¼ 0. The star symbols indicate the GR values
of R (bottom, blue) and M (top, red).

FIG. 3. The profile function θ for the polytropic index n ¼ 1 in
the Fierz-Pauli theory and GR.
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The relations between M and R and between Σ2 and R can
be found in Appendix D.

C. Non-Fierz-Pauli generic theories

Nowwewould like to tackle the full master equation (32)
in generic linear MG. The existence of the two massive
gravitons, spin-2 and -0, renders the analysis considerably
messy, but most features of the solutions will be reasonably
understood as collective contributions from these gravitons.
As in the FP case, we find exact solutions for the polytropic
indices n ¼ 0, 1.

1. n = 0

In the case of n ¼ 0, the master equation (32) reduces to

ð△ξ − μ22Þð△ξ − μ20Þ△ξθ ¼ 0: ð60Þ

When μ2 ≠ μ0, the general solution with six arbitrary
constants is found to be

θ ¼ C1 þ
C2

ξ
þ C3

sinh μ2ξ
μ2ξ

þ C4

cosh μ2ξ
μ2ξ

þ C5

sinh μ0ξ
μ0ξ

þ C6

cosh μ0ξ
μ0ξ

; ð61Þ

where C1–C6 are constants of integration. The boundary
conditions (36) determine the constants as

C1 ¼ 1 − C3 − C5; C3 ¼ −
4

3
ðμ−22 − ι2Þ;

C5 ¼
1

3
ðμ−20 − ι0Þ; C2 ¼ C4 ¼ C6 ¼ 0: ð62Þ

Therefore, the exact solution is

θ ¼ 1 −
4

3

ð1þ μ2ξRÞe−μ2ξR
μ22

sinh μ2ξ − μ2ξ

μ2ξ

þ 1

3

ð1þ μ0ξRÞe−μ0ξR
μ20

sinh μ0ξ − μ0ξ

μ0ξ
: ð63Þ

When μ2 ¼ μ0, the characteristic roots degenerate and the
general solution then is

θ ¼ C̃1 þ
C̃2

ξ
þ C̃3

sinh μ2ξ
μ2ξ

þ C̃4

cosh μ2ξ
μ2ξ

þ C̃5 sinh μ2ξ

þ C̃6 cosh μ2ξ: ð64Þ

A calculation leads to the solution

θ ¼ 1 −
ð1þ μ2ξRÞe−μ2ξR

μ22

sinh μ2ξ − μ2ξ

μ2ξ
; ð65Þ

which happens to be identical with the formal μ0 → μ2 limit
of the nondegenerate solution (63). The analytical expres-
sion for the gravitational potential is found in Appendix C.
Typical solutions are shown in Fig. 4 together with the

n ¼ 0 LE solution. As is obvious from the expression (63),
the spin-2 graviton mediates an attractive force while the
spin-0 is repulsive. When there is a hierarchy between the
graviton masses, the graviton with lighter mass dominates.
It is worth mentioning that the stellar structure is main-
tained even in the presence of the ghost spin-0 graviton as
long as μ0 ≳ μ2. In the case where the graviton masses are
comparable, μ2 ≈ μ0, the spin-2 graviton exceeds because
its magnitude is four-fold stronger than the spin-0.
Let us mention some interesting limits. In the limit

μ0 → ∞, i.e., ϵ → 0, the solution reduces to the one in the
FP theory obtained previously. In another special case
where the spin-2 graviton has zero mass, μ2 → 0, the spin-0
mass is simultaneously zero, μ0 → 0, by definition. The
massless limit of the solution (63) recovers the n ¼ 0 LE
solution θLE;0 ¼ 1 − ξ2=6, so no discontinuity appears
when the spin-0 graviton is included.
Once ξR is determined, the stellar massM and charge Σs

can be evaluated via their expressions, which are essentially
the same as the one for the FP theory (53) (μ2 → μ0 for Σ0)
since n ¼ 0. Figure 5 shows the dependences of the stellar
radius R=l (blue) and the mass M=ð4πl3ρcÞ (red) on the
spin-2 graviton mass μ22 for several values of the non-FP
parameter ϵ. A larger value of ϵ leads to a larger gradient.
Here, the Yukawa charges Σs are omitted but their behavior
is similar to the stellar mass M as seen in Fig. 2 for the FP
case. In the presence of the spin-0 graviton, the values of R
and M in the massless limit μ2 → 0 both converge to the
values of GR, which is in a sharp contrast with the FP case
(gray) studied in the previous subsection. For each case of
ϵ, there is no solution when μ2 is larger than a certain value.
Figure 6 shows contours of the ratio of the stellar radius

to the value of GR, R=RLE, in the ðμ22; μ20Þ plane. On the
curvewith a ratioR=RLE ¼ 1, theMG solution has the same
radius as GR as a result of competition between the
attractive spin-2 and repulsive spin-0. This diagram has
a potential usage in constraining the graviton mass param-
eters. We do not go into the detailed analysis here, but it is

FIG. 4. Typical profile functions θ in generic non-FP linear
MG for the polytropic index n ¼ 0 compared with the LE
solution in GR.
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likely that the regions far from the line with R=RLE ¼ 1, for
instance, those with values smaller than 0.9 or greater than
1.1, may be rejected since the discrepancy from GR could
be too large. In particular, when μ22 ≪ 1, the spin-0 mass
would be constrained as μ20 ≲Oð1Þ.

2. n = 1

In the case of n ¼ 1, the master equation (32) becomes

ð△ξ − X1Þð△ξ − X2Þ△ξθ ¼ 0; ð66Þ

where Xi’s are roots of the characteristic equation

fðxÞ¼x2−ðμ22þμ20−1Þxþ1

3
ðμ22−4μ20þ3μ22μ

2
0Þ¼0 ð67Þ

with its discriminant being

D ¼ μ42 þ μ40 −
10

3
μ22 þ

10

3
μ20 − 2μ22μ

2
0 þ 1: ð68Þ

In the case when μ22 ≪ 1, which is of most importance on
the observational grounds, the above equation has two real
roots. A further restriction μ22 ≤ μ20 forces the two real
roots X1 and X2 to have opposite signs. The positive and
negative roots then are λ2þ ¼ ðμ22 þ μ20 − 1þ ffiffiffiffi

D
p Þ=2 and

−λ2− ¼ ðμ22 þ μ20 − 1 −
ffiffiffiffi
D

p Þ=2, respectively. The general
solution is

θ ¼ D1 þ
D2

ξ
þD3

sinh λþξ
λþξ

þD4

cosh λþξ
λþξ

þD5

sin λ−ξ
λ−ξ

þD6

cos λ−ξ
λ−ξ

; ð69Þ

where Di’s are arbitrary constants of integration. The set of
boundary conditions (36) determines the constants as

D1 ¼ 1 −D3 −D5; D2 ¼ D4 ¼ D6 ¼ 0;

D3 ¼
1

λ2þðλ2þ þ λ2−Þ
�
1 − λ2− −

4

3
μ22ð1þ ι2ð1 − λ2− − μ22ÞÞ

þ 1

3
μ20ð1þ ι0ð1 − λ2− − μ20ÞÞ

�
;

D5 ¼
1

λ2−ðλ2þ þ λ2−Þ
�
1þ λ2þ −

4

3
μ22ð1þ ι2ð1þ λ2þ − μ22ÞÞ

þ 1

3
μ20ð1þ ι0ð1þ λ2þ − μ20ÞÞ

�
: ð70Þ

Therefore, the exact solution is

θ ¼ 1þD3

sinh λþξ − λþξ
λþξ

þD5

sin λ−ξ − λ−ξ

λ−ξ
: ð71Þ

Figure 7 shows the form of the profile functions θ for
several combinations of μ2 and μ0. The trends with respect
to the changes of the values of μ2 and μ0 are almost in
parallel to the case with n ¼ 0.

FIG. 5. Dependences of the stellar radius R=l (blue) and the
mass M=ð4πl3ρcÞ (red), each appropriate normalized, on the
graviton mass μ22 for several values of the non-FP parameter ϵ for
the polytropic index n ¼ 0. The gray lines correspond to the FP
case with ϵ ¼ 0. The star symbols indicate the GR values of R
(bottom) and M (top).

FIG. 6. Contours of the ratio of the stellar radius to the value of
GR, R=RLE, in the ðμ22; μ20Þ plane for the polytropic index n ¼ 0.

FIG. 7. The profile function θ in non-FP generic linear MG and
GR for the polytropic index n ¼ 1.
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Here, we focus on the limiting case with the vanishing
spin-2 mass, i.e., μ22 → 0. Figure 8 shows the dependence of
the stellar radius R=l on the spin-0 graviton mass μ20. The
first thing to note is that, as is expected, the simultaneous
massless limit μ20 → 0 recovers the GR value of π indicated
by the star symbol in the figure. As μ0 increases, the
repulsive force weakens so the stellar radius shrinks.
The gray dashed line in Fig. 8 indicates the 90% value
of the normalized radius in the case of GR, i.e.,
0.9 × π ≈ 2.83, which we shall regard as a tentative lower
bound. If one demands the radius should be above 2.83,
then μ20 should be less than about 2.4. In this manner, at any
rate, the spin-0 mass is constrained to be <Oð1Þ if μ2 ≪ 1.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we studied the structure of nonrelativistic
polytropic stars in the Fierz-Pauli (FP) theory and generic
linear massive gravity (MG) theories. Our aim was to study
the effects of the graviton massm and the “non-Fierz-Pauli”
parameter ϵ incorporated in the MG action (1) on the stellar
structures. The spin-2 graviton is the only content in the FP
theory with ϵ ¼ 0, while the spin-0 ghost graviton is also
included in generic non-FP MG with ϵ ≠ 0.
In Sec. II, we formulated useful variables and their

governing equations. The scalar-type metric perturbations
on a flat background could be neatly reorganized into the
two helicity variables ϕ2 and ϕ0 as defined in (10). These
variables constitute the gauge-invariant potential Ψ as in
Eq. (15) while obeying the Helmholtz-type equations (14)
in static configurations. The negative coefficient in front of
ϕ0 in (15) illuminates its ghost nature. Our first finding was
the absence of the van Dam-Veltman-Zakharov (vDVZ)
discontinuity for the external gravitational potential in the
limit of vanishing graviton masses in non-FP MG.
Then, together with the polytropic EOS, the hydrostatic

equilibriumcondition (25) lead to themodifiedLane-Emden
(LE) equation (32) and boundary conditions (35)–(36). The
reason for the master equation being a sixth-order differ-
ential equation is the presence of the two extra gravitational

DOFs. The boundary conditions were given in terms of the
derivatives at the stellar center, but involved integrals of the
profile function through ιs (37). The reduced set of equations
for the case of the FP theory (ϵ ¼ 0) was derived as in
Eqs. (39)–(40), where the master equation was fourth order
because the spin-0 potential ϕ0 had been turned off. As
expected, themassless limit of themaster equation for the FP
theory did not recover the original LE equation in GR,
signaling the emergence of discontinuity analogous to
vDVZ. On the other hand, as imagined, the doubly massless
limit of the non-FP equation smoothly connected to GR.
In Sec. III, we found exact solutions to the modified LE

equations in the cases of the polytropic indices n ¼ 0 and 1.
Typical solutions in the FP theory (ϵ ¼ 0) were depicted in
Figs. 1 (n ¼ 0) and 3 (n ¼ 1). As these figures illustrated,
the radius of a star monotonically decreases with the
decreasing spin-2 graviton mass μ2, with the minimum
value reached in the massless limit being

ffiffiffi
3

p
=2 times the

GR value. Figure 2 showed the dependence of the stellar
radius R=l (blue), mass M=ð4πl3ρcÞ (red) and Yukawa
charge Σ2=ð4πl3ρcÞ (yellow) on μ2 for n ¼ 0. In the limit
of vanishing graviton mass, μ2 → 0, both R and M did not
converge to the values of GR, proving the presence of
discontinuities analogous to vDVZ.
Typical solutions in non-FP theories (ϵ ≠ 0) were pre-

sented in Figs. 4 (n ¼ 0) and 7 (n ¼ 1). Although the
attractive spin-2 and repulsive spin-0 competed in these
cases, we could confirm that the solutions had a finite
radius within an observationally reasonable range of
parameters. Figure 5 showed the dependence of the stellar
radius R=l (blue) and the mass M=ð4πl3ρcÞ (red) on the
spin-2 graviton mass parameter μ22 for several values of ϵ.
The convergence to the GR values for ϵ ≠ 0 was observed,
visualizing the absence of the vDVZ-like discontinuity. The
contour plot of the ratio R=RLE in Fig. 6 told us that there
were many possible combinations of the mass parameters
that had the same radius as GR. We argued that, if we
demand that the radius must not deviate significantly from
GR, the masses should be constrained to fall into a region
around the R=RLE ¼ 1 contour, say between 0.9 and 1.1.
Considering that the spin-2 mass must be tiny, μ2 ≪ 1, as
implied by the GW experiments, the spin-0 mass was
constrained as μ0 ≲Oð1Þ as was read off from Figs. 6
and 8.
The presence of the vDVZ-like discontinuity in the

massless limit of the FP theory would again imply the
need for some screening mechanism so as to make the FP
theory compatible with any observations which are con-
sistent with the predictions of GR. On the other hand, the
fact that the spin-0 ghost in generic non-FP theories can
take a role in smoothly recovering GR in the doubly
massless limit might suggest that the ghost offers a different
mechanism to give a tiny but nonzero mass to the spin-2
graviton. Of course, one might think the absence of the
discontinuity might be at a cost of security against possible

FIG. 8. The stellar radius R=l against the spin-0 graviton mass
μ20. The gray dashed line is the 90% value of GR.
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instabilities brought by the ghost. We leave the stability
issue to future work, where our analytical solutions in this
study will serve as background on which stability can be
examined.
We conclude this paper with some remarks on the

screening mechanism in the FP theory considering the
case of the Sun. In the studies of the case with n ¼ 0, 1, we
found that the stellar radius R has a value of the order of the
characteristic length scale l as long as the graviton mass m
is smaller than l−1, that is, μ≡ml≲ 1. Main-sequence
stars like the Sun, on the other hand, are usually modeled as
a polytrope star with n ¼ 3, which we did not consider in
this paper. Nevertheless, we can expect a similar estimate of
R holds for n ¼ 3. Now, if we take the dRGT theory as a
specific example of the nonlinear completion of the FP
theory, the screening radius rV ≡ ðrS=m2Þ1=3 for the Sun
with its Schwarzschild radius rS;⊙ ≈ 3 km and stellar radius
R⊙ ≈ 7 × 105 km is evaluated as

rV;⊙
R⊙

¼ ðrS;⊙=R⊙Þ1=3
ðmR⊙Þ2=3

∼ 10−2μ−2=3; ð72Þ

wherewe have assumedR⊙ ¼ Oð1Þ × l in the last approxi-
mate equality. This implies that the whole Sun is enclosed
within the screening radius if μ≲ 10−3 and the stellar
calculations then has to be modified by some nonlinear
screening effect. In Fig. 9, this situation corresponds to the
shaded region, in which the stellar radius R=l (blue) is
below the screening radius rV=l (red). Incidentally, an
observational upper bound on μmay be set if onewishes the
linear FP theory is valid over the solar system, where the
inverse-square law has been observationally confirmed to

hold. The inverse-square force by the Sun would not reach,
e.g., Pluto’s aphelion rP at a distance of about 7 × 1012

meters unless theYukawa length rY ≡m−1 exceeds it, so the
gravitonmassm is constrained to be below r−1P . This leads to
an upper bound on the graviton mass as ml ∼mR⊙ ≲
R⊙=rP ∼ 10−4 represented by the vertical dashed line
in Fig. 9.
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APPENDIX A: GAUGE TRANSFORMATIONS
AND GAUGE-INVARIANT VARIABLES

A general metric perturbation hμν about a Minkowski
background can be decomposed into scalar, vector, and
tensor variables as

hμνdxμdxν¼−2Adt2−2ð∂iBþBiÞdtdxi
þ2ðδijCþ∂i∂jEþ∂ðiEjÞ þHijÞdxidxj; ðA1Þ

where vector and tensor variables satisfy ∂iBi ¼ ∂iEi ¼
∂iHij ¼ Hi

i ¼ 0 and the parentheses around tensor indices
denote symmetrization. An active coordinate transforma-
tion xμ → xμ þ ξμðxÞ with ξμ being as small as hμν in
magnitude transforms the metric perturbation, to first
order, as

hμν → hμν − £ξημν; ðA2Þ

where £ξ is the Lie derivative along ξμ. ξμ can be
decomposed into the scalar and vector parts as ðξμÞ ¼
ðT; ∂iLþ LiÞ with ∂iLi ¼ 0. It is obvious that this does not
affect the tensor variable:

Hij → Hij: ðA3Þ

On the other hand, the vector variables are transformed as

Bi → Bi þ L̇i; Ei → Ei − Li; ðA4Þ

where the dot denotes differentiation with respect to t.
Hence, the following combination is found to be invariant

Σi ≡ Bi þ Ėi: ðA5Þ

The transformations of the scalar variables are

A→A− Ṫ; B→B−Tþ L̇; C→C; E→E−L; ðA6Þ

FIG. 9. A schematic comparison of the stellar radius R=l for
the FP theory (solid blue) and a non-FP theory (dashed blue) with
the screening radius rV=l (red) for astronomical parameters
compatible with the solar system. Some screening effect is
expected to work in the shaded region in the case of the FP
theory, the corresponding mass range being ml≲ 10−3. The
rightmost line (gray) represents the Yukawa length 1=ðmlÞ.
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from which a useful set of invariant combinations is found
to be

Ψ≡ A − Ḃ − Ë; Φ≡ C: ðA7Þ

APPENDIX B: METRIC PERTURBATIONS
IN TERMS OF MASSIVE GRAVITONS

The original metric variables A, B, C, and E can be
expressed in terms of ϕ2 and ϕ0 as

A ¼ 4

3m4
2

△
2ϕ2 −

�
1 − ϵ

ϵ
−

2

3m2
2

△

�
ϕ0

þ 8πG
3m2

2

�
−3ρ −

2

m2
2

△ρþ 2

m2
2

△
2σ

�
;

B ¼ 8

3m4
2

△ϕ̇2 þ
4

3m2
2

ϕ̇0 þ
16πG
3m2

2

�
3v −

2

m2
2

ρ̇þ 2

m2
2

△σ̇

�
;

C ¼ −
2

3m2
2

△ϕ2 −
1

2
ϕ0 þ

8πG
3m2

2

ðρ −△σÞ;

E ¼ 2

m2
2

�
1 −

2

3m2
2

△

�
ϕ2 −

2

3m2
2

ϕ0

þ 8πG
3m2

2

�
3σ −

2

m2
2

△σ þ 2

m2
2

ρ

�
: ðB1Þ

Therefore, the gauge-invariant variables are

Ψ ¼ A − Ḃ − Ë

¼ 2

�
1 −

1

3m2
2

△

�
ϕ2 −

1

3
ϕ0 þ

8πG
3m2

2

ðρ −△σÞ;

Φ ¼ C ¼ −
2

3m2
2

△ϕ2 −
1

3
ϕ0 þ

8πG
3m2

2

ðρ −△σÞ: ðB2Þ

APPENDIX C: GRAVITATIONAL POTENTIALS
FOR n= 0

Below is a summary of the expressions for the gravi-
tational potential for the polytropic index n ¼ 0. In GR,

Ψ ¼
(
− GM

R
3R2−r2
2R2 ðr ≤ RÞ

− GM
r ðr ≥ RÞ

; ðC1Þ

in the FP theory,

Ψ ¼
(
− 4

3
GΣ2

r
m2r−ð1þm2RÞe−m2R sinhm2r

m2R coshm2R−sinhm2R
ðr ≤ RÞ

− 4
3
GΣ2

r e−m2r ðr ≥ RÞ
; ðC2Þ

and in the non-FP theory,

Ψ ¼

8>>><
>>>:

−
4

3

GΣ2

r
m2r − ð1þm2RÞe−m2R sinhm2r

m2R coshm2R − sinhm2R
þ 1

3

GΣ0

r
m0r − ð1þm0RÞe−m0R sinhm0r

m0R coshm0R − sinhm0R
ðr ≤ RÞ

−
4

3

GΣ2

r
e−m2r þ 1

3

GΣ0

r
e−m0r ðr ≥ RÞ

: ðC3Þ

APPENDIX D: MASS-TO-RADIUS AND CHARGE-
TO-RADIUS RELATIONS IN FP THEORY

In this Appendix, we show the relations between the
massM and radius R and between the charge Σ2 and radius
R in the FP theory. The left panel of Fig. 10 shows the mass
M=ð4πl3ρcÞ (red) and the charge Σ2=ð4πl3ρcÞ (yellow)
versus the radius R=l for the polytropic index n ¼ 0 and

the values ofM and R are indicated by the star symbol. The
right panel shows the same plot but for n ¼ 1. For n ¼ 0
(left), the expression for the stellar massM (53) is the same
as GR and there is a value of μ2 for which both the radius
and mass have the same value as in GR. On the other hand,
for n ¼ 1 (right), the expression for M (59) is not the same
as GR and the GR values cannot be realized for any μ2.

FIG. 10. The mass M=ð4πl3ρcÞ (red) and the charge Σ2=ð4πl3ρcÞ (yellow) versus the radius R=l for n ¼ 0 (left) and 1 (right). The
star symbol indicates the GR value of the mass.
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