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We consider the thermodynamic properties of an exact black hole solution obtained in Weyl geometric
gravity theory, by considering the simplest conformally invariant action, constructed from the square of the
Weyl scalar, and the strength of the Weyl vector only. The action is linearized in the Weyl scalar by
introducing an auxiliary scalar field, and thus it can be reformulated as a scalar-vector-tensor theory in a
Riemann space, in the presence of a nonminimal coupling between the Ricci scalar and the scalar field. In
static spherical symmetry, this theory admits an exact black hole solution, which generalizes the standard
Schwarzschild-de Sitter solution through the presence of two new terms in the metric, having a linear and a
quadratic dependence on the radial coordinate, respectively. The solution is obtained by assuming that the
Weyl vector has only a radial component. After studying the locations of the event and cosmological
horizons of the Weyl geometric black hole, we investigate in detail the thermodynamical (quantum
properties) of this type of black holes, by considering the Hawking temperature, the entropy, specific heat
and the Helmholtz energy functions on both the event and the cosmological horizons. The Weyl geometric
black holes have thermodynamic properties that clearly differentiate them from similar solutions of other
modified gravity theories. The obtained results may lead to the possibility of a better understanding of the
properties of the black holes in alternative gravity, and of the relevance of the thermodynamic aspects in
black hole physics.
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I. INTRODUCTION

Einstein’s general theory was historically the first
approach that succeeded in giving a full description of
gravitational phenomena in geometric terms [1]. The
development of general relativity took place within the
framework of Riemannian geometry [2], which provided a
powerful mathematical instrument necessary for the under-
standing of the gravitational phenomena. Extremely
important in the evolution of gravitational theories was
the variational derivation of the gravitational field equa-
tions, which was realized by Hilbert [3]. General relativity
gives a remarkably good description of the gravitational
effects in the Solar System, like, for example, the peri-
helion precession of the planets, the bending of light by the
Sun, or the Shapiro time-delay effect [4,5]. One of the most
important, and at the same time intriguing, predictions of

general relativity is the existence of gravitational waves,
which were detected recently [6–10].
However, despite these important achievements, on both

small and large scales, the theory of general relativity faces
several important challenges. The precise astronomical
observations of the Type IA Supernovae led to an unex-
pected discovery, namely, that the present-day Universe is
in a state of accelerated, de Sitter type expansion. The
accelerated expansion is assumed to be caused by a special
form of matter, called dark energy [11,12]. The cosmo-
logical constant Λ introduced by Einstein in the field
equations [13] is a particular, and the simplest form of
such a fluid. However, the physical, or geometrical natures
of the cosmological constant, and of the dark energy are not
yet known [14–19]. Another unsolved problem, which is
also a fundamental one, is the dark matter problem. This
problem has its origins in the surprising dynamics of the
galactic rotation curves [20]. General relativity cannot
describe the behavior of hydrogen clouds gravitating out-
side the baryonic matter distribution of the galaxies without
postulating the existence of an exotic form of matter, called
dark matter [21].
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The ΛCDM standard cosmological paradigm, based on
general relativity with the inclusion of a cosmological
constant, is also confronted with several significant chal-
lenges. An intriguing open problem in present-day cosmol-
ogy is related to the deviations between the Hubble
expansion rates as obtained from the cosmic microwave
background (CMB) experiments, and the small redshift
determinations, based on the studies of the Type IA super-
novae. These dissimilarities in the values of the Hubble
constant H0 for z ¼ 0 represent the so called Hubble
tension [22].
If the Hubble tension does indeed exist, and it is not only

an observational artifact, it strongly points towards the
requirement of considering, and analyzing in depth alter-
native theories of gravity. These new theories must go
beyond standard general relativity, and they may provide
new and unexpected solutions to the dark energy and dark
matter problems.
Almost immediately after the correct field equations

of general relativity were written down, Schwarzschild
obtained the first vacuum solution of the field equat-
ions [23], for a static, pointlike mass distribution. This
solution led to the introduction of a new astrophysical
concept, and of a new type of objects, called black holes.
The external solution of the Einstein equations for a spinning
object was obtained around sixty years later by Kerr [24].
Black holes are essentially very simple objects, characterized
by the presence of an event horizon, and of a central
singularity. An important result in astrophysics states the
existence of a limiting mass for neutron stars of the order of
3.2M⊙ [25]. Recently, the Event Horizon Telescope
Collaboration presented the first images of the supermassive
black hole M87* [26–28]. These observations seem to point
towards a Kerr-like nature for the Sgr A* black hole.
However, based on these observations, one cannot explicitly
eliminate the possibility of the existence of deviations with
respect to the predictions of general relativity.
The Schwarzschild and the Kerr solutions raised some

fundamental, and essentially still unsolved problems,
related to the existence of singularities in black hole
solutions [29,30].
Three years after the final form of the gravitational field

equations was found, Weyl [31,32] did introduce a gener-
alization of the Riemannian geometry. Weyl’s main goal was
to formulate a unified theory of gravity and electromagnet-
ism. In vacuum the Maxwell equations of electromagnetism
are conformally invariant. Weyl suggested that the gravita-
tional field equations must have the same symmetry. The
conformal invariance of the physical laws was introduced in
a general way by Weyl through the creation of a new
geometry. Weyl’s geometry is nonmetric, with the covariant
derivative of the metric tensor not vanishing identically, and
thus ∇μgαβ ¼ Qμαβ ¼ ωμgαβ, with Qμαβ representing the
nonmetricity tensor, and ωμ is the Weyl vector field. In his
original theory Weyl assumed that ωμ is the electromagnetic

four-potential Aμ. In Weyl’s geometry, the length of vectors
change during their parallel transport from the point xμ to
xμ þ dxμ. This property led Einstein to strongly criticize the
physical interpretation of Weyl’s theory. For a presentation
of the historical development of Weyl’s geometry, and of its
recent physical applications, see [33].
However, if one abandons the interpretation of the Weyl

vector field as corresponding to the electromagnetic
potential Aμ, Weyl’s geometry becomes a very interesting
generalization of Riemann’s geometry, with an important
potential for cosmological and gravitational applications.
A generalization of Weyl’s theory was proposed by

Dirac [34,35], who extended the original theory of Weyl
by introducing a real scalar field β, of weight wðβÞ ¼ −1.
The cosmological applications of Dirac’s theory were
considered in detail in Refs. [36–38], respectively. Other
generalizations of the Weyl theory, and of its physical
applications, have been discussed in [39–41].
A conformally invariant gravitational theory, formul-

ated in Riemannian geometry, with action SWeyl ¼
− 1

4

R
d4x

ffiffiffiffiffiffi−gp
CμνρσCμνρσ, where Cμνρσ is the Weyl tensor,

was proposed and thoroughly investigated in [42–47]. The
theories with actions constructed by using the Weyl tensor
are called conformally invariant, or Weyl-type gravity
theories. An exact vacuum solution of the Weyl gravity

theory, given by AðrÞ ¼ 1–3βγ − βð2−3βγÞ
r þ γrþ kr2,

where β, γ, and k are constants, was found in [42]. This
solution may provide an alternative solution of the dark
matter problem, since it can explain the observational data
without introducing a dark matter component [42]. A
metric similar in form to the exact Weyl gravity vacuum
solution was found in [48] as a solution of the field
equations of the deRham-Gabadadze-Tolley (dRGT) mas-
sive gravity theory.
The important role the conformal transformations may

play in cosmology was considered by Penrose [49], who
introduced a cosmological model called conformal cyclic
cosmology (CCC). The CCC theory assumes that during
both the de Sitter era, and the big bang, the spacetime is
conformally flat. The cosmological and physical impli-
cations of the CCC model were investigated in [50–56].
In [57] ’t Hooft proposed to explain the small-scale
characteristics of gravity by a breaking of the conformal
symmetry invariance. In [58] a theory of gravity was
introduced, in which the conformal component of the
metric is interpreted as a dilaton field, with black holes
being regular solitons, topologically trivial, without any
horizons, firewalls, or singularities.
Weyl geometry is the mathematical basis of the fðQÞ

gravity theory, also called the symmetric teleparallel gravity,
first introduced in [59]. In this approach it is assumed that
the nonmetricity Q is the fundamental geometrical quantity
that describes gravity. The initial analysis of [59] was
generalized in [60], and led to the creation of the fðQÞ
gravity theory, sometimes also called the nonmetric gravity
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theory. In the fðQÞ theory, the action is defined as
S ¼ R ðfðQÞ þ LmÞ ffiffiffiffiffiffi−gp

d4x, where f is an arbitrary func-
tion of the nonmetricity. The cosmological and astrophysi-
cal implications of the modified fðQÞ gravity theory have
been extensively investigated in [60–64].
A novel point of view on the Weyl geometry, and on

its applications in gravity, was introduced, and analyzed
in [65–75]. As a starting point, the simplest possible
gravitational action in Weyl geometry was adopted, con-
structed additively from the square of the scalar Weyl
curvature R̃2, and the square of the strength of the Weyl
vector field F̃2

μν. The important new characteristic of the
theory is the linearization of the quadratic term in the Weyl
scalar, by introducing an auxiliary scalar field. Thus, the
vector-tensor Weyl theory can be reformulated as a scalar-
vector tensor theory, linear in the Weyl, and the Ricci
scalars. The quadratic Weyl geometric action has a sponta-
neous symmetry breaking through a Stueckelberg mecha-
nism, with the Weyl gauge field becoming massive. Hence,
the scalar field is described by a Proca-like action [65–67].
Through this symmetry breaking mechanism the Weyl
geometric action recovers the Einstein-Hilbert action of
general relativity, together with a positive cosmological
constant of geometric nature [65–67].
Conformally invariant couplings of geometry and matter

in Weyl geometric gravity were analyzed in [76], leading
to the formulation of the conformally invariant fðR;LmÞ
theory of gravity [76]. The conformally invariant fðR;LmÞ
theory accurately describes the cosmological data for the
Hubble function up to a redshift of around z ≈ 3. The
conformally invariant fðR;LmÞ theory of gravity was
studied in the Palatini formulation in [77].
In the Weyl geometric gravity theory black hole type

solutions in spherical symmetry were investigated in detail
in [78], by using numerical and analytical methods. The
quantum thermodynamic properties of the obtained classes of
Weyl geometric black holes were also considered.Moreover,
an exact static spherically symmetric three parametric black
hole solution was obtained, which represents an extension of
the Schwarzschild-de Sitter solution of general relativity, in
the presence of a scalar field, and of the Weyl vector.
The exact solution of the Weyl geometric gravity was

applied for the description of the properties of the galactic
rotation curves in [79]. A comparison of the predictions of
the exact Weyl geometric gravity solution with a small
sample of galactic rotation curves was also performed. To
take into account the effects of the baryonic matter the
existence of an explicit breaking of the conformal invari-
ance at the galactic level was assumed. An extensive
comparison between the predictions of the Weyl geometric
dark matter model and the observational data of the
SPARC database was performed in [80], with the results
confirming the possibility of a Weyl geometric interpre-
tation of the dynamics of galaxies as proposed in [79].

The properties of the compact objects in Weyl geometric
gravity were investigated in [81].
Black holes have many fascinating properties, but per-

haps the most interesting ones are related to their thermo-
dynamical behaviors. The black hole thermodynamics is
constructed through a subtle relationship uniting general
gravity, quantum field theory, thermodynamics, and stat-
istical mechanics. It gives a powerful insight into the nature
and the properties of the black holes, and can lead to the
understanding of the possible profound relation existing
between quantum theory and gravitational physics. The
investigations of the black hole thermodynamics did begin
with the study of Hawking [82], in which it was proved
that the area of the event horizon of a black hole does
not decrease [82]. This important result is known as the
area theorem. Bekenstein introduced the concept of
entropy, which is proportional to the area of the black
hole’s horizon [83,84]. The four laws of black hole
thermodynamics were established in [85], and they have
a form similar to the four laws of standard thermodynamics.
An important result in black hole physics was the

suggestion of the existence of the Hawking radiation [86],
a result which follows from the application of the quantum
field theory in curved spacetimes. Moreover, this analysis
also allows to establish the relation between the temperature
of a black hole and its surface gravity. For detailed reviews
of black hole thermodynamics see [87–89]. For some recent
investigations on the thermodynamical or astrophysical
properties of black holes see [90,91], and [92], respectively.
Hence, in the physics and astrophysics of black holes the

study of their thermodynamic properties is one of the most
interesting subjects to study. It is the goal of the present
paper to consider the thermodynamical properties of the
Weyl geometric black holes [78,79], obtained as solutions
of the vacuum field equations of Weyl geometric gravity. In
order to understand the thermodynamic properties one
needs first to analyze the horizons of the black hole solution.
It turns out that the Weyl geometric black hole can have two
event horizons, and one cosmological horizon, respectively.
The mass of the black is also an important indicator
of its astrophysical and thermodynamical properties. The
Hawking temperature of the Weyl geometric black hole is
obtained in terms of its surface gravity. The entropies of the
event and of the cosmological horizons are fundamental
quantities that allows the understanding of the thermody-
namic properties of the black holes. To obtain the entropy of
the Weyl geometric black hole we use the Noether charge
approach. The stability of the black hole is investigated by
considering the behavior of the Helmholtz free energy. The
heat capacity of the Weyl geometric black hole is also
investigated in detail. The first law of thermodynamics on
the cosmological horizon for the Weyl geometric black hole
is also formulated. In each case the dependence of the
thermodynamical quantities on the parameters of the sol-
ution are fully investigated.
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The present paper is organized as follows. We review the
basics of the Weyl geometric gravity in Sec. II, where the
vacuum field equations in static spherical symmetry are
also written down. The exact solution of the field equations
is introduced in Sec. III, where the position of the horizons,
and the effective energy density and pressure associated to
the solution are discussed. A possible relation with the dark
matter problem is also considered. The thermodynamic
properties of the Weyl geometric black hole on the event
horizon are investigated in Sec. IV. The black hole mass,
Hawking temperature, and entropy are considered in detail.
The thermodynamic stability of the Weyl geometric black
hole is analyzed in Sec. VI, by considering the heat
capacity and the Helmholtz energies, respectively. The
Hawking luminosity and the evaporation time of the Weyl
geometric black holes are estimated in Sec. VI C. The
thermodynamics of the cosmological horizon of the Weyl
geometric black hole is analyzed in Sec. V. We discuss and
conclude our results in Sec. VII. The fundamentals of the
Weyl geometry, necessary for the understanding of Weyl
geometric gravity, are presented in the Appendix.

II. WEYL GEOMETRIC GRAVITY

In this section we will briefly review the theoretical
formalism of the Weyl geometric gravity, and we present
the exact vacuum solution of this theory. We also refor-
mulate the static, spherically symmetric field equations in
terms of an effective density, and effective pressure. For
further details on the mathematical and physical aspects of
Weyl geometric gravity we refer the readers to [79].

A. Field equations

The Weyl geometric gravity theory is represented by the
following action [79]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

12

ϕ2

ξ2

�
R − 3α∇μω

μ −
3

2
α2ωμω

μ

�
−
1

4

ϕ4

ξ2
−
1

4
FμνFμν

�
: ð1Þ

This action has its physical origins in Weyl geometry, and
it is obtained through the linearization, with be help of an
auxiliary scalar field, of the action S ¼ R ðR̃2 − F̃μνF̃μνÞ×ffiffiffiffiffiffi−gp

d4x, where R̃ is the Weyl scalar, defined in the Weyl
geometry, and F̃μν is the strength of the Weyl vector ωμ. By
ϕ we have denoted the scalar degree of freedom of the
theory. For a brief review of the basic concepts of Weyl
geometry and of Weyl geometric gravity see the Appendix.
Note that the effective gravitational constant in this

theory is G ¼ −3ξ2=ð4πϕ2Þ. To omit the nonminimal
coupling between gravity and scalar field, one can work
in the Einstein frame rather than in this Jordan frame.

However, in the present work we will work in the Jordan
frame only.
By varying the action (1) with respect to the metric

tensor we find the gravitational field equation,

ϕ2

ξ2

�
Rμν −

1

2
Rgμν

�
−

1

4ξ2
ϕ4gμν þ

1

ξ2
ðgμν□−∇μ∇νÞϕ2

−
3α

2ξ2
ðωρ∇ρϕ

2gμν −ων∇νϕ
2 −ωμ∇νϕ

2Þ þ 6FρμFσνgρσ

−
3

2
F2
ρσgμν þ

3α2

4ξ2
ϕ2ðωρω

ρgμν − 2ωμωνÞ ¼ 0: ð2Þ

By taking the trace of Eq. (2) and defining Φ ¼ ϕ2,
we find

ΦRþ 3αωρ∇ρΦþΦ2 −
3

2
α2Φωρω

ρ − 3□Φ ¼ 0: ð3Þ

The variation of the action (1) with respect to the scalar
field ϕ gives rise the following equation of motion of Φ:

R − 3α∇ρω
ρ −

3

2
α2ωρω

ρ þΦ ¼ 0: ð4Þ

By multiplying Eq. (4) by Φ, and subtracting it from
Eq. (3), the generalized Klein-Gordon equation for the
scalar field Φ is obtained as given by

□Φ − α∇ρðΦωρÞ ¼ 0: ð5Þ

We also need the equation of motion for Weyl vector field
that can be obtained by varying the action (1) with respect
to ωμ. The variation will result in

4ξ2∇νFμν − α2Φωμ þ α∇μΦ ¼ 0: ð6Þ

B. Metric and field Ansätze

In this paper, we investigate the properties of an exact
vacuum solution in Weyl geometric gravity. We consider a
static spherically symmetric configuration, with the metric
given in a general form by

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2dΩ2; ð7Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2. The solutions of the field
equations of Weyl geometric gravity are dependent on the
choice of the Weyl vector field ωμ, that can be generally
represented as ωμ ¼ ðω0;ω1; 0; 0Þ. Without any loss of the
generality, in the following we assumed that ω0 ¼ 0. For
the case when ω0 ≠ 0, the numerical study of the field
equations was carried out in Ref. [78].
From the assumption of the form on the Weyl vector it

follows that Fμν ≡ 0. Then, by employing this condition in
the Weyl vector field equation of motion (6), we obtain
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Φ0 ¼ αΦω1: ð8Þ

Since we can write

□Φ ¼ 1ffiffiffiffiffiffi−gp ∂

∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂Φ
∂xν

�
; ð9Þ

and

∇μω
μ ¼ 1ffiffiffiffiffiffi−gp ∂

∂xμ
ð ffiffiffiffiffiffi

−g
p

ωμÞ; ð10Þ

respectively, Eq. (8) now becomes

− αΦ
1ffiffiffiffiffiffi−gp d

dr
ð ffiffiffiffiffiffi

−g
p

ω1Þ ¼ 1ffiffiffiffiffiffi−gp d
dr

� ffiffiffiffiffiffi
−g

p
g11

dΦ
dr

�
− αω1

dΦ
dr

: ð11Þ

Now we can write the gravitational field equations (2) as

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ e−λ

r2

�
r2

4
eλΦþ 2

Φ0r
Φ

−
3r2

4

Φ02

Φ2

−
r2λ0

2

Φ0

Φ
þ r2

Φ00

Φ

�
; ð12Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ e−λ

r2

�
−
r2

4
eλΦ − 2

Φ0r
Φ

−
3r2

4

Φ02

Φ2

−
r2ν0

2

Φ0

Φ

�
; ð13Þ

re−λ
�
2ν00 þ v02 − λ0ν0 þ 2ν0

r
−
2λ0

r

�
¼ −ð4 − 2rλ0 þ 2rν0ÞΦ

0

Φ
− r

�
eλΦþ 4

Φ00

Φ
−
Φ02

Φ2

�
: ð14Þ

The left-hand side of Eqs. (12)–(14) comes from the
Einstein tensor, while the right-hand side comes from the
contributions of the Weyl geometry. Hence, we can define
the effective energy density ρ and pressure p associated to
the scalar field and to the Weyl geometric effects by

ρ ¼ e−λ

8πr2

�
r2

4
eλΦþ 2

Φ0r
Φ

−
3r2

4

Φ02

Φ2
−
r2λ0

2

Φ0

Φ
þ r2

Φ00

Φ

�
¼ 1

8π

�
e−λ

�
λ0

r
−

1

r2

�
þ 1

r2

�
; ð15Þ

p ¼ −
e−λ

8πr2

�
r2

4
eλΦþ 2

Φ0r
Φ

þ 3r2

4

Φ02

Φ2
þ r2ν0

2

Φ0

Φ

�
¼ 1

8π

�
e−λ

�
ν0

r
þ 1

r2

�
−

1

r2

�
: ð16Þ

By adding Eqs. (12) and (13), we find the evolution
equation for the scalar field, given by

Φ00

Φ
−
λ0 þ ν0

2

Φ0

Φ
−
3

2

Φ02

Φ2
−
λ0 þ ν0

r
¼ 0: ð17Þ

III. THE WEYL GEOMETRIC BLACK HOLE

In this section we will introduce the exact solution of the
static spherically symmetric field equations of the Weyl
geometric gravity theory, and we will analyze some of its
properties.

A. General black hole solutions

Generally, black hole solutions satisfy the relation
gttgrr ¼ −1 between the components of the metric tensor.
This case occurs when in a solution to Einstein’s equations
the Ricci tensor and the matter energy-momentum tensor
have vanishing radial null-null component. On the other
hand, the Ricci tensor is proportional to gμν in the t − r
subspace. This also implies that the radial pressure is the
negative of the energy density (p ¼ −ρ). Hence, in this
case, the black hole violates the strong energy condition.
The condition gttgrr ¼ −1 also holds if and only if the
radial coordinate is an affine parameter on the radial null
geodesics [93].
In a more general approach, one can find black

hole solutions in Weyl geometric gravity by assuming
gttgrr ≠ −1. In our case, we can write that,

νðrÞ þ λðrÞ ¼ fðrÞ; ð18Þ

where fðrÞ is an arbitrary function of radial coordinate. As
a function of the scalar field Φ, one can find the function
fðrÞ from Eq. (20) as given by

fðrÞ ¼
Z

2Φ00Φ − 3Φ02

2Φþ rΦ0 rdr: ð19Þ

This is the general condition that must be satisfied by
the scalar field for obtaining black hole solutions in
Weyl geometric gravity. Equivalently, we obtain for Φ
the differential equation

Φ00

Φ
−
3

2

Φ02

Φ2
−
f0ðrÞ
2

Φ0

Φ
−
f0ðrÞ
r

¼ 0: ð20Þ
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B. Metric of the Weyl geometric black hole

In this section, we will briefly review the black hole
solution found in Ref. [79], which corresponds to the case
when gttgrr ¼ −1. We consider the following condition for
the metric tensor potentials:

νðrÞ þ λðrÞ ¼ 0; ∀ r > 0: ð21Þ

Using this assumption, from Eq. (20) we immediately
obtain the differential equation satisfied by Φ,

Φ00 ¼ 3Φ02

2Φ
; ð22Þ

corresponding to the choice fðrÞ ¼ 0 in Eq. (19). The
solution of the above equation is

ΦðrÞ ¼ C1

ðrþ C2Þ2
; ð23Þ

whereC2 is just an arbitrary integration constant. The scalar
field satisfies the condition ΦðrÞ → 0 at infinity. One can
also find the Weyl vector field,

ω1 ¼
Φ0

αΦ
¼ −

2

αðrþ C2Þ
: ð24Þ

Then, from the gravitational field equation, Eq. (12), one
can find the metric potentials as

e−λ ¼ eν ¼ 1 − δþ δð2 − δÞ
3rg

r −
rg
r
þ C3r2; ð25Þ

where δ; rg, and C3 are arbitrary constants and C2 ¼ 3rg=δ.
This metric is the generalization of the Schwarzschild-de

Sitter solution. There is a Schwarzschild-type singularity at
the center due to the presence of the rg=r term in the metric,
this term breaks the conformal symmetry spontaneously.
Additionally, another conformal breaking term is the
integration constant C3 which does not exist in the original
action. If we choose C3 ¼ 0, the resulting metric will just
mimic spacetime in GR but with additional linear term in r.
For δ ¼ 0, 2, the spacetime will become asymptotically flat.
The spacetime could contain a BH but immersed in scalar
field which generates linear term in the metric. For negative
C3, there will be cosmological horizon and the spacetime
will be asymptotically de Sitter-like. For positive C3, the
spacetime could become asymptotically anti–de Sitter. All
of these possibilities of spacetime can contain BH.
Generically, for C3 < 0, there will be black hole and

cosmological horizons. The second term in the solution is
the constant δ term, which appears to be like a global
monopole term [94]. Similar metrics can also be obtained for
the Kiselev black hole [95], and in Rastall gravity [96,97],
by assuming some arbitrary values of the black hole’s

parameters. Furthermore, this metric potential form is also
similar to the black hole solution in dRGT gravity [98–101].
Nonetheless, we would like to emphasize that C3 comes as
an integration constant, related to the scalar field, a situation
which is different from the dRGT gravitational theory, where
the cosmological constant is present directly from the
beginning in the action of the theory. Note that the constants
C1, C2, C3, and δ are dependent on each other through the
following equation:

3C3C2
2 þ

C1

4
¼ 3 − δ; ð26Þ

which is obtained when we solve Eq. (12) to obtain the
metric potentials (25) [79].
From Eq. (26), we find C1 ¼ 4ð3 − δ − 27C3r2g=δ2Þ. The

scalar and vector fields then take the following forms:

ΦðrÞ ¼ 4ð3δ2 − δ3 − 27C3r2gÞ
ðδrþ 3rgÞ2

; ð27Þ

ω1ðrÞ ¼ −
2δ

αðδrþ 3rgÞ
: ð28Þ

The vector field vanishes when δ ¼ 0, while the scalar
field remains constant. At spatial infinity, both the scalar
and the vector fields will vanish.

C. The horizons of the Weyl geometric black hole

Within this work, we interpret the solution with the
metric potentials given by Eq. (25) as representing a hairy
black hole solution. Due to the presence of the constant that
mimics a cosmological constant, the Weyl geometric black
hole possesses more than two horizons. In the following,
we will redefine C3 ¼ −1=l2. Hence, the horizons are the
solutions of the third-order algebraic equation,

Δ ¼ ð1 − δÞr − δðδ − 2Þ
3rg

r2 − rg −
r3

l2
¼ 0: ð29Þ

The above equation has real roots (for 1=l2 > 0) if the
following conditions are satisfied:

−
27rg
l2

þ 2− 12δþ 15δ2 − 5δ3 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− 4δþ 2δ2Þ3

q
> 0;

0 ≤ δ< 1−
2

ffiffiffi
7

p

7
: ð30Þ

The plot of the position of horizons versus the parameter
δ is shown in Fig. 1, for 1=l2 ¼ 2 × 10−2; rg ¼ 1. The
cosmological horizon rC is given by the green line in
Fig. 1. The event horizon rH is represented by the blue line.
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There is a third horizon, however, it is unphysical since it is
negative horizon (rN) (the red line in Fig. 1). For the cubic
equation (29), there are typical analytic expressions for rH,
rC, rN which we will not present here. Notably for δ > 0,
the cosmological horizon rC can extend far beyond the
typical horizon at rC ¼ l in δ ¼ 0 case.

D. Effective density and pressure

The effective energy density and pressure which appear
due to the contribution from the scalar and vector fields in
Weyl geometric gravity can be written for the case of the
exact black hole solution as

ρ ¼ 1

24πr2

�
3δþ 2ðδ − 2Þδ

rg
rþ 9r2

l2

�
; ð31Þ

p ¼ −ρ: ð32Þ

Note that both the density and the pressure are divergent
at the center for nonzero δ. At spatial infinity, the energy
density approaches the “dark energy” density 3=ð8πl2Þ.
Thus, this black hole of Weyl geometric gravity is different
from the Schwarzschild-de Sitter solution in GR, since it
describes a physical configuration in which there are
density and pressure contributions from the Weyl scalar
and vector fields.
The pressure vanishes at two different points that can be

obtained by solving the equation pðRÞ ¼ 0, which gives

R� ¼
δ2 − 2δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 27r2gδ

l2 þ 4δ2 − 4δ3 þ δ4
q

− 9rg
l2

: ð33Þ

Figure 2 presents the plot of the effective pressure p and
the metric function eν showing the position of the zero-
pressure points in comparison to the horizons of the black
hole. The plots are obtained for δ ¼ 0.24; rg ¼ 1 and
1=l2 ¼ 10−2. With these values of the parameters, we can
obtain pðRÞ ¼ 0 at Rþ ¼ 0.948019 and R− ¼ 17.9947. We
also have rH ¼ 1.12597 and rC ¼ 8.87784. Hence, for the
given parameters, Rþ < rH < rC < R−. The maximum
effective pressure occurs at r ¼ 1.70455, which is outside
of rH, but inside of rC and R−.

E. Dark matter and the Weyl geometric black hole

In the original paper [79], the effective energy density
and pressure associated to the Weyl scalar and vector fields
are assumed to represent in an effective form the dark
matter that can be found around the baryonic mass
distributions in galaxies. Therefore, one can compute the
geometric mass that contains the dark matter contribution
by integrating the energy density over the volume.
The effective geometric mass of the dark matter for the

Weyl geometric black hole solution is given by

MGðrÞ¼
Z

r

0

4πρr02dr0 ¼ r
2

�
δþ r2

l2
−
ð2−δÞδ
3rg

rþ rg
r

�
: ð34Þ

Note that this mass is not the black hole mass.
We can find the accumulated mass at the points where

the pressure vanishes by inserting Eq. (33) into the geo-
metric mass (34) to obtain

FIG. 1. The positions of the horizons of the Weyl geometric
black hole as a function of δ for 1=l2 ¼ 2 × 10−2; rg ¼ 1. The
green, blue, and red lines represent the cosmological, event, and
unphysical horizon, respectively.

FIG. 2. The metric tensor eν and the effective pressure p
of the Weyl geometric black hole. The metric tensor component
eν is shown as a red line, while the pressure is represented
by the blue line. The plots are obtained for δ ¼ 0.24,
rg ¼ 1, and 1=l2 ¼ 10−2.
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MG� ¼ rg
2
þ
δð3δ2 − 6δ� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2ðδ− 2Þ2 þ 27C3r2gδ

q
Þ

54C3rg

þ
δ2ðδ− 2Þ2ðδ2 − 2δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2ðδ− 2Þ2 þ 27C3r2gδ

q
Þ

729C2
3r

3
g

:

ð35Þ

We plot the effective geometric mass as a function of R�
in Fig. 3. The parameter rg is given by rg ¼ 1, while the
geometric mass MG ranges between 0–4 depending on
δ; l2. The geometric mass can reach more than five times of
the black hole mass for δ≳ 1.6 at the specific radius Rþ. As
distance grows, the accumulated mass will continue to
increase since the density approaches constant dark energy
density 3

8πl2 asymptotically at large distance.
It is interesting to consider two cases for the accumulated

geometric mass, corresponding to R− > Rþ, and R− ¼ Rþ,
respectively. When R− > Rþ, we can find the mass differ-
ence between Rþ and R−, ΔMG ¼ MG− −MGþ given by

ΔMG ¼ −
2l4

h
δ2ðδ − 2Þ2 − 27δr2g

l2

i
3=2

729r3g
: ð36Þ

This mass difference acts like the mass of a “dark matter
halo” surrounding the Weyl geometric black hole.
On the other hand, for R− ¼ Rþ we find

R ¼ R− ¼ Rþ ¼ −
δðδ − 2Þl2

9rg
; ð37Þ

and

MG ¼ rg
2 − δ

; ð38Þ

respectively.

Note that we have also used the relation −27r2g þ ð4δ −
4δ2 þ δ3Þl2 ¼ 0 from the vanishing square-root term of
Eq. (33). Since we already have (30) for δ, it follows that R
is always positive. In this case, the geometric mass does not
depend explicitly on 1=l2.

IV. THE THERMODYNAMICS
OF THE WEYL GEOMETRIC BLACK HOLE

ON THE EVENT HORIZON

In the present section we will study the thermodynamics
of the Weyl geometric black hole. The first law of black
hole thermodynamics thus takes the form,

dMH ¼ THdSBH; ð39Þ

where MH, TH, and SBH are the thermodynamic mass,
Hawking temperature, and Bekenstein-Hawking entropy,
respectively. Note that even we have a comsological
constantlike parameter C3 ¼ −1=l2, we do not need to
consider the thermodynamic pressure related to this con-
stant because that constant comes as a consequence of the
existence of scalar and Weyl vector fields. So, this constant
is different with real cosmological constant that appears in
the action likewise in the Einstein general relativity. Such
term also appears in the black hole’s solution in the dRGT
massive gravity theory [48].

A. The Hawking temperature

For a generic spherically symmetric spacetime given
by (7), if both g00 ¼ eν and 1=grr ¼ −e−λ have the same
zero at rH, it can be shown that the Hawking temperature
TH is related to the surface gravity,

κH ¼ g000
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−g00grrÞ−1

q ����
r¼rH

; ð40Þ

computed on the event horizon of the black hole by the
relation,

TH ¼ κH
2π

; ð41Þ

where κH is the surface gravity.
To show this, we perform the coordinate transformation,

grrdr2 →
dr02

g00ðrðr0ÞÞ
: ð42Þ

Then the Hawking temperature is given by the conventional
formula,

TH ¼ g000ðr0Þ
4π

¼ g000ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−g00grrÞ−1

p
4π

; ð43Þ

FIG. 3. Effective geometric mass MG is plotted versus R�.
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where in the new coordinates,

κH ¼ 1

2
g000ðr0Þ ¼

1

2
g000ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−g00grrÞ−1

q
; ð44Þ

at rH. This ends the proof of this result. Here, the surface
gravity is defined as the acceleration experienced by an
object at the event horizon of the black hole.
Alternatively, in terms of the Killing vector, the surface

gravity can be given by

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇νξμ∇νξμ

r
: ð45Þ

Here ξμ denotes the Killing vector possessed by
the spacetime metric. For the spherically symmetric space-
time (7), we have ξμ ¼ ð1; 0; 0; 0Þ. Hence, the nonvanishing
components of the covariant derivatives of the Killing
vector are

∇tξr∇tξr ¼ ∇rξt∇rξt ¼ −
ν02

4
eν−λ: ð46Þ

Thus, we obtain the surface gravity and the Hawking
temperature on the event horizon as

κH ¼ ν0

2
eðν−λÞ=2

����
r¼rH

; TH ¼ ν0

4π
eðν−λÞ=2

����
r¼rH

: ð47Þ

This is the same result as presented in (43). Under the
condition that both eν and e−λ contain the same zeros at
r ¼ rH, and by using the l’Hopital rule, we find the relation
ν0jr¼rH ¼ −λ0jr¼rH . Hence, one can also rewrite the equa-
tion for the Hawking temperature as

TH ¼ 1

4π
ð−ν0λ0eν−λÞ1=2

����
r¼rH

: ð48Þ

This is exactly the equation for the Hawking temperature
obtained from the tunneling method [102]. Note that this
formula is valid generically regardless of the vacuum
condition νþ λ ¼ 0, as long as both metric tensor compo-
nents g00 and grr have the same zeros at the horizon.
For the Weyl geometric black hole, the Hawking temper-

ature is

TH ¼ 1

4π

�
rg
r2H

− 2
rH
l2

−
δðδ − 2Þ
3rg

�
: ð49Þ

Note that this Hawking temperature of the Weyl geometric
black holes is not identical to the temperature of a black
hole in dRGT gravity [101]. The plot of the Hawking
temperature is presented in Fig. 4. The plot is divided into
two region which are 0 ≤ rH ≤ rNar and rNar ≤ rC ≤ l
where r0 is the Nariai limit where rH ¼ rC ¼ rNar.

Near zero, the Hawking temperature is very large. In the
Nariai limit, the Hawking temperature will vanish. Then
there will exist the temperature in the cosmological
horizon. The thermodynamics on the cosmological horizon
will be given in the next section.
We will also see that the entropy of the Weyl geometric

black holes is not similar to that of the black holes in the
dRGT gravity, due to the presence of the nonminimal
coupling between gravity and the scalar field.
For δ ¼ 0, Eq. (49) reduces to

TH ¼ 1

4π

�
rg
r2H

−
2rH
l2

�
: ð50Þ

It can be seen easily that above equation gives exactly the
Hawking temperature of the Schwarzschild-de Sitter
black hole.

B. Entropy from the Noether charge

The Noether charge formalism provides a systematic and
powerful way to calculate conserved quantities, e.g., the
entropy, without being tied to the specific details of the
gravitational theory. In particular, this formalism is useful
to understand black holes, and their thermodynamic proper-
ties. The main ingredient of the Noether charge formalism
is the diffeomorphism invariance.
For general Weyl invariant theories, the Noether charge

formalism was introduced in Ref. [103]. Comparing to that
theory, in Weyl geometric gravity, there is no cosmological
constant appears in the Lagrangian so that we do not need
to include cosmological constant term in the conserved
charge.

FIG. 4. Hawking temperature for various values of the param-
eters of the Weyl geometric black hole. The solid lines represent
Hawking temperature of rH while the dashed lines represent
Hawking temperature of rC. At rH ¼ rC ¼ rNar, the temperature
vanishes.
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Interestingly, the Weyl geometric gravity theory,
described by the Lagrangian (1), contains the Ricci scalar
coupled to a scalar field, similarly to the case of the Brans-
Dicke theory. We may interpret the other terms in the
Lagrangian as the matter contribution. In the Brans-Dicke
theory, the entropy does not satisfy the exact area law, since
the scalar field and gravity are coupled nonminimally [104].
The entropy expression has additional scalar field terms.
One may remove these factors by working in the Einstein
frame. However, this is not the case that we will investigate
within this paper.
We can choose ξ2 in a particular way so that we can write

the Lagrangian in (1) in the simple form,

L ¼ Φ
16π

Rþ LM; ð51Þ

where LM represents all the other terms in Eq. (1), and
which can be interpreted as the Lagrangian of an effective
form of matter. The matter terms do not contribute to the
entropy directly through the Noether charge. Hence,
the nonvanishing contribution to the entropy in the
Noether charge formalism comes only through the cou-
pling of the gravitational field with the scalar, and which is
given by [104]

Q ¼
Z
∂Σ
Qμνdσuν; ð52Þ

where

Qμν ¼ Φ
16π

ð∇μξν −∇νξμÞ; ð53Þ

dσμν ¼
1

4

ffiffiffiffiffiffi
−g

p
εμνθϕ det

�
∂ðxμ; xνÞ
∂ðθ;ϕÞ

�
dθdϕ: ð54Þ

dσμν is the surface element of a closed two-dimensional
surface of the event horizon and ∂Σ is a two-sphere of an
arbitrary radius, which we choose to be the horizon.
We can now compute the conserved charge Q for the

spacetime metric (7). The nonvanishing components of the
covariant derivative of the Killing vector are already given
in Eq. (46). The element of the two-dimensional surface is
given by

dσtr ¼ eðνþλÞ=2r2 sin2 θdθ ∧ dϕjr¼rH : ð55Þ

Using these expressions into the integral form of Q we
obtain,

Qjr¼rH ¼ ΦHe
ν−λ
2 ν0

4
r2H: ð56Þ

Then the entropy of the Weyl geometric black hole is
given by

SBH ¼ 2πQjr¼rH

κH
¼ ΦHπr2H: ð57Þ

Note that ΦH is the value of the scalar field on the event
horizon. Yet, the entropy (57) is the general entropy for the
Lagrangian (51). It differs from the area law for the entropy
by a scalar factor ΦH at the horizon. The spacetime metric
of the Weyl geometric black hole is identical to the black
hole solution in dRGT theory. However, we obtain a
different entropy from the dRGT theory, which was
computed in Ref. [101], because the Lagrangian is totally
different from the Lagrangian of the dRGT gravity. The
plot of the black hole entropy is shown in Fig. 5. Unlike the
Hawking temperature, in the Nariai limit, the entropy does
not vanish. The entropy continues to exist from rH ¼ 0 to
the de Sitter length.
It would be also interesting to study the entropy of the

Weyl geometric black hole in the Einstein frame, in which
the scalar field is not coupled directly to the Ricci scalar.
We leave this issue for future study.
For the special case when δ ¼ 0, the scalar field on the

event horizon is

ΦH ¼ 12

l2
: ð58Þ

The entropy is then

SBH ¼ 12πr2H
l2

: ð59Þ

The entropy (59) is proportional to the black hole
horizon area, yet with an extra factor rather than 1=4.
Hence, we can see that the entropy will vanish for 1=l2 ¼ 0.
This entropy does not reproduce the entropy of the
Schwarzschild solution for a vanishing cosmological

FIG. 5. Weyl geometric black hole’s entropy for various values
of the parameters of the Weyl geometric black hole. The solid
lines represent Bekenstein-Hawking entropy on rH while the
dashed lines represent the entropy on rC.
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constantlike term. The entropy expression (59) is obviously
different from the one obtained from the Schwarzschild-de
Sitter solution in GR.
In Weyl geometric gravity, in order to obtain the GR

limit, one needs to break the conformal symmetry, e.g., by
introducing a spontaneous symmetry breaking, which
can be achieved by giving Φ a vacuum expectation value
Φ0ðrÞ [105], which satisfies (23) for the spherically
symmetric vacuum. In the conformal-breaking vacuum,
the gravitational constant will vary with r as G ¼ 1=Φ0ðrÞ.
In the GR limit, the entropy of the Weyl geometric black

hole for δ → 0 will reduce to the Schwarzschild-de Sitter
black hole entropy S ¼ πr2H=G, with the identification
G ¼ 1=ΦH.

C. The black hole masses

The thermodynamic mass of the black hole is different
from the geometric mass which we have introduced in
Eq. (34). Beside the effective geometric mass of the dark
matter, in the following, we will consider two different
masses which are the mass function related to the integra-
tion constant rg and the thermodynamic mass. In the Weyl
geometric black hole solution, we have the gravitational
radius rg of the black hole, which is proportional to the
gravitational mass, i.e., rg ¼ 2GM where M is the black
hole “gravitational” mass and G≡ 1=ΦH. This choice is
similar to the way the mass of the black hole is obtained in
general relativity and Brans-Dicke theory [106].
For asymptotically de Sitter solutions, one way to

compute the black hole (gravitational) mass has been
described in Ref. [107]. In this approach, the invariant
definition of the mass for a black hole in de Sitter spacetime
does not rely on taking the limit r → ∞. All what is
necessary for the calculation of the mass is the existence of a
timelike Killing vector at some point r < rC, in a region of
spacetime containing a two-sphere surrounding the mass.
The mass of the black hole can then be calculated by
integrating over a sphere of any radius, as long as it
thoroughly surrounds the mass, and is within a region
containing the timelike Killing vector. Similar to the
Schwarzschild-de Sitter solution [107], one can then find
the gravitational mass of Weyl geometric black hole
as M ¼ ΦHrg=2.
In terms of the event horizon, we can solve Eq. (29) to

find the black hole gravitational mass as a function of rH,

M� ¼ΦH
1

12

243�− r3H
l2

− δrH þ rH

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

�
−
r3H
l2

− δrH þ rH

�
2

− 12r2Hδðδ− 2Þ
s 35: ð60Þ

Note that in terms of the event horizon the mass has two
branches. Thus, the mass could be negative when one

adopts the solution M−, if the value in the square root is
bigger than the other terms. Hence, for this case, we need
the condition δ > 2 in order for the mass to be positive.
However, δ has a constraint given by Eq. (30), where the
maximum value of δ is 0.244071. Therefore, the negative
sign of the mass does not obey this condition, and we will
not consider this case further.
In addition to the black hole mass, the geometric mass on

the event horizon can also be computed. Interestingly
enough, by using Eqs. (29) and (34) at r ¼ rH, a very
simple formula for the geometric mass on the event horizon
can be obtained for the Weyl geometric black hole

MGjr¼rH ¼ rH
2
: ð61Þ

This condition is identical to the Schwarzschild radius
rH ¼ 2MG for the Schwarzschild black hole.
There is a maximum mass M that can be obtained from

dM=drH ¼ 0. Due to the factor ΦH which intrinsically
depends on M, the maximum gravtiational mass does not
occur at the Nariai limit as shown in Fig. 6, it occurs at a bit
smaller radius. On the other hand if we assume Geff ¼
1=ΦH to be constant, the maximum mass will be given by

Mmax ¼ ΦH
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ 1Þ3

p
þ ð1 − 2δÞl ffiffiffiffiffiffiffiffiffiffiffi

δþ 1
p

6
ffiffiffi
3

p : ð62Þ

The position of the horizon for the maximum mass is
obtained as

rNar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ 1Þl2

3

r
; ð63Þ

which is the Nariai limit where event horizon and cosmic
horizon merge. In this case, the maximum mass is simply
the mass of black hole in the Nariai limit. This is shown
in Fig. 6.

FIG. 6. The Weyl geometric black hole mass versus rH and rC.
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The second mass we consider in the following is the
thermodynamic mass which satisfies the first law of
thermodynamics. From Eq. (39), we can find

MH ¼
Z

THdSBH: ð64Þ

To compute above integral, we use the mass function
(60) in the TH and SBH and the relation dSBH ¼
ð∂SBH=∂rHÞdrH. Finally, we can obtain

MH ¼ rH
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
3r4H
l4

þ 6r2H
l2

ðδ − 1Þ þ δð2 − δÞ þ 3

�s

−
3r3H
l4

þ 3rH
l2

−
3rH
l2

δ: ð65Þ

The position of the maximum thermodynamic mass is at the
Nariai limit given by Eq. (63). The maximum thermody-
namic mass is given by

MHmax ¼
2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδþ 1Þ3
p

þ ð1 − 2δÞ ffiffiffiffiffiffiffiffiffiffiffi
δþ 1

p i
l

ffiffiffi
3

p : ð66Þ

The black hole gravitational mass M, thermodynamic
massMH, and geometric massMG are plotted as a function
of rH for the variation of δ and 1=l2 in Fig. 7. We can see
from Fig. 7 that the position of the maximum mass for MH
are at the Nariai limit while the maximum ofM is at smaller
radius. However, the geometric mass at rH is quite different
since it is only the linear function of rH and does not
depend on δ; l2. Variation of δ gives opposite effect to both
masses. Remarkably, for δ ¼ 0, the gravitational mass M
and thermodynamic mass MH become identical,

MHjδ¼0 ¼ Mjδ¼0 ¼
6

l2

�
rH −

r3H
l2

�
: ð67Þ

V. THERMODYNAMICS
ON THE COSMOLOGICAL HORIZON

Generically, Weyl geometric black holes could have a
cosmological horizon and we can compute the thermody-
namic quantities on this horizon. The thermodynamic
quantities on the cosmological horizon are obtained by
considering the event horizon as the boundary [108]. On
the other hand, the thermodynamic quantities on the event
horizon are obtained when the cosmological horizon is
considered as the boundary.
The plot of the Weyl geometric black hole mass M

versus rH, rC, is shown in Fig. 6. For each M there could
possibly be two horizons up until the maximum mass
where rH ¼ rC at the Nariai limit. This limit corresponds to
the largest possible Weyl geometric black hole.
The first law of the thermodynamics on the cosmological

horizon takes a similar form with that on the event horizon.
It is given by

dMC ¼ TCdSC: ð68Þ

First, the Hawking temperature computed from Eq. (48),
and the entropy, obtained from Eq. (57), are given by

TC ¼ −
1

4π

�
rg
r2C

− 2
rC
l2

−
δðδ − 2Þ
3rg

�
; ð69Þ

SC ¼ ΦCπr2C; ð70Þ

where ΦC ¼ ΦðrCÞ. The temperature of the cosmolo-
gical horizon is negative since the entropy at the cosmo-
logical horizon increases when the black hole mass
decreases [109,110].
The mass on the cosmological horizon is obtained as

MC ¼
Z

TCdSC

¼ −
rC
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
3r4C
l4

þ 6r2C
l2

ðδ − 1Þ þ δð2 − δÞ þ 3

�s

þ 3r3C
l4

−
3rC
l2

þ 3rC
l2

δ: ð71Þ

We can see the main difference from the mass on the event
horizon, i.e., the overall sign ofMC becomes negative [108].
The plot of the mass from rH ¼ 0 to de Sitter length L) is
presented in Fig. 8. It is clear thatMC is negative. We expect
that when the temperature approaches minimum value
and the thermodynamic mass approaches maximum value
on the event horizon, the small black hole increases to
the Nariai condition at rH ¼ rNar by absorbing radiation.

FIG. 7. The masses of Weyl geometric black hole plotted as a
function of rH , for different values of the parameters.
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On the other hand, the cosmological horizon decreases to
the minimum value by emitting radiation. This is the
Hawking-Page transition to achieve a large and stable black
hole in de Sitter space.
For a system containing two different horizons, the event

and cosmological horizons, the total entropy is the sum of
the entropies from each horizon [111]

Stot ¼ SBH þ SC: ð72Þ

VI. THERMODYNAMIC STABILITY

One can study the thermodynamic global stability of the
black holes by using the Helmholtz free energy. On the
other hand, to study the local stability of the thermal
equilibrium between the black hole, and its surroundings,
we can consider the heat capacity of the black hole. The
heat capacity is also an important avenue for investigating
critical phenomena, and the phase structures of the black
hole [112]. More specifically, when the heat capacity
diverges or changes sign, it indicates a phase transition,
and the breakdown of the equilibrium thermodynamic
description. It is worth noting that the local stability does
not imply the global one.

A. The free energy

Since in this black hole solution we do not consider any
particle transfer, we will consider the Helmholtz free energy
to study the thermodynamic stability. The Helmholtz free
energy is given by

F ¼ MH − THSBH; ð73Þ

where we use the thermodynamic mass in this investigation.

As compared to the vacuum case, the global thermody-
namic stability of a black hole is determined by the
condition F ≤ 0. In this case, F ¼ 0 is the condition for
the first-order phase transition from the vacuum state to the
black hole. For the Weyl geometric black hole, in terms of
rH, the Helmholtz free energy is given by

F ¼ 3r3H
2l4

þ 2rHðδþ 3Þ
2l2

−
3rHðδþ 1Þðδ − 3Þ

6r2H

−
1

2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r6H
l4

þ 18r4Hðδ − 1Þ
l2

− 3r2Hðδþ 1Þðδ − 3Þ
s

−
δþ 3

6r2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r6H
l4

þ 18r4Hðδ − 1Þ
l2

− 3r2Hðδþ 1Þðδ − 3Þ
s

:

ð74Þ

Note that the vacuum state without a black hole in this
background is obtained when δ ¼ rH ¼ 0, which naturally
implies F ¼ 0 as the Schwarzschild-dS black hole. Figure 9
presents the plots of the Helmholtz free energy versus rH,
rC. From the range of parameters we choose, it turns out
that the Weyl geometric black hole has negative free energy
associated with the event horizon for rH ≪ 1 but positive
free energy for large black hole. For the pure de Sitter
space, it is obvious that FC < 0 denoting that it is in stable
configuration.
The thermodynamic stability of a spacetime with two

horizons occurs when the total free energy,

Ftot ¼ F þ FC ð75Þ

FIG. 8. The thermodynamic mass of Weyl geometric black hole
for various values of the parameters. The solid lines represent the
thermodynamic mass on rH while the dashed lines represent the
thermodynamic mass on rC.

FIG. 9. The free energy F versus rH and rC for Weyl geometric
black hole.
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where FC ¼ MC − TCsC, is negative as shown in Fig. 10.
In the Nariai limit rH ¼ rC, since M ¼ −MC; TH ¼
−TC; SH ¼ SC, the total free energies vanish.

B. Heat capacity

Now we will study the thermodynamic stability locally
by using the heat capacity. The heat capacity on the event
horizon can be computed from the relation

CH ¼ dMH

dTH
¼ dMH

drH
= dTH

drH
: ð76Þ

The plot of the heat capacity is given in Fig. 11. When
CH is positive, the thermal equilibrium with the surround-
ing environment is stable, while the negative values implies
locally thermodynamical instability. The Weyl geometric

black hole is locally unstable for small rH, and there is no
divergence. The local instability for small black holes only
implies that these black holes will evaporate by means of
the Hawking radiation and gets hotter. There is a minimum
of heat capacity for the Weyl black hole. For the de Sitter
space, the heat capacity shows the local stability where
there is a maximum of heat capacity at rC ¼ l. On the
Nariai limit, both heat capacities are connected smoothly
without divergence.
For a continuous F as well as for its first derivatives, the

divergence or discontinuity of the heat capacity implies a
second-order phase transition, since heat capacity is related
to the second derivative of the free energy [112]. For the
Weyl geometric black hole, there are no divergences in the
heat capacity, and thus no second-order phase transition can
take place.

C. Luminosity and evaporation time
of Weyl geometric black holes

The luminosity of the black hole can be approximated
using the Stephan-Boltzmann law, or by explicit calculation
of evaporation rates [113]. It is given by

L ¼ dMH

dt
¼ σAHT4

H; ð77Þ

where σ is a Stefan-Boltzmann-like constant that depends
on the black hole mass and on the particle content of the
theory. AH is the area of the black hole on the horizon,
which is given by

AH ¼
Z

2π

0

Z
π

0

ðgθθgϕϕÞ1=2dθdϕ: ð78Þ

For the Weyl geometric black hole, AH ¼ 4πr2H. Hence,
the black hole luminosity can be written as

L ¼ σr2H
64π3

�
rg
r2H

−
2rH
l2

−
δðδ − 2Þ
4rg

�
4

: ð79Þ

We show the plot of the luminosity divided by σ in
Fig. 12, where we have used the mass function (60). The
effects of the parameter 1=l2 and δ do not really affect the
luminosity.

1. The evaporation time

From Eq. (77), we can also compute the evaporation time
of the black hole. It is given by

tEvap ¼
Z

MH

0

dM̂H

σAHT4
H
: ð80Þ

We show the plot of the evaporation time tEvap of Weyl
geometric black hole versus the mass MH for a certain
range of rH in Fig. 13. The evaporation time of Weyl

FIG. 10. The free energy F versus rH and rC for Weyl
geometric black hole.

FIG. 11. The heat capacity of Weyl geometric black holes
versus rH and rC.
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geometric black hole for the given parameter increases with
the thermodynamic mass. In the Nariai limit, where
rH → rC, the Hawking temperature becomes zero, and
tEvap → ∞. Also as shown in Fig. 14, when rH becomes
larger, the evaporation time becomes very large.

VII. DISCUSSIONS AND FINAL REMARKS

Weyl geometric gravity is an interesting extension of
general relativity, which implements the requirement of
conformal invariance at both the action and field equations
level. The starting point is the action constructed in Weyl
geometry which contains only two terms. An important
result of the theory is the extraction of a scalar degree of
freedom through the linearization of the action in terms of
the Weyl (Ricci) scalar, and the formulation of then theory
as an equivalent scalar-vector-tensor theory. The theory
admits an exact vacuum solution in spherical symmetry,
corresponding to a particular choice of the Weyl vector,
assumed to have only a radial component. As a result the
strength of the Weyl vector F̃μν identically vanishes.
Moreover, the Weyl vector becomes the gradient of the
scalar field, ω1 ¼ ð1=αÞd lnΦ=dr. Thus, the solution is
not given in the proper Weyl geometry, but in a subclass of
it, called integrable Weyl geometry [114]. However, it is
important to point out that Weyl integrable geometry does
not reduce to Riemann geometry, since the group of
geometrical automorphisms also contains the group of
conformal transformations [115].
In the field equations of the Weyl geometric black hole

solution, due to the effects of theWeyl geometry, some extra
terms, induced by the presence of the scalar field, do appear.
These new terms can be interpreted as describing the energy
density and pressure of an effective fluid located around the
black hole. Hence, the Weyl geometric black hole is
surrounded by a material cloud, which may be interpreted
physically as forming an accretion disk, or acting as an
effective dark matter, as suggested in [79]. Hence, black
holes in Weyl geometric theory contain scalar hair, which
determines the strength of the gravitational interaction. Due
to the presence of the scalar field, an effective gravitational
constant is generated in the spacetime of the black hole,
which changes with the distance from the center of the black
hole, even after the spontaneous conformal symmetry
breaking of the vacuum.
In analyzing the thermodynamic properties of the Weyl

geometric black hole we have first discussed the existence,
and the borders for horizons of this black hole. The
equation giving the position of the horizons is given by
Eq. (29), a third order algebraic equation. For the existence
of three real roots the condition (30) must be satisfied. The
positions and the nature of the event horizon are strongly
dependent on the solution parameter δ, whose variation in a
relatively small range induces significant changes in the
nature and position of the horizons.

FIG. 12. Luminosity of the Weyl geometric black holes versus
the radius of the event horizon rH .

FIG. 13. Evaporation time tEvap of the Weyl geometric black
hole versus thermodynamic mass MH .

FIG. 14. Evaporation time tEvap of the Weyl geometric black
hole versus event horizon rH .
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The extra terms in the gravitational field equations,
generated by the presence of the scalar field, can be
interpreted as generating a fluid with negative pressure.
The total mass, expressed by Eq. (34), contains the con-
tribution of the ordinary (baryonic) mass rg=2, plus the
contribution of the scalar field, which increases due to the
presence of the terms linear, quadratic, and cubic in r.
However, dark matter cannot extend beyond the zero
pressure region (if we define “matter” as having non-
negative pressure), which gives for the total mass of dark
matter the finite expression (35). It is interesting to note that
the total mass of the dark matter is dependent on the
baryonic mass.
We have also studied the thermodynamic characteristics

of the Weyl geometric black hole, and we have obtained the
explicit expressions of the basic thermodynamic quantities,
as well as their dependence on the parameters of the
solution.
While the general expression of the Hawking temper-

ature of the evaporating Weyl geometric black hole remains
similar to the ones for black hole in general relativity, since
both can be obtained from the metric tensor components,
the entropy has a new scalar field factor, in addition to the
standard area law.
By appropriately computing the thermodynamic mass,

the first law of black hole thermodynamic of Weyl
geometry black hole can be established. The heat capacity
for Weyl geometric black holes is negative, but smoothly
changes to positive values for de Sitter spacetime, sug-
gesting a continuous phase transition between unstable and
stable configuration in the presence of a surrounding, even
when the spacetime is asymptotically de Sitter.
The luminosity and evaporation time of Weyl black hole

show certain similar result as standard general relativistic
black holes up to the Nariai limit.
We would like to point out that our results on the

thermodynamics of Weyl geometric gravity black holes
have been obtained for a specific, exact solution of the field
equations, under some particular assumptions adopted for
the behavior of the auxiliary scalar field, and for the Weyl
vector. Therefore, as compared to all the possible spectrum
of the black hole solutions in Weyl geometric gravity they
may be considered as having a qualitative relevance only.
But, even within this restricted level of generality, the exact
solution of the field equations of Weyl geometric gravity
may provide an important insight into the complex physical
and thermodynamic behavior of the Weyl geometric black
holes, and of the novel and interesting astrophysical and
physical features related to them.
As the analysis of the present work has shown, Weyl

geometric gravity black holes have more thermodynamic
variability, resulting from their basic properties, as compared
with the Schwarzschild black holes of general relativity. This
can be easily seen from the study of the Hawking temper-
ature, entropy or luminosity of the Weyl geometric black

holes. These novel properties do follow from the presence of
the vector and scalar degrees of freedom, and they reflect the
complex mathematical structure of the theory, described
mathematically by very complicated, and strongly nonlinear
field equations. Thus, the physical effects associated with the
Weyl vector field and the scalar field, two new degrees of
freedom of the theory, could also lead to a new under-
standing of the laws of black hole thermodynamics, as well
as to complex interplay between thermodynamics, gravity,
and quantummechanics. The possible quantum implications
of the existence of the Weyl geometric black holes will be
considered in a future study.
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APPENDIX: BASICS OF WEYL GEOMETRY
AND WEYL GEOMETRIC GRAVITY

We define in a general sense Weyl conformal geometry
as the equivalence classes of (gμν;ωμ) of the metric and of
the Weyl gauge field (ωμ), related by the Weyl gauge
transformations,

ĝμν¼Σdgμν;
ffiffiffiffiffiffic−gp

¼Σ2d ffiffiffiffiffiffi
−g

p
; ω̂μ¼ωμ−

1

α
∂μ lnΣ; ðA1Þ

where by d we have denoted the Weyl weight (charge) of
gμν, while α is the Weyl gauge coupling. In our present
approach we consider only the case d ¼ 1, but our results
can be generalized to arbitrary d by rescaling the coupling
as α → α × d.
The Weyl gauge field is included in the Weyl connection

Γ̃, which is obtained as the solution of the system,

∇̃λgμν ¼ −dαωλgμν; ðA2Þ

with ∇̃μ defined with the help of Γ̃λ
μν according to

∇̃λgμν ¼ ∂λgμν − Γ̃ρ
μλgρν − Γ̃ρ

νλgρμ: ðA3Þ

From Eq. (A2) it follows that Weyl geometry is non-
metric. Still the covariant derivative can be written as
ð∇̃λ þ dαωλÞgμν ¼ 0, a form similar to the Riemannian
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case. Hence, in Weyl geometry one can use the Riemannian
expressions in which the covariant derivatives ∇λ, acting
on the geometric and physical quantities are replaced
by their Weyl-geometric counterparts, as, for example, in
∂λ → ∂λ þ weight × α × ωλ, where “weight” denotes the
Weyl charge.
The expression of Γ̃ from Eq. (A2) is obtained by using

the cyclic permutations of the indices, and combining the
resulting equations. Thus, we find

Γ̃λ
μν ¼ Γλ

μν þ α
d
2
½δλμων þ δλνωμ − gμνωλ�; ðA4Þ

where by Γλ
μν we have denoted the Levi-Civita connection

of the Riemann geometry,

Γλ
μν ¼

1

2
gλρð∂μgρν þ ∂νgρμ − ∂ρgμνÞ: ðA5Þ

It is important to note that Γ̃ is invariant under the group
of conformal transformations (A1). Taking the trace of
Eq. (A4), and denoting Γμ ≡ Γλ

μλ and Γ̃μ ≡ Γ̃λ
μλ, respec-

tively, we obtain

Γ̃μ ¼ Γμ þ 2dαωμ: ðA6Þ

Hence, the Weyl gauge field can be interpreted as
describing the deviation of the Weyl connection from the
Levi-Civita connection. One can obtain the scalar and the
tensor curvatures of the Weyl geometry, using expressions
similar to those in Riemannian geometry, but with Γ̃
substituting Γ. Thus,

R̃λ
μνσ ¼ ∂νΓ̃λ

μσ − ∂σΓ̃λ
μν þ Γ̃λ

νρΓ̃
ρ
μσ − Γ̃λ

σρΓ̃
ρ
μν;

R̃μν ¼ R̃λ
μλσ;

R̃ ¼ gμσR̃μσ: ðA7Þ

After some simple calculations one obtains,

R̃μν ¼ Rμν þ
1

2
ðαdÞð∇μων − 3∇νωμ − gμν∇λω

λÞ

þ 1

2
ðαdÞ2ðωμων − gμνωλω

λÞ;
R̃μν − R̃νμ ¼ 2dαFμν;

R̃ ¼ R − 3dα∇μω
μ −

3

2
ðdαÞ2ωμω

μ: ðA8Þ

In the above equations the right-hand side is defined in the
Riemannian geometry, and hence ∇μ is defined via the
Levi-Civita connection (Γ).
An important property of Weyl geometry is that R̃

transforms covariantly under the transformations (A1),

ˆ̃R ¼ ð1=ΣdÞR̃; ðA9Þ

a result which follows from the transformation rule of gμσ ,
and from the property of invariance of R̃μν under the
conformal transformations, since Γ̃ is also invariant. Then,
it follows immediately that the term

ffiffiffi
g

p
R̃2 is also Weyl

gauge invariant.
An important geometrical quantity is the strength of the

Weyl vector field F̃μν, defined according to

F̃μν ¼ ∇μων −∇νωμ: ðA10Þ
The simplest conformally invariant gravitational

Lagrangian density is given by

LW ¼
�

1

4!ξ2
R̃2 −

1

4
F̃μνF̃μν

�
; ðA11Þ

where ξ < 1 is the parameter of the perturbative coupling.
The Lagrangian LW can be linearized with the help of the

substitution,

R̃2 → −2ϕ2R̃ − ϕ4; ðA12Þ

where ϕ is an auxiliary scalar field. Then the Lagrangian
becomes

LW ¼
�
−

ϕ2

12ξ2
R̃ −

ϕ4

4!ξ2
−
1

4
F̃μνF̃μν

� ffiffiffiffiffiffi
−g̃

p
: ðA13Þ

Substituting into Eq. (A13) the expression of R̃,

R̃ ¼ R − 3α∇μω
μ −

3

2
α2ωμω

μ; ðA14Þ

we obtain the action of the Weyl geometric gravitational
theory as given by

S ¼
Z �

−
ϕ2

12ξ2

�
R − 3α∇μω

μ −
3

2
α2ωμω

μ

�
−

ϕ4

4!ξ2
−
1

4
F̃μνF̃μν

� ffiffiffiffiffiffi
−g

p
d4x; ðA15Þ
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