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We study trajectories of test particles around a luminous, static, spherically symmetric neutron star,
under the combined influence of gravity and radiation. In general relativity, for Schwarzschild spacetime,
an equilibrium sphere (the Eddington capture sphere) is formed for near-Eddington luminosities. We
generalize these results to a broad class of static, spherical spacetimes. We also study the dynamics of
particles in a strong radiation field in spherical spacetimes. The results are illustrated for two cases,
Reissner-Nordström spacetime of a charged spherical object in general relativity and Kehagias-Sfetsos
spacetime, arising from the Hořava-Lifshitz gravity theory. Our findings apply to neutron stars under
gravitational field equations different from the vacuum Einstein field equations of general relativity, such as
in modified theories of gravity, the only requirement being that test particles follow geodesics in the
absence of the radiation field. The effects that we describe are, in principle, measurable through
observations of x-ray bursts of neutron stars. Hence, detailed future studies could use such observations to
test gravity theories in the strong-field regime, provided that the impact of the spacetime geometry can be
disentangled from the astrophysical uncertainties.
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I. INTRODUCTION

Radiation exerts force on test particles, influencing their
trajectories and causing their deviation from timelike geo-
desics. For a luminous source the radiation force may be
comparable to the effective gravity. In particular, the
Eddington luminosity

LEdd ¼
4πmGMc

σT
ð1Þ

results in a global equilibrium between the Newtonian
gravity and the radiation pressure for a spherical source of
mass M. In Eq. (1) we assume hydrogen plasma, hence σT
is the Thomson cross section and m is the proton mass. G
and c denote the gravitational constant and speed of light,
respectively. The problem of the gravity-radiation equilib-
rium is more complicated for the relativistic case—in
general relativity (GR) equilibrium can only be established
at a particular radius, referred to as the Eddington capture
sphere (ECS; see [1,2]). The ECS radius rECS depends on
the stellar luminosity as seen by a distant observer L∞, and
in Schwarzschild spacetime corresponds to

rECS ¼
2GM=c2

1 − λ2
; ð2Þ

where λ≡ L∞=LEdd. In Eq. (2), L∞ ¼ LEdd represents
equilibrium established at infinity. The ECS may form as a
transient phenomenon during type-I luminous x-ray bursts
on neutron stars [3,4], particularly in cases exhibiting
photospheric expansion [5,6], when the radiation originat-
ing from a thermonuclear explosion engulfing the neutron
star surface temporarily balances the effective gravity.
Studying such events may lead to constraints on neutron
star equation of state [7,8], mass, radius [9,10], and
spin [11]. In this paper we consider whether the location
of the equilibrium surface and test-particle dynamics are
sensitive to deviations of the underlying metric from the
Schwarzschild solution. While several authors considered
deviations caused by the central mass rotation [12–15],
quadrupolar deviation of the metric from spherical sym-
metry [16], or both [17], we focus on the effects related to
modifying the underlying gravity field equations (and/or
modifications of the background metric).
Furthermore, the aim of this paper is to demonstrate the

impact of the spacetime deviation from the canonical
Schwarzschild case on properties of systems including
luminous neutron stars, illustrating it with concrete exam-
ples. Such deviations in spacetime geometry could in
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principle be detected through detailed modeling of x-ray
light curves of bursting neutron stars, offering a previously
unexplored avenue to test theories of gravity in the strong
field and large curvature regime. This task will, however,
require careful modeling in order to disentangle the effects
of astrophysical configuration, star rotation, and potential
deviation from general relativity.

II. EQUATIONS OF MOTION

We consider a static, spherically symmetric spacetime
metric in the form

ds2 ¼ −ξc2dt2 þ ξ−1dr2 þ r2dθ2 þ r2sin2θdϕ2; ð3Þ

which describes a wide class of spherically symmetric
spacetimes, where ξ depends only on the radial coordinate
r, ξ≡ ξðrÞ. Schwarzschild spacetime is recovered for
ξðrÞ ¼ 1–2M=r, where M is the geometric mass of the
star. In the presence of a radiation flux Fμ, the test-particle
equation of motion reads

aμ ¼ uν∇νuμ ¼
d2xμ

dτ2
þ Γμ

νρuνuρ ¼
σT
mc

Fμ; ð4Þ

where aμ is the particle’s four acceleration and uμ is its four
velocity. Equation (4) corresponds to the covariant formu-
lation of Newton’s second law with a standard electro-
dynamic radiation force term fμ ∝ Fμ, proportional to the
radiation flux measured in the frame of the test particle. The
only nonzero Christoffel symbols are

Γr
tt ¼

c2ξξ0

2
; ð5Þ

Γr
rr ¼ −

ξ0

2ξ
; ð6Þ

Γr
θθ ¼ −rξ; ð7Þ

Γr
ϕϕ ¼ −rξsin2θ; ð8Þ

Γϕ
rϕ ¼ 1

r
; ð9Þ

where we denote

ξ0 ≡ dξ
dr

: ð10Þ

Using the projection tensor hμν onto the particle’s local
three space, Kronecker tensor δμν, and the radiation stress-
energy tensor Tνρ, the radiation flux Fμ measured in the
particle’s local rest frame can be represented as1

Fμ ¼ hμνTνρuρ ¼ ðδμν þ uμuνÞTνρuρ: ð11Þ

A fully covariant description of the radiation field of a
static, uniformly radiating, spherical star in Schwarzschild
spacetime in terms of the radiation tensor Tνρ was first
given by [18]. This description can be readily generalized
to a broader class of static spherical metrics. The frequency-
integrated specific intensity I of radiation is uniform over
all angles and given by

IðrÞ ¼ IðRÞ
�
ξR
ξ

�
2

; ð12Þ

where R is the stellar radius and ξR ≡ ξðRÞ. The apparent
viewing angle α0 of the star, measured at radius r > R, is

sin α0 ¼
R
r

�
ξ

ξR

�
1=2

: ð13Þ

Equation (13) naturally requires that r > R, with another
requirement that r > rγ , where rγ is the photon sphere
radius, a solution to ξ0r − 2ξ ¼ 0, see, e.g., [19]. It is
generally expected that R > rγ for neutron stars, while it
may not necessarily be the case for hypothetical more
compact strange stars, e.g., [20].
The radiation stress-energy tensor is given by

Tμν ¼ IðrÞAμν, where the dimensionless components of
the Aμν tensor take the following form in the orthonormal
tetrad associated with the coordinate basis vectors,

At̂ t̂ ¼ 2πð1 − cos α0Þ; ð14Þ

At̂ r̂ ¼ πsin2α0; ð15Þ

Ar̂ r̂ ¼ 2π

3
ð1 − cos3α0Þ; ð16Þ

Aϕ̂ ϕ̂ ¼ Aθ̂ θ̂ ¼ π

3
ðcos3α0 − 3 cos α0 þ 2Þ: ð17Þ

Tetrad frame components Aμ̂ ν̂ are related to the coordinate
frame components Aμν through

Aμ̂ ν̂ ¼ Aαβeμ̂αeν̂β; ð18Þ

where tetrad components in the coordinate basis are
given by

eμ̂μ ¼ jgμμj1=2: ð19Þ

We parametrize the radiation strength in terms of the
dimensionless parameter λ

1Unless explicitly stated, we hereafter use geometrized units
(G ¼ c ¼ 1).
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λ ¼ L∞

LEdd
¼ ξRLðRÞ

LEdd
¼ 4π2ξRR2IðRÞ

LEdd
;

¼ πσTξRR2IðRÞ
GMmc

; ð20Þ

where M in a general spacetime corresponds to the
Arnowitt-Deser-Misner mass, so we assume that the
spacetime approaches Schwarzschild solution in the weak
field limit (large radius). Putting together Eqs. (4)–(20) and
leveraging spherical symmetry to choose a coordinate
system with θ ¼ π=2, dθ=dτ ¼ d2θ=dτ2 ¼ 0, we obtain
the full equations of motion for a test particle

d2r
dτ2

¼ −
1

2
ξ0 þ r

�
ξ −

rξ0

2

��
dϕ
dτ

�
2

þ λMξR
πR2ξ2

�
ξAt̂ r̂ut − ðAr̂ r̂ þ χÞ dr

dτ

�
; ð21Þ

d2ϕ
dτ2

¼ −
�
1

r
dr
dτ

þ λMξR
πR2ξ2

ðAϕ̂ ϕ̂ þ χÞ
�
dϕ
dτ

; ð22Þ

where τ is the particle’s proper time and we denote

χ ≡ ξAt̂ t̂ðutÞ2 þ ξ−1Ar̂ r̂

�
dr
dτ

�
2

þ r2Aϕ̂ ϕ̂

�
dϕ
dτ

�
2

− 2At̂ r̂ut
dr
dτ

: ð23Þ

Additionally, from the four-velocity normalization uαuα ¼
−1 we have

ut ¼ ξ−1=2
�
1þ ξ−1

�
dr
dτ

�
2

þ r2
�
dϕ
dτ

�
2
�
1=2

: ð24Þ

There are four components in Eq. (21), that can be
associated with gravitational acceleration ∝ ξ0, centrifugal
acceleration ∝ ðdϕ=dτÞ2, radiation pressure ∝ λut, and
radial radiation drag ∝ λdr=dτ. In Eq. (22) we recognize
the Coriolis acceleration ∝ ðdr=dτÞðdϕ=dτÞ. The second
component of Eq. (22) is the Poynting-Robertson
drag force, removing the particle’s angular momentum
through interaction with the radiation field. In general
relativity these effects were studied in, e.g., [14,21–24].
Equations (21)–(23) reduce to the ones presented in [1] for
the case of Schwarzschild spacetime.

A. Backreaction on spacetime

Another interesting question that one may ask is whether
the strong radiation field, balancing the effective gravity,
should be included in the calculation of the spacetime
metric from the underlying field equations as a nonzero
stress-energy tensor component. While a complete, rigor-
ous and nonlinear treatment of this problem is complicated

even for fixed underlying field equations, one can make a
rather simple order-of-magnitude argument following
Sec. 4 of [25], where a very similar problem of radiation
field backreaction on the Schwarzschild spacetime geom-
etry was considered. Assuming Einstein vacuum field
equations we characterize the magnitude of the Ricci part
of the Riemann tensor by computing a scalar quantity

R ¼ RμνRμν ¼ κ2TμνTμν ∝
ðλLEddÞ2

r4
ð25Þ

with κ ¼ 8πG=c4. After some amount of algebra and taking
liberal overestimates of various quantities such as stellar
radius R or ξR we conclude that

R < 10−40
c8

G4M4
ð26Þ

near the surface of the Eddington-luminosity neutron star.
This value characterizes the impact of the stress-energy
tensor Tμν on the spacetime geometry and can be compared
with the Weyl part Cabcd of the Riemann tensor Rabcd,
characterizing the magnitude of the spacetime curvature in
the absence of Tμν. The latter can be evaluated for the
vacuum background metric simply with the Kretschmann
scalar, which characterizes the Weyl tensor magnitude for a
vacuum background spacetime

K ¼ RabcdRabcd ¼ CabcdCabcd;

¼ 48

r6
G2M2

c4
> 10−11

c8

G4M4
; ð27Þ

where we only assumed that r < 100GM=c2. While this
example is limited to Schwarzschild background and only
constitutes a linear approximation, as the stress-energy
tensor is evaluated in the background spacetime without
accounting for the backreaction, the huge gap between the
magnitudes of K and R shows that the backreaction is
negligible for the Eddington-luminosity radiation around a
neutron star. As a matter of fact, it would take over 10
orders of magnitude increase of the stellar luminosity for
the energy of radiation to start contributing to the spacetime
curvature in an appreciable way, as we show that R=K <
10−29 and R ∝ λ2.

B. Radial equilibrium surface

For a static test particle we have uμ ¼ δμtut and
ut ¼ ξ−1=2, hence the only nonzero components in
Eq. (21) correspond to gravitational acceleration and
radiation pressure and Eq. (22) is trivially fulfilled. The
whole system of equations of motion simplifies to

0 ¼ −
1

2
ξ0 þ λM

r2ξ1=2
ð28Þ
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for r > rγ and at the equilibrium radius we have

2Mλ ¼ r2ξ1=2ξ0: ð29Þ
If Eq. (29) has a solution for some r ¼ r0 > R, then it
physically corresponds to the gravity-radiation equilibrium
surface suspended above the luminous stellar surface. For
Schwarzschild metric Eq. (29) reduces to λ ¼ ξ1=2, and
hence the ECS formula given in Eq. (2) is recovered. We
denote this general equilibrium radius by r0, and the
Schwarzschild value rECS ≡ r0;Schw.
To discuss the stability of the equilibrium, let us consider

a restoring force

fðrÞ ¼ 1

2
ξ0 −

λM

r2ξ1=2
; ð30Þ

with fðr0Þ ¼ 0. In order for the radial equilibrium at r0 to
be stable, we need

f0ðrÞ ¼ 1

2
ξ00 þ λM

2r2ξ1=2

�
ξ0

ξ
þ 4

r

�
ð31Þ

to be positive at r0. Using the fðr0Þ ¼ 0 condition we find
the stability condition at the equilibrium radius

f0ðr0Þ ¼
1

2
ξ00 þ 1

4
ξ0
�
ξ0

ξ
þ 4

r0

�
> 0: ð32Þ

FIG. 1. Radius of the gravity-radiation equilibrium sphere for
Reissner-Nordström (top row) and Kehagias-Sfetsos (bottom
row) spacetimes for various luminosity parameters λ. Left
column: radius as function of the metric parameter ðQ=MÞ2 in
RN spacetime (ωM2 in KS spacetime), Q ¼ 0 (ωM2 → ∞)
corresponds to Schwarzschild spacetime. Right column: relative
change in the location of the equilibrium sphere with respect to
the Schwarzschild case.

FIG. 2. Radius (left column), radial velocity component vr ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−grr=gtt

p
ur=ut (middle column), and energy −ut (right column) as

functions of the proper time τ for particles ejected from the neutron star surface located at R ¼ 4M by the instantaneous burst of
radiation with the luminosity parameter λ ¼ 0.75 (solid), λ ¼ 0.80 (dashed), and λ ¼ 0.85 (dotted). The time unit corresponds to
M ≈ 10−5 s for a neutron star mass of 2M⊙. The black curves correspond to Schwarzschild spacetime. The red curves in the top row
correspond to Reissner-Nordström spacetime with ðQ=MÞ2 ¼ 1. The red curves in the bottom row correspond to Kehagias-Sfetsos
spacetime with ωM2 ¼ 0.5.
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Stability of gravity-radiation equilibria is thus a spacetime
property, and for Schwarzschild spacetime equilibria are
radially stable for all r0 > rγ [1,18]. For the cases discussed
further in this paper we always find stability for r0 > rγ.

III. METRIC EXAMPLES

We exemplify the general calculations given in Sec. II by
considering two particular spacetime models: Reissner-
Nordström (RN) and Kehagias-Sfetsos (KS) [26]. The
former originates from the electrovacuum Einstein field
equations and corresponds to the spacetime of a static
electrically charged black hole (or exterior of a charged
spherical star). Recently a lot of interest in RN spacetime
came from the brane cosmology [27], where the RN model
is a solution of the effective field equations and the “tidal
charge” corresponds to gravitational effects from the fifth
dimension [28]. The KS spacetime arises as a static,
spherical solution representing a black hole (or the exterior
of a star) in Horava’s gravity, a popular model of a quantum
field theory of gravity [29]. The geodesic structure of the
KS spacetime has been studied extensively by [30–32], for
instance.

A. Equilibrium spheres

In RN spacetime we have

ξRNðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð33Þ

where Q is the star’s charge, and the radial equilibrium
Eq. (29) gives a fourth order polynomial equation

0 ¼ M2ð1 − λ2Þr4 − 2MðQ2 þM2Þr3
þQ2ðQ2 þ 5M2Þr2 − 4Q4MrþQ6: ð34Þ

The polynomial has a single real positive root r0 such
that r0 > M, corresponding to the equilibrium sphere. The
value of this equilibrium radius r0 as a function of charge
and luminosity parameter λ is explored in Fig. 1 (top row).
We see from the figure that for all considered values of λ,
we have r0=r0;Schw > 1. The equilibrium sphere radius
generally grows with the charge Q and can significantly
deviate from the Schwarzschild solution for large values of
(Q=M) and large luminosity.
In KS spacetime we have

ξKSðrÞ ¼ 1þ ωr2
�
1 −

�
1þ 4M

ωr3

�
1=2

�
: ð35Þ

The parameter ω is such that for ω → ∞ we recover
Schwarzschild spacetime. Here we evaluate the location
of the equilibrium sphere by solving Eq. (29) numerically,
and the results are presented in Fig. 1 (bottom row). The
equilibrium sphere radius is once again larger than for the
Schwarzschild case, but it is actually the lower neutron star
luminosity (equilibrium forming for smaller r0) resulting in
a larger fractional deviation.

FIG. 3. Trajectories of particles ejected from the surface of a
neutron star in Reissner-Nordström (top, with ðQ=MÞ2 ¼ 1) and
Kehagias-Sfetsos (bottom, with ωM2 ¼ 0.5) spacetimes. We
assume a stellar radius of R ¼ 4M (gray disc) and a luminosity
parameter λ ¼ 0.85. The continuous red circles represent the
corresponding equilibrium spheres, while the dashed red circles
correspond to the Schwarzschild equilibrium (ECS). Each pair of
colored trajectories corresponds to a particle ejectedwith a different
initial velocity with respect to a local static observer at the stellar
surface (starting at the marked dots): vr ¼ 0.15, vϕ ¼ 0.2 (blue);
vr ¼ 0, vϕ ¼ 0.4 (green); vr ¼ 0.05, vϕ ¼ 0.3 (magenta). Con-
tinuous curves correspond to trajectories inRN andKS spacetimes,
respectively; dashed curves represent trajectories in Schwarzschild
spacetime computed for the same initial conditions.

PARTICLE MOTION AROUND LUMINOUS NEUTRON STARS: … PHYS. REV. D 110, 064010 (2024)

064010-5



B. Particle ejection

We study the scenario of a luminous outburst, expelling
particles from the neutron star surface. Under the
assumption of spherical symmetry, this becomes a one-
dimensional problem for the particle’s radial motion.
Similar problems were considered for the Schwarzschild
case, e.g., by [2,22,23], including more general configu-
rations. Here, we consider only the most physically relevant
case, corresponding to particles ejected (with zero initial
velocity) from the neutron star surface by a sudden burst of
luminosity to a near-Eddington value. This is essentially a
toy model for the photospheric radius expansion x-ray
bursts of neutron stars [4,5,33]. Example results are shown
in Fig. 2. The timescale for the particles to settle on the
equilibrium sphere is no longer than 1000M for the chosen
peak luminosity λ, which is of order of 0.01 s for a typical
neutron star. The radial velocity of ejected particles may be
significantly larger for non-Schwarzschild spacetimes,
reaching around 0.1c for RN spacetime, before the particle
settles on the equilibrium sphere. The kinetic energy of the
particle is removed by the radiative drag force (Fig. 2,
second column), but the particle energy ð−utÞ is not
conserved and grows as a result of the radiation pressure
(Fig. 2, last column).
In Fig. 3 we present orbits of particles ejected from the

stellar surface with a sudden blast of luminosity for RN and
KS spacetimes, with nonzero initial velocity components
with respect to the star, comparing them with results for
Schwarzschild spacetime obtained for the same initial
condition. The figure demonstrates the efficiency of the
angular momentum removal through radiation Poynting-
Robertson drag force. The larger variation, related to

detailed balance of gravity, radiation pressure, and radiative
drag forces, can be observed once again, particularly in the
RN trajectories.

C. Hoyle-Lyttleton accretion

We consider a scenario of a luminous star passing
through a cloud of matter with a fixed velocity, a Hoyle-
Lyttleton accretion problem [34]. This simple setup allows
us to systematically explore the problem of the dynamics of
particles with nonzero angular momentum with respect to
the neutron star and the impact of the spacetime geometry.
In Fig. 4 we present trajectories of particles in the Hoyle-

Lyttleton scenario for Schwarzschild (left), extreme RN
(middle), and extreme KS (right) spacetimes. The setup
corresponds to a collection of particles approaching the
neutron star from the left with an initial velocity of 0.1c,
set beyond the gravitational sphere of influence of the
neutron star. The particles are parametrized by their impact
parameter, proportional to their (initial) specific angular
momentum with respect to the neutron star. Particles with
impact parameter b lower than certain critical value bcrit
(specific angular momentum l < lcrit) are captured by the
equilibrium sphere, hence the name Eddington capture
sphere. The value of the bcrit parameter (and therefore of
lcrit) depends on the initial velocity, and also (weakly) on
the neutron star diameter, impacting dynamical radiation
drag forces and hence the efficiency of the angular
momentum removal. Thus, the rate of mass capture,
proportional to the capture cross section πb2crit of the
luminous star, particle velocity, and particle mass density,
is also sensitive to the spacetime geometry. These effects

FIG. 4. Hoyle-Lyttleton accretion onto a luminous star. The particles are initiated at horizontal axis coordinate x ¼ −5000M, where
the gravitational and radiative impact of the star is negligible, all with initial velocity of v ¼ 0.1c along the x direction. The star is
characterized by R ¼ 4M and λ ¼ 0.99. Left: Schwarzschild spacetime. Trajectories with relatively low impact parameter are captured
by the equilibrium sphere, whereas trajectories with high impact parameter are scattered (to infinity). The red curve corresponds to the
lowest impact parameter for scattered trajectories (to infinity) considering a 1M resolution in the grid of impact parameters,
bcrit ¼ 1697M. Middle: RN spacetime with ðQ=MÞ2 ¼ 1. The red curve curve corresponds to the lowest impact parameter for scattered
trajectories bcrit ¼ 1615M. Typical captured trajectories in the middle panel penetrate the equilibrium sphere and then bounce, crossing
it outwards and finally settling into it. The same qualitative picture happens in the right panel (KS spacetime with ωM2 ¼ 0.5), but with a
much smaller bouncing amplitude and with bcrit ¼ 1697M, resembling the behavior in Schwarzschild spacetime.
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were investigated by, among others, [1,2,21] for the
Schwarzschild spacetime case and by [15,35] for a slowly
rotating neutron star. Here we demonstrate that the role of
the spacetime geometry may also be significant, which is
particularly clear for the (extreme) RN case in Fig. 4. It is
interesting to observe that (extreme) RN spacetime, with
the equilibrium sphere larger than those of Schwarzschild
and (extreme) KS cases, actually corresponds to a smaller
cross section for capturing particles. This highlights the
dynamic character of this problem, and the role of the
relativistic radiation drag forces acting on a moving particle
and depending on its four velocity.
Luminous type-I neutron star bursts are transient phe-

nomena of thermonuclear origin, fueled by the ignited
material accreting onto the stellar surface. The bursts
occur on timescales much longer than the dynamical ones
(since GM⊙=c3 ≈ 5 × 10−6 s, the dynamical timescales
involved are of order of milliseconds) and near-
Eddington luminosity can be sustained for a duration
ΔT of tens of seconds [4], while the ignited fuel reservoir
burns away. Hence, the total mass of the material accu-
mulated on the equilibrium sphere always remains negli-
gible in comparison to the stellar mass M for physically
motivated parameters. For the example parameters consid-
ered in Fig. 4 we find (v ¼ 0.1c, bcrit ≈ 1700M, mp is the
proton mass, np is the number density of particles)

Mshell

M
¼ πb2critmpnpv

ΔT
M

;

≈ 9 × 10−17
�

ΔT
100 s

��
2M⊙

M

��
np

106 cm−3

�
: ð36Þ

The reference number density of 106 cm−3 overestimates a
typical number density of molecular clouds.

IV. DISCUSSION AND SUMMARY

We demonstrated the importance of the spacetime
geometry for equilibria and dynamics of particles around
luminous compact stars. In the presented examples of
spherically symmetric spacetimes deviating from the
Schwarzschild solution, the radius of the equilibrium
sphere can be larger by as much as a factor of 2 with
respect to the Schwarzschild equilibrium at the same
intrinsic luminosity. Apart from this effect constituting
an interesting theoretical problem, there are potentially
important applications of the presented results in the
astrophysical context of phenomena involving strong
radiation originating in the vicinity of a compact gravitating
object. Understanding the location of the gravity-radiation
equilibrium surface is relevant for the observational con-
straints on the neutron star equation of state from the type-I
luminous thermonuclear photospheric radius expansion

x-ray bursts [7,9,36], or from oscillations of the material
suspended above the star surface by the strong radiation [10].
In the former case, as an example, the ratio between observed
near-Eddington fluxes at the peak of the x-ray burst and near
its end (the touchdown phase) provides information on the
gravitational redshift at the stellar surface [37], related to our
parameter ξR. The relation between the inferred redshift and
theM=R quantity that can be subsequently used to constrain
the neutron star equation of state is thus depending on the
underlying spacetime geometry through the metric function
ξðrÞ. Similarly, for the measurement proposed in [10],
the frequencies of the equilibrium sphere oscillations depend
on the spacetime geometry and the related location of
the equilibrium, affecting the inferred mass and radius of
the neutron star.
On the one hand, relaxing the Schwarzschild spacetime

model assumption results in another source of uncertainty,
on the other hand, it may offer a way to test strong gravity.
What is more, the dynamical properties of such systems
could manifest observationally, e.g., increased velocity of
the expanding atmosphere of a bursting neutron star would
necessarily manifest as a shift in the observed x-ray
spectrum. These problems have not received sufficient
attention from the scientific community so far.
There are multiple research avenues that should be

followed in order to generalize the presented results and
make them more physically relevant. In particular, the test-
particle approximation can be relaxed and more realistic
cases of optically thin [38,39] and optically thick [40]
levitating (suspended in the radiation field) atmospheres
can be considered. The questions regarding the impact of
the rotation of the star and the role of magnetic fields are
also important as subjects of further studies that will
necessarily render the presented toy model more compli-
cated. In particular, [15] demonstrated that for a rotating
source with a realistic radiation stress-energy tensor [41]
the radial equilibrium is only present in the star’s equatorial
plane, with radiation drag forces operating efficiently in the
poloidal direction, destabilizing off-equatorial equilibria on
relevant timescales for dimensionless spins as small as
a ¼ 0.05. For a fixed luminosity and other system param-
eters, the equatorial equilibrium occurs at a slightly larger
radius if the star is rotating. Thus, a toroidal configuration,
puffed up by the pressure of the accumulated gas around
the test-particle equatorial equilibrium is expected. Such
two-dimensional equilibria have not been calculated so far
(see [38,40] for a nonrotating spherically symmetric case).
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