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In this paper, we derive the generic solution of the Newman-Penrose equations in the Newman-Unti
gauge with vanishing curvature tensor. The obtained solutions are the vacua of the gravitational theory
which are connected to the derivations in metric formalism from exponentiating the infinitesimal BMS
generators in the Bondi-Metzner-Sachs (BMS) gauge in Compère and Long [J. High Energy Phys. 07
(2016) 137 and Classical Quantum Gravity 33, 195001 (2016)] by a radial transformation. The coordinate
transformations in the Newman-Unti gauge connecting each vacuum are also obtained. We confirm that the
supertranslation charge of the gravitational vacua with respect to global considerations vanishes exactly not
only in the Einstein theory but also when including the Holst, Pontryagin, and Gauss-Bonnet terms, which
verifies that the gravitational vacua are not affected by those trivial or boundary terms.
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I. INTRODUCTION

A surprising result in the study of gravitational theory
at the null infinity is the discovery of the BMS symmetry
[1–3]. As asymptotic symmetry at the null infinity, it
consists of an infinite dimensional supertranslation, which
extends the Poincaré translations and the Lorentz trans-
formations. The physical role of the supertranslation at the
perturbative level is in some sense a mystery until the recent
proposal in [4] where it is argued that in a finite neighbor-
hood of the Minkowski vacuum classical gravitational
scattering and perturbative quantum gravity are BMS
invariant. The supertranslations are spontaneously broken
in the conventional Minkowski vacuum, which transforms
one vacuum solution to a new, physically inequivalent one.
As a precise application of this proposal, it is proven that
the supertranslation as broken symmetry controls the soft
graviton theorem at the perturbative quantum level [5] and
the gravitational memory effect at the classical level [6], see
also [7] for a comprehensive review.
The relevant investigations have been established mainly

in the asymptotic regions at null infinity. While the vacuum
structure of the gravitational theory requires a detailed
analysis anywhere of the spacetime in the bulk. This is also
an urgent issue in the recent study of the emission of
gravitational waves in the post-Minkowskian approach

where some results have clear BMS observer dependence
[8–13]. In [14,15], the gravitational vacuum solutions are
obtained by exponentiating the infinitesimal BMS gener-
ators in the bulk in the BMS gauge [1,2]. In this work,
we will revisit the gravitational vacuum structure in the
Newman-Penrose (NP) formalism [16] in the Newman-
Unti (NU) gauge [17]. There are two reasons to study the
gravitational vacua in the NP formalism in the NU gauge.
First, the NP equations involve the full curvature tensor,
while Einstein equations only involve the Ricci tensor.
There is a clear way to derive the gravitational vacuum
solutions from the NP equations by turning off the full
curvature tensor. Technically, solving the NP equations is
simpler than exponentiating the infinitesimal BMS gen-
erators. At least NP equations are first order differential
equations. But one needs to solve second order differential
equations to deal with change of coordinates for the metric.
Second, in the NU gauge, all the NP variables of the
vacuum solutions are in terms of simple rational functions
of the radial coordinate r. While square-root functions
are involved in the BMS gauge [14], which arises from the
change of radial coordinate from the NU gauge to the
BMS gauge.
In this paper, we derive the generic solutions of the

NP equations with zero curvature tensor. The radial NP
equations have a remarkable simplification where the
solutions are given in terms of simple rational functions
of r. The nonradial NP equations are exactly solvable in a
divergence-free conformal frame [18]. The exact solutions
of the NP equations consist of a supertranslation field, a
superrotation field, and a time-independent Weyl rescaling
field. The precise coordinate transformations connecting
each such vacua are also derived. First order formalism can
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contain new boundary degree of freedom which can not be
seen from metric formalism, in particular when including
trivial or boundary terms [19–24]. This is another motivation
to study the vacuum structure in the NP formalism where the
spin coefficients of the vacuum solutions will be determined
as well. Global requirements of asymptotic flatness [25] will
further reduce the gravitational vacua by turning off the
superrotation field and fixing the Weyl factor. We compute
the supertranslation charge of the reduced gravitational
vacua from the Palatini, Holst, Pontryagin, and Gauss-
Bonnet terms. We confirm that the supertranslation charges
of the vacua from all the four terms are exactly zero when
evaluated at any codimension two surface.
The organization of this paper is very simple. In Sec. II,

we briefly review the NP formalism and the NU gauge. In
Sec. III, we compute the most generic solution for the
gravitational vacua in the divergence-free conformal frame.
In Secs. IV and V, we consider two particular boundary
configurations, namely a complex plane and a sphere. The
precise coordinate transformations relating each vacuum
are derived. The supertranslation charge is computed. We
conclude in the last section.

II. NP FORMALISM AND NU GAUGE

The NP formalism [16] is a special tetrad formalism
based on two real null basis, denoted as e1 ¼ l ¼ e2;
e2 ¼ n ¼ e1, and two complex null basis e3 ¼ m ¼ −e4;
e4 ¼ m̄ ¼ −e3, which are conjugate of each other to
guarantee a Lorentzian spacetime. The four null basis
vectors are orthogonalized and normalized as follows:

l ·m¼ l ·m̄¼n ·m¼n ·m̄¼0; l ·n¼1; m ·m̄¼−1: ð1Þ

The spacetime metric is determined from the tetrad as

gμν ¼ nμlν þ lμnν −mμm̄ν −mνm̄μ: ð2Þ

The spin connection in the NP formalism is labeled by 12
complex scalars denoted by special greek symbols,

κ ¼ Γ311 ¼ lνmμ∇νlμ; π ¼ −Γ421 ¼ −lνm̄μ∇νnμ;

ϵ ¼ 1

2
ðΓ211 − Γ431Þ ¼

1

2
ðlνnμ∇νlμ − lνm̄μ∇νmμÞ;

τ ¼ Γ312 ¼ nνmμ∇νlμ; ν ¼ −Γ422 ¼ −nνm̄μ∇νnμ;

γ ¼ 1

2
ðΓ212 − Γ432Þ ¼

1

2
ðnνnμ∇νlμ − nνm̄μ∇νmμÞ;

σ ¼ Γ313 ¼ mνmμ∇νlμ; μ ¼ −Γ423 ¼ −mνm̄μ∇νnμ;

β ¼ 1

2
ðΓ213 − Γ433Þ ¼

1

2
ðmνnμ∇νlμ −mνm̄μ∇νmμÞ;

ρ ¼ Γ314 ¼ m̄νmμ∇νlμ; λ ¼ −Γ424 ¼ −m̄νm̄μ∇νnμ;

α ¼ 1

2
ðΓ214 − Γ434Þ ¼

1

2
ðm̄νnμ∇νlμ − m̄νm̄μ∇νmμÞ: ð3Þ

We introduce the directional derivatives that are associated
to the basis vectors as

D ¼ lμ∂μ; Δ ¼ nμ∂μ; δ ¼ mμ
∂μ: ð4Þ

We would refer the reader to [26], and also [23,27,28], for
the other notations. We are only interested in the gravita-
tional vacuum solutions in this work, hence the curvature
tensor is zero.
The NU gauge [17] is well appreciated in the asymptotic

analysis near the null infinity. This gauge is based on the
existence of a hypersurface orthogonal null direction that is
also tangent to null geodesics. Normally, this special null
vector is chosen as basis l. Applying directly the orthogon-
ality conditions and normalization conditions in (1), one
can obtain the following relations from the definitions of
the spin connection,

lν∇νlμ ¼ ðϵþ ϵ̄Þlμ − κm̄μ − κ̄mμ;

nν∇νlμ ¼ ðγ þ γ̄Þlμ − τm̄μ − τ̄mμ;

mν∇νlμ ¼ ðβ þ ᾱÞlμ − σm̄μ − ρ̄mμ;

m̄ν∇νlμ ¼ ðαþ β̄Þlμ − ρm̄μ − σ̄mμ; ð5Þ

lν∇νnμ ¼ −ðϵþ ϵ̄Þnμ þ π̄m̄μ þ πmμ;

nν∇νnμ ¼ −ðγ þ γ̄Þnμ þ ν̄m̄μ þ νmμ;

mν∇νnμ ¼ −ðβ þ ᾱÞnμ þ λ̄m̄μ þ μmμ;

m̄ν∇νnμ ¼ −ðαþ β̄Þnμ þ μ̄m̄μ þ λmμ; ð6Þ

lν∇νmμ ¼ ðϵ − ϵ̄Þmμ − κnμ þ π̄lμ;

nν∇νmμ ¼ ðγ − γ̄Þmμ − τnμ þ ν̄lμ;

mν∇νmμ ¼ ðβ − ᾱÞmμ − σnμ þ λ̄lμ;

m̄ν∇νmμ ¼ ðα − β̄Þmμ − ρnμ þ μ̄lμ: ð7Þ

Clearly, l being tangent to null geodesics yields that κ ¼ 0
from the first equation in (5). Then, one can use third and
first classes of tetrad rotations to set ϵ ¼ 0 and π ¼ 0.
Consequently, l is tangent to null geodesics with affine
parameter and the rest three null basis are parallelly
transported along l, which can be seen directly from
the first equations in (6) and (7). We define the tensor
Bl
νμ ¼ ∇νlμ to measure the geodesic deviation. After setting

ϵ ¼ κ ¼ π ¼ 0, the geodesic deviation Bl
νμ can be derived

from the orthogonality conditions and normalization con-
ditions of the tetrad vectors and the relations in (5) as

Bl
νμ ¼ ðγ þ γ̄Þlμlν − τm̄μlν − τ̄mμlν − ðβ þ ᾱÞlμm̄ν

− ðβ̄ þ αÞlμmν þ σm̄μm̄ν þ ρ̄mμm̄ν

þ σ̄mμmν þ ρm̄μmν: ð8Þ

PUJIAN MAO PHYS. REV. D 110, 064009 (2024)

064009-2



Following the standard analysis of geodesic congruence
[29], we can use the other null basis −n to construct the
transverse part of the metric hμν ¼ gμν − nμlν − lμnν.
Hence, hμν ¼ −mμm̄ν −mνm̄μ. The transverse part of the
geodesic deviation is

B̂l
νμ ¼ hανBαβh

β
μ ¼ σm̄μm̄ν þ ρ̄mμm̄ν þ σ̄mμmν þ ρm̄μmν;

¼ σm̄μm̄ν þ σ̄mμmν þ ðρ̄þ ρÞmðμm̄νÞ þ ðρ̄− ρÞm½μm̄ν�;

ð9Þ

which manifests that ρ − ρ̄ is the twist and ρ ¼ ρ̄means l is
hypersurface orthogonal. For constructing a coordinate
system, one normally choose the affine parameter as the
radial coordinate r, hence l ¼ ∂

∂r. Since l is hypersurface
orthogonal, it must be proportional to the gradient of a
scalar field. This scalar field can be chosen as a time
coordinate u, hence l ¼ eWdu. One can use the residual
third class of tetrad rotation with a combined change of
radial coordinate to set W ¼ Oðr−1Þ without turning on ϵ.
Then, the commutation relation of the tetrad basis,

DΔ − ΔD ¼ −ðγ þ γ̄ÞDþ τ̄δþ τδ̄; ð10Þ

yields that W ¼ 0. Hence, l is the gradient of a scalar
field and the previous third class of tetrad rotation sets
τ ¼ ᾱþ β, which guarantees that ∇νlμ þ∇μlν ¼ 0. This
completes the NU gauge. One can use the usual angular
variables ðθ;ϕÞ for the rest two coordinates. Here, we take
the stereographic coordinates A ¼ ðz; z̄Þ that are related to
the usual angular variables by z ¼ eiϕ cot θ

2
. Then, the tetrad

and the cotetrad must have the forms

n ¼ ∂

∂u
þ U

∂

∂r
þ XA ∂

∂xA
;

l ¼ ∂

∂r
; m ¼ ω

∂

∂r
þ LA ∂

∂xA
; ð11Þ

and

n¼ ½−U −XAðω̄LA þωL̄AÞ�duþ drþ ðωL̄A þ ω̄LAÞdxA;
l¼ du; m¼ −XALAduþLAdxA; ð12Þ

to satisfy the orthogonality and normalization conditions,
where LALA ¼ 0; LAL̄A ¼ −1. We will use ∂ and ∂ to
denote ∂

∂z and
∂

∂z̄ for notational brevity.

III. VACUUM SOLUTION

The vacuum of the gravitational theory is defined by the
vanishing of curvature tensor. This will lead to a remarkable

simplification in the solution space of the NP formalism
where the r dependence of all NP variables is in terms of
simple rational functions. The crucial step is to find the
solutions for the following three radial NP equations

∂rρ¼ρ2þσσ̄; ∂rσ¼2ρσ; ∂rσ̄¼2ρσ̄: ð13Þ

Since ρ is real imposed as a gauge condition, one can
show that σ̄ ¼ σeiΦ, where Φ is an arbitrary function
independent of r, and ρ ¼ 1

2
∂rσ
σ ¼ 1

2
∂rσ̄
σ̄ in the case of

σ ≠ 0 and σ̄ ≠ 0. Inserting those relations to the first
equation, one obtains

σ∂2rσ −
3

2
ð∂rσÞ2 − σ4eiΦ ¼ 0 ð14Þ

and

σ̄∂2r σ̄ −
3

2
ð∂rσ̄Þ2 − σ̄4e−iΦ ¼ 0: ð15Þ

The generic solution to those equations are

σ ¼ σ0

r2 − σ0σ̄0
; σ̄ ¼ σ̄0

r2 − σ0σ̄0
; ð16Þ

where σ0 and σ̄0 are integration constants from the differ-
ential equations of r, namely two arbitrary functions
independent of r. Then, the solution to ρ is

ρ ¼ −
r

r2 − σ0σ̄0
: ð17Þ

The rest radial NP equations can be solved in a similar way.
The full solution to the radial equations are summarized as

ρ ¼ −
r

r2 − σ0σ̄0
; σ ¼ σ0

r2 − σ0σ̄0
;

α ¼ α0rþ ᾱ0σ̄0

r2 − σ0σ̄0
; β ¼ −

ᾱ0rþ α0σ0

r2 − σ0σ̄0
;

Lz ¼ −
σ0P̄

r2 − σ0σ̄0
; Lz̄ ¼ rP

r2 − σ0σ̄0
;

ω ¼ ω0r − ω̄0σ0

r2 − σ0σ̄0
;

λ ¼ λ0r − μ0σ̄0

r2 − σ0σ̄0
; μ ¼ μ0r − λ0σ0

r2 − σ0σ̄0
;

γ ¼ γ0; ν ¼ ν0; U ¼ −ðγ0 þ γ̄0Þrþ U0; ð18Þ

where P, P̄, and the quantities with superscript “0” are
integration constants from the differential equations of r.
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The unlisted NP variables are zero. The integration con-
stants are controlled by the nonradial NP equations as

α0¼1

2
P̄∂lnP; γ0¼−

1

2
∂u lnP̄; λ0¼∂uσ̄

0þ σ̄0ð3γ0− γ̄0Þ;

μ0¼−ðα0− ð̄ᾱ0¼−
1

2
PP̄∂∂lnPP̄; ν0¼ ð̄ðγ0þ γ̄0Þ;

ω0¼ ð̄σ0; U0¼μ0; ð19Þ

where the operator ð for a field of spin s is defined as

ðηðsÞ ¼ ðP∂þ 2sᾱ0ÞηðsÞ ¼ PP̄−s
∂ðP̄sηðsÞÞ ð20Þ

and

ð̄ηðsÞ ¼ ðP̄∂ − 2sα0ÞηðsÞ ¼ P̄Ps
∂ðP−sηðsÞÞ: ð21Þ

There are five equations constraining P, P̄, σ0, and σ̄0 as

ð̄2σ0−ð2σ̄0þ σ̄0λ̄0−σ0λ0¼ 0; ðν̄0−∂uλ̄
0−4γ̄0λ̄0¼ 0;

ð̄μ0−ðλ0¼ 0; ðμ0− ð̄λ̄0 ¼ 0; ð̄ν0−∂uλ
0−4γ0λ0¼ 0:

ð22Þ

A solution of the above constraints will uniquely determine
a solution of the NP equations, which is one vacuum of
the gravitational theory. The commutation relation of the ð
operators is

½ð̄; ð�ηðsÞ ¼ −2sμ0ηðsÞ; ð23Þ

which is useful for deriving the solution to equations
in (22). The spin weights of relevant fields are listed
in Table I.
For any u-independent Pðz; z̄Þ and P̄ðz; z̄Þ, the con-

straints in (22) are exactly solvable. Such conditions lead
to γ0 ¼ 0 ¼ ν0, which define a divergence-free conformal
frame [18] and have clear geometric meaning from the
following relation in (6),

nν∇νnμ ¼ −ðγ þ γ̄Þnμ þ ν̄m̄μ þ νmμ: ð24Þ

It means that n is tangent to null geodesic at null infinity
with affine parameter, namely n is the generator of the null
infinity. Since n is simply ∂

∂u at the null infinity in this case,
u is the affine parameter. Hence u∈ ð−∞;þ∞Þ guarantees
the geodesic completeness of the null infinity. The solution
to the equations in (22) with such conditions is

σ0 ¼ ½u − Cðz; z̄Þ�λ̄0ðz; z̄Þ þ ð2Cðz; z̄Þ;
σ̄0 ¼ ½u − Cðz; z̄Þ�λ0ðz; z̄Þ þ ð̄2Cðz; z̄Þ; ð25Þ

and

λ0¼ P̄2ΛðzÞþ 1

4P2
½ðP∂P̄− P̄∂PÞ2−2PP̄ðP̄∂2PþP∂2P̄Þ�;

λ̄0¼P2Λ̄ðz̄Þþ 1

4P̄2
½ðP̄∂P−P∂P̄Þ2−2PP̄ðP∂2P̄þ P̄∂2PÞ�;

ð26Þ

where Pðz; z̄Þ is completely free and P̄ðz; z̄Þ is its complex
conjugate. Comparing to the finite BMS transformation
results in [14,15,30], it is clear that Cðz; z̄Þ characterizes
the supertranslation, ΛðzÞ and Λ̄ðz̄Þ represent the super-
rotation (see also the infinitesimal studies [31,32]) andffiffiffiffiffiffiffi
PP̄

p
determines the Weyl rescaling of the two surface

at null infinity at any constant u.1 The precise coordinate
transformations from Minkowski vacuum in the common
sense to the above solution will be presented in the
next sections. The cotetrad basis of the solutions are in
the form

l ¼ du; n ¼ −U0duþ dr −
ω̄0

P̄
dz −

ω0

P
dz̄;

m ¼ −
r
P̄
dz −

σ0

P
dz̄; m̄ ¼ −

σ̄0

P̄
dz −

r
P
dz̄; ð27Þ

which yields the line element as

ds2 ¼ −2U0du2 þ 2dudr −
2ω̄0

P̄
dudz −

2ω0

P
dudz̄

−
2rσ̄0

P̄2
dz2 −

2rσ0

P2
dz̄2 −

2ðr2 þ σ0σ̄0Þ
PP̄

dzdz̄: ð28Þ

The above solutions are obtained only with respect to
local equations of motion. As a vacuum solution of
gravitational theory, there are also global requirements
such as the Christodoulou-Klainerman asymptotic flatness
conditions [25], which requires that λ0 decays as juj−3

2 for
large u. For the current case, such conditions yield λ0 ¼ 0.
Note also that the solution of λ0 in (26) implies the energy
of the system unbounded from below [14]. Asymptotic
flatness conditions show that μ0 is a constant, which
implies that the two surface at null infinity at any constant
u must have constant curvature. We will investigate in
details two common choices, namely a plane and a sphere,
in the next sections.TABLE I. Spin weights.

ð ω0 α0 γ0 ν0 μ0 σ0 λ0

s 1 1 −1 0 −1 0 2 −2

1The functions ΛðzÞ and Λ̄ðz̄Þ are given in the form of
Schwarzian derivative of a holomorphic and an antiholomorphic
function in the finite transformation papers [14,15,30].
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IV. COMPLEX PLANE BOUNDARY

One particularly simple solution to a constant μ0 is
P ¼ P̄ ¼ 1. Correspondingly, μ0 ¼ 0. This choice fixes
the boundary line element as ds2 ¼ 2dzdz̄. Hence, the null
infinity is with topologyR × C. The gravitational vacua are
entirely spanned by supertranslation field C. The solution is

σ0 ¼ ∂
2Cðz; z̄Þ; σ̄0 ¼ ∂

2Cðz; z̄Þ; ð29Þ

and

α0 ¼ 0; γ0 ¼ 0; U0 ¼ μ0 ¼ 0;

ω0 ¼ ∂σ0; λ0 ¼ 0; ν0 ¼ 0: ð30Þ

The line element of the spacetime is

ds2 ¼ 2dudr − 2∂∂∂Cdudz − 2∂∂∂Cdudz̄ − 2r∂2Cdz2

− 2r∂2Cdz̄2 − 2ðr2 þ ∂
2C∂2CÞdzdz̄: ð31Þ

Turning off the supertranslation field C, one recovers the
Minkowski spacetime in flat null coordinates,

ds2 ¼ 2dupdrp − 2r2pdzpdz̄p: ð32Þ

Similar to the case in BMS gauge [15], the generic
solution (28) can be obtained from (32) by the following
change of coordinates:

rp ¼ r
∂uΦ

þ ∂∂Φ
∂Y∂ Ȳ

;

up ¼ Φ −
∂Φ∂Φ

∂Y∂ Ȳ rp
;

zp ¼ YðzÞ − ∂Φ
∂ Ȳ rp

;

z̄p ¼ Ȳðz̄Þ − ∂Φ
∂Yrp

; ð33Þ

where Φ ¼
ffiffiffiffiffiffiffi
PP̄

p
ðu − CÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
∂Y∂ Ȳ

p
.2 The superrotation field

ΛðzÞ in (26) is defined by ΛðzÞ ¼ − 1
2
S½YðzÞ; z� through the

change of coordinates, where S½YðzÞ; z� is the Schwarzian
derivative of YðzÞ,

S½YðzÞ; z� ¼ Y 000

Y 0 −
3ðY 00Þ2
2ðY 0Þ2 : ð34Þ

Hence, turning off ΛðzÞ reduces the superrotations to
Lorentz transformations. The coordinate transformations
in particular connect (32) and the supertranslated one
(31) are

rp ¼ r − ∂∂C;

up ¼ u − C −
∂C∂C
rp

;

zp ¼ zþ ∂C
rp

: ð35Þ

We will consider the solution in (31) as the gravitational
vacua and compute the supertranslation charge of this
solution space. It is proven [14] that the supertranslation
charge in the BMS gauge is exactly zero anywhere in the
vacuum spacetime. Here, we will check the supertransla-
tion charge when the theory is coupled with some trivial
or boundary terms, including the Holst, Pontryagin, and
Gauss-Bonnet terms. It is shown that the form language is
particularly convenient for computing surface charges for
first order formalism [20,21]. The exact formulas of the
forms ea are given in (27) and the connection one forms Γab
in the NU gauge are given as

Γ12 ¼ −ðγ þ γ̄Þlþ τ̄mþ τm̄; ð36Þ

Γ13 ¼ −τlþ ρmþ σm̄; ð37Þ

Γ23 ¼ ν̄l − μ̄m − λ̄ m̄; ð38Þ

Γ34 ¼ ðγ − γ̄Þl − ðα − β̄Þmþ ðᾱ − βÞm̄: ð39Þ

With adaption to the solution (31), the forms are given by

e1 ¼ du; e2 ¼ dr − ∂∂
2Cdz − ∂∂

2Cdz̄;

e3 ¼ −rdz − ∂
2Cdz̄; e4 ¼ −∂2Cdz − rdz̄; ð40Þ

and

Γ12¼0; Γ13¼dz; Γ23¼0; Γ34¼0: ð41Þ

The gauge transformation of the NP formalism is a
combination of a diffeomorphism and a local Lorentz
transformation. The actions on the tetrad and spin con-
nection are given by

δξ;ωeaμ ¼ ξν∂νeaμ − ∂νξ
μeaν þ ωa

bebμ;

δξ;ωΓabc ¼ ξν∂νΓabc − eμc∂μωab þ ωa
dΓdbc

þ ωb
dΓadc þ ωc

dΓabd: ð42Þ

2One can generalize the transformation to obtain a
u-dependent P and P̄ solution by setting Φ ¼ ðu − CÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
∂Y∂ Ȳ

p
×R

du0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðu0; z; z̄ÞP̄ðu0; z; z̄Þ

p
Þ, which gives the most generic local

vacuum solutions.
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A supertranslation for a generic spacetime is obtained
in [33]

ξu ¼ Tðz; z̄Þ; ξA ¼ −∂BT
Z þ∞

r
dr½LAL̄B þ L̄ALB�;

ξr ¼ ð̄ðT − ∂AT
Z þ∞

r
dr½ωL̄A þ ω̄LA þ XA�; ð43Þ

and

ω12 ¼ XA
∂AT; ω23 ¼ L̄A

∂AT; ω24 ¼ LA
∂AT;

ω13 ¼ ðγ0 þ γ̄0Þð̄T þ ∂AT
Z þ∞

r
dr½λLA þ μL̄A�;

ω14 ¼ ðγ0 þ γ̄0ÞðT þ ∂AT
Z þ∞

r
dr½λ̄L̄A þ μ̄LA�;

ω34 ¼ −∂AT
Z þ∞

r
dr½ðᾱ − βÞL̄A þ ðβ̄ − αÞLA�: ð44Þ

Inserting the NP variables of the supertranslated
Minkowski spacetime (29) and (30), the corresponding
supertranslation is given by

ξu ¼ Tðz; z̄Þ; ξz ¼
�

∂Tσ0

r2 − σ0σ̄0
−

∂Tr
r2 − σ0σ̄0

�
;

ξr ¼ ∂∂T −
∂Tðω0r − ω̄0σ0Þ

r2 − σ0σ̄0
−
∂Tðω̄0r − ω0σ̄0Þ

r2 − σ0σ̄0
; ð45Þ

and

ω12 ¼ 0; ω13 ¼
�

∂Tσ0

r2 − σ0σ̄0
−

∂Tr
r2 − σ0σ̄0

�
;

ω23 ¼ 0; ω34 ¼ 0: ð46Þ

Note that σ0 ¼ ∂
2C. The surface charge with respect to the

Palatini, Holst, Pontryagin, and Gauss-Bonnet terms are
given by [20–24]

=δHPa ¼
1

32πG
ϵabcd

Z
∂Σ
½δðiξΓabec ∧ edÞ − iξðδΓab ∧ ec ∧ edÞ − δðωabec ∧ edÞ�; ð47Þ

=δHH ¼ it
16πG

Z
∂Σ
½δðiξΓabea ∧ ebÞ − iξðδΓab ∧ ea ∧ ebÞ − δðωabea ∧ ebÞ�; ð48Þ

=δHPo ¼
1

16πG

Z
∂Σ
δΓab ∧ δξ;ωΓab; ð49Þ

=δHGB ¼ 1

16πG
ϵabcd

Z
∂Σ
δΓab ∧ δξ;ωΓcd; ð50Þ

respectively, where ∂Σ can be any codimension two surface
of the spacetime to evaluate the charge. By inserting the
solutions in (40) and (41), and the symmetry parameters
in (45) and (46) into the charge expressions, one can prove
directly that all components of the supertranslation charge
from those four terms are exactly zero. In particular, it is
very easy to see that the charges from Pontryagin and
Gauss-Bonnet terms are zero, because the components of
the spin connection in (41) are all given by definite
functions, namely δξ;ωΓab ¼ 0.

V. SPHERE BOUNDARY

In this section, we will repeat what has been done in the
previous section for another solution of constant μ0. The
solution is given by P ¼ P̄ ¼ Ps ¼ 1þzz̄ffiffi

2
p . This choice fixes

the boundary line element as ds2 ¼ 4
ð1þzz̄Þ2 dzdz̄, which is a

unit sphere. Hence, the null infinity is with topology
R × S2. The exact forms of the solution are

σ0 ¼ ð2Cðz; z̄Þ; σ̄0 ¼ ð̄2Cðz; z̄Þ; ð51Þ

and

α0 ¼ z̄

2
ffiffiffi
2

p ; γ0 ¼ 0; U0 ¼ μ0 ¼ −
1

2
;

ω0 ¼ ð̄σ0; λ0 ¼ 0; ν0 ¼ 0: ð52Þ

The line element of this spacetime is

ds2 ¼ du2 þ 2dudr −
2ðð̄2C
Ps

dudz −
2ð̄ð2C
Ps

dudz̄

−
2rð̄2C
P2
s

dz2 −
2rð2C
P2
s

dz̄2 −
2ðr2 þ ð2Cð̄2CÞ

P2
s

dzdz̄:

ð53Þ

This solution is connected to the one in the BMS gauge
in [14] by a radial transformation r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CL þU

p
, where

rCL is the radial coordinate in [14] and U is defined in
Eq. (2.4) of that reference. Note also that the signature of
the NP formalism is ðþ;þ;þ;−Þ which is different from
the one in [14]. Turning off the supertranslation field C
recovers the global Minkowski vacuum in retarded stereo-
graphic coordinates,

ds2 ¼ du2s þ 2dusdrs −
2r2s
P2
s
dzsdz̄s: ð54Þ
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Following the strategy in [15], the coordinate transforma-
tions connecting the line elements (54) and (53) include
two steps. First, one goes from the sphere boundary to the
plane case in (32) by

rs ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½up þ rpð1þ zpz̄pÞ�2 − 4rpup

q
;

us ¼
1ffiffiffi
2

p ½up þ rpð1þ zpz̄pÞ� − rs;

zs ¼
1ffiffi
2

p ½up − rpð1þ zpz̄pÞ� þ rs

usz̄p
: ð55Þ

Then, we specify the generic change of coordinates in (33)
to a sphere case by

rp ¼ r
Ps

þ ∂∂Φ;

up ¼ Φ −
∂Φ∂Φ
rp

;

zp ¼ z −
∂Φ
rp

; ð56Þ

where Φ ¼ Psðu − CÞ now. The exact formulas of the
tetrad form and the connection one form with respect
to (53) are given as

e1 ¼ du; e2 ¼
1

2
duþ dr −

ðð̄2C
Ps

dz −
ð̄ð2C
Ps

dz̄;

e3 ¼ −
r
Ps

dz −
ð2C
Ps

dz̄; e4 ¼ −
ð̄2C
Ps

dz −
r
Ps

dz̄; ð57Þ

and

Γ12 ¼ 0; Γ13 ¼
1

Ps
dz;

Γ23 ¼
μ0

Ps
dz; Γ34 ¼

2

Ps
ðα0dz − ᾱ0dz̄Þ: ð58Þ

Note that μ0 and α0 should be replaced by the expressions
in (52) in the beginning of this section. A supertranslation
in such case is

ξu ¼ Tðz; z̄Þ; ξz ¼ Ps

�
ð̄Tσ0

r2 − σ0σ̄0
−

ðTr
r2 − σ0σ̄0

�
;

ξr ¼ P2
s∂∂T −

ð̄Tðω0r − ω̄0σ0Þ
r2 − σ0σ̄0

−
ðTðω̄0r − ω0σ̄0Þ

r2 − σ0σ̄0
;

and

ω12¼0; ω13¼
�

ð̄Tσ0

r2−σ0σ̄0
−

ðTr
r2−σ0σ̄0

�
;

ω23¼μ0ω13; ω34¼
2ð̄Tðᾱ0rþα0σ0Þ

r2−σ0σ̄0
−
2ðTðα0rþ ᾱ0σ̄0Þ

r2−σ0σ̄0
:

Note that σ0 ¼ ð2C now. We verify that all components
of the supertranslation charge from Palatini, Holst,
Pontryagin, and Gauss-Bonnet terms are exactly zero.

VI. CONCLUSION

To conclude, we study the vacuum structure of the
gravitational theory. The vacua are obtained in a self-
contained way from the NP equations in the NU gauge. The
transformations connecting each vacuum solution are
revealed. We show that the supertranslation charges of
the gravitational vacua with respect to global considerations
from the Palatini, Holst, Pontryagin, and Gauss-Bonnet
terms are exactly zero anywhere in the spacetime.
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