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We investigate in detail the weak-field gravitational lensing of a relativistic neutral massive particle
induced by a regular black-bounce-Schwarzschild black hole proposed by Simpson and Visser. Starting
with the calculation of the gravitational deflection of the massive particle up to the third post-Minkowskian
order, the Virbhadra-Ellis lens equation is solved perturbatively beyond the weak-deflection limit to
achieve the expressions for the lensing observables of the primary and secondary images of a pointlike
particle source. The main observables contain not only the positions, the flux magnifications, and the
gravitational time delays of the individual images, but also the positional relations, the magnification
relations (including the total magnification), the magnification centroid, and the differential time delay. We
then discuss the velocity-induced effects originated from the deviation of the particle’s initial velocity from
the speed of light on the black-bounce-Schwarzschild lensing observables of the images of a pointlike light
source and the effects induced by the bounce parameter of the spacetime on the measurable image
properties of Schwarzschild lensing of the massive particle. As an application of the results, we model the
supermassive black hole in the Galactic Center (i.e., Sgr A�) as the lens and focus on evaluating the
possibilities to detect the new velocity- and bounce-induced effects on the practical lensing observables and
analyzing the dependence of these effects on the parameters.
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I. INTRODUCTION

Since the first observation of the gravitational deflection
of light by the Sun in 1919 [1], gravitational lensing has
developed into one of the most powerful tools in modern
astrophysics. The substantial and extensive impact of
gravitational lensing can be revealed distinctly by its
fruitful applications, which include the determination of
the Hubble constant [2], the weak- or strong-field tests of
Einstein’s general relativity (GR) [3–9] and alternative
theories of gravity [10–17], the probe of the distribution
of dark and visible matter [18–20], the restriction on the
mass of a neutrino [21,22] or a graviton [23–25], and so on.
Hence, it has been the subject of a large number of studies
(see, for instance, [26–43]), with great encouragement from
the discovery of the first doubly imaged quasar [26]. Since
only messengers of the electromagnetic force can be used
to provide information about our physical Universe in
traditional multiwavelength astronomy, most of the pre-
vious works focused on gravitational lens effects of light in
a variety of spacetimes within the framework of GR or
alternative theories of gravity. For example, Virbhadra and

Ellis [27] investigated the strong-deflection gravitational
lensing of light in the Schwarzschild black hole spacetime
and proposed a popular lens equation which was adopted to
study the properties of the primary, secondary, and rela-
tivistic images. Based on the strong-field limit method
developed by Bozza et al. [28,30], the effect of gravita-
tional lensing caused by a deformed Hořava-Lifshitz black
hole was also considered [33].
Predicted by GR and verified directly by the recent

observations of the Event Horizon Telescope Collaboration
[44,45] and the LIGO-Virgo Collaboration [46,47], a black
hole is a solution of the equations of gravity and serves
as one of the most important gravitational sources in our
Universe, given that it is widely regarded as a natural and
ideal laboratory for probing fundamental physics and
gravity theories. Compared with their nonregular counter-
parts, regular black holes are intuitively attractive to the
relativity community due to the nonsingular nature. They
were explored historically from the phenomenological prop-
erties and other aspects (see [48–63] and references therein)
and many theoretical proposals with respect to regular black
holes were thus performed (see, e.g., [64–70]). Recently,
Simpson and Visser [71] constructed a novel regular black
hole spacetime, the so-called black-bounce-Schwarzschild*Contact author: lwb@usc.edu.cn
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spacetime. This geometry is especially interesting, since it
(i) stands forminimal violence to the ordinary Schwarzschild
spacetime in some sense and (ii) describes a Schwarzschild
black hole, a regular black hole with a one-way spacelike
throat, a one-way wormhole with a null throat, or a Morris-
Thorne traversable wormhole, by adjusting the bounce
parameter. In recent years, the weak- and strong-field
gravitational lens effects of light signals in the black-
bounce-Schwarzschild spacetime or in the generalized ver-
sions [72–79] of this geometry have been of growing interest
[80–95]. For instance, Nascimento et al. [80] discussed first
the strong-field gravitational lensing of light in the Simpson-
Visser black-bounce spacetime. Zhang and Xie [87] studied
in detail the null gravitational lens effects in the black-
bounce-Reissner-Nordström spacetime in the weak- and
strong-field limits, respectively, and estimated the detect-
ability of the lensing observables by modeling two typical
astrophysical black holes as the lenses respectively.
As is known, there are three fundamental forces of nature

(i.e., the gravitational, weak, and strong forces) in addition
to the electromagnetic force. The nonphotonic messengers
of those three forces, such as neutrinos [96] and cosmic-ray
particles [97,98], can also provide valuable and specific
information about our physical Universe individually or
collectively [99,100]. However, to our knowledge, there
have been few works devoted to the consideration of the
propagation of timelike particles in the mentioned black-
bounce-Schwarzschild spacetime or in its charged version
(see, e.g., [101–104]), and the weak- or strong-field
gravitational lensing of massive particles in either of those
spacetimes has not been discussed in the literature so far.
Actually, with the coming of the era of multimessenger
astronomy, it is worth performing a full theoretical analysis
of the gravitational lens effect of a massive particle induced
by a black-bounce-Schwarzschild black hole, for which
four reasons are responsible. First, the decrease of the initial
velocity of a test particle at infinity results in the increase
of its total bending angle for a given gravitational lens
[32,105–107], which may make the lensing effect of a
massive particle caused by the gravitational system more
noticeable than the optical counterpart under the same
conditions. This feature of gravitational lensing of timelike
particles is of great significance, since it (i) brings a larger
opportunity for observing gravitational lensing events, and
(ii) makes the consideration of the first-, second-, and even
higher-order contributions to the lensing observables of
the images nontrivial. It thus serves as one of the main
motivations for studying the gravitational lensing of
massive particles in various spacetimes (including the
Simpson-Visser spacetime) [108–133]. Second, we know
the deviation of the initial velocity of a timelike particle
from the speed of light leads to the deviation of a timelike
geodesic from a lightlike geodesic and affects the observ-
able lensing properties subsequently. This deviation leads
to the so-called velocity-induced effect [32,113,134] on the
lensing observables, which represents a crucial difference

between the gravitational lensing phenomena of light
and massive particles in any curved background space-
time. Given that the velocity effect on an image obser-
vable in or beyond the weak-deflection limit may be so
evident that its value can be much larger than that of the
corresponding null observable, more and more attention
has thus been paid to it in the last decades (see, for example,
[32,113,122–124,130,134]). Especially, Wucknitz and
Sperhake [32] studied the mentioned velocity effect result-
ing from the deviation, as well as the influence of the
translational motion of the lens, on the first-order gravita-
tional deflection of light via a Lorentz boosting technique.
Recently, the leading-order velocity effects on the deflec-
tion angle, the image positions, and the magnifications
for both ultrarelativistic and nonrelativistic particles in
Schwarzschild geometry were discussed in the weak-
and strong-field limits [113]. More recently, the weak-field
gravitational lensing of a relativistic massive particle
induced by a Kerr-Newman black hole was also inves-
tigated in detail in [130], where the expressions of the
velocity effects on the lensing observables of the images
were obtained and the detectability of them was also
evaluated. However, it should be fair to mention that
further work is needed regarding the issue of velocity
effects, and we can expect that it should be interesting to
consider systematically the velocity effects on the lensing
observables in a regular spacetime such as the black-
bounce-Schwarzschild spacetime, which has not yet been
reported. A third reason lies in that it is possible to provide
additional information about the characteristics of the lens
and the particle source or to place supplementary con-
straints on the spacetime parameters of the black hole, via
the probe of the gravitational lens effects of timelike
particles in Simpson-Visser geometry or in other regular
spacetimes. It may also promote the development of
monomessenger or joint multimessenger astronomical
observations [99,135,136], considering that all of the
messengers emitted by an astrophysical source may expe-
rience different geometrical and physical processes before
reaching their detectors. Finally, it is widely known that
rapid improvement of the high-accuracy astronomical
instruments and techniques, such as the very long base-
line interferometry (VLBI) techniques, has been achieved
in the past decades. Current surveys and forthcoming
telescope networks for multiwavelength observations aim
at an astrometric precision of 1 ∼ 10 micro-arc sec ðμasÞ
or better [137–151]. For instance, a record parallax pre-
cision of �3 μas via the very long baseline array was
reported in 2013 [146]. The Square Kilometre Array
[150,152] and other next-generation radio observatories
(see, e.g., [147,148]) aim at an angular accuracy of about
1 μas. And the planned Nearby Earth Astrometric
Telescope (NEAT) mission [142,144] is working toward
an unprecedented space-borne astrometric accuracy of
0.05 μas. Compared with them, current astronomical
detectors or instruments for observing massive particles
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or multimessengers have much lower angular precisions
which are at the level of 1° or better [153–155]. Exemplarily,
the angular resolution of theANTARESneutrino telescope is
about 0.59°� 0.10° for downward-going muons [155].
Moreover, the current photometric precision is at the level
of about 10 μmag or better [156–158]. For example, the
Kepler mission reached an extreme photometric precision of
a few μmag [156,157]. It ended prematurely in 2013 andwas
renamed as the K2mission with a slightly lower photometric
precision [159–161]. Additionally, the IceCube neutrino
observatory has reached a time resolution of better than
3 ns [162,163], while the VLBI techniques [164–170] in
measuring the differential time delay even have a precision of
a few picoseconds currently. The proposed delay precision of
the next-generation VLBI system is 4 ps [171–173]. We can
expect that high-precision astronomical techniques nowa-
days or in the near future may provide us the chance to detect
the first-, second-, and even higher-order contributions to the
lensing observables in the black-bounce-Schwarzschild
spacetime or in other regular spacetimes and to measure
the velocity-induced effects on the properties of the lensed
images.
In this work, we apply the procedure of [10,84,87,130] to

the study of the gravitational lensing of a relativistic neutral
massive particle in a black-bounce-Schwarzschild black
hole spacetime beyond the weak-deflection limit. We first
base on the standard perturbation analysis [174] to derive
the equatorial gravitational deflection angle of the timelike
particle induced by the regular black hole in the third post-
Minkowskian (PM) approximation, which is employed for
solving the Virbhadra-Ellis lens equation [27]. Then we
obtain the weak-field expressions for the lensing observ-
ables of the primary and secondary images of a pointlike
particle source. The observable lensing quantities mainly
contain the positions, the magnifications, and the gravita-
tional time delays of the individual images, along with the
sum and difference relations for the positions or the
magnifications of the images (including the total magni-
fication), the magnification centroid, and the differential
time delay between the images. The velocity-induced
effects caused by the mentioned deviation on the black-
bounce-Schwarzschild lensing observables of the images of
a pointlike light source, together with the effects resulted
from the bounce parameter of the geometry on the
Schwarzschild lensing properties of the images of the
particle source, are discussed subsequently. Eventually,
the supermassive black hole in the Galactic Center, Sgr
A� [175–177], is assumed to be the lens as an application of
our results. Under this astrophysical scenario, we estimate
the possibilities to detect the velocity- and bounce-induced
effects on the practical lensing observables and probe the
dependence of these two effects on the source position, the
particle’s initial velocity, and the bounce parameter.
This paper is organized as follows. In Sec. II we present

the assumptions and notations of this work. Section III

begins with a short description of the black-bounce
spacetime proposed by Simpson and Visser and is then
devoted to calculating the gravitational deflection of a
relativistic neutral massive particle due to a regular black-
bounce-Schwarzschild black hole in the 3PM approxima-
tion. We solve the Virbhadra-Ellis lens equation and adopt a
standard perturbation method to achieve the analytical
expressions of the lensing observables of the images of
a pointlike massive particle source in the weak-field limit in
Sec. IV. Section V gives a discussion of the velocity-
induced effects on the observable image properties in the
black-bounce-Schwarzschild black hole lensing of light
and the bounce-induced effects on the Schwarzschild
lensing observables of the images of the particle source.
In Sec. VI, we present an application of our formulas by
assuming the Galactic Center black hole, Sgr A�, to be the
black-bounce-Schwarzschild lens and concentrate on ana-
lyzing the possibilities to detect the new velocity- and
bounce-induced effects on the practical lensing observables
and probing the dependence of these effects on the
parameters. Finally, a summary and a brief discussion of
the results are presented in Sec. VII. Geometrized units
ðG ¼ c ¼ 1Þ and the metric signature ðþ;−;−;−Þ are
employed throughout this paper. Greek indices run over
0, 1, 2, and 3 conventionally, unless indicated otherwise.

II. BASIC ASSUMPTIONS

Let w be the initial velocity of a relativistic massive (or
massless) particle which is emitted by a point source,
deflected by a point lens and received by a distant observer
without looping around the central body. Because of the
relativistic characteristic of w, we may assume its rough
lower limit to be about 0.05 for the convenience of
discussion and have 0.05≲ w ≤ 1, where w ¼ 1 corre-
sponds to the special case of light. Thus, according to
Fermat’s principle [178], only the positive-parity primary
image and negative-parity secondary image are considered
in our scenario within the weak-field approximation. The
lensing geometry by a black-bounce-Schwarzschild black
hole is presented in Fig. 1. The observer, lens, source, and
image are denoted by O, L, S, and I, respectively, and they
are situated in the lens’ equatorial plane (i.e., x-y plane). dL,
dS, and dLS are the observer-lens, observer-source, and
lens-source angular diameter distances, respectively. B and
ϑ denote, respectively, the angular source and image
positions. The gravitational deflection angle of the massive
particle and the impact parameter are represented by α and
bð¼ dL sin ϑÞ, respectively. Although these angular quan-
tities appear small in the weak-field approximation, our
discussion is performed beyond the weak-deflection limit
(as done in [10,11]), since we aim to consider corrections to
the standard weak-deflection lensing features.
For convenience, we assume the angular position of a

lensed image to be always positive [10]. Hence, the angular
source position B is positive for the case that the image is

GRAVITATIONAL LENSING OF MASSIVE PARTICLES BY A … PHYS. REV. D 110, 064008 (2024)

064008-3



on the same side of the lens (or the optic axis) as the source
and is negative when the image is on the opposite side.
Moreover, our consideration of the lensing effect is
assumed to perform under the thin lens approximation
[19,32] which guarantees that all the deflection action takes
place in a cosmologically small region around the lens.

III. WEAK-FIELD GRAVITATIONAL
DEFLECTION OF MASSIVE PARTICLES

We consider the equatorial gravitational deflection of a
relativistic massive particle caused by a black-bounce-
Schwarzschild black hole in the weak-field limit.

A. The black-bounce-Schwarzschild spacetime

The line element for the geometry of a static spherically
symmetric regular black-bounce-Schwarzschild black hole
with a one-way spacelike throat takes the form in standard
coordinates ðt; r; θ;φÞ [71,72,75]

ds2 ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ η2

p �
dt2 −

1

1 − 2Mffiffiffiffiffiffiffiffiffi
r2þη2

p dr2

− ðr2 þ η2Þðdθ2 þ sin2 θdφ2Þ; ð1Þ
which describes a bounce into a future universe. Here, M
denotes the restmass of the black hole, and ηð0 < η < 2MÞ is
a bounce parameter, which takes the dimension of length and
is responsible for the regularization of the spacetime metric.
Actually, Eq. (1) can also represent thegeometry of a different
celestial body via adjusting the non-negative parameter η. It
describes (i) a one-waywormhole geometrywith a null throat
when η ¼ 2M, (ii) a traversable wormhole geometry in the
Morris-Thorne sense if η > 2M, (iii) the Schwarzschild
spacetime when η ¼ 0, and (iv) the Ellis-Bronnikov worm-
hole spacetime [179,180] if M ¼ 0 and η ≠ 0. In this paper
we focus on the lensing effect in the black-bounce-
Schwarzschild black hole spacetime which is everywhere
regular.

B. Equations of motion

The geodesic equation of a test body is the Euler-
Lagrangian equation with the Lagrangian L ¼ 1

2
gμνẋμẋν

for a given gravitational system [32,181], where the dot
denotes differentiation with respect to proper time. For a
massive particle propagating in the equatorial plane
(θ ¼ π=2) of the regular black hole, we have

2L ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ η2

p �
ṫ2 −

1

1 − 2Mffiffiffiffiffiffiffiffiffi
r2þη2

p ṙ2 − ðr2 þ η2Þφ̇2:

ð2Þ
The conserved orbital energy and angular momentum per
unit mass are thus given respectively by [106,107]

Ē ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ η2

p �
ṫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p ; ð3Þ

L̄ ¼ ðr2 þ η2Þφ̇ ¼ wbffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ; ð4Þ

where the impact parameter b is defined via the relation
L̄=Ē≡ wb [111,113,116,120,182]. It follows from Eqs. (3)
and (4) and the consideration of the timelike orbit2L ¼ 1 that

ṙ2 ¼ Ē2 −
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ η2

p ��
1þ L̄2

r2 þ η2

�
; ð5Þ

in agreement with Eq. (9) of [183].

C. Weak-field gravitational deflection
of a massive particle

We now compute the equatorial gravitational deflec-
tion angle of a massive particle in the black-bounce-
Schwarzschild black hole spacetime up to the 3PM order,
via a classical approach [4,10,130].

FIG. 1. Geometry for lensing by a black-bounce-Schwarzschild
black hole. The barycenter of the black hole is located at the
origin of a two-dimensional Cartesian coordinate system ðx; yÞ,
the x axis of which is regarded as the optic axis joining the
observer and the lens. The propagating trajectory of a test particle
is approximated by its two asymptotes (blue) in the thin lens
approximation [19].
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In the weak-field and small-angle approximation
(M=b ≪ 1), we expect that the deflection angle has the
power series expansion within the PM approximation
scheme

α ¼
X3
i¼1

Ci

�
M
b

�
i
þOðM4Þ; ð6Þ

with Ci being the unknown functions of w, M, and η. In
order to derive its explicit expression, on the one hand we
have to know the weak-field relation between b and r0,
where r0 is the distance of closest approach to the central
body and satisfies the condition M=r0 ≪ 1 to guarantee a

weak field. The fact that ṙ in Eq. (5) must vanish at the
distance r ¼ r0 yields

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr20 þ η2Þ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ η2

p þ 2
�

1
w2 − 1

�
M
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ η2

p
− 2M

vuut
; ð7Þ

where the nonphysical solution has been ignored. By
defining

h≡M=r0; η̂≡ η=M; ð8Þ
Equation (7) is expanded as power series in the small
parameter h,

b ¼ r0

�
1þ h

w2
þ 1

2

�
η̂2 þ 4

w2
−

1

w4

�
h2 þ 1 − 4w2 þ 8w4

2w6
h3
�
þOðM4Þ; ð9Þ

which conversely leads to

r0 ¼ b

�
1 −

1

w2

M
b
−
1

2

�
η̂2 þ 4

w2
−

1

w4

��
M
b

�
2

−
8þ η̂2

2w2

�
M
b

�
3
�
þOðM4Þ: ð10Þ

On the other hand, according to Eqs. (3)–(5), the exact form of the bending angle can be expressed in the form

α ¼ 2

Z þ∞

r0

				 dφdr
				dr − π ¼ 2

Z þ∞

r0

wb

ðr2 þ η2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − 2Mffiffiffiffiffiffiffiffiffi

r2þη2
p

��
1 − w2 þ w2b2

r2þη2

�r dr − π; ð11Þ

which can be rewritten in a convenient way by using a new variable x≡ r0=r as

α ¼ 2

Z
1

0

wb

r0ð1þ η̂2h2x2Þ
ffiffiffiffi
F̂

p dx − π; ð12Þ

with

F̂ ¼ 1 −
�
1 −

2hxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η̂2h2x2

p ��
1 − w2 þ w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η̂2h2

p
þ 2ð1 − w2Þhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η̂2h2
p

− 2h

ð1þ η̂2h2Þx2
1þ η̂2h2x2

�
: ð13Þ

Expanding the square root in Eq. (12) gives

1ffiffiffiffi
F̂

p ¼ 1

w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p


1þ

�
1 −

1

w2ð1þ xÞ
�
xhþ 3 − w2ð1þ xÞ½2 − w2ð3þ η̂2Þð1þ xÞ�

2w4ð1þ xÞ2 x2h2 þ V1x2h3

2w6ð1þ xÞ3
�
þOðM4Þ;

ð14Þ
where

V1 ¼ ð8þ η̂2Þw4 þ ½3w2 − 5þ ð13þ η̂2Þw4 þ 5w6�xþ w2½3þ ð2 − η̂2Þw2 þ 15w4�x2 − w4ð3 − 15w2 þ η̂2Þx3 þ 5w6x4:

ð15Þ
The substitution of Eqs. (9) and (14) into the power series expansion of Eq. (12) in h yields

α ¼ 2

�
1þ 1

w2

�
hþ

�
3π

4

�
1þ 4

w2

�
−

2

w2

�
1þ 1

w2

�
þ πη̂2

4

�
h2

þ
�
10

3
þ 26

w2
þ 9

w4
þ 7

3w6
−

3π

2w2

�
1þ 4

w2

�
−
�
1

3
þ π − 2

2w2

�
η̂2
�
h3 þOðM4Þ: ð16Þ
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By substituting Eqs. (8) and (10) into Eq. (16), the analytical form of the gravitational deflection angle up to the 3PM order
of a relativistic massive particle ð0.05≲ w < 1Þ in the black-bounce-Schwarzschild spacetime is eventually achieved as
follows:

α ¼ 2

�
1þ 1

w2

�
M
b
þ 3π

4

�
1þ 4

w2

�
M2

b2
þ π

4

η2

b2
þ 2

3

�
5þ 45

w2
þ 15

w4
−

1

w6

�
M3

b3
þ 2

3

�
1þ 3

w2

�
Mη2

b3
þOðM4Þ; ð17Þ

which is equivalent to

α ¼ C1

M
b
þ C2

M2

b2
þ C3

M3

b3
þOðM4Þ; ð18Þ

with

C1 ¼ 2

�
1þ 1

w2

�
; C2 ¼

π

4

�
3

�
1þ 4

w2

�
þ η̂2

�
; C3 ¼

2

3

�
5þ 45

w2
þ 15

w4
−

1

w6

�
þ 2

3

�
1þ 3

w2

�
η̂2: ð19Þ

Since the deflection angle diverges and the weak-field
and small-angle approximation breaks down in the limit
w → 0, it should be emphasized that Eq. (17) applies only
to test particles which are relativistic. For example, if
w ¼ 0.1 and M=b ¼ 1.0 × 10−5 (a typical weak field) are
assumed, then the deflection is about 0.12°, where the
small-angle approximation still holds. Additionally, we see
that both the second- and third-order contributions from the
bounce on the right-hand side of Eq. (17) to the gravita-
tional deflection of massive particles are positive. When
w ¼ 1, Eq. (17) is simplified to the black-bounce-
Schwarzschild deflection angle of light [84,87,92,184]

αjw¼1 ¼
4M
b

þ 15π

4

M2

b2
þ π

4

η2

b2
þ 128

3

M3

b3
þ 8

3

Mη2

b3
þOðM4Þ:

ð20Þ

Furthermore, Eq. (17) can be reduced to the third-order
Schwarzschild deflection angle of massive particles
[106,107,121,130], if the bounce parameter of the space-
time disappears.

IV. OBSERVABLE LENSING PROPERTIES

We now consider the weak-field lensing characteristics
of the primary and secondary images of a pointlike massive
particle source (for more details see [43,113,115,122,185]),
for which the standard perturbation theory analysis is
adopted to solve the Virbhadra-Ellis lens equation [27]

tanB ¼ tanϑ −D½tanϑþ tanðα − ϑÞ�; ð21Þ

which applies to both the weak- and strong-field motions of
test particles and is obtained from Fig. 1 by defining
D ¼ dLS=dS.
To do this, we first define three scaled quantities for

convenience by [10–12]

β≡ B
ϑE

; θ≡ ϑ

ϑE
; ε≡ ϑ•

ϑE
¼ ϑE

4D
; ð22Þ

where ϑEð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DM=dL

p Þ and ε denote the weak-deflection
angular Einstein radius of light and a new expansion
parameter for analyzing the lensing observables, respec-
tively. Moreover, ϑ• is the angle subtended by the special
gravitational radius M•ð≡GM=c2 ¼ MÞ [10], with ϑ• ¼
arctan ðM•=dLÞ. Note that here we follow the treatment of
[130] to regard ϑE in Eq. (22) as the natural scale, which can
ensure that the velocity effects on the angular image position
are absorbed completely by the scaled quantity θ. Note also
that Eq. (21) will be simplified to the small-angle lens
equation ϑ ¼ B þ α̂ [186], if we define the reduced deflec-
tion angle by α̂≡Dα and neglect the third- and higher-order
contributions in ε to the angular quantities.
Then, the perturbation analysis indicates that the scaled

angular image position can be expressed as a power series
in the small parameter ε,

θ ¼ θ0 þ θ1εþ θ2ε
2 þOðε3Þ: ð23Þ

Here, θ0 is the weak-deflection image position which is
positive. θ1 and θ2 represent the undetermined coefficients
of the first- and second-order corrections to the image
position, respectively. The substitution of b ¼ dL sinϑ and
Eqs. (18), (22), and (23) into Eq. (21) thus gives

0 ¼ D

�
4β − 4θ0 þ

C1

θ0

�
εþ D

θ20
½C2 − ðC1 þ 4θ20Þθ1�ε2

þ D
3θ30

�
C3
1 þ 3C3 − 12DC2

1θ
2
0

þ C1ð56D2θ40 þ 3θ21 − 3θ0θ2Þ þ 64D2θ30ðβ3 − θ30Þ

− 6C2θ1 − 12θ30θ2

�
ε3 þOðε4Þ: ð24Þ
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A. Image positions

We then focus on the explicit form of the solution of the lens equation. By requiring each of the terms on the right-hand
side of Eq. (24) to vanish, we obtain

θ0 ¼
1

2
ðβ þ ξÞ; ð25Þ

θ1 ¼
π½3ð4þ w2Þ þ w2η̂2�
8ð1þ w2 þ 2w2θ20Þ

; ð26Þ

θ2 ¼
1

24w10θ0
�
2þ 2

w2 þ 4θ20

�
3



256ð1 −D2Þð1þ w2Þ5 − 3w4ð1þ w2Þ½3πð4þ w2Þ þ πw2η̂2�2

− 64ð1þ w2Þ2½1 − 5w2ð3þ 9w2 þ w4Þ − w4ð3þ w2Þη̂2� þ 4w2V2θ
2
0 − 256w4V3θ

4
0 − 2048w6

× ð1þ w2Þ2Dð3 − 4DÞθ60 þ 2048w8ð1þ w2ÞD2θ80

�
; ð27Þ

with

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 2

�
1þ 1

w2

�s
; ð28Þ

V2 ¼ 128ð1þw2Þ4ð1−DÞð2−DÞ− 64ð1þw2Þ½1−5w2ð3þ 9w2þw4Þ−w4ð3þw2Þη̂2�− 3w4½3πð4þw2Þþ πw2η̂2�2;
ð29Þ

V3 ¼ 1 − 15w2 − 45w4 − 5w6 − 2ð1þ w2Þ3½2 −Dð12 − 11DÞ� − w4ð3þ w2Þη̂2: ð30Þ
Since an angular image position has been assumed to be always positive (see Sec. II for more details), the scaled positions of
the positive-parity primary image and the negative-parity secondary image of the particle source can be rewritten,
respectively, in terms of the scaled source position

θ� ¼ θ�0 þ θ�1 εþ θ�2 ε
2 þOðε3Þ; ð31Þ

where

θ�0 ¼ 1

2
ðξ� jβjÞ; ð32Þ

θ�1 ¼ π½3ð4þ w2Þ þ w2η̂2�
16ð1þ w2Þ

�
1 ∓ jβj

ξ

�
; ð33Þ

θ�2 ¼ V4

w6ξðξ� jβjÞ2 −
4ð1þ w2Þ2D

w4ξ

�
1 −D −

w2Dðξ� jβjÞ2
12ð1þ w2Þ

�
; ð34Þ

and

V4 ¼ 2ð1þ 3w2Þð1þ 6w2 þ w4Þ − 8ð1þ w2Þ3D2

3
þ 2w4ð3þ w2Þη̂2

3
−
π2w4½3ð4þ w2Þ þ w2η̂2�2

128ð1þ w2Þ
�
1 ∓ jβj

ξ

��
3� jβj

ξ

�
:

ð35Þ

It is interesting to find that Eqs. (25)–(27) match well with
the result given in [87] for the case of light and are in
agreement with the result of [187] when w ¼ 1 and η̂ ¼ 0.
Moreover, Eqs. (24)–(26) in [84] can be recovered from

Eqs. (32)–(34) for the case of w ¼ 1. When the bounce
parameter is omitted (η̂ ¼ 0), Eqs. (32)–(34) are consistent
with Eqs. (42)–(44) of [130], and Eqs. (32) and (33) are in
accordance with Eq. (71) in [122]. Additionally, Eq. (31)
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means that the coefficients of the first- and second-order
contributions to the positions of the primary and secondary
images of the particle source have the bounce dependence.
Thus, we may measure or constrain the bounce parameter
of the spacetime conversely through the detections of the
first- and second-order positional coefficients, when an
astrophysical black hole is properly modeled as a black-
bounce-Schwarzschild black hole.
The relations among the coefficients of the scaled image

positions (θþ and θ−) are also indicated according to
Eq. (31), and they are

θþ0 θ
−
0 ¼ 1

2

�
1þ 1

w2

�
; ð36Þ

θþ0 þ θ−0 ¼ ξ; ð37Þ

θþ0 − θ−0 ¼ jβj; ð38Þ

θþ1 þ θ−1 ¼ π½3ð4þ w2Þ þ w2η̂2�
8ð1þ w2Þ ; ð39Þ

θþ1 − θ−1 ¼ −
π½3ð4þ w2Þ þ w2η̂2�

8ð1þ w2Þ
jβj
ξ
; ð40Þ

θþ2 þ θ−2 ¼ V5 þ V6w4η̂2

192w6ð1þ w2Þ3ξ3 ; ð41Þ

θþ2 − θ−2 ¼ −
V7jβj

96w2ð1þ w2Þ3 ; ð42Þ

where

V5 ¼ 768þ 1152w2ð8þ β2Þ − ð1þ w2Þ4w2ξ2½1536Dð1þ w2Þ − 256D2ð5þ 5w2 − w2β2Þ� − 27π2w4

× ð4þ w2Þ2½3þ 6w2ð1þ β2Þ þ w4ð3þ 6β2 þ 2β4Þ� þ 384w4½2ð49þ 88w2 þ 75w4 þ 28w6 þ 3w8Þ
þ 3ð11þ 38w2 þ 50w4 þ 25w6 þ 3w8Þβ2 þ ð1þ 10w2 þ 28w4 þ 22w6 þ 3w8Þβ4�; ð43Þ

V6 ¼ 4w2β2½3ð1þ w2Þ þ w2β2�½96þ ð32 − 9π2Þw2ð4þ w2Þ� − 3π2w4½3ð1þ w2Þ2 þ 6w2ð1þ w2Þβ2 þ 2w4β4�η̂2
þ 2ð1þ w2Þ2½384þ ð128 − 27π2Þw2ð4þ w2Þ�; ð44Þ

V7 ¼ 3½64þ 640w2 þ 16ð112 − 9π2Þw4 þ 8ð176 − 9π2Þw6 þ 3ð64 − 3π2Þw8 − 128D2ð1þ w2Þ4� þ 2w4

× ½96þ ð32 − 9π2Þw2ð4þ w2Þ�η̂2 − 3π2w8η̂4: ð45Þ

It should be noted that the first- and second-order position
relations given in Eqs. (39)–(42) are dependent on the
bounce parameter, in contrast to the case of the zeroth-order
components shown in Eqs. (36)–(38). Moreover, similar to
the lensing scenario of timelike signals in Kerr-Newman
spacetime [130], those position relations (except the zeroth-
order positional difference) depend on the initial velocity
of the particle, which leaves us the opportunity to probe
the characteristics of the particle source in turn. Figure 2
shows the zeroth-, first-, and second-order positional
coefficients of the primary image of the particle source,
accompanied by the positional sum and difference rela-
tions, as the bivariate functions of the scaled source
position (or the scaled bounce parameter) and the initial
velocity of the particle.

B. Magnifications

Next we go on to the magnifications of the lensed images
of the point source of massive particles. The magnification
of an image is defined by the ratio of the flux of the image
to that of the unlensed source, and it is equivalent to the

ratio between the solid angles of the image and the source
and thus reads [27,29,122,185]

μðϑÞ ¼ sinϑ
sinB

dϑ
dB

; ð46Þ

which yields on the basis of Eqs. (18) and (21)

μ ¼ μ0 þ μ1εþ μ2ε
2 þOðε3Þ; ð47Þ

with the coefficients of the zeroth-, first-, and second-order
contributions to the magnification being, respectively,
given by

μ0 ¼
4θ40

4θ40 − ð1þ 1
w2Þ2 ; ð48Þ

μ1 ¼ −
πw4½3ð4þ w2Þ þ w2η̂2�θ30

2ð1þ w2 þ 2w2θ20Þ3
; ð49Þ
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μ2 ¼ −
θ20f16ð1þ w2Þ6D2 þ V8θ

2
0 − w4V9θ

4
0 þ 128w6V10θ

6
0 þ 256w8ð1þ w2Þ2D2θ80g

6w12ð1þ 1
w2 − 2θ20Þð1þ 1

w2 þ 2θ20Þ5
: ð50Þ

Here, the parameters V8, V9, and V10 are defined by

V8 ¼ 32w2ð1þ w2Þ2½1 − 5w2ð3þ 9w2 þ w4Þ − w4ð3þ w2Þη̂2� − 64w2ð1þ w2Þ5ð2þ 6D − 9D2Þ; ð51Þ

V9 ¼ 128ð1þ w2Þ4½4þDð12 − 17DÞ� − 128ð1þ w2Þ½1 − 5w2ð3þ 9w2 þ w4Þ − w4ð3þ w2Þη̂2� ð52Þ

−9w4½3πð4þ w2Þ þ πw2η̂2�2; ð53Þ

V10 ¼ 1 − 5w2ð3þ 9w2 þ w4Þ − w4ð3þ w2Þη̂2 − 2ð1þ w2Þ3ð2þ 6D − 9D2Þ: ð54Þ

Since the magnification sign of an image indicates its
parity, we can easily check that the magnifications
(μþ and μ−) of the positive-parity primary image and
the negative-parity secondary image are positive and

negative, respectively. Expressed in terms of the source
position β, the coefficients of the zeroth-, first-, and
second-order contributions to μþ (and μ−) are then
obtained as follows:

FIG. 2. The coefficients of the scaled angular image position and the positional sum and difference relations plotted as the functions of
w and β or η̂ and w in color-indexed form for D ¼ 0.5. The first- and second-order quantities among them are shown for the case of
β ¼ 1. We adopt the notation in the grid to show this case, and a similar treatment applies to all of the following figures. Here and
hereafter, the initial velocity of a relativistic test particle is assumed to have a mentioned rough range 0.05≲ w ≤ 1 for the convenience
of discussion. Additionally, β∈ ½0.01; 10� and η̂∈ ð0; 2Þ are assumed as an example of our black-bounce-Schwarzschild lensing scenario
of massive particles. Moreover, as explained in Sec. VI of [130], a white region in a color-indexed figure denotes the value domain where
the value of a lensing quantity is too large or too small to be displayed properly, which does not affect our analysis. Notice that we focus
on the absolute values of the lensing quantities, and that the notation w ¼ 1 in the grid indicates the null case of a lensing observable
hereafter.
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μ�0 ¼ 1

2
� 1

2jβjξ
�
1þ 1

w2
þ β2

�
; ð55Þ

μ�1 ¼ −
π½3ð4þ w2Þ þ w2η̂2�

16w2ξ3
; ð56Þ

μ�2 ¼ fð1þ 1
w2Þ3 þ β2½3ð1þ 1

w2Þ þ 2β2�2 � ½3ð1þ 1
w2Þ2 þ 8ð1þ 1

w2Þβ2 þ 4β4�ξjβjgV11

3ξ5ðβ2 � ξjβjÞðξ� jβjÞ5 ; ð57Þ

where

V11 ¼ −
8ξ2

w6

�
3ð1þ 9w2 þ 19w4 þ 3w6Þ þ 12ð1þ w2Þ3Dþ w4ð3þ w2Þη̂2 − 2ð9þ 9w2 þ w2β2Þð1þ w2Þ2D2

�

þ 9π2

16

�
3þ 12

w2
þ η̂2

�
2

: ð58Þ

Equations (55)–(57) further yield the following magnifi-
cation relations:

μþ0 þ μ−0 ¼ 1; ð59Þ

μþ0 − μ−0 ¼ 1

ξjβj
�
1þ 1

w2
þ β2

�
; ð60Þ

μþ1 þ μ−1 ¼ 2μþ1 ; ð61Þ

μþ2 − μ−2 ¼ 2μþ2 : ð62Þ

With respect to Eqs. (48)–(62), three points should be
emphasized. First, we find that Eqs. (48)–(57) can reduce to
the null result in black-bounce-Schwarzschild geometry
[84,87] in the limit w → 1, and that Eqs. (48)–(50) are
consistent with the null result in Schwarzschild spacetime
[10] whenw ¼ 1 and no bounce effect is considered (η ¼ 0).
Moreover, it is also found that Eqs. (48)–(62) are consistent
with the results presented in [130] for the Schwarzschild
lensing scenario of massive particles, when removing the
contribution from the bounce parameter. Second, the uni-
versal magnification relations μþ1 ¼ μ−1 and μþ2 ¼ −μ−2 for a
static and spherically symmetric spacetime [10–12,188],
which lead to Eqs. (61) and (62), apply not only to the case
of electromagnetic waves but also to the case of massive

particles. Third, we notice that all of the zeroth-, first-, and
second-order contributions to μþ or μ− depend on the initial
velocity of the massive particle. It is also true for the zeroth-
order difference, first-order sum, and second-order difference
relations of the magnification coefficients. Additionally, the
dependence on the bounce parameter appears only for the
first- and second-ordermagnifications, aswell as for the first-
order sum and second-order difference relations of the
magnifications.
Figure 3 shows the coefficients of the zeroth-, first-, and

second-order contributions to μþ, along with the zeroth-
order difference relation given in Eq. (60), as the bivariate
functions of the scaled source position (or the scaled
bounce parameter) and the initial velocity of the particle.

C. Total magnification and centroid

If the two images are difficult to be resolved, then the
sum of the absolute values of their magnifications and the
magnification-weighted centroid position are the useful
observables. The definition of the measurable total mag-
nification reads

μtot ≡ jμþj þ jμ−j ¼ μþ − μ−; ð63Þ
which is always larger than 1 and is expressed as up to the
second order in ε

μtot ¼
1

ξjβj
�
1þ 1

w2
þ β2

�
þ V12ε

2

12w8ξ5jβj þOðε3Þ; ð64Þ

with

V12 ¼ −8w2ξ2
�
12Dð1þ w2Þ3 þ 3ð1þ 3w2Þð1þ 6w2 þ w4Þ − 2D2ð1þ w2Þ2ð9þ 9w2 þ w2β2Þ þ w4ð3þ w2Þη̂2

�

þ 9π2w4

16
ð12þ 3w2 þ w2η̂2Þ2: ð65Þ
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The scaled magnification-weighted centroid position of
the images is defined by

Θcent ¼
θþjμþj − θ−jμ−j

jμþj þ jμ−j ; ð66Þ

and its explicit form can be obtained as in terms of β

Θcent ¼ Θcent;0 þ Θcent;2ε
2 þOðε3Þ; ð67Þ

where

Θcent;0 ¼
½3ð1þ w2Þ þ 2w2β2�jβj

2ð1þ w2 þ w2β2Þ ; ð68Þ

Θcent;2 ¼
V13V14

3w14ξ2ðξþ jβjÞ3½4ð1þ 1
w2Þ2þðξþjβjÞ4�2 ; ð69Þ

with

V13 ¼
�
ð1þ w2Þ3 þ 12w2ð1þ w2Þ2β2 þ 20w4ð1þ w2Þβ4 þ 8w6β6

�
ξjβj þ 7ð1þ w2Þ3β2 þ 28w2ð1þ w2Þ2β4

þ 28w4ð1þ w2Þβ6 þ 8w6β8; ð70Þ

V14 ¼ w4½768þ 2ð128 − 27π2Þw2ð4þ w2Þ − 9π2w4η̂2�η̂2 þ 768ð1þ 10w2Þ þ 48ð448 − 27π2Þw4 þ 24ð704 − 27π2Þw6

þ 9ð256 − 9π2Þw8 þ 128w2

�
3ð1þ 3w2Þð1þ 6w2 þ w4Þ þ w4ð3þ w2Þη̂2 þ 2ð1þ w2Þ3Dð17D − 12Þ

�
β2

− 256w4ð1þ w2Þ2ð6 − 13DÞDβ4 þ 512w6ð1þ w2ÞD2β6 − 512ð1þ w2Þ4D2: ð71Þ

With regard to Eqs. (64) and (67), it should be noted that they agree with the results of the Schwarzschild lensing of
massive particles [130] when removing the bounce effect. We also note that Eq. (67) for the case of w ¼ 1 can recover the
following null result of the black-bounce-Schwarzschild lensing scenario [84,87]

FIG. 3. The coefficients of the image magnification μþ, the scaled centroid Θcent, and the scaled differential time delay Δτ̂, together
with the zeroth-order magnification difference, plotted as the color-indexed functions of w and β or η̂ and w for D ¼ 0.5.
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Θcent ¼
ð3þ β2Þjβj
2þ β2

−
jβj

384ð4þ β2Þð2þ β2Þ2


2025π2 − 6144ð2 −Dβ2Þð4þ β2Þ þ 1024D2ð8 − 34β2 − 13β4 − β6Þ

þ ½270π2 − 512ð4þ β2Þ�η̂2 þ 9π2η̂4
�
ε2 þOðε3Þ; ð72Þ

and that Eqs. (64) and (67) are in accord with the null results of the Schwarzschild lensing scenario [10] in the limit w → 1
and η → 0. Additionally, Fig. 3 shows the coefficients of the zeroth- and second-order contributions to the magnification
centroid.

D. Time delay

We now consider the travel time of a massive particle propagating from the source to the observer and then utilize a
classical approach [4,10] to calculate the difference between the gravitational time delays of the images of the particle
source. Not to be forgotten, the differential time delay between two lensed images of a light source acts as a historically
important lensing observable for its fruitful astronomical applications (see, e.g., [2,24,189]).
The combination of Eqs. (3)–(5) yields				 dtdr

				 ¼ 1

b
�
1 − 2Mffiffiffiffiffiffiffiffiffi

r2þη2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b2 −

1
r2þη2

�
1 − 2Mffiffiffiffiffiffiffiffiffi

r2þη2
p

�h
w2 þ ð1−w2Þðr2þη2Þ

b2

ir ; ð73Þ

which gives immediately the propagating time of a massive particle traveling from the point of closest approach to a finite
point (with a radial coordinate R) of the perturbed ray

TðRÞ ¼
Z

R

r0

				 dtdr
				dr ¼ r0

Z
1

r0
R

1

x2
�
1 − 2hxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þη̂2h2x2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

1þη̂2h2x2

�
1 − 2hxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þη̂2h2x2
p

�h
w2b2

r2
0

x2 þ ð1 − w2Þð1þ η̂2h2x2Þ
ir dx; ð74Þ

with

b
r0

¼ 1

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ η̂2h2Þ½w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η̂2h2

p
þ 2ð1 − w2Þh�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η̂2h2
p

− 2h

s
: ð75Þ

In order to obtain the analytical expression of T, we define ζ ≡ r0=R, make a power series expansion for the integrand of
Eq. (74) in h, and finally integrate the expansion over x to have

TðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r20

p
w

þ hr0
w3

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
1þ ζ

þ ð3w2 − 1Þ ln
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
ζ

��
þ h2r0V15

2w
þ h3r0V16

2w
þOðM4Þ; ð76Þ

where

V15 ¼ ð15þ η̂2Þ
�
π

2
− arcsin ζ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
w2ð1þ ζÞ

�
6 −

2þ ζ

w2ð1þ ζÞ
�
; ð77Þ

V16 ¼
15

w2

�
arcsin ζ −

π

2

�
þ
�
35þ 23

w2ð1þ ζÞ þ
3ð1þ 2ζÞ
w4ð1þ ζÞ2 −

1þ 3ζ þ ζ2

w6ð1þ ζÞ3
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ζ2
p

þ η̂2

w2

�
arcsin ζ −

π

2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
1þ ζ

�
:

ð78Þ

It is convenient to express TðRÞ presented in Eq. (76) in
terms of the impact parameter b, for which the evaluation of
the magnitudes of order forM=b and b=R is necessary. Let
RS and RO denote the radial coordinates of the source S and

the observer O, respectively. Then, we have RS ¼
ðd2LS þ d2S tan

2 BÞ1=2 and RO ¼ dL. By noticing M=b ∼ ε,
b=RS ∼Dð1 −DÞðD2 þ tan2 BÞ−1=2ε, and b=RO ∼Dε
[10], we further expand Eq. (76) in ε as
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TðRÞ
R

¼ 1

w
−

1

2w
b
R

�
b
R
−

2

w2

M
b
þ 2

�
3 −

1

w2

�
M
b
ln

�
b
2R

��
þ πð15þ η̂2Þ

4w
b
R
M2

b2
þOðε4Þ: ð79Þ

Based on Eq. (79), the gravitational time delay for a massive particle traveling from the source to the observer is
expressed as

τ ¼ TðRSÞ þ TðROÞ −
dS

w cosB
; ð80Þ

which can be reduced to its lightlike definition [10] for the case of w ¼ 1. To compare with astronomical measurements, we
apply b ¼ dL sin ϑ and M ¼ dL tan ϑ• to Eq. (80) and get

τ¼ 8dLdLS
w3dS


�
1þw2β2 −w2θ20þ

1− 3w2

2
ln

�
dLθ20ϑ

2
E

4dLS

��
ε2þ πw2ð15þ η̂2Þþ 4ð1− 3w2 − 2w2θ20Þθ1

4θ0
ε3þOðε4Þ

�
: ð81Þ

The substitution of Eq. (26) into Eq. (81) and the use of the natural timescale τE ≡ dLϑ2E=Dð¼ 4MÞ yield the following
scaled gravitational time delay:

τ̂≡ τ

τE
¼ 1

2w3

�
1þ w2β2 − w2θ20 þ

1 − 3w2

2
ln

�
dLθ20ϑ

2
E

4dLS

��

þ π

8w3θ0

�
w2ð15þ η̂2Þ þ 3ð4þ w2Þ þ w2η̂2

2

1 − 3w2 − 2w2θ20
1þ w2 þ 2w2θ20

�
εþOðε2Þ: ð82Þ

The difference between the scaled gravitational time delays of the primary and secondary images can be finally obtained
from Eq. (82) as

Δτ̂ ¼ τ̂− − τ̂þ ¼ Δτ̂0 þ Δτ̂1εþOðε2Þ; ð83Þ

where

Δτ̂0 ¼
ðθþ0 Þ2 − ðθ−0 Þ2

2w
þ 1 − 3w2

2w3
ln

�
θ−0
θþ0

�
; ð84Þ

Δτ̂1 ¼
π

8w3



w2ð15þ η̂2Þ

�
1

θ−0
−

1

θþ0

�
þ 3ð4þ w2Þ þ w2η̂2

2



1 − 3w2 − 2w2ðθ−0 Þ2

θ−0 ½1þ w2 þ 2w2ðθ−0 Þ2�
−

1 − 3w2 − 2w2ðθþ0 Þ2
θþ0 ½1þ w2 þ 2w2ðθþ0 Þ2�

��
; ð85Þ

or equivalently in terms of the source position,

Δτ̂0 ¼
ξjβj
2w

þ 1 − 3w2

2w3
ln
�
ξ − jβj
ξþ jβj

�
; ð86Þ

Δτ̂1 ¼
π½12 − 3w2ð1 − η̂2Þ þ w4ð21 − η̂2Þ�jβj

8wð1þ w2Þ2 : ð87Þ

The values of the coefficients of the zeroth- and first-order
contributions to Δτ̂ are shown in Fig. 3. It should be
stressed that Eqs. (76) and (83) are consistent with the
lightlike results [84,87] when w ¼ 1 is assumed. Addi-
tionally, those equations agree with the results of the Kerr-
Newman lensing of massive particles given in [130] for the
case of no bounce parameter and can be simplified to the
null results in Schwarzschild spacetime [10] in the limit

w → 1 and η → 0. Moreover, according to Eq. (87), it is
found that the leading-order contribution from the bounce
parameter to the scaled differential time delay of timelike
signals is always positive, which may also be used to
measure or constrain the bounce parameter itself.

V. DISCUSSION OF DETECTABLE QUANTITIES

A. A brief review

The conventional weak-field lensing observables include
the positions, fluxes, and the differential time delay of the
images of a light source, if they are resolvable. Otherwise
the total flux and the centroid position are the main
practical observables. It is worth mentioning that the proper
combinations of these lensing quantities are interesting and
may also serve as important observables [11,188], and it
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should be better to contain the sum and difference relations
of the fluxes and positions of the primary and secondary
images of the light source (see Sec. IV) when considering
practical observable quantities. Notice that the image flux
Fð¼ ΣFiε

iÞ is related to the magnification by Fi ¼ jμijFs,
where i∈N and Fs is the positive flux of unlensed light
signals or unlensed massive particle signals [115,185]
emitted by the source.
As mentioned above, the deviation of the initial velocity

w of a timelike particle from the speed of light may have an
influence on all kind of measurable gravitational effects. It
is of great significance to discuss the velocity-induced
effect caused by this deviation [32,113,130], which is the
key difference between the gravitational lens effects of
time- and lightlike signals. Hence, our concentration for
potential applications includes the velocity effects on these
lensing observables of the images of a point source of
light in the black-bounce-Schwarzschild spacetime and the
bounce-induced effects on the Schwarzschild lensing
observables of the images of a pointlike massive particle
source, given the fact that the weak- and strong-field
gravitational lensing effects of light signals in the black-
bounce-Schwarzschild spacetime have been investigated in
detail. Note that these correctional effects are also detect-
able, and that the conversion from the convenient scaled
quantities fθ; β; μ;Θcent; τ̂g to the practical measurable
quantities fϑ;B; F;Ξcent; τg becomes necessary for con-
necting with astronomical observations, with ϑ� ¼ ϑEθ

�,
F� ¼ �Fsμ

�, and Ξcent ¼ ϑEΘcent.

B. Velocity-induced effects

In terms of the physical quantities fϑ;B; F;Ξcent; τg,
the nonvanishing components of the velocity effects on
the zeroth-, first-, or second-order practical lensing obser-
vables of the images of the light source in the black-
bounce-Schwarzschild black hole spacetime can be
expressed according to the results given in Sec. IV as
follows [130]:

δϑ�i ε
i ≡ ϑEðθ�i − θ�i jw¼1Þεi; ð88Þ

δF�
i ε

i ≡�Fsðμ�i − μ�i jw¼1Þεi; ð89Þ

δðϑþi þ ϑ−i Þεi ≡ ϑE½ðθþi þ θ−i Þ − ðθþi þ θ−i Þjw¼1�εi; ð90Þ

δðϑþj − ϑ−j Þεj ≡ ϑE½ðθþj − θ−j Þ − ðθþj − θ−j Þjw¼1�εj; ð91Þ

δðFþ
k þ F−

k Þεk ≡ Fs½ðμþk − μ−k Þ − ðμþk − μ−k Þjw¼1�εk; ð92Þ

δðFþ
l − F−

l Þεl ≡ Fs½ðμþl þ μ−l Þ − ðμþl þ μ−l Þjw¼1�εl; ð93Þ

δΞcent;kε
k ≡ ϑEðΘcent;k − Θcent;kjw¼1Þεk; ð94Þ

δΔτmεm ≡ τEðΔτ̂m − Δτ̂mjw¼1Þεm; ð95Þ

with i∈ f0; 1; 2g, j∈ f1; 2g, k∈ f0; 2g, l∈ f1g, and
m∈ f0; 1g here and in the following of this section.
Concretely, δϑ�i ε

i (or δF�
i ε

i) denote the velocity effects
on the ith-order unscaled angular positions (or on the ith-
order fluxes) of the primary and secondary images of the
light source, respectively. δðϑþi þ ϑ−i Þεi and δðϑþj − ϑ−j Þεj
represent the velocity effects on the ith-order practical
positional sum and on the jth-order unscaled positional
difference of the light-source images, respectively. δðFþ

k þ
F−
k Þεk and δðFþ

l − F−
l Þεl denote, respectively, the velocity

effects on the kth-order flux sum and on the lth-order flux
difference of the images of the light source. Finally, the
velocity effects on the kth-order unscaled magnification
centroid and on the mth-order unscaled differential time
delay of the light-source images are denoted by δΞcent;kε

k

and δΔτmεm, respectively. Additionally, the following
relations hold well in our lensing scenario:

δðϑþ0 þ ϑ−0 Þ ¼ 2δϑþ0 ; ð96Þ

δðFþ
0 þ F−

0 Þ ¼ 2δFþ
0 ; ð97Þ

δðFþ
1 − F−

1 Þε ¼ 2δFþ
1 ε; ð98Þ

δðFþ
2 þ F−

2 Þε2 ¼ 2δFþ
2 ε

2; ð99Þ

δðFþ
0 − F−

0 Þ ¼ δðFþ
1 þ F−

1 Þε ¼ δðFþ
2 − F−

2 Þε2 ¼ 0: ð100Þ

Furthermore, it is well known that magnitude is used to
indicate the brightness of a source conventionally and is
related to the received flux of electromagnetic waves via the
Pogson formula [190]. However, for a more convenient
discussion of the deviations from the lightlike counterparts,
we may convert the velocity effects on the individual
received fluxes and on the sum and difference relations
of the fluxes of the light-source images into the following
magnitudelike differences:

δm�
1 ≡ −2.5 lg

�
1þ δF�

F�jw¼1

�
¼ −2.5 lg

�
1þ

P
2
i¼0 δF

�
i ε

iP
2
i¼0 F

�
i jw¼1ε

i þOðε3Þ
�
; ð101Þ

δm2 ≡ −2.5 lg
�
1þ δðFþ þ F−Þ

ðFþ þ F−Þjw¼1

�
¼ −2.5 lg

�
1þ δðFþ

0 þ F−
0 Þ þ δðFþ

2 þ F−
2 Þε2

ðFþ
0 þ F−

0 Þjw¼1 þ ðFþ
2 þ F−

2 Þjw¼1ε
2
þOðε3Þ

�
; ð102Þ
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δm3 ≡ −2.5 lg
�
1þ δðFþ − F−Þ

ðFþ − F−Þjw¼1

�
¼ −2.5 lg

�
1þ δðFþ

1 − F−
1 Þε

Fs þ ðFþ
1 − F−

1 Þjw¼1ε
þOðε3Þ

�
; ð103Þ

where δm�
1 denote the magnitude differences induced by

the velocity effects on the fluxes of the primary and
secondary images of the light source, respectively, while
δm2 and δm3 are used to represent, respectively, the
differential magnitudes caused by the velocity effects
on the sum and difference relations of the fluxes of the
light-source images. In the following section, the magni-
tude differences originated from the velocity effects on
the i th-order contributions to Fþ, Fþ þ F−, and Fþ − F−

are further denoted by ðδmþ
1 Þith, ðδm2Þith, and ðδm3Þith,

respectively.

C. Black-bounce-induced effects

Since the influences of the bounce parameter of the
spacetime on the lensing observables of the images of the
pointlikemassive particle source are a part of ourmain focus,
the bounce-induced effects on themeasurable Schwarzschild
lensing properties (i.e., the deviations of the lensing proper-
ties of massive particles in black-bounce-Schwarzschild
black hole geometry from those in Schwarzschild spacetime)
also deserve to be considered. Similarly, the nonzero bounce-
induced effects on the jth-order unscaled positions or on the
jth-order fluxes of the primary and secondary images of the
particle source, together with these on the sumand difference
relations of the jth-order unscaled positions of the particle-
source images, on the nth-order flux sum and lth-order flux
difference of the images of the particle source, on the nth-
order unscaled magnification centroid, and on the lth-order

differential time delay of the particle-source images, are
given in terms of the quantities ðϑ;B; F;Ξcent; τÞ as follows:

Δϑ�j εj ≡ ϑE
�
θ�j − θ�j jη̂¼0

�
εj; ð104Þ

ΔF�
j ε

j ≡�Fs

�
μ�j − μ�j jη̂¼0

�
εj; ð105Þ

Δðϑþj �ϑ−j Þεj≡ϑE
h
ðθþj � θ−j Þ− ðθþj � θ−j Þjη̂¼0

i
εj; ð106Þ

ΔðFþ
n þF−

n Þεn≡Fs

h
ðμþn −μ−n Þ− ðμþn −μ−n Þjη̂¼0

i
εn; ð107Þ

ΔðFþ
l −F−

l Þεl≡Fs

h
ðμþl þμ−l Þ− ðμþl þμ−l Þjη̂¼0

i
εl; ð108Þ

ΔΞcent;nε
n ≡ ϑE

�
Θcent;n − Θcent;njη̂¼0

�
εn; ð109Þ

ΔðΔτlÞεl ≡ τE
�
Δτ̂l − Δτ̂ljη̂¼0

�
εl; ð110Þ

with n∈ f2g. Note that Δðϑþ1 þ ϑ−1 Þε is independent
on β and that we have ΔðFþ

1 − F−
1 Þε ¼ 2ΔFþ

1 ε and
ΔðFþ

2 þ F−
2 Þε2 ¼ 2ΔFþ

2 ε
2, in view of μþ1 ¼ μ−1 and

μþ2 ¼ −μ−2 . In a similar way, the bounce effects on the
fluxes and on the flux sum and difference relations of the
images of the particle source may also be converted into
several magnitudelike differences, which are defined by

Δm�
1 ≡ −2.5 lg

�
1þ ΔF�

F�jη̂¼0

�
¼ −2.5 lg

�
1þ

P
2
j¼1ΔF�

j ε
jP

2
i¼0 F

�
i jη̂¼0ε

i þOðε3Þ
�
; ð111Þ

Δm2 ≡ −2.5 lg
�
1þ ΔðFþ þ F−Þ

ðFþ þ F−Þjη̂¼0

�
¼ −2.5 lg

�
1þ ΔðFþ

2 þ F−
2 Þε2

ðFþ
0 þ F−

0 Þjη̂¼0 þ ðFþ
2 þ F−

2 Þjη̂¼0ε
2
þOðε3Þ

�
; ð112Þ

Δm3 ≡ −2.5 lg
�
1þ ΔðFþ − F−Þ

ðFþ − F−Þjη̂¼0

�
¼ −2.5 lg

�
1þ ΔðFþ

1 − F−
1 Þε

Fs þ ðFþ
1 − F−

1 Þjη̂¼0ε
þOðε3Þ

�
: ð113Þ

Here Δm�
1 are, respectively, the differential magnitudes

originated from the bounce effects on the fluxes of the
primary and secondary images of the particle source. Δm2

and Δm3 stand for the differential magnitudes due to the
bounce effects on the flux sum and difference relations of
the particle-source images, respectively. Also, we use
ðΔmþ

1 Þjth, ðΔm2Þjth, and ðΔm3Þjth to denote, respectively,
the magnitude differences due to the bounce effects on the j
th-order contributions to Fþ, Fþ þ F−, and Fþ − F−.

VI. APPLICATION TO THE GALACTIC
SUPERMASSIVE BLACK HOLE

An interesting application of our analytical results is the
consideration of the scenario where the Galactic super-
massive black hole, Sgr A�, is modeled as a black-bounce-
Schwarzschild lens. In view of the detailed investigation
on the lensing scenarios where Sgr A� is regarded as a
Schwarzschild [10,27] or black-bounce-Schwarzschild
[80,84,87] lens for photons being the test particles, in this
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section the discussion focuses concretely on (i) the
velocity-induced effects on the practical (or unscaled)
lensing observables of the images of the light source,
(ii) the bounce-induced effects on the measurable
Schwarzschild lensing properties of the images of the
massive particle source, and (iii) the possibilities of their
astronomical measurements. Concerning the last aspect, it
should be mentioned that some challenges [43,99,191]
owing to the extension from the astronomical observations
via multiwavelength photons to the observations via non-
photonic messengers yield a foreseeable result that current
astronomical observatories or instruments observing mas-
sive particles or multimessengers are relatively rare, with
lower (or even much lower) angular, flux, and time
resolutions (see, e.g., [115,153,162,192,193]). Thus, we
may base on the capabilities of current multifrequency
astronomical surveys [148] and particle detectors or
observatories and perform a rough discussion regarding
the potential observations of the velocity- and bounce-
induced effects, both of which are the deviations of the
routine lensing properties in different scenarios.
We know that Sgr A� has a mass M ¼ 4.2 × 106M⊙

[194,195] and a distance dL ¼ 8.2 kpc [194] from us,
where M⊙ð¼ 1.475 kmÞ denotes the mass of the Sun. It
means that the angular gravitational radius ϑ• and the
lensing timescale τE are 5.06 μas and 82.6 s, respectively.
Additionally, the source of massive particles is assumed to
be at a distance dLS ¼ 0.01 kpc [130] (dLS ≪ dL ≈ dS)
from the central black hole. Thus, the parameter D, the
angular Einstein radius ϑE, and the expansion parameter ε
have values 1.22 × 10−3, 0.071 as, and 7.12 × 10−5,
respectively. As illustrated in Sec. IVA, 0.05≲ w ≤ 1
and 0 < η̂ < 2 are also supposed in our discussion, since
we only consider massive (and massless) test particles
which are relativistic. Moreover, we take the primary image
as an example to analyze the image properties and assume
0.01 ≤ β ≤ 10 [84]. The following exemplary domains are
adopted to perform the evaluation:

Dη̂1 ≡ fðw; β; η̂Þj0.05≲ w ≤ 1; 0.01 ≤ β ≤ 10; η̂ ¼ 1.9g;
ð114Þ

Dη̂2 ≡ fðw; β; η̂Þj0.05≲ w ≤ 1; 0.01 ≤ β ≤ 10; η̂ ¼ 0.1g;
ð115Þ

Dβ ≡ fðw; β; η̂Þj0.05≲ w ≤ 1; β ¼ 1; 0 < η̂ < 2g; ð116Þ

Dw1 ≡ fðw; β; η̂Þjw ¼ 0.5; 0.01 ≤ β ≤ 10; 0 < η̂ < 2g;
ð117Þ

Dw2 ≡ fðw; β; η̂Þjw ¼ 1; 0.01 ≤ β ≤ 10; 0 < η̂ < 2g:
ð118Þ

A. Velocity effects on the practical lensing observables

We first discuss the velocity effects on the angular posi-
tions and on the positional relations of the images of
the light source. Figure 4 shows δϑþ0 ; δϑ

þ
1 ε; δϑ

þ
2 ε

2;
δðϑþ1 � ϑ−1 Þε, and δðϑþ2 � ϑ−2 Þε2 for various β (or η̂) and
w in color-indexed form, and their values (except the ones
for δϑþ0 [130]) are given in Table I. On the one hand, the
dependence of these velocity effects on the variables
deserves to be analyzed qualitatively. Similar to the
behavior of the velocity effect on the zeroth-order unscaled
position of the light-source primary image [130], the
velocity effects on the first- and second-order contributions
to ϑþ, together with those on the first- and second-order
unscaled positional sum relations, decrease monotonically
with the increase of the particle velocity w on its domain
for any given source position β∈ ½0.01; 10� and a fixed
bounce parameter η̂ ¼ 1.9. The same tendency of change
of these four velocity effects is obtained for any given
bounce parameter η̂∈ ð0; 2Þ, when β ¼ 1 is assumed. This
is not the case for the velocity effects on the first- and
second-order unscaled positional difference relations.
Figure 4 and Table I indicate that δðϑþ2 − ϑ−2 Þε2 has a
reverse tendency of change on the domains of Dη̂1 and Dβ.
Differently, δðϑþ1 − ϑ−1 Þε decreases to a minimum value
first and then increases to zero when increasing w for the
domains fðw; β; η̂Þj0.05≲ w ≤ 1; 1.72≲ β ≤ 10; η̂ ¼ 1.9g
and fðw; β; η̂Þj0.05≲ w ≤ 1; β ¼ 1; 0 < η̂≲ 1.46g, while
it decreases from a maximum value to zero monotonically
with the increase of w for the domains fðw; β; η̂Þj0.05≲
w ≤ 1; 0.01 ≤ β ≲ 1.72; η̂ ¼ 1.9g and fðw; β; η̂Þj0.05≲
w ≤ 1; β ¼ 1; 1.46≲ η̂ < 2g. It should be pointed out that
the minimum and maximum values of δðϑþ1 − ϑ−1 Þε may
vary with the change of the given values of β and η̂. On the
other hand, we perform a brief analysis on the possibilities
of detecting these velocity effects on the basis of the results
given in Fig. 4 and Table I. Although smaller than that of
detecting δϑþ0 whose value is much larger than current
multiwavelength astrometric precision (at the tens of μas
level or better [149,196]) for any given source position
β∈ ½0.01; 10� and most of relativistic massive particles with
0.05≲ w≲ 0.99 (see Table I of [130] for details), the
possibility to detect the velocity effect on the first-order
sum relation of the practical positions of the light-source
images in the (near) future is relatively large. For example,
even for a massive particle with a high relativistic velocity
w ¼ 0.98 and a large bounce parameter η̂ ¼ 1.99, the value
of δðϑþ1 þ ϑ−1 Þε can reach about 0.1 μas, which is larger
than the intended accuracy (∼0.05 μas) of the proposed
NEAT mission [142,144]. Under this case, δðϑþ1 þ ϑ−1 Þε
may still be measured by future joint multimessenger
detectors whose angular resolution is approximately equal
to or better than that of NEAT. For any combination of
w∈ ½0.05; 0.99� and η̂∈ ð0; 1.999�, δðϑþ1 þ ϑ−1 Þε ranges
from about 0.05 μas to a maximum value 8.89 μas which
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is independent of the angular source position. Moreover, it
is likely to measure the velocity effect on the first-order
practical position of the primary image or on the first-order
unscaled positional difference of the images of the light
source in most cases of the domains Dη̂1 and Dβ within the
capabilities of these NEAT-level multimessenger detectors,
though the upper limit of w has to be restricted to a lower
value. For instance, this upper limit is about 0.83 and 0.98
for δϑþ1 ε on Dη̂1 and Dβ, respectively. There is a relatively
small possibility of detecting the velocity effect on the
second-order contribution to ϑþ or to the sum relation of
the practical positions via these future multimessenger
detectors. It is not until the test particle travels with a

limited relativistic velocity that the values of δϑþ2 ε
2 and

δðϑþ2 þ ϑ−2 Þε2 can be larger than 0.05 μas. On the domain
Dβ, the approximate ranges 0.05≲ w≲ 0.16 and 0.05≲
w≲ 0.23 should be satisfied for δϑþ2 ε

2 and δðϑþ2 þ ϑ−2 Þε2,
respectively, to get a possible detection by the NEAT-level
multimessenger detectors. The required ranges become
0.05≲ w≲ 0.1 and 0.05≲ w≲ 0.23 for δϑþ2 ε

2 and δðϑþ2 þ
ϑ−2 Þε2 on Dη̂1, respectively. Concerning the velocity effect
on the second-order unscaled positional difference relation,
it may be measured by these multimessenger detectors only
when w takes a small relativistic value and the combination
of β and η̂ is proper. However, it is interesting to find there
exist a few cases where the value of δðϑþ2 − ϑ−2 Þε2 can be

FIG. 4. The color-indexed velocity effects on the zeroth-, first-, and second-order contributions to the unscaled angular position ϑþ of
the primary image of the light source, as well as those on the first- and second-order unscaled positional sum and difference of the light-
source images, plotted as the functions of w and β or η̂ and w (on the domain Dη̂1 or Dβ). Note that δðϑþ0 þ ϑ−0 Þ is not plotted due to the
relation δðϑþ0 þ ϑ−0 Þ ¼ 2δϑþ0 . For comparison, the figure of δϑþ0 is taken from [130].
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TABLE I. The values (in units of μas) of δϑþ1 ε, δϑþ2 ε
2,

δðϑþ1 � ϑ−1 Þε, and δðϑþ2 � ϑ−2 Þε2 for various β (or η̂) and w. Here
and hereafter, we use a triangle “▵” to denote an absolute value
which is smaller than 0.05 μas (the angular resolution of the
NEAT mission) and fix our attention on the absolute values of the
velocity effects when discussing their detectability. Additionally,
we just discuss the cases of relativistic massive (and massless)
particles, along with a mentioned rough lower limit 0.05 for w in
geometrized units.

βnw 0.05 0.1 0.5 0.9 0.99

0.01 2.70 2.66 1.62 0.28 ▵

0.1 3.08 3.00 1.72 0.29 ▵

0.5 4.69 4.45 2.15 0.33 ▵

1 6.37 5.92 2.47 0.34 ▵

5 9.17 7.26 1.02 0.09 ▵

10 7.76 4.86 0.33 ▵ ▵

(a1) δϑ
þ
1 εðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 7.35 6.88 2.96 0.41 ▵

0.1 7.35 6.88 2.96 0.41 ▵

0.5 7.29 6.81 2.92 0.41 ▵

1 7.08 6.61 2.82 0.39 ▵

1.9 6.37 5.92 2.47 0.34 ▵

1.999 6.27 5.82 2.41 0.33 ▵

(a2) δϑ
þ
1 εðβ ¼ 1Þ

βnw 0.05 0.1 0.5 0.9 0.99

0.01 2.06 0.27 ▵ ▵ ▵

0.1 2.05 0.27 ▵ ▵ ▵

0.5 1.99 0.25 ▵ ▵ ▵

1 1.92 0.24 ▵ ▵ ▵

5 1.43 0.13 ▵ ▵ ▵

10 0.97 0.06 ▵ ▵ ▵

(b1) δϑ
þ
2 ε

2ðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 1.92 0.23 ▵ ▵ ▵

0.1 1.92 0.23 ▵ ▵ ▵

0.5 1.92 0.23 ▵ ▵ ▵

1 1.92 0.23 ▵ ▵ ▵

1.9 1.92 0.24 ▵ ▵ ▵

1.999 1.92 0.24 ▵ ▵ ▵

(b2) δϑ
þ
2 ε

2ðβ ¼ 1Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 8.89 8.76 5.36 0.94 0.09
0.1 8.88 8.75 5.35 0.94 0.09
0.5 8.64 8.51 5.21 0.91 0.09
1 7.90 7.78 4.76 0.83 0.08

(Table continued)

TABLE I. (Continued)

η̂nw 0.05 0.1 0.5 0.9 0.99

1.9 5.32 5.24 3.21 0.56 0.05
1.999 4.94 4.87 2.98 0.52 0.05

(c) δðϑþ1 þ ϑ−1 Þε

βnw 0.05 0.1 0.5 0.9 0.99

0.01 0.08 0.08 ▵ ▵ ▵

0.1 0.84 0.76 0.24 ▵ ▵

0.5 4.06 3.65 1.09 0.10 ▵

1 7.42 6.60 1.72 0.12 ▵

5 13.01 9.28 −1.17 −0.38 ▵

10 10.19 4.47 −2.56 −0.51 −0.05

(d1) δðϑþ1 − ϑ−1 Þεðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 5.82 5.00 0.55 −0.11 ▵

0.1 5.82 5.00 0.56 −0.11 ▵

0.5 5.93 5.11 0.63 −0.09 ▵

1 6.26 5.44 0.88 ▵ ▵

1.9 7.42 6.60 1.72 0.12 ▵

1.999 7.59 6.77 1.85 0.15 ▵

(d2) δðϑþ1 − ϑ−1 Þεðβ ¼ 1)

βnw 0.05 0.1 0.5 0.9 0.99

0.01 4.13 0.54 ▵ ▵ ▵

0.1 4.13 0.54 ▵ ▵ ▵

0.5 4.13 0.54 ▵ ▵ ▵

1 4.13 0.55 ▵ ▵ ▵

5 4.31 0.63 ▵ ▵ ▵

10 4.85 0.87 ▵ ▵ ▵

(e1) δðϑþ2 þ ϑ−2 Þε2ðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 4.13 0.54 ▵ ▵ ▵

0.1 4.13 0.54 ▵ ▵ ▵

0.5 4.13 0.54 ▵ ▵ ▵

1 4.13 0.54 ▵ ▵ ▵

1.9 4.13 0.55 ▵ ▵ ▵

1.999 4.13 0.55 ▵ ▵ ▵

(e2) δðϑþ2 þ ϑ−2 Þε2ðβ ¼ 1Þ

βnw 0.05 0.1 0.5 0.9 0.99

0.01 ▵ ▵ ▵ ▵ ▵

0.1 ▵ ▵ ▵ ▵ ▵

0.5 −0.15 ▵ ▵ ▵ ▵

1 −0.29 −0.08 ▵ ▵ ▵

5 −1.46 −0.38 ▵ ▵ ▵

(Table continued)
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larger than 1 μas and may thus be detected by means of the
mentioned multimessenger detectors. For instance, its
absolute value is about 2.9 μas, if w ¼ 0.05; η̂ ¼ 1.9,
and β ¼ 10.
We now turn our attention to the velocity effects on the

individual fluxes and on the flux sum and difference
relations of the images of the light source. The color-
indexed velocity effects on the zeroth-, first-, and second-
order contributions to the normalized flux of the
light-source primary image are shown in Fig. 5, respec-
tively. Notice that it is not necessary to plot the velocity
effects on the sum and difference relations of the
normalized fluxes of the light-source images because of
Eqs. (97)–(100). The values of δFþ

1 ε=Fs and δF
þ
2 ε

2=Fs are

TABLE I. (Continued)

βnw 0.05 0.1 0.5 0.9 0.99

10 −2.91 −0.75 ▵ ▵ ▵

(f1) δðϑþ2 − ϑ−2 Þε2ðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 −0.29 −0.07 ▵ ▵ ▵

0.1 −0.29 −0.07 ▵ ▵ ▵

0.5 −0.29 −0.07 ▵ ▵ ▵

1 −0.29 −0.07 ▵ ▵ ▵

1.9 −0.29 −0.08 ▵ ▵ ▵

1.999 −0.29 −0.08 ▵ ▵ ▵

(f2) δðϑþ2 − ϑ−2 Þε2ðβ ¼ 1Þ

FIG. 5. The velocity effects on the zeroth-, first-, and second-order contributions to the normalized image flux, on the zeroth- and
second-order contributions to the unscaled centroid position, and on the zeroth- and first-order contributions to the unscaled (or
practical) differential time delay of the light-source images, shown as the functions of w and β or η̂ and w (on the domain Dη̂1 or Dβ) in
color-indexed form. The figures of δFþ

0 =Fs; δΞcent;0, and δΔτ0 are taken from [130] for comparison.
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presented in Table II, while the ones of δFþ
0 =Fs have been

given in [130]. In a similar way, we begin with the
discussion of the changing trends of these velocity effects.
The results given in Fig. 5 and Table II suggest the velocity
effects on the first-order normalized flux of the primary
image and on the first-order normalized flux difference
of the images of the light source decrease monotonically
on the domain fðw; β; η̂Þj0.05≲ w < 1; 0.01 ≤ β ≲ 0.8;
η̂ ¼ 1.9g when increasing w. However, they first decrease
to a minimum value and then increase to zero with the
increase of w from 0.05 to 1 on the domain
fðw; β; η̂Þj0.05≲ w < 1; 0.8≲ β ≤ 10; η̂ ¼ 1.9g as well
as on Dβ. Compared with them, the velocity effects
δFþ

2 ε
2=Fs and δðFþ

2 þ F−
2 Þε2=Fs increase with the increase

of w on both Dη̂1 and Dβ, in contrast to the behaviors of
δFþ

0 =Fs and δðFþ
0 þ F−

0 Þ=Fs [130]. Then we estimate the
possibilities of detecting these velocity effects, according to
Fig. 5, Table II, and Fig. 6 in which the magnitudelike
differences induced by the velocity effects on the ith-order
ði∈ f0; 1; 2gÞ flux of the light-source primary image, on
the jth-order ðj∈ f0; 2gÞ flux sum, and on the first-order
flux difference of the light-source images are plotted in
color-indexed form. In comparison with the relatively large
possibility of detecting δFþ

0 =Fs and δðFþ
0 þ F−

0 Þ=Fs [130],
which can be indicated by the color-indexed results of
ðδmþ

1 ÞZeroth and ðδm2ÞZeroth in Fig. 6, it is also likely to
measure the velocity effects on the first-order normalized
flux of the primary image and on the first-order normalized
flux difference of the images of the light source by future
multimessenger emission detectors (or telescopes) whose
flux resolution is approximately equal to or better than that
of the nominal Kepler mission (with a photometric pre-
cision of a few μmag [156,157]). On most of the domain
fðw; β; η̂Þj0.05≲ w≲ 0.27; 0.2≲ β ≲ 1.8; η̂ ¼ 1.9g with a
large bounce parameter, we find that the absolute value of
the magnitudelike difference ðδmþ

1 ÞFirst caused by δFþ
1 ε can

be larger than 10 μmag and thus within the capability of
these Kepler-level multimessenger emission detectors.
This is the case for ðδmþ

1 ÞFirst on the main part of the
domain fðw;β; η̂Þj0.05≲w≲ 0.17;0.27≲ β≲ 1.5; η̂¼ 0.1g
(with a small bounce parameter) or of the domain
fðw; β; η̂Þj0.05≲ w≲ 0.23; β ¼ 1; 0 < η̂ < 2g. Compared
with the case of ðδmþ

1 ÞFirst, the magnitudelike difference
ðδm3ÞFirst acting as a bivariate function of β and w possesses
two separated and more evident regions where its absolute
value is not smaller than 10 μmag for a given bounce
parameter η̂∈ ð0; 2Þ [see, e.g., Figs. 6(f1) and 6(f2) for
details]. It indicates a significantly larger chance to detect
the velocity effect on the first-order difference relation of
the normalized fluxes of the light-source images via the
mentioned Kepler-level multimessenger detectors. This
conclusion can also be recognized from another perspective
for ðδm3ÞFirst on the domain Dβ with a given β ¼ 1, as
shown in Fig. 6(f3). For example, jðδm3ÞFirstj is about
12.3 μmag when w ¼ 0.35, β ¼ 1, and η̂ ¼ 1.8 are given.

It reaches 37.9 μmag for the case of w ¼ 0.1, β ¼ 1, and
η̂ ¼ 1.9. With respect to the velocity effects on the second-
order normalized flux of the primary image and on the
second-order normalized flux sum of the images of the
light source, it is only when w takes a very limited value
and β has a small range that they may be measured by the
future Kepler-level multimessenger detectors, as shown in
Figs. 6(c1)–6(c3) and Figs. 6(e1)–6(e3). For instance, with
the assumption of w ¼ 0.07, β ¼ 0.1, and η̂ ¼ 0.1,
ðδmþ

1 ÞSecond resulted from δFþ
2 ε

2 and ðδm2ÞSecond caused
by δðFþ

2 þ F−
2 Þε2 have values 10.7 and 11.7 μmag, respec-

tively, both of which are within the resolution capability
of these Kepler-level multimessenger detectors men-
tioned above.
We finally discuss the velocity effects on the magnifi-

cation centroid and on the differential time delay of the
images of the light source. On the one hand Fig. 5 shows
the color-indexed velocity effects on the zeroth- and
second-order contributions to the unscaled centroid posi-
tion, as well as those on the zeroth- and first-order
contributions to the unscaled differential time delay, as
the bivariate functions of β (or η̂) and w. Additionally, the
values of δΞcent;2ε

2 and δΔτ1ε are given in Table II. Similar
to the behavior of δΞcent;0 or δΔτ0, Fig. 5 implies that both
δΞcent;2ε

2 and δΔτ1ε decrease monotonically when increas-
ing w on Dη̂1 (with a fixed β) or on Dβ (with a fixed η̂). On
the other hand, we consider the possibilities of their
astronomical detections. In comparison with the good
chance to observe δΞcent;0, it is not until w takes a very
limited value while β takes a relatively large value that there
is a chance to detect δΞcent;2ε

2 via the NEAT-level multi-
messenger detectors mentioned above, according to the
results on the domains Dη̂1 and Dβ shown in Fig. 5 and
Table II. For instance, if w ¼ 0.07, β ¼ 7, and η̂ ¼ 1.9 are
assumed, then the value of δΞcent;2ε

2 is about 0.35 μas,
which is 7 times the precision of those NEAT-level multi-
messenger detectors. Unlike the case of δΞcent;2ε

2, Fig. 5
and Table II suggest a large possibility to detect the velocity
effect on the first-order unscaled differential time delay of
light signals in current resolution, whether onDη̂1 or onDβ.
For example, even for an ordinary massive neutrino with
w ≈ 0.999999 [197,198] serving as the test particle, the
value of δΔτ1ε can reach about 9.2 × 10−9 s which is larger
than 4 times the current time resolution (∼2 ns) of the
IceCube neutrino detector [162,163] and is about 9 times
the time resolution (∼1 ns) of the ARGO-YBJ air shower
detector [199,200], if β ¼ 1 and η̂ ¼ 1 are assumed.

B. Bounce effects on the practical
lensing observables

Next we focus on discussing the bounce-induced effects
on the Schwarzschild lensing properties of the images of
the massive particle source. First, Fig. 7 shows the bounce
effects on the first- and second-order contributions to the
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FIG. 6. The color-indexed magnitudelike differences caused by the velocity effects on the zeroth-, first-, and second-order
contributions to Fþ, on the zeroth- and second-order contributions to Fþ þ F−, and on the first-order contribution to Fþ − F−, plotted
as the functions of w and β or η̂ and w. In each of the subfigures here [such as subfigures (c1)–(c3), (e1)–(e3), and (f1)–(f3)], we only
show the part where the absolute value of a magnitudelike difference is not smaller than 10 μmag. As examples, we consider the cases of
η̂ ¼ 1.9 and η̂ ¼ 0.1, respectively, when these magnitudelike differences act as the functions of w and β. The case with β ¼ 1 is also
given when ðδmþ

1 ÞFirst, ðδm3ÞFirst, ðδmþ
1 ÞSecond, and ðδm2ÞSecond are the functions of η̂ and w.
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unscaled position of the positive-parity image and to the
unscaled positional relations of the images of the particle
source in color-indexed form on the domains Dw1;Dw2,
and Dβ, respectively. Compared with the behaviors of
the velocity effects, these bounce effects exhibit a more

complex dependence on the variables. It is found that the
bounce effects on the first-order primary-image position
and on the first-order positional sum relation increase
monotonically with the increase of η̂, for a given β on
any of the domains Dw1 and Dw2 or for a given w on Dβ.
This tendency applies to the bounce effect on the second-
order image position on the domain fðw; β; η̂Þj0.05≲ w≲
0.96; β ¼ 1; 0 < η̂ < 2g or fðw; β; η̂Þjw ¼ w1; 0.01 ≤ β ≤
10; 0 < η̂ < 2g, where w1 is a given constant with a range
0.05≲ w1 ≲ 0.7, as well as to that on the second-order
positional sum on Dw1 and to that on the second-order
positional difference on Dw2. However, for a given β or w,
the bounce effects on the first-order positional difference
within Dw1;Dw2, or Dβ, on the second-order positional
sum within Dw2, and on the second-order positional
difference within Dw1, have a reverse tendency.

TABLE II. The values of δFþ
1 ε=Fs and δFþ

2 ε
2=Fs, as well as

those of δΞcent;2ε
2 (in units of μas) and δΔτ1ε (in units of

seconds), for various β (or η̂) and w. A star “⋆” denotes the
magnitude whose absolute value is less than 1.0 × 10−6.

βnw 0.05 0.1 0.5 0.9 0.99

0.01 2.96 × 10−5 2.66 × 10−5 8.38 × 10−6 ⋆ ⋆
0.1 2.94 × 10−5 2.65 × 10−5 8.29 × 10−6 ⋆ ⋆
0.5 2.67 × 10−5 2.38 × 10−5 6.43 × 10−6 ⋆ ⋆
1 2.03 × 10−5 1.74 × 10−5 2.34 × 10−6 ⋆ ⋆
5 −1.16 × 10−6 −3.27 × 10−6 −2.02 × 10−6 ⋆ ⋆
10 −2.24 × 10−6 −2.97 × 10−6 ⋆ ⋆ ⋆

(a1) δF
þ
1 ε=Fsðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 1.58 × 10−5 1.29 × 10−5 ⋆ ⋆ ⋆
0.1 1.58 × 10−5 1.30 × 10−5 ⋆ ⋆ ⋆
0.5 1.61 × 10−5 1.33 × 10−5 ⋆ ⋆ ⋆
1 1.71 × 10−5 1.42 × 10−5 ⋆ ⋆ ⋆
1.9 2.03 × 10−5 1.74 × 10−5 2.34 × 10−6 ⋆ ⋆
1.999 2.08 × 10−5 1.79 × 10−5 2.68 × 10−6 ⋆ ⋆

(a2) δF
þ
1 ε=Fsðβ ¼ 1Þ

βnw 0.05 0.1 0.5 0.9 0.99

0.01 −1.47 × 10−3 −1.92 × 10−4 −2.69 × 10−6 ⋆ ⋆
0.1 −1.47 × 10−4 −1.92 × 10−5 ⋆ ⋆ ⋆
0.5 −2.93 × 10−5 −3.84 × 10−6 ⋆ ⋆ ⋆
1 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆
5 −2.80 × 10−6 ⋆ ⋆ ⋆ ⋆
10 −1.23 × 10−6 ⋆ ⋆ ⋆ ⋆

(b1) δF
þ
2 ε

2=Fsðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆
0.1 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆
0.5 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆
1 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆
1.9 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆
1.999 −1.46 × 10−5 −1.91 × 10−6 ⋆ ⋆ ⋆

(b2) δF
þ
2 ε

2=Fsðβ ¼ 1Þ

βnw 0.05 0.1 0.5 0.9 0.99

0.01 ▵ ▵ ▵ ▵ ▵

0.1 ▵ ▵ ▵ ▵ ▵

(Table continued)

TABLE II. (Continued)

βnw 0.05 0.1 0.5 0.9 0.99

0.5 0.07 ▵ ▵ ▵ ▵

1 0.15 ▵ ▵ ▵ ▵

5 0.65 0.12 ▵ ▵ ▵

10 0.94 0.10 ▵ ▵ ▵

(c1) δΞcent;2ε
2ðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 0.14 ▵ ▵ ▵ ▵

0.1 0.14 ▵ ▵ ▵ ▵

0.5 0.14 ▵ ▵ ▵ ▵

1 0.14 ▵ ▵ ▵ ▵

1.9 0.14 ▵ ▵ ▵ ▵

1.999 0.14 ▵ ▵ ▵ ▵

(c2) δΞcent;2ε
2ðβ ¼ 1Þ

βnw 0.05 0.1 0.5 0.9 0.99

0.015.31 × 10−32.52 × 10−32.30 × 10−41.81 × 10−51.55 × 10−6

0.1 0.05 0.03 2.30 × 10−31.81 × 10−41.55 × 10−5

0.5 0.27 0.13 0.01 9.07 × 10−47.76 × 10−5

1 0.53 0.25 0.02 1.81 × 10−31.55 × 10−4

5 2.65 1.26 0.12 9.07 × 10−37.76 × 10−4

10 5.31 2.52 0.23 0.02 1.55 × 10−3

(d1) δΔτ1εðη̂ ¼ 1.9Þ

η̂nw 0.05 0.1 0.5 0.9 0.99

0.01 0.53 0.25 0.02 9.67 × 10−4 7.16 × 10−5

0.1 0.53 0.25 0.02 9.69 × 10−4 7.18 × 10−5

0.5 0.53 0.25 0.02 1.03 × 10−3 7.74 × 10−5

1 0.53 0.25 0.02 1.20 × 10−3 9.47 × 10−5

1.9 0.53 0.25 0.02 1.81 × 10−3 1.55 × 10−4

1.999 0.53 0.25 0.02 1.90 × 10−3 1.64 × 10−4

(d2) δΔτ1εðβ ¼ 1)
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FIG. 7. The color-indexed bounce effects on the first- and second-order contributions to the unscaled primary-image position and to
the unscaled positional sum and difference relations plotted as the functions of η̂ and β or η̂ and w.
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Moreover, we find that the bounce effects on the second-
order image position and on the second-order positional
relations appear strange in some circumstances. Apart
from experiencing a first increase and a later decrease
with increasing η̂ for a given w on the domain
fðw; β; η̂Þj0.96≲ w ≤ 1; β ¼ 1; 0 < η̂ < 2g, Δϑþ2 ε2 on
fðw; β; η̂Þjw ¼ w2; 0.01 ≤ β ≤ 10; 0 < η̂ < 2g where the
given constant w2 takes a range 0.7≲ w2 ≤ 1, has
three different behaviors to which three different sub-
ranges of the given parameter β correspond. Similarly, if η̂
increases, thenΔðϑþ2 þ ϑ−2 Þε2with a givenwwill increase on
the domain fðw; β; η̂Þj0.05≲ w≲ 0.66; β ¼ 1; 0 < η̂ < 2g,
decrease on the domain fðw; β; η̂Þj0.7≲ w ≤ 1; β ¼ 1; 0 <
η̂ < 2g, and increase first and then decrease on the domain
fðw; β; η̂Þj0.66≲ w≲ 0.7; β ¼ 1; 0 < η̂ < 2g. In compari-
son with the bounce effect on the second-order positional

sum, Δðϑþ2 − ϑ−2 Þε2 experiences an inverse tendency of
change on the domains fðw; β; η̂Þj0.05≲ w≲ 0.59; β ¼ 1;
0 < η̂ < 2g, fðw; β; η̂Þj0.62≲ w ≤ 1; β ¼ 1; 0 < η̂ < 2g,
and fðw; β; η̂Þj0.59≲ w≲ 0.62; β ¼ 1; 0 < η̂ < 2g, respec-
tively. Second, Fig. 7 indicates that there is a relatively
large possibility to measure the bounce-induced effects on
the first-order unscaled angular position of the primary
image and on the first-order unscaled positional sum and
difference relations of the images of the particle source by
future high-accuracy particle detectors (or instruments)
whose angular resolution is approximately equal to or better
than that of the NEAT mission. Concretely, we find that
the value of Δϑþ1 ε can be larger than 0.05 μas on about one
out of two of the domain fðw; β; η̂Þjw ¼ 0.5; 0.01 ≤ β ≲
8.4; 0.5≲ η̂ < 2g (or the domain fðw; β; η̂Þjw ¼ 1; 0.01 ≤
β ≲ 8.7; 0.32≲ η̂ < 2gÞ for a relativistic massive particle

FIG. 8. The color-indexed bounce effects on the first- and second-order contributions to the normalized flux of the primary particle-
source image, on the second-order unscaled centroid, and on the first-order unscaled differential time delay, shown as the functions of η̂
and w or η̂ and β.
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(or a photon) being the test particle. It is also true for Δϑþ1 ε
on most of the domain fðw; β; η̂Þj0.12≲ w ≤ 1; β ¼ 1;
0.43≲ η̂ < 2g. The maximum value of Δϑþ1 ε on those
three domains reaches about 0.79, 1.97, and 1.10 μas,
respectively. Additionally, it is interesting to find that
the value of Δðϑþ1 þ ϑ−1 Þε on most of the domain
fðw; β; η̂Þj0.38≲ w ≤ 1; 1≲ η̂ < 2g, as well as the absolute
value of Δðϑþ1 − ϑ−1 Þε on almost all of a larger domain
fðw; β; η̂Þjw ¼ 1; 0.53≲ β ≤ 10; 1.1≲ η̂ < 2g, can exceed
the angular resolution of these NEAT-level particle detectors
apparently, and that their maximum absolute values are
about 3.97 and 3.89 μas, respectively. Furthermore, on
almost all of the domain fðw; β; η̂Þjw ¼ 0.5; 0.1≲ β ≲
10; 0.37≲ η̂ < 2g and on most of fðw; β; η̂Þj0.22≲ w ≤ 1;
β ¼ 1; 0.34≲ η̂ < 2g, the absolute value of Δðϑþ1 − ϑ−1 Þε is
also larger than the astrometric precision of the mentioned
NEAT-level particle detectors. As to the bounce-induced
effects on the second-order unscaled primary-image position
and on the second-order unscaled positional sum and
difference, we conclude that there is not any possibility
to detect them within the capability of these NEAT-level
particle detectors. For instance, the largest absolute values
of Δϑþ2 ε2 on Dw1 and Dw2 are about 1.7 × 10−4 and
2.2 × 10−4 μas, respectively, 2 orders of magnitude less than
the angular precision of these NEAT-level particle detectors.
In the best case,Δðϑþ2 þϑ−2 Þε2 [or jΔðϑþ2 −ϑ−2 Þε2j] onDw1 is
about 40 times less than 0.05 μas.
We are now in a position to consider the bounce-induced

effects on the fluxes and on the flux sum and difference
relations of the images of the particle source. Figure 8
presents the bounce effects on the first- and second-order

contributions to the normalized flux of the primary image
of the particle source in color-indexed form. And the
corresponding color-indexed magnitudelike differences
induced by the bounce effects on the first-order primary-
image flux and on the first-order flux difference for the case
of massive particles being the test particles are shown in
Fig. 9. We notice that the bounce effects on the first-order
primary-image flux and on the first-order flux difference
decrease with increasing η̂ monotonically, for a given w on
Dβ or for a given β on any of the domains Dw1 and Dw2.
This tendency also applies to the bounce effect on the
second-order primary-image flux on Dw1 with a given β.
However, the behavior of ΔFþ

2 ε
2=Fs on Dw2 appears

more complex. Specifically, with a fixed source position
and the increase of η̂, it always increases on the domain
fðw; β; η̂Þjw ¼ 1; 0.01 ≤ β ≲ 1.1; 0≲ η̂ < 2g, decreases on
fðw;β; η̂Þjw¼ 1;1.5≲ β ≤ 10;0≲ η̂< 2g, and experiences
a first decrease and a later increase on fðw; β; η̂Þjw ¼
1; 1.1≲ β ≲ 1.5; 0≲ η̂ < 2g. Additionally, ΔFþ

2 ε
2=Fs [or

ΔðFþ
2 þ F−

2 Þε2] on the corresponding subranges of Dβ has
a reverse tendency of change partially. Moreover, Figs. 8
and 9 indicate that there is a small chance to detect the
bounce effect on the first-order normalized flux difference
of the particle-source images by future particle emission
detectors whose flux resolution is approximately equal to
(or better than) that of the Kepler mission (with a photo-
metric precision of a few μmag), since the value of the
magnitudelike difference ðΔm3ÞFirst caused by it on most of
the domain fðw;β; η̂Þjw¼ 1;0.01 ≤ β≲ 1.1;1.63≲ η̂< 2g
or on half of fðw;β; η̂Þj0.94≲w < 1;β ¼ 1;1.94≲ η̂< 2g
is larger than 10 μmag. We also find that the possibility to

FIG. 9. The color-indexed magnitudelike differences caused by the bounce effects on the first-order flux of the primary image of the
particle source and on the first-order flux difference of the particle-source images, plotted as the functions of β (or w) and η̂. Here, only
the part where the absolute value of a magnitudelike difference is not smaller than 1 μmag is shown in each figure.
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detect the bounce effect on the first-order normalized flux
of the primary particle-source image by the capability of
these Kepler-level particle detectors is very small or even
nonexistent, with the consideration of the maximum value
4.79 μmag of themagnitudelike difference ðΔmþ

1 ÞFirst on the
domains Dw1;Dw2, and Dβ. The results also show that the
values of the bounce effects on the second-order normalized
flux of the particle-source image and on the second-order
normalized flux sum of the images of the particle source are
so small that they are far beyond the capability of the
mentioned Kepler-level particle detectors.
Eventually, we move on to the bounce effects on the

centroid position and on the differential time delay in the
Schwarzschild lensing phenomenon of massive particles.
Figure 8 exhibits the color-indexed bounce effects on the
second-order unscaled centroid and on the first-order
unscaled differential time delay. It indicates that the bounce
effect on the second-order unscaled centroid on Dw1
increases with increasing η̂ for a given β, which also
applies to the bounce effect on the first-order unscaled
differential time delay for a given w on Dβ or a fixed β on
one of the domains Dw1 and Dw2. With different subranges
of β (or w), the change trend of ΔΞcent;2ε

2 is contrary to that
ofΔFþ

2 ε
2=Fs when they are on the domainDw2 (orDβ). As

regards the possibility to detect them, we conclude that it is
only by future high-accuracy particle detectors whose
angular resolution is much higher than the one of the
NEAT that it is possible to measure the bounce effect on the
second-order unscaled centroid. However, a large possibil-
ity to detect the bounce effect on the first-order unscaled
differential time delay in current resolution is shown by the
results in Fig. 8, no matter which domain (amongDw1;Dw2,
and Dβ) it lies on. Although the source position and the
bounce parameter take very small values and the initial
velocity of the massive particle takes a low relativistic
value, the value of ΔðΔτ1Þε may still exceed the present
precision of measuring the differential time delay remark-
ably. For example, if w ¼ 0.08, η̂ ¼ 0.01, and β ¼ 0.1 are
fixed, then ΔðΔτ1Þε ≈ 5.46 ns, which is evidently larger
than the time resolution of the ARGO-YBJ detector.

VII. SUMMARY AND DISCUSSION

In summary, the gravitational lensing of a massive
neutral particle with a relativistic initial velocity in the
black-bounce-Schwarzschild black hole spacetime have
been studied beyond the weak-deflection limit. Based on
the standard form of the black-bounce-Schwarzschild
metric, we have adopted a classical approach to derive
the gravitational deflection of the massive particle propa-
gating in the equatorial plane of the lens in the 3PM
approximation. The resulting deflection angle extends the
results in the previous literature and has been utilized to
solve the popular Virbhadra-Ellis lens equation for analyz-
ing the observable properties of the primary and secondary

images of a point source of the massive particle. We have
obtained the weak-field expressions for the positions,
magnifications, and gravitational time delays of the indi-
vidual images and those for the position and magnification
relations (including the total magnification), the magnifi-
cation centroid, and the differential time delay between the
images. The velocity-induced effects, which are caused by
the deviation of the initial velocity of the massive particle
from the speed of light, on the measurable lensing proper-
ties of the images of a pointlike light source in the black-
bounce-Schwarzschild geometry have been probed. We
have also discussed the effects induced by the bounce
parameter of the spacetime on the Schwarzschild lensing
observables of the images of the particle source. Serving as
an application of our analytical results, the Galactic Center
supermassive black hole, Sgr A�, has been assumed as the
black-bounce-Schwarzschild lens. Under this astrophysical
scenario, we have assessed the possibilities to detect the
new velocity- and bounce-induced effects on the practical
lensing observables, along with the analysis of the depend-
ence of these two effects on the source position, the initial
velocity of the particle, and the bounce parameter.
Similar to the case of Kerr-Newman black hole lensing

of massive particles [130], we find that the decrease of the
particle’s initial velocity leads to a monotonous increase of
many components of the velocity effects on the black-
bounce-Schwarzschild lensing observables of the images of
the light source, for a given bounce parameter and a fixed
scaled source position on proper domains, respectively.
These components include but are not limited to the
velocity effects on the first- and second-order contributions
to the primary-image position, on the first- and second-
order sum relations of the unscaled positions, on the first-
order normalized primary-image flux, on the first-order
normalized flux difference, on the second-order practical
magnification centroid, and on the first-order unscaled
differential time delay. It means that under the same
conditions, the black-bounce-Schwarzschild lensing
observables of the images of a massive particle source
become more apparent than those of the images of a light
source for quite a few scenarios. It also implies that there
may be some chances to detect the velocity effects on the
observable features of the lensed images of the light source
in the black-bounce-Schwarzschild spacetime, if the future
(or even the current) techniques and avenues are enough for
their astronomical measurements. Our results suggest a
relatively large possibility of the detection of the velocity
effects on the first-order unscaled differential time delay of
the light-source images with current time resolution in
substantial circumstances. With a tighter restriction on the
domains of the parameters, it is also possible to measure the
velocity effects on the first-order unscaled primary-image
position, on the first-order normalized flux of the light-
source primary image, and on the first-order practical
image position sum, as well as those on the first-order
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difference relations of the unscaled positions and of the
normalized fluxes of the light-source images, in the
capability of future multimessenger detectors whose angu-
lar resolution is similar to that of the NEAT mission and
whose flux resolution is similar to the one of the Kepler
mission. It is interesting to note that there is a rather small
window of opportunity for detecting the velocity effects on
the second-order unscaled image position, on the second-
order normalized flux of the light-source primary image, on
the second-order practical positional sum and difference
relations, on the second-order normalized flux sum, and on
the second-order unscaled centroid position by these future
multimessenger detectors. Additionally, the measurements
of the other velocity-effect components are beyond the
resolution capability of these multimessenger detectors.
We also find that some bounce effects on the measurable

image properties in the Schwarzschild lensing of massive
particles increase monotonically with the increase of the
bounce parameter, when the initial velocity of the particle
and the particle-source position are fixed, respectively, on
proper ranges or subranges. They contain not only the
bounce effects on the first- and second-order contributions
to the angular position of the primary image, but also the
bounce effects on the first-order sum of the image positions
and on the second-order positional sum and difference
relations, in company with those on the second-order
unscaled centroid and on the first-order unscaled differ-
ential time delay. A reverse dependence on the bounce
parameter applies to the bounce effects on the first-order
positional difference, the bounce effects on the first- and
second-order contributions to the primary-image flux, and
so on, when w and β are given on proper domains,
respectively. All of them indicate a potential chance to
observe some of these bounce effects and thus to distin-
guish between the Schwarzschild and black-bounce-
Schwarzschild black holes via the lensing properties related
to timelike signals, once some critical value of the bounce
parameter is exceeded. We find a relatively large possibility
to measure the bounce effects on the first-order unscaled
differential time delay of the particle-source images in
current or near future astronomical accuracy. Moreover, it is
possible to detect the bounce effects on the first-order
unscaled primary-image position and on the first-order
unscaled positional sum and difference of the images of the
particle source by future particle detectors whose angular
resolution is similar to that of the NEAT mission. And there
is also a glimmer of hope to measure the bounce effect on
the first-order normalized image-flux difference relation via
future particle detectors whose flux resolution is similar to
that of the Kepler mission, which may even apply to the
bounce effect on the first-order normalized primary-image
flux. Additionally, our results indicate that it is not until via
future high-accuracy particle detectors whose angular and

flux resolution capabilities are better than NEAT’s and
Kepler’s performances, respectively, that we may detect the
bounce effects on the second-order unscaled position and
the second-order normalized flux of the particle-source
primary image, on the second-order unscaled positional
sum and difference, on the second-order normalized flux
sum, and on the second-order unscaled magnification
centroid of the images of the particle source.
As to the energy (or velocity) distribution of particle

emission, we know gravitational time delay makes the
massive particles emitted at the same time with different
initial velocities arrive at the observer at different times,
which leads to a result that the observed energy distribution
is different from the emitted one. In this work, we only
calculate the gravitational time delay for the massive
particles with an arbitrary initial velocity, without consid-
ering a specific energy distribution. In our future work, we
plan to study the relations between the observed energy
distribution and the emitted one for various initial velocity
distributions when the massive particles emitted by the
source pass by a black-bounce-Schwarzschild black hole.
Finally, we must admit that some challenges and diffi-

culties are to be overcome in current or future measurements
of the gravitational lensing of massive particles and the
related velocity- and bounce-induced effects. Nevertheless, it
should be recognized that the desired information and
features of the lenses and the particle sources (e.g., the
sources of particle dark matter [201] or cosmic-ray particles
[202,203]) may be revealed through the lensing effects of
timelike signals. With the rapid progress made in the
theoretical and observational investigations of the weak-
and strong-field gravitational lensing phenomena (see, e.g.,
[204–239]) and of the multimessenger synergic observations
(see, for instance, [99,100,115,135,136,240]) over the last
decades, it seems reasonable to expect a bright prospect for
the gravitational lensing of massive particles.
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